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ABSTRACT

Background: Studies have shown that methods based on mixture
models work well when mapping clinical to preference-based meth-
ods. Objectives: To develop these methods in different ways and to
compare performance in a case study. Methods: Data from 856
patients with asthma allowed mapping between the Asthma Quality
of Life Questionnaire and both the five-level EuroQol five-dimensional
questionnaire (EQ-5D-5L) and the health utilities index mark 3 (HUI3).
Adjusted limited dependent variable mixture models and beta-based
mixture models were estimated. Optional inclusion of the gap
between full health and the next value as well as a mass point at
the next feasible value were explored. Results: In all cases, model
specifications formally modeling the gap between full health and the
next feasible value were an improvement on those that did not.
Mapping to the HUI3 required more components in the mixture
models than did mapping to the EQ-5D-5L because of its uneven
distribution. The optimal beta-based mixture models mapping to the
HUI3 included a probability mass at the utility value adjacent to full

health. This is not the case when estimating the EQ-5D-5L, because of
the low proportion of observations at this point. Conclusions: Beta-
based mixture models marginally outperformed adjusted limited
dependent variable mixture models with the same number of com-
ponents in this data set. Nevertheless, they require a larger number of
parameters and longer estimation time. Both mixture model types
closely fit both EQ-5D-5L and HUI data. Standard mapping approaches
typically lead to biased estimates of health gain. The mixture model
approaches exhibit no such bias. Both can be used with confidence in
applied cost-effectiveness studies. Future mapping studies in other
disease areas should consider similar methods.

Keywords: EQ-5D, HUI, mapping, utility.
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Introduction

Preference-based measures (PBMs) that allow the calculation of
health state utilities are not always administered in studies of
clinical effectiveness. Nevertheless, these outcomes are often
preferred by decision makers such as the National Institute
of Health and Care Excellence to estimate quality-adjusted
life-years (QALYs) for use in cost-effectiveness analysis [1].
“Mapping,” or “cross-walking,” is commonly used to estimate
health state utilities when clinical studies have not included any
PBM [2].

This article develops mapping methods and illustrates their
use in relation to asthma. In clinical trials that include patients
with asthma, the Sydney Asthma Quality of Life Questionnaire
(AQLQ-S) is routinely recorded, but these trials often record no
PBM and therefore QALYs cannot be estimated [3]. Nevertheless,
there is increasing interest in how asthma is influencing health-
related quality of life [4,5]. For these reasons, studies have used
mapping techniques to map from asthma-specific measures to
PBMs [6,7].

There are two broad approaches to mapping. The direct
approach models the health state utility values themselves. The
indirect approach, also referred to as response mapping, models
each dimension of the PBM and calculates the predicted utilities
as a second, separate step. Response-mapping models require
observations (preferably a sizeable number) at all levels of each
dimension and this can be a problem for small data sets if there
are many different levels in each dimension.

Health state utility values are characterized by unusual
distributions; they are commonly skewed, multimodal, and
often have a large number of observations at 1 (indicating full
health) and a gap between full health and the next feasible
value. By definition, they are limited between the range of best
and worst health states. Basic regression models are unable to
capture all these features, which leads to biased estimates of
health gain.

Beta regressions can provide flexibility when modeling
skewed, bounded PBMs. Basu and Manca [8| proposed the use
of single and two-part beta regressions to model PBMs and
QALYs. The standard beta regression assumes that the
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dependent variable is defined only in the open interval (0,1) but
many PBMs display negative values. Some studies have sug-
gested that a beta regression is inappropriate in these cases [9].
Other studies have attempted to overcome this problem by
converting ad hoc all negative values to 0 [7,10], not only ignoring
that some health states are worse than death but also potentially
distorting the distribution because of the well-known sensitivity
of beta regressions to pile-ups of values at the boundaries.
Nevertheless, there is a standard transformation in the literature
that allows the transformation of values in any open interval into
a (0,1) interval [11]. After estimation, the expected value is then
transformed to its original scale to obtain the correct predictions.
In the area of mapping, this is the approach followed by Kent
et al. [12] and Khan et al. [13]. Beta-based regression models have
been found to be more robust and outperform linear regressions
[8,13,14]. One significant issue when using beta regressions is
how to deal with observations on the boundaries of the feasible
utility range. Different methods have been proposed and it is
recommended that the sensitivity of the estimates to the differ-
ent methods be assessed [11]. Even though beta regressions can
deal with the bounded nature of utility data and can reproduce
various shapes, multimodality is difficult to capture.

Mixture models are increasingly being used in the context of
mapping because of their flexibility and the ability to capture
multimodality [7-11,15,16]. Mixtures of normal distributions have
been used to model different PBMs such as the health utilities
index mark 3 (HUI3) [17], the three-level EuroQol five-dimensional
questionnaire (EQ-5D-3L) [12,14], and the six-dimensional health
state short form [14]. Some mixture models have been specifically
designed for utility mapping such as the adjusted limited
dependent variable mixture model (ALDVMM) [15,16,18,19]. This
uses a mixture of adjusted normal distributions to account for
the multimodality of PBMs and includes a number of other useful
characteristics. It contains built-in features that account for the
peak of observations at full health and the option of a gap in the
distribution below that peak. Other mixture models used for
mapping include a mixture of Tobit models censored to account
for the bounded nature of PBMs with an additional degenerate
distribution at perfect health [20]. One additional study [13]
claims to estimate a limited dependent variable model. Never-
theless, the model described is not a finite mixture model but a
two-part model with an ad hoc assumption of a normal distri-
bution for values of the dependent variable less than 0.3 and a
beta binomial for values at 0.3 or higher. The split at 0.3 is
justified via visual inspection of a kernel density plot of the
dependent variable. Recently, beta mixture models have also
been used in utility mapping with success [12]. In general,
mixture models have been found to outperform nonmixture
models [18-20]. One study found some evidence to suggest that
beta regressions can outperform mixture models, which might be
in part related to the distributional shape of the health utility
measure being used [14].

This study develops knowledge about mapping methods by
comparing approaches for estimating two PBMs, the five-level
EQ-5D (EQ-5D-5L) and the HUI3, from the AQLQ-S score, a clinical
asthma measure using data from an international sample [21].
Two different classes of mixture models are used: the ALDVMM
and extensions to a beta mixture model [12], which 1) account for
the gap in the PBM distributions between full health and the next
feasible value and 2) allow alternative approaches to deal with
observations on the boundary of the beta distribution [12]. We
provide a choice of mapping algorithms for use in economic
evaluation along with advice on how best to choose between
them.

All models are estimated using user-written code in Stata
(StataCorp, College Station, TX) via the commands “aldvmm” [18]
and “betamix” [22].

Methods

Data

We used data from the Multi-Instrument Comparison (MIC) project
data set, which includes data on 7933 observations across six
countries: Australia, Canada, Germany, Norway, the United Kingdom,
and the United States [21]. The data include information on well-
being, health state utilities, and demographic characteristics. In
addition, respondents who self-reported having specific conditions
were asked to answer disease-specific questionnaires. In total, 856
respondents self-reported asthma and completed the AQLQ-S. Data
were available for respondents’ age and sex as well as their EQ-5D-5L
and HUI3 scores. After removing observations with missing values in
any of the required variables, the final sample for analysis consisted
of 852 observations.

Preference-Based Measures

Both the EQ-5D-5L and the HUI3 are PBMs with health state utility
estimates for each feasible response to their descriptive system.
The EQ-5D-5L covers the same five dimensions as the original
three-level version (mobility, self-care, usual activities, pain/
discomfort, and anxiety/depression), but each dimension has five
response levels (no problems, slight, moderate, severe, and
extreme/unable to do). It is designed for self-completion, has a
low response burden, and is applicable to a range of diseases and
treatments. The HUI3 is also a self-completion questionnaire
with eight dimensions (vision, hearing, speech, ambulation,
dexterity, emotion, cognition, and pain). The levels for each
dimension vary between 5 and 6. We use the value sets in the
studies by Devlin et al. [23] and Furlong et al. [24] to attach utility
values to each health state in the EQ-5D-5L and the HUI3,
respectively. For both instruments, a value of 1 represents full
health, a value of 0 is considered equivalent to being dead, and
their values can be negative, representing a state worse than
death. Both instruments have a gap between full health and the
next feasible health state (these next feasible health states are
0.951 in the EQ-5D-5L and 0.97258 in the HUI3). We refer to this
value as the truncation point; these are the highest possible
values generated for each of the PBMs that are not represented by
full health. The lower limits are —0.281 and —0.36, respectively, for
the EQ-5D-5L and the HUI3.

Asthma Quality of Life Questionnaire

The AQLQ-S was designed as a measure of quality of life for adult
patients with asthma. The questionnaire contains 20 questions
within four domains (symptoms, activity limitation, emotional
function, and environmental stimuli). Each of the questions
allows a response on a 0 to 4 scale, with 0 representing no
problems at all. The scores for each question are averaged to
produce an overall AQLQ-S score between 0 and 4. Although there
are many different versions of the AQLQ, the AQLQ-S is recom-
mended by the European Medicines Agency [25] and has been
validated [26]. Nevertheless, because the scoring is not prefer-
ence-based, it is not suitable for use in cost-utility analysis.
Comparison of the AQLQ-S with the EQ-5D-5L and the HUI3 is
shown in Figure 2 of the study by Kaambwa et al. [7] The EQ-5D-5L
has good overlap with the AQLQ-S. The only dimension of the
EQ-5D-5L that is not covered directly by the AQLQ-S is pain/
discomfort. The dimensions of the HUI3 have less overlap with the
AQLQ-S. The social and concerns dimensions of the AQLQ-S are not
represented by any dimensions of the HUI3. In addition, the vision,
pain, hearing, speech, dexterity, and cognition dimensions of the
HUI3 are not represented in the AQLQ-S. Nevertheless, correlations
between both PBMs and the AQLQ-S are highly significant; they are
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—0.4837 for the EQ-5D-5L and —0.4572 for the HUI3, similar to those
observed in previous studies [7].

Statistical Methods

It was not feasible to conduct response mapping because this
requires observations in each response category of the different
dimensions covered by the target descriptive system. In the case
of the EQ-5D, there were no observations with the worst possible
response for self-care. For the HUI, there were no observations
with the worst possible response for vision.

We compared two approaches to direct mapping, both based
on mixture models. The first is an ALDVMM implemented using
the publicly available Stata command “aldvmm” [18]. This model
has previously been applied for mapping across a range of clinical
areas, including rheumatoid arthritis [18,19], osteoarthritis [27],
ankylosing spondylitis [28], and traumatic brain injury [29]. It has
been shown to outperform other methods (linear regression,
Tobit, and response mapping). The ALDVMM is a bespoke model
developed specifically for utility mapping and the Stata function
includes a number of user-specified options to tailor the method
to the target utility instrument and country-specific tariff of
interest. This includes specifying the next feasible value after
full health [18], the “truncation point,” thus creating the typical
gap seen in PBMs. There is the option to specify no truncation
and therefore allow each component of the mixture model to be
fully continuous up to the highest feasible value of 1 for full
health. The method has previously been described in detail [19].
In brief, ALDVMM is a mixture of adjusted, normal distributions
for use when the dependent variable is limited above at 1 (full
health) and below in this case at —0.205 for the EQ-5D-5L and
—0.36 for the HUI3. Besides estimating the model with different
numbers of components, we estimated it with and without
truncation.

The second model we used was a beta-based mixture model
estimated via the user-written Stata command “betamix” [22],
which is a generalization of the truncated inflated beta regression
model introduced in the study by Pereira et al. [30]. This is a two-
part model consisting of a multinomial logit model and a beta
mixture model. A beta distribution cannot deal with observations
at the boundaries. The addition of the multinomial logit model to
the beta mixture allows for these observations and a mass of
observations at full health. The model assumes a limited depend-
ent variable y; for each individual i defined at point 1 and the
interval [a,7], where a <7 <1 and can be written as follows:

P(y;=alxi), ly;j=a
P(y;=1lxa), ;=1
P(y;=1x3), y;=1

{1— ) P(yi=S\xi3)}h(yi\xil,xiz),yiE(a,r)

s=a,b,7

9(y;1Xi1,Xi2,Xi3) = (@]

with probabilities:

exp(X;37e)
1+ Zs:a,p,bexp(XBYs) ’

P(y;=kixs)= (2)
where x;3 is a vector of variables influencing the probabilities, yy, is
a vector of coefficients, and s refers to each section of the
distribution. For identification, the coefficients corresponding to
the continuous part of the distribution are set to 0. The proba-
bility density function for the continuous part of the distribution
has probability density function h(-) made up of a mixture of
C-components each representing a beta distribution, with mean
e, and precision parameter ¢, where c=1,...,C, such that:

c
h(y;lxi1,Xp) = gl(P(ClxiZ)f(yl'|Xi1ﬂcy¢cya77))y (3)

where f(-) is a beta density with alternative parameterization and
C is the number of components included in the analysis. Com-
ponent membership is determined using a second multinomial
logit model, such that:

exp(X;,6c)

PclXp)= g5
(e X 1eXp(X;yd))

(C)]
where x;; is a vector of variables influencing the probability of
component membership and &. is a vector of corresponding coef-
ficients. Again, one set of coefficients is set to 0 for identification.

The model is not constrained to the (0,1) range but transforms
values to the relevant interval for the target utility instrument
(-0.281 to 1 for the EQ-5D-5L and —0.36 to 1 for the HUI3). It is
capable of producing estimates at either of the feasible limits,
although for health utilities this is most relevant for mass points
at full health (1). As with the ALDVMM, betamix also allows the
specification of a gap between full health and the next feasible
health state and for a mass of observations at this truncation
point. Although it is possible to include a probability mass at the
lower utility limit, for both model types, we did not include this
here because our sample contained no observations with values
at the lower utility limit for either PBM.

We estimated different specifications of each model type,
with different numbers of components and with and without
probability masses at certain points of the distribution. We
included the AQLQ-S summary score, age, age-squared, and sex
as covariates in all parts of the model. We attempted to keep the
number of independent variables to a minimum so as to keep the
mapping algorithms more generalizable for use in a wider range
of data sets. We also considered including the individual dimen-
sion scores of the AQLQ-S rather than the total score, but found
that our results were not significantly improved.

For comparison, we also estimated EQ-5D-5L and HUI3 using
linear regression. We used the same independent variables in
these models to ensure the models were comparable. We also
compared our results with those from Kaambwa et al. [7] who
mapped the AQLQ-S onto both the EQ-5D-S5L and the HUI3,
among other health state utilities in patients with asthma using
data from the MIC data set [7]. They used four simple methods:
ordinary least squares, censored least absolute deviations, gen-
eralized linear model, and a beta binomial regression model.

Preferred models were selected using various fit statistics: Akaike
and Bayesian information criteria (AIC and BIC), root mean squared
error (RMSE), mean absolute error (MAE), and mean error (ME). We
assessed the fit across the distribution of disease severity. We
compared the conditional distribution function of the observed data
with the one derived from the estimated model. This builds on
previous work in the area, which focuses on the summary measures
[7]. In many cases, each of these criteria supports different models
and so judgment must be used in determining the preferred model.

Results

The final sample consisted of 852 observations (see Table 1) of
which 62.3% were from females. Age ranged from 18 to 89 years.
Although the AQLQ spanned the entire range of feasible values
(0-4), neither the EQ-5D-5L nor the HUI3 did.

Figure 1A,B shows the distributions of the EQ-5D-5L and the
HUIS3, respectively. Both the HUI3 and the EQ-5D-5L exhibit mass
points at the upper full-health limit: 20.9% in the EQ-5D-5L and 9.5%
in the HUI3. For the EQ-5D-5L, there was no significant mass of
observations at the truncation point (0.951). Almost 6% of observa-
tions were at the HUI3 truncation point (0.973). There were a
relatively large number of observations with an EQ-5D-5L at 0.942,
0.924, and 0.866, associated with slight problems with anxiety and
depression and/or pain and discomfort.
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Table 1 - Sample summary statistics.

Mean + SD Minimum Maximum
AQLQ-S 0.7085 + 0.7766 0 4
EQ-5D-5L 0.8425 + 0.1693 —-0.073 1
HUI3 0.7560 + 0.2408 —0.1958 1
Age (y) 43.03 + 15.00 18 89
Country No. of
observations (%)

Australia 141 (16.55) - -
USA 150 (17.61) = =
UK 150 (17.61) = -
Canada 138 (16.20) - -
Norway 126 (14.79) - -
Germany 147 (17.25) - -

AQLQ-S, Sydney Asthma Quality of Life Questionnaire; EQ-5D-5L,
five-level EuroQol five-dimensional questionnaire; HUI3, health
utilities index mark 3.

We found that models that formally included the gap between
full health and the next feasible value outperformed those that
did not, using both ALDVMM and beta-based mixture models. We
therefore concentrated on comparing alternative specifications of
models that included this gap. This was the case for estimating
both the EQ-5D-5L and the HUI3.

Our preferred models are a three-component beta-based
model with a probability mass at full health and a three-
component ALDVMM when estimating the EQ-5D-5L. When
estimating the HUI3, our preferred models are a four-component
beta-based model with probability masses at full health and the
truncation point and a four-component ALDVMM. Reasons for
choosing these preferred models are discussed here.

All mixture models have the expected sign and produce
simulated data that are good predictions of the sample data.
The estimated coefficients for the four preferred models are
displayed in the Appendix in Supplemental Materials found at
http://dx.doi.org/10.1016/j.jval.2017.09.017 along with a Stata .do
file that allows users to enter their own data to predict EQ-5D-5L
and HUI3 using these preferred models.

Five-Level EuroQol Five-Dimensional Questionnaire

Beta mixture models required a specified probability mass at full
health to ensure they estimated the correct proportion of

(A)

o

Density

el

observations at full health. Table 2 presents model performance
criteria for three- and four-component models, each with inclu-
sion of truncation, a mass point at full health, and with and
without a further probability mass at the truncation point (0.951).
Differences in measures of “error” between the three- and four-
component models were small, with BIC lower for the three-
component model [19]. The model that does not include a
probability mass at the truncation point appears to better predict
the lower end of the EQ-5D distribution. This can be seen in the
conditional distribution function graphs in Figure 2A and the
plots of mean predicted versus observed fit in Figure 3A. This is
because there are a relatively small number of observations at
the truncation point but a large proportion of observations at the
value just below the truncation point (13.73% at 0.944). If this
spike in observations was at the truncation point itself, the model
that included a probability mass at the truncation point might
have shown better fit. For these reasons, the optimal beta-based
model has three components and a probability mass at full
health but not at the truncation point.

Results for the three- and four-component ALDVMMs are
presented in Table 2. The four-component model offers improve-
ments in RMSE, MAE, and ME but has a higher BIC. Figures 2B and
3B show that both models fit the data closely, suggesting that the
three-component model is preferred. Figure 2B shows some
disparity between the distribution from the model and the data
at the upper end of the EQ-5D-5L. This occurs not at the full-
health value (the data have 21% of observations here compared
with 24% in the simulated data in the models) but at values just
below the truncation point.

Health Utilities Index Mark 3

Beta-based models without a probability mass at full health had
difficulty fitting the correct number of observations at this value
and so we report only those models that explicitly modeled this
gap and include a probability mass at full health. The model that
consistently produced the smallest errors was the four-compo-
nent model with probability masses at full health and at the
truncation point (0.973). Nevertheless, although the AIC sug-
gested that the fourth component is beneficial, the BIC suggested
that the three-component model is preferred. The simulated
graphs in Figure 4A and the plots of the means in Figure S5A
show a clear improvement in the model with the additional
fourth component, particularly toward the lower end of the HUI3
distribution. We consider the four-component model to be the
optimal beta mixture model.

Density

o T T

0 5 1
EQ-5D-5L

o 1 O B [Tt
-0.50 0.00 0.50 1.00

HUI3

Fig. 1 - Distribution of (A) EQ-5D-5L and (B) HUI3. EQ-5D, EuroQol five-dimensional questionnaire; HUI3, health utilities index

mark 3.
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Table 2 - Model specifications and model choice criteria (n = 852).

No. of Specification Log No. of RMSE MAE ME AIC BIC
components likelihood parameters
EQ-5D-5L betamix
3 Probability mass at 527.68 33 0.1430 0.1001 —0.0003 —989.36 —832.69
full health
3 Probability mass at 436.00 38 0.1425 0.1003 0.0005 —796.00 —615.59
full health and
truncation point
4 Probability mass at 538.87 44 0.1429 0.1002 0.0003 —989.75 —780.86
full health
4 Probability mass at 401.81 45 0.1474 0.1018 —-0.0012 -713.62 —499.98
full health and
truncation point
EQ-5D-5L ALDVMM
3 Bounded 322.42 28 0.1439 0.1006 0.0003 —-588.84 —455.90
4 Bounded 336.64 39 0.1439 0.1004 0.00003 —595.28 -410.13
HUI3 betamix
3 Probability mass at 708.05 33 0.2081 0.1566 0.0018 —1350.09 -1193.42
full health
3 Probability mass at 207.64 38 0.2081 0.1563 0.0024 —339.28 —158.88
full health and
truncation point
4 Probability mass at 727.92 44 0.2076 0.1562 0.0017 —-1367.80 —1158.95
full health
4 Probability mass at 224.48 49 0.2067 0.1548 0.0009 —350.96 -118.33
full health and
truncation point
HUI3 ALDVMM
3 Age included 192.51 28 0.2076 0.1556 0.00041 —-329.03 -196.10
4 Age included 212.42 39 0.2071 0.1550 0.00033 —346.85 -161.69
3 No age in probability 189.87 24 0.2082 0.1563 0.00054 —-331.75 —-217.80
variables x,
4 No age in probability 201.09 33 0.2082 0.1563 0.00026 -336.18 —-179.51
variables x,
Linear model
- OLS-EQ-5D 424.21 5 0.1471 0.1023 -6.47 x 107 —-838.42 —-814.69
- OLS-HUI3 112.35 5 0.2121 0.1598 3.23 x 107 -214.70 —190.96

Note. All models outlined here include a truncation at the best possible health state other than full health.

AIC, Akaike information criterion; ALDVMM, adjusted limited dependent variable mixture models; AQLQ, Asthma Quality of Life
Questionnaire; BIC, Bayesian information criterion; EQ-5D-5L, five-level EuroQol five-dimensional questionnaire; HUI3, health utilities index
mark 3; MAE, mean absolute error; ME, mean error; OLS, ordinary least squares; RMSE, root mean squared error.

* This model would not converge with the AQLQ score in the probabilities parameters. The results presented here are for a model without

AQLQ in the probabilities.

As with the beta mixture models, the four-component
ALDVMMs produced lower errors than did the three-component
equivalents. In all the ALDVMMSs estimating the HUI3, the
coefficients for the variables influencing component membership
were statistically insignificant, for example, age had P values all
in excess of 0.03. We therefore investigated the use of different
variables to predict component membership. Results are pre-
sented in Table 2 for models that do not include age to predict
component probabilities as well as those that do. Although AIC
and BIC generally favor the exclusion of age, other measures of
error are worse. Figures 4B and 5B show a marked difference
between these models and suggest that age should remain an
explanatory variable for the probabilities because they consid-
erably improve the fit of the model. The evidence indicates that
the observed statistical insignificance associated with age may be
related to the limited sample size.

Comparison with Traditional Models

The performance criteria from the linear regression models are
presented in Table 2. Although the linear regressions provide
accurate estimates of the mean for both the EQ-5D-5L and the
HUI3, they exhibit bias away from the center of the PBM
distributions. This is shown by the RMSE and the MAE, which
are larger than the preferred mixture models in both cases. Note
that the AIC and the BIC cannot be compared between the linear
regression models and the mixture models.

Table 3 presents the results from Kaambwa et al. [7] for
models that include independent variables AQLQ-S, age, and
sex. These specifications are chosen for comparison because they
are most similar to the independent variables used in this study.
Linear regression results found by Kaambwa et al. are very
similar to those found in our study, suggesting that our results
are comparable despite the small difference in sample size and
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EQ-5D-5L, five-level EuroQol five-dimensional questionnaire.

the inclusion of the age-squared term in our study. In all cases,
we find that our preferred models have lower RMSE than do each
of the models used by Kaambwa et al.

Discussion

We compared different mapping methods using data collected
from people with asthma. Both the EQ-5D-5L and the HUI3 were
considered as target utility instruments, from the AQLQ-S. We
focused on direct mapping methods because response mapping
was not feasible in this sample for either instrument. A move to
the EQ-5D-5L, compared with the EQ-5D-3L, is likely to reduce the
feasibility of applying response mapping in future, because data
samples will more often fail to span all the levels described in the
more detailed descriptive system.

Beta-based mixture models and ALDVMMs were estimated.
Within these classes of model type we compared different
numbers of components in the mixture models with and without
a specified gap between full health and the next feasible value.
For the beta-based models, where the gap was specified, we also
considered whether there needed to be a specified probability
mass at the truncation point.

Models with truncation to create a gap between full health
and the next feasible value were universally preferred. This gap is
part of the “bespoke” nature of both the ALDVMM and the beta-
based mixture model, and although the importance of the

method has been demonstrated in several studies using the
EQ-5D-3L [19], the gap is more pronounced in that instrument
(0.12). This contrasts with 0.049 and 0.027 in the EQ-5D-5L and the
HUI, respectively. The next largest gap between feasible values is
0.024 in the EQ-5D-5L and 0.027 in the HUI3. To our knowledge, no
mapping study that uses a mixture of beta distributions has
accounted for the gap between full health and the next feasible
utility value. We find that it remains important for mapping
models to explicitly reflect this characteristic of utility instru-
ments, even when the gap is relatively small. Others have
claimed that the gap is sufficiently small not to warrant formal
inclusion in the model [7]. Furthermore, the finding is relevant to
all mapping methods and not simply those that use mixture
model approaches.

Beta regression mixture models that better fitted both the
EQ-5D-5L and the HUI3 than the ALDVMMSs were identified.
Preferred models for the HUI3 allowed an inflated number of
observations at the next feasible value below full health. This
feature adds further flexibility to the models but caution needs to
be exercised in interpreting this finding. Theoretically, the addi-
tion of a mass point to the beta model is similar to adding an
additional component to the ALDVMM. In this sense, the beta
mixture approach is more artificial than the ALDVMM, and
comparisons between models with the same number of compo-
nents are not necessarily comparisons of like with like. The
addition of mass points at selected points in the distribution does
offer a means to improve fit, but this requires the addition of
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more parameters compared and is also less generalizable: there is
a risk of overfitting to the data. In general, we would recommend
caution in the inclusion of probability masses at any point in the
distribution without some theoretical rather than empirical justifi-
cation for doing so. The increased number of parameters required by
the beta-based mixture model means that for smaller data sets
there is a danger that it might be more difficult to identify. For
example, we attempted to estimate the EQ-5D-5L using a four-
component model with probability masses at full health and the
truncation point, but this model would not converge when the
AQLQ-S was included in the component membership probabilities.
To reduce the number of parameters, we estimated a model without
the AQLQ-S in the probabilities and achieved a much worse fit as a
result.

Our results show the importance of considering the distribu-
tion when choosing the most appropriate model. The proportion
of observations at the truncation point in a sample should be
considered when choosing a model, in particular when using the
beta-based mixture model. We found that when there were lots
of observations at the truncation point (as with the HUI3), a
probability mass needed including at the truncation point. The
inclusion of this probability mass did not improve the model for
the EQ-5D-5L, which had very few observations at the truncation
point. We do not know whether this is generalizable to all

applications of the HUI3 and the EQ-5D-5L or to other data sets.
Further research is needed to determine the extent to which
these results are generalizable.

We find that, in this case, both the beta-based mixture models
and the ALDVMMs outperform linear regression. Linear regres-
sion can accurately predict the mean values of the PBM,; it does
not accurately predict values at the ends of the PBM distributions.
We find that, using linear regression, PBMs are overestimated in
individuals in poor health and underestimated in individuals in
good health; this could have important consequences for cost-
effectiveness estimates. This result is supported by a growing
literature that suggests that mixture models outperform more
traditional mapping techniques [18-20,28,31].

Other studies have been conducted using asthma outcomes.
Tsuchiya et al. [6] estimated EQ-5D-3L from the less commonly
reported 32-item AQLQ-McMaster score. In addition to direct
mapping using a linear regression, this study carried out the first
response mapping we are aware of. Our results are not directly
comparable with this study because the AQLQ scores differ. We
are able to compare our results with those of Kaambwa et al. [7]
who used the same data as in our study. We compare our results
with those that included the AQLQ-S total score, age, and sex. Our
specification also included an age-squared term, and we had a
slightly different sample size from that of Kaambwa et al.



VALUE IN HEALTH 21 (2018) 748-757

755

Z

3 latent class model

40 60 80 100

cumulative distribution of data
20

Actual ————- Model ‘

4 latent class model

40 60 80 100
| |

cumulative distribution of data
20

o
o
o

3 component betamix model for HUI3 with truncation and 4 component betamix model for HUI3 with truncation and

probability mass at full health only and truncation point

3 latent class model

cumulative distribution of data

3 component ALDVMM for HUI3 with truncation

Actual  ————- Model ‘

probability mass at full health and truncation point

4 latent class model

40 60 80 100
| L |

cumulative distribution of data
20

o
o
o

4 component ALDVMM for HUI3 with truncation

Actual  ————- Model ‘

Fig. 4 - (A) Conditional distribution functions for models estimating the HUI3 with betamix (observed vs. simulated data [1000
observations]). (B) Conditional distribution functions for models estimating the HUI3 with the ALDVMM (observed vs. simulated
data [1000 observations]). ALDVMM, adjusted limited dependent variable mixture models; HUI3, health utilities index mark 3.

Nevertheless, the results using linear regression in our study are
very similar to those from Kaambwa et al., reported in Table 3.
This suggests that the results are reasonably comparable.

Kaambwa et al. found that of the four models they inves-
tigated, the generalized linear model was consistently their best-
fitting model. In all cases, we find that our preferred models have
lower RMSE and MAE than do the generalized linear models in
Kaambwa et al. with similar independent variables. In fact, the
mixture models reported here had lower RMSE than did every
model reported by Kaambwa et al. that used the AQLQ-S sum-
mary score as an explanatory variable. Kaambwa et al. did not
provide any visual representation of model fit for their preferred
models. For this reason, we can only compare averages such as
RMSE and MAE and we are unable to compare the model fit over
the PBM distributions.

Mixture models are much more flexible than typically used
mapping models. The methods we test constrain model outputs to
the feasible range between full health and the worst health state,
with the ability to have large masses at the extremes. Modeling the
gap between full health and the next feasible health state adds
additional flexibility and further restricts outputs to the feasible
range for the utility instrument. When using these more complex
models it is important to consider the characteristics of the data and
to search for the most appropriate model, both through using
different specifications of the models, but also ensuring that the
global maximum likelihood is found [32]. In our search for a global
maximum, we found other maxima that included mass points at

the top of the distribution. This predicted the number of observa-
tions in full health very well but the overall fit was much worse and
the graphs for the means showed clear mis-specification.

Study Limitations

There are some limitations to our study. First, we were unable to
validate our results on an external data set because no suitable
data set was available. The International Society for Pharmacoe-
conomics and Outcomes Research good practice report on map-
ping does not recommend routinely splitting the sample to
validate results on part of the sample [31]. Validation of results
on external data sets should be encouraged when these data sets
are available. Second, asthma is self-reported in the MIC data set
and therefore could suffer from biased reporting. Third, the data
consist of observations from across six different countries, but we
use the same UK tariffs for all observations. This has been shown,
however, to make little difference to results [33]. Finally, we
cannot compare our results with those of Kaambwa et al. [7]
beyond model fit averages such as the RMSE and the MAE
because the authors do not publish any information on the
model fit at different parts of the PBM distributions.

Conclusions

Our results show that each of the chosen models is an improve-
ment on more traditionally used linear predictions. Both types of
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mixture model used in this study are able to closely fit the data
without the biased performance characteristic of many com-
monly used mapping approaches. The beta-based mixture

Table 3 - Results from Kaambwa et al. [7].

Specification RMSE MAE
EQ-5D

OLS 0.1468 0.1027

CLAD 0.1491 0.1001

GLM 0.1463 0.1025

BB 0.1491 0.1051
HUI3

OLS 0.2130 0.1608

CLAD 0.2188 0.1545

GLM 0.2120 0.1605

BB 0.2154 0.1643

models outperformed the ALDVMM models but at the expense
of increasing the number of parameters as well as estimation
time. Skilled judgment is critical in determining the optimal
model. Caution is required in ensuring that a truly global
maximum likelihood has been identified.

Previous cost-effectiveness analysis, carried out by the
National Institute of Health and Care Excellence, has used
mapping algorithms to estimate PBMs using non-preference-
based disease-specific measures in patients with asthma [4,6].
The mapping algorithms resulting from this study produce
estimates that do not suffer from bias and fit the data well at
all parts of the PBM distributions. The algorithms provided with
this study can be used with confidence in applied cost-effective-
ness analysis.

BB, beta binomial, CLAD, censored least absolute deviations;
EQ-5D, EuroQol five-dimensional questionnaire; GLM, generalized
linear model; HUI3, health utilities index mark 3; MAE, mean
absolute error; OLS, ordinary least squares; RMSE, root mean
squared error.
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