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A review of methods for comparing treatments evaluated in studies which form disconnected 

networks of evidence 

John W Stevens, Christine Fletcher, Gerald Downey, Anthea Sutton 

Abstract 

A network meta-analysis allows a simultaneous comparison between treatments evaluated in 

RCTs that share at least one treatment with at least one other study. Estimates of treatment 

effects may be required for treatments across disconnected networks of evidence, which 

requires a different statistical approach and modelling assumptions to account for imbalances 

in prognostic variable and treatment effect modifiers between studies. In this paper, we 

review and discuss methods for comparing treatments evaluated in studies which form 

disconnected networks of evidence. Several methods have been proposed but assessing which 

are appropriate often depends on the clinical context as well as the availability of data. Most 

methods account for sampling variation but do not always account for others sources of 

uncertainty. We suggest that further research is required to assess the properties of methods 

and the use of approaches that allow the incorporation of external information to reflect 

parameter and structural uncertainty. 

1. Introduction 

The National Institute for Health and Care Excellence (NICE) is responsible for making 

recommendations on the use of new treatments within the National Health Service in 

England. Amgen was recently invited to submit evidence to NICE in support of a Single 

Technology Appraisal (STA) (National Institute for Health and Care Excellence, 2015) of the 

clinical and cost-effectiveness of talimogene laherparepvec, an oncolytic viral 

immunotherapy derived from the herpes simplex virus type-1 (Kaufman et al., 2015), for the 

treatment of metastatic melanoma, a rare but serious form of skin cancer, within its European 

Union marketing authorisation i.e. adults with unresectable melanoma that is regionally or 

distantly metastatic (Stage IIIB, IIIC and IVM1a) with no bone, brain, lung or other visceral 

disease. The comparator treatments of interest were those representing the current standard of 

care in the UK: ipilimumab, vemurafenib and dabrafenib (for people with BRAF V600 

mutation positive disease). 

Talimogene laherparepvec has been evaluated against subcutaneous granulocyte-macrophage 

colony-stimulating factor (GM-CSF) in an open-label Phase 3 randomised controlled trial 

(RCT) known as OPTiM (Andtbacka et al., 2015). However, OPTiM did not include any of 

the comparator treatments of interest because ipilimumab, vemurafenib and dabrafenib were 

not available when the OPTiM study was designed or when the first subject was enrolled in 

April 2009. Therefore, a network meta-analysis (NMA) allowing an indirect comparison 

between talimogene laherparepvec and ipilimumab, vemurafenib and dabrafenib was 

required. 

An NMA is an extension of a standard pairwise meta-analysis that coherently summarises all 

direct and indirect evidence about treatment effects and allows a simultaneous comparison to 



be made between all pairs of treatments (Dias et al., 2013). The assumptions made in an 

NMA are: 1) the studies to be synthesised form a connected network of evidence such that 

there is a chain of pairwise comparisons that connects every treatment to every other 

treatment (a network that is connected provides an anchored indirect comparison with respect 

to a reference treatment); 2) randomisation is not broken so that treatment effects are 

estimated within studies before being combined across studies; 3) for every study included in 

the network, irrespective of the treatments that were actually compared, the true effect of 

Treatment 𝐵 relative to Treatment 𝐴 in Study 𝑖, 𝛿𝑖𝐴𝐵, is the same in a fixed effect model (i.e. 𝛿𝑖𝐴𝐵 = 𝑑𝐴𝐵) or exchangeable between studies in a random effects model (i.e. 𝛿𝑖𝐴𝐵~𝑁(𝑑𝐴𝐵, 𝜏2)). An NMA makes use of the consistency equations which state that for any 

three treatments 𝑋, 𝑌, 𝑍, say, the population mean effects, 𝑑𝑋𝑌, 𝑑𝑧𝑌 and 𝑑𝑧𝑋 are related such 

that: 𝑑𝑋𝑌 = 𝑑𝑍𝑌 − 𝑑𝑍𝑋. 

It is assumed that the distribution of treatment effect modifiers is balanced between the 𝑍, 𝑌 

and 𝑍, 𝑋 studies, otherwise the indirect estimate of 𝑑𝑋𝑌 will be biased. 

In situations when an anchored indirect comparison is not possible because studies do not 

share a common treatment, naïve or unadjusted indirect treatment comparison (ITC) could be 

performed by ignoring differences between studies in variables that affect response and 

effectively assuming that the data on each treatment arose from a single RCT (Song et al., 

2003). When several studies evaluate a particular treatment, a naïve ITC would involve an 

arm-based synthesis of evidence across studies. Naïve ITCs and arm-based models have been 

criticised for potentially generating biased estimates of relative treatment effect by ignoring 

the randomisation within studies and are generally not recommended (Dias and Ades, 2016). 

In the absence of a connected network of evidence, it is sometimes possible to form a 

connected network by adding one or more treatments to the comparator decision set to create 

a chain of pairwise comparisons that connects at least one treatment in each network to at 

least one treatment in another network, thereby forming an extended synthesis decision set 

(Ades et al., 2013). When this is not possible it will be necessary to use alternative methods 

of analysis and/or to make additional modelling assumptions to allow a valid ITC. Such 

modelling gives rise to an unanchored comparison in which there is no common reference 

treatment in each study. 

The aim of this paper is to present the findings of a review of evidence synthesis methods to 

estimate the relative effect of treatments evaluated in studies forming disconnected networks 

of evidence. Although we mention methods for making indirect comparisons between 

treatments that can be applied when individual patient-level (IPD) are available for treatments 

from all studies (Faria et al., 2015), our focus is on methods that can be applied in situations 

where IPD is available on one or more studies but only aggregate data is available from 

studies of other comparator treatments. In addition, our interest was in methods for making 

indirect comparisons between treatments that have been, or can be applied, to data from 

studies of patients with advanced melanoma. 



The paper is organised as follows: Section 2 describes the systematic review and presents the 

evidence network for talimogene laherparepvec and the comparator treatments; Section 3 

describes the systematic review of evidence synthesis methods for comparing treatments 

across disconnected networks; Section 4 describes the methods that have been used to 

compare treatments across disconnected networks of evidence; Section 5 provides a 

discussion; Section 6 provides some concluding remarks. 

2. Evaluation of the evidence network for talimogene laherparepvec 

Amgen conducted a systematic literature review in accordance with the Preferred Reporting 

Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines (Moher et al., 2009) 

to identify published RCTs (and non-RCTs) for the treatment of patients with metastatic 

malignant melanoma. MEDLINE, EMBASE and the Cochrane Central Register of Controlled 

Trials databases were searched from 1990 until 3 June 2015 using Ovid. Additional records 

were identified through other sources including clinical trial registries, previous regulatory 

and health technology assessment (HTA) reviews and conference abstracts. 3475 records 

were identified of which 97 records related to 59 RCTs. The inclusion criteria were restricted 

to Phase 3 RCTs published since 2010 to reflect the more recent and relevant melanoma 

treatments and their studies. Ten studies met the additional inclusion criterion. The systematic 

literature review found that the OPTiM study was isolated, having no treatment in common 

with the evidence base formed by the comparator treatments (Figure 1). Therefore, a 

conventional NMA of studies comprising the comparator decision set was infeasible. 

[Figure 1 about here] 

Evidence from studies comparing additional treatments was added to the comparator decision 

set in an attempt to form a connected network but was unsuccessful. Consequently, it was 

necessary to use alternative methods of analysis to generate indirect estimates of relative 

treatment effects. 

3. Systematic review of evidence synthesis methods for comparing treatments across 

disconnected networks 

A two-stranded approach was used to systematically review evidence synthesis methods in 

the scientific literature that allow comparisons to be made between treatments across 

disconnected networks of evidence (Figure 2). This entailed keyword searching of the 

MEDLINE database (via OvidSP) and pearl growing based on citation searching of 11 

published journal articles dealing with novel approaches to making indirect comparisons 

between treatments forming disconnected networks (Ahn and French, 2010, Caro and Ishak, 

2010, Gross et al., 2013, Ishak et al., 2015, Korn et al., 2008, Mandema, 2011, Mandema et 

al., 2011, Mercier et al., 2014, Signorovitch et al., 2010, Signorovitch et al., 2012b, Thom et 

al., 2015). 

3.1 Keyword searching 

Consideration was given to developing and implementing a keyword search strategy that was 

both sensitive and specific. The main objective was to identify methods that allow indirect 



comparisons to be made between treatments because there is no direct evidence. However, 

using the terms “indirect comparisons” and “direct evidence” were thought to be 

insufficiently specific. A more specific phrase that encompassed the issue of there being no 

relevant or direct evidence in a target patient population was variants of “no head-to-head” 
and “absence of head-to-head” in combination with terms for “network meta-analysis”, 

although we recognised that this did not specifically focus on methods for comparing 

treatments across disconnected networks. Therefore, we also included the term “disconnected 

network” in combination with terms for “meta-analysis”. Details of the search strategy are 

provided in the Appendix. 

MEDLINE via OvidSP (1946-Present including MEDLINE In-Process) was searched on 26 

August 2015. 23 references were retrieved based on the keyword searching with 19 

references remaining once duplicates were removed. One article was removed because it was 

one of the 11 originally known to the authors. None of the remaining 18 articles involved 

making comparisons between treatments across disconnected networks but were applications 

of conventional network meta-analyses. 

3.2 Citation searching 

Citation searches were conducted for each of the 11 published journal articles using the “cited 
reference” search feature of Web of Science. 343 cited references were retrieved with the 
majority of them (i.e. 258) referring to a single journal article (Korn et al., 2008). 328 unique 

references remained once duplicates were removed. The titles and, where necessary, abstracts 

of each article were reviewed to identify potentially relevant articles. 285 articles were 

excluded based on the titles and abstracts leaving 43 articles for consideration. Two articles 

were excluded because they were foreign language papers. Five articles were excluded 

because they were one of the 11 used in the citation searching process. Of the remaining 36 

articles, full text articles were reviewed during which a further eight articles were excluded 

because they discussed the general issue of comparative effectiveness or were about specific 

clinical aspects, leaving 28 articles (Assawasuwannakit et al., 2015, Demin et al., 2012, 

Denney and Nucci, 2013, Dequen et al., 2012, Di Lorenzo et al., 2011, Di Lorenzo et al., 

2012, Feng et al., 2013, Gibbs et al., 2012, Hoaglin, 2013, Kimko et al., 2012, Li et al., 

2015a, Li et al., 2015b, Mandema et al., 2014, Mould, 2012a, Nie et al., 2013, Ravva et al., 

2014, Reddy et al., 2013, Salinger et al., 2013, Signorovitch et al., 2011a, Signorovitch et al., 

2011b, Signorovitch et al., 2012a, Signorovitch et al., 2015, Sikirica et al., 2013, Tiu and 

Kalaycio, 2012, Van Wart et al., 2013, Van Wart et al., 2014, Zhao et al., 2012, Zhou and Al-

Huniti, 2013, Nixon et al., 2014). 

4. Methods used to compare treatments in studies forming disconnected networks 

The systematic review found that a variety of methods have been used or are available to 

estimate relative treatment effects when studies comprising the evidence base form a 

disconnected network. The following description of the methods used is based on the 28 

articles identified through the citation searching, the 11 articles already known to the authors, 

and articles referred to by, or in response to, the reviewers. 



4.1 Use of external controls 

One approach that could be used to link disconnected networks is to make use of external 

evidence about the expected response to a control treatment in one or more studies. In the 

context of RCTs, the problems associated with the use of historical controls (such as a group 

of untreated patients at an earlier time) are well known and relate to the lack of randomisation 

and control for known and unknown baseline characteristics that might affect outcomes 

(International Conference on Harmonisation of Technical Requirements for Registration of 

Pharmaceuticals for Human Use, 2000). Studies making direct use of historical data make the 

constancy assumption that the expected response to a control treatment remains constant 

between the historical studies and the additional studies, which is unlikely, although some 

analysts have been known to use sample historical control data as if it had been generated as 

part of an RCT. 

An alternative approach is to use the historical evidence to formulate a prior distribution for a 

parameter, 𝜇𝑖, say, such as the mean for a continuous outcome or the log odds for a binary 

outcome for an external control treatment in study 𝑖 in at least one study in each group of 

disconnected studies in order to facilitate a Bayesian random effects network meta-analysis 

(Schmidle et al., 2014, Viele et al., 2014). Spiegelhalter et al. (2004) (Spiegelhalter et al., 

2004) discuss five different approaches to using historical control data, 𝑦ℎ, ℎ = 1,… ,𝐻, that 

provide information about parameters 𝜃ℎ from 𝐻 studies: 

 The simplest and most common approach that is used when analysing data arising from 

an RCT is to ignore the historical control data either because inferences are required to 

be made based on the sample data from the new RCT alone or because the historical 

data is thought not to provide any information about the parameter of interest. 

 Alternatively, we could assume that the historical control groups are exchangeable such 

that 𝜃ℎ~𝑁(𝜃, 𝜏2). The prior distribution for 𝜇𝑖 is then the predictive distribution of the 

effect in a new study rather than the posterior distribution of the random effects mean, 𝜃. 

 We could assume that the 𝜃ℎ are related to the target parameter such that 𝜃ℎ = 𝜇𝑖 + 𝛿ℎ 

where 𝛿ℎ represents a bias that depends on study characteristics. The bias could be 

assumed to be known with some fixed value or unknown with probability distribution 𝛿ℎ~𝑁(𝜇𝑏 , 𝜎𝑏2). 
 A slightly more arbitrary approach is to use a power prior that discounts the historical 

evidence such that [𝑙𝑖𝑘(𝑦ℎ|𝜃ℎ)]𝛼, 0 < 𝛼 < 1, where 𝛼 = 0 means that we ignore the 

historical evidence and 𝛼 = 1 means that we include the historical evidence without 

any discounting. 

 Finally, we could assume that the parameter of interest is functionally dependent on the 

historical evidence, perhaps because of differences in variables that effect response, 

such that 𝜇𝑖 = 𝑓(𝜃1, … , 𝜃𝐻). 
Korn et al. (2008) (Korn et al., 2008) considered the problem of creating an external control 

to use as a benchmark (or performance criteria) in future single-arm studies in patients with 

metastatic Stage IV melanoma. Their aim was to generate an estimate of the true response for 



an untreated group corresponding to a sample of patients in the single-arm study. They 

developed prediction models (see Section 4.4) using data from 2100 patients in 42 

randomised and single-arm Phase 2 studies involving 70 study arms of various treatments 

(assumed to be inactive) conducted between 1975 and 2005. Variables affecting overall 

survival (OS) and progression-free survival (PFS) were assessed using Cox proportional 

hazards models, and for OS and PFS events rates using logistic regression. Patient-level 

variables that were evaluated included sex, age, Eastern Cooperative Oncology Group 

performance status (ECOG PS), presence of visceral metastases and serum lactate 

dehydrogenase level; study-level variables that were evaluated included exclusion of patients 

with brain metastases, exclusion of patients with liver metastases, exclusion of patients with 

visceral metastases, previous treatment for metastatic disease and the year during which 

accrual was completed. Cox multiple regression analysis using complete cases suggested that 

gender, ECOG PS, visceral disease and brain metastases were predictive of OS and that 

pairwise interactions were not statistically significant. They generated an external control 

survivor function for an untreated group of patients as a weighted sum of 𝑛 patients with 

baseline characteristics depending on the patients in the treated group such that 𝑆̅(𝑡) =1𝑛∑ 𝑆𝑖(𝑡)𝑛𝑖=1 , where 𝑆𝑖(𝑡) = [𝑆0(𝑡)]𝐻𝑅 and 𝐻𝑅 = ∑ 𝛽𝑖𝑥𝑖𝑝𝑖=1 , where the 𝑥𝑖 are the covariates 

and the 𝛽𝑖 are the coefficients corresponding to gender, ECOG PS, visceral disease and brain 

metastases. 𝑆0(𝑡) represented the survivor function for female patients with ECOG PS 0, no 

visceral disease and without brain metastasis. However, the authors did not provide an 

assessment of the performance of the models. More importantly, the authors did not discuss 

uncertainty in the baseline survivor function or the impact of uncertainty and correlation 

associated with the estimated hazard ratios in the prediction model, and they assumed that 

there was no unexplained heterogeneity between studies. As proposed, the method does not 

produce a joint posterior distribution for parameters in a parametric survivor function 

corresponding to an untreated group. In addition, to implement the method it is necessary to 

have access to the prediction model responses for all patients in each study that did not 

include a concurrent untreated group. Although companies will have access to IPD from their 

own studies, it is unlikely that they will have access to IPD from other company’s studies. It 
is more likely that relevant variables will be presented (if at all) as summary statistics in 

published articles. This is important in the case of non-linear models because the expectation 

of a function is not the same as the function evaluated as its expectation i.e. 𝐸𝑋[𝑓(𝑋)] ≠𝑓(𝐸[�̅�]). Consequently, the use of summary statistics about a comparator treatment to 

generate a posterior distribution from prediction models may generate biased estimates of 

parameters.  

In the absence of any empirical evidence to inform parameters prior distributions could be 

generated using elicitation of experts’ beliefs (O'Hagan et al., 2006).  

Finally, the value of this approach in the context of a time-to-event outcome measure is in the 

ability to use more flexible modelling rather than assuming that the hazards for each 

treatment are proportional but it relies on the assumption that data can be reconstructed from 

published Kaplan-Meier survivor functions. The use of external controls was not considered 

as part of the submission to NICE of talimogene laherparepvec. 



4.2 Treatment effect parameter 

Abrams et al (2016) (Abrams et al., 2016) explored the impact of using various models to 

link disconnected networks using registry data. One approach was to use the registry data as 

if it came from a ‘fictional study’ that provided an estimate of the relative effect of treatments 

that were in separate networks of evidence formed by RCTs. The observational data was 

included without any discounting and also with discounting using a power prior. The 

modelling assumptions are the same as those for a network meta-analysis of RCTs, including 

that there are no internal biases. 

In the absence of any empirical data, and as an alternative to generating a prior distribution 

for a study-specific response to treatment, we could generate a prior distribution for the 

population relative effect of two treatments across disconnected networks using elicitation of 

experts’ beliefs (O'Hagan et al., 2006). For example, in Figure 1, we might generate a prior 

distribution for the population relative effect of GM-CSF compared to vemurafenib. The 

uncertainty represented by the prior distribution would affect comparisons between the 

networks but not the comparisons within networks (Dias et al., 2011; last updated April 

2012). Goring et al, (2016) (Goring et al., 2016) discuss the use of prior information in a 

similar context but suggest that it should be suitably wide to reflect the overall uncertainty of 

this approach rather than reflecting genuine prior beliefs as would be the approach in a proper 

Bayesian analysis. We are not aware of any examples where elicitation of experts’ beliefs has 
been used to generate prior distributions about relative treatment effects to facilitate indirect 

comparisons between treatments in disconnected networks. The elicitation of a relative 

treatment effect to connect networks was not considered as part of the submission to NICE of 

talimogene laherparepvec. 

4.3 Random baseline models 

Assuming a standard generalised linear model framework (Dias et al., 2013), the linear 

predictor can be written as: 𝜃𝑖𝑘 = 𝜇𝑖 + 𝛿𝑖,𝑏𝑘𝐼{𝑘≠1} 
where 𝜃𝑖𝑘 is the population response in arm 𝑘 of study 𝑖, 𝜇𝑖 is the study-specific baseline 

response in study 𝑖 and 𝛿𝑖,𝑏𝑘 is the study-specific treatment effect of the treatment in arm 𝑘 

relative to the control treatment in arm 𝑏 (b=1) in that study. 

Random baseline models have been proposed in the context of conventional meta-analyses 

and assume that the 𝜇𝑖 are exchangeable (or conditionally exchangeable given prognostic 

variables) i.e. 𝜇𝑖~𝑁(𝜇𝐵𝑎𝑠𝑒 , 𝜏𝐵𝑎𝑠𝑒) (Dias et al, 2013). In an NMA where not all studies may 

have included the reference treatment, it is necessary to ensure that the 𝜇𝑖 refer to the 

reference treatment. Random baseline models rely on the assumption that the baseline model 

is correct (Goring et al., 2016), and the main criticism against them is that they break the 

randomisation and assume that patients are randomised across studies as well as within 

studies; there is relatively little work comparing their properties to unconstrained baseline 

models. 



Thom et al. (2015) (Thom et al., 2015) used random baseline models to form a connected 

network of RCTs by assuming that the placebo effects in each study were exchangeable 

across studies. The primary study was a placebo controlled adjunctive study stratified by one 

of four baseline treatments, which were treated as separate studies, but the authors also 

included data from single-arm, before-and-after observational studies. The indirect 

comparison of interest was between two treatments in two different strata that had no 

treatments in common with any other RCT. In addition, the distribution of baseline variables 

affecting response was different between the strata. The authors considered four separate 

models: 1) NMA of aggregate data from RCTs and observational studies; 2) NMA of IPD 

and aggregate data from RCTs and observational studies; 2) between-study and within-study 

covariate adjustments on the placebo effects; 4) within-study covariate adjustments on 

treatment effects. The authors also performed two separate sensitivity analyses, firstly by 

down-weighting the observational evidence using a power prior and secondly by constructing 

a prior distribution for a control arm for the observational studies but still including covariate 

adjustments. The authors acknowledged that their models have some limitations and involve 

several untestable modelling assumptions, including the use of random baseline models, but 

recommended this approach when networks are not connected. 

4.4 Adjusted Treatment Response 

Causal estimates of relative treatment effect across disconnected studies can be derived by 

modelling the probability of treatment assignment, generating a regression model for the 

outcome conditional on a set of covariates or a mixture of both (i.e. doubly robust estimation) 

(Faria et al., 2015). The aim of such adjusted treatment response methods is to generate 

adjusted responses for at least one treatment arm to account for differences between studies in 

prognostic variable and treatment effect modifiers. The methods make the strong assumption 

that there are no unobserved prognostic variables or treatment effect modifiers. Indirect 

estimates of relative treatment effects are then derived across studies after adjustment as if the 

treatments being compared had been included in the same study. 

Stuart et al. (2011) (Stuart et al., 2011) and Hartman et al (2015) (Hartman et al., 2015) 

discuss the assumptions associated with methods for estimating the relative effect of 

treatments in a target patient population; these are summarised by Phillippo et al (2016) 

(Phillippo et al., 2016) for standard network meta-analyses, network meta-regression, and 

anchored and unanchored matching adjusted indirect comparisons and simulated treatment 

comparisons. 

Methods for making indirect comparisons between treatments after adjusting treatment 

responses with a focus on unanchored comparisons are described below. 

4.4.1 External Evidence-Based Adjustment 

Differences between studies in the distribution of variables that effect response can be 

adjusted for based on external evidence. In the case of metastatic melanoma, Korn et al. 

(2008) (Korn et al., 2008) (see Section 4.1) showed that gender, ECOG PS, visceral disease 

and brain metastases were predictive of OS in patients with metastatic Stage IV melanoma 



such that females, patients with an ECOG PS score of zero, patients with no visceral disease 

and patients with no brain metastases have better prognosis. Kotapati et al., (2011) (Kotapati 

et al., 2011) used the Korn model to adjust OS and compare treatments evaluated in studies 

which formed a disconnected network of evidence in an assessment of ipilimumab in the 

management of pre-treated patients with unresectable Stage III/IV melanoma. They 

reconstructed the OS probabilities over time from published Kaplan-Meier survivor functions 

and fitted Weibull distributions to the adjusted comparator treatment data as if the comparator 

treatment had been included in a target study. Specific details of the approach used were not 

provided in the conference abstract and presentation. However, the Korn et al. (2008) (Korn 

et al., 2008) model was developed in patients with mainly Stage IVM1b and Stage IVM1c 

melanoma and it may not be clinically relevant to patients with Stage IIIB, Stage IIIC and 

Stage IVM1a melanoma. 

Bristol-Myers Squibb (BMS) Pharmaceuticals Ltd developed a modified Korn model that 

was used for the assessment of ipilimumab in patients with previously untreated unresectable 

Stage III or IV melanoma (National Institute for Health and Care Excellence, 2014) based on 

a different dataset to Korn et al. (2008) (Korn et al., 2008) and with the addition of the 

variable lactate dehydrogenase (LDH). The modified Korn model produced by BMS was: log(𝐻𝑅𝑡) = −0.154𝑋𝐺𝑒𝑛𝑑𝑒𝑟=𝐹𝑒𝑚𝑎𝑙𝑒 − 0.400𝑋𝐸𝐶𝑂𝐺𝑃𝑆=0 − 0.285𝑋𝑉𝑖𝑠𝑐𝑒𝑟𝑎𝑙=𝑁𝑜− 0.306𝑋𝐵𝑟𝑎𝑖𝑛=𝑁𝑜 − 0.782𝑋𝐿𝐷𝐻=𝑁𝑜𝑟𝑚𝑎𝑙 
(Note: The original parameterisation of the Korn model (see Section 4.1) differed to the 

modified Korn model developed by BMS.) 

The adjustment factor, 𝐻𝑅𝐴𝑑𝑗, for a comparator treatment is given by the hazard ratio for the 

new treatment, 𝐻𝑅𝑁, divided by the hazard ratio for the comparator treatment, 𝐻𝑅𝐶 i.e. 𝐻𝑅𝐴𝑑𝑗 = 𝐻𝑅𝑁 𝐻𝑅𝐶⁄ . Adjusted survivor functions for the comparator treatment can then be 

generated as: 𝑆𝐴𝑑𝑗(𝑡) = 𝑆𝐶(𝑡)𝐻𝑅𝐴𝑑𝑗. 
The adjustment can be made to Kaplan-Meier and parametric survivor functions. When 

comparator treatments are studied in more than one study, Kaplan-Meier survivor functions 

could be combined across studies using the Mantel-Haenszel method after adjustment for 

differences in studies. The process involves generating the number of patients at risk, the 

number of events and the number of censored observations from an adjusted survivor 

function in pre-defined time intervals and then pooling the data in each time interval using 

the Mantel-Haenszel method. This was the approach used to adjust OS for a comparator 

treatment in a study other than OPTiM as if the comparator treatment had been included in 

the OPTiM study (Quinn et al., 2016). 

Some limitations with an external evidence-based adjustment approach, as generally applied, 

are that it assumes that differences between studies in all measured and unmeasured 

prognostic variables and treatment effect modifiers is captured by the prediction model and, 



as applied by Kotapati et al., (2011) (Kotapati et al., 2011) and Quinn et al., (2016) (Quinn et 

al., 2016), assumes that the regression coefficients are independent and estimated without 

uncertainty. 

An alternative approach to estimating the adjustment factor would be to use a Bayesian 

approach, thereby quantifying uncertainty about the joint distribution between parameters and 

without having to assume asymptotic multivariate normality of the parameters. The 

adjustment factor could then be applied to a parametric survivor function. However, this 

would require access to the IPD for all studies and would involve identifying a suitable 

parametric survivor function to represent the observed data. 

4.4.2 Iterative Proportional Fitting (IPF) 

Kalton et al. (2003) (Kalton and Flores-Cervantes, 2003) described six methods for weighting 

sample estimates of response to match population values in the context of surveys where 

respondents are classified according to two or more variables each with two or more levels. 

In the context of a clinical study this corresponds to patients being classified according to two 

or more variables that affect response (e.g. gender and race) with two or more levels (i.e. 

males and females; white, black, other). The methods that they described were cell weighting, 

iterative proportional fitting (IPF) (also referred to as raking), linear weighting, generalised 

regression estimation (GREG) weighting, logistic regression weighting, and mixture of cell 

weighting and another method (Kalton and Flores-Cervantes, 2003). 

Apart from IPF, we are not aware of any applications of the other five weighting methods for 

making indirect comparisons between treatments. IPF operates on the marginal distributions 

of the variables that affect response. The procedure is iterative in the sense that it starts by 

adjusting the sample row totals to correspond to the population (or target) row totals, and then 

adjusts the sample column totals to correspond to the population column totals, and continues 

until convergence is reached. The method assumes that there are no unobserved prognostic 

variables or treatment effect modifiers when making unanchored comparisons across studies. 

IPF has been used to make an indirect comparison between ponatinib and bosutinib in third 

line chronic phase chronic myloid leukemia (McGarry et al., 2016). 

4.4.3 Propensity Score Matching Methods 

A propensity score is the probability of treatment assignment conditional on observed 

variables that affect response and is estimated using logistic regression. There are four ways 

in which a propensity score can be applied: matching, with the most common approach being 

pair-matching in which pairs of patients treated with  new and comparator treatments are 

found that have similar propensity scores, although other methods are available such as full 

matching (Stuart, 2010); inverse probability of treatment weighting (IPTW); stratification; 

and covariate adjustment. 

Some limitations associated with propensity score matching methods are that estimates of 

treatment effect will be biased when there are unobserved prognostic variables and treatment 

effect modifiers (resulting in propensity score model misspecification) and when there is poor 



overlap in the distribution of observed prognostic variables and treatment effect modifiers 

(resulting in extreme weights) (Austin and Stuart, 2015). 

Conventional implementation of propensity score matching methods requires access to IPD 

on the new and comparator treatments, which (as in the case of talimogene laherparepvec) is 

generally not available. Section 4.4.5 discusses an approach to propensity score weighting 

when comparisons between treatments are required across studies in which there is IPD for 

one study and aggregate data for another study. 

4.4.4 Entropy Balancing 

Entropy balancing is an approach similar to propensity score methods for reweighting 

samples. As with propensity score methods, weights are estimated using a logistic regression 

but an assessment is then made whether the distributions of the covariates are similar subject 

to a set of predefined constraints on the moments of the covariate distributions (Hainmuller, 

2012). Entropy balancing has been applied in the context of matching overall survival data in 

patients with non-small cell lung cancer to a population of patients defined by observational 

data (Happich et al., 2016). 

Some limitations with entropy balancing as conventionally applied include that it requires 

access to IPD on the new and comparator treatments; it assumes that there are no unobserved 

prognostic variables or treatment effect modifiers; it is not possible to generate weights when 

the balancing constraints are inconsistent; the set of weights may include no positive weights 

in situations when there is limited data and extreme constraints; when there is limited overlap 

of the distributions of the covariates, the solution may involve extreme adjustments of the 

weights associated with some patients, which means that the final analysis may depend on a 

small set of highly weighted observations. 

4.4.5 Matching-Adjusted Indirect Comparisons (MAIC) 

Signorovitch et al., (2010) (Signorovitch et al., 2010), Signorovitch et al., (2012) 

(Signorovitch et al., 2012b) and Phillippo et al, (2016) (Phillippo et al., 2016) considered the 

problem of making indirect comparisons between treatments when there are differences 

between studies in variables that affect outcome. The method makes use of IPD from a study, 𝑃, of one of the treatments and weights the data using an approach similar to propensity score 

weighting so that their average covariate values matches those in a study, 𝑃′, of the other 

treatments. 

The estimator for treatment 𝑡 in population represented by study 𝑃′ is a weighted sum of the 

outcomes for patients in a population represented by study 𝑃: 

𝜃𝑡𝑃′ = ∑ 𝑦𝑖𝑡𝑃𝑤𝑖𝑡𝑁𝑡𝑃𝑖=1∑ 𝑤𝑖𝑡𝑁𝑡𝑃𝑖=1  

with weights, 𝑤𝑖𝑡 = exp(𝛽𝑇𝑋𝑖𝑡),corresponding to the odds of being included in the 

population represented by study 𝑃′ versus study 𝑃, and 𝑋𝑖𝑡 a vector of variables that affect 



the outcome for patient 𝑖 receiving treatment 𝑡. However, the weights cannot be estimated 

using conventional methods because it involves aggregate data from patients in study 𝑃′; 
Signorovitch et al. (2010) (Signorovitch et al., 2010) addressed this by proposing estimation 

based on the method of moments. 

Signorovitch et al. (2010) (Signorovitch et al., 2010) claimed that the method can incorporate 

any number of continuous and categorical variables that affect response. Signorovitch et al. 

(2010) (Signorovitch et al., 2010) and Ishak et al. (2015) (Ishak et al., 2015) suggested that 

the method can be used to compare treatments across studies in which there is no common 

comparator, including single-arm studies. However, a limitation with this approach as usually 

applied is that it assumes that there are no unobserved prognostic variables or treatment effect 

modifiers, although Signorovitch et al. (2010) (Signorovitch et al., 2010) claimed that it is 

robust to model misspecification. Di Lorenzo et al. (2011) (Di Lorenzo et al., 2011) used this 

approach when making an adjusted indirect comparison between everolimus evaluated in a 

placebo controlled study and sorafenib evaluated in a single arm study. 

Ishak et al. (2015) (Ishak et al., 2015) pointed out that to make the adjustment there needs to 

be overlap in the distributions of the covariates in each study. In the case of categorical 

outcomes, it would not be possible to adjust for a factor if a particular category is not 

represented in one of the studies e.g. gender might be an important prognostic factor but all 

patients were females in one study. In the case of a continuous outcome measure, it may not 

be possible to weight the values for which there is IPD so that they match the average 

baseline value in the comparator decision set. Extreme weights arise when there is poor 

overlap in the joint distribution of covariates between studies (Radice et al., 2012). 

Belger at al (2015a) (Belger et al., 2015a) and Belger et al (2015b) (Belger et al., 2015b) 

considered the application of MAIC when there are multiple studies and treatments, and 

proposed a modification based on entropy balancing.  

In the case of talimogene laherparepvec, the application of MAIC was inappropriate because 

it would produce adjusted responses as if talimogene laherparepvec had been evaluated in 

patient populations defined by the comparator treatments, which would be outside of its 

licensed indication. 

4.4.6 Simulated Treatment Comparisons (STC) 

STCs were introduced by Caro et al., (2010) (Caro and Ishak, 2010) and were described in 

further detail by Ishak (2015) (Ishak et al., 2015) and recently by Phillippo et al (2016) 

(Phillippo et al., 2016). STCs are similar to MAICs in that they generate adjusted responses 

for a treatment in a study for which there is IPD in order to match the sample characteristics 

of patients who received a comparator of interest in a separate study but differ in the way that 

the adjustments are made. 

STCs use IPD from an index or reference study to generate a prediction model for the 

outcome measure of interest as a function of prognostic variables and treatment effect 

modifiers. The estimated coefficients are then applied to the average baseline characteristics 



in the comparator study to generate predictions for treatments in the index study that reflect 

the sample of patients represented by the patients in the comparator study. The model for the 

data on the linear predictor scale is: 𝜃𝑡𝑃(𝑿) = 𝛽0 + 𝜷1𝑇𝑿 + (𝛽𝑡 + 𝜷2𝑇𝑿𝐸𝑀)𝐼{𝑡≠𝑏} 
where 𝛽0 is the response for the baseline treatment (𝑏), 𝛽𝑡 is the relative effect of treatment at 𝑿 = 𝟎, 𝜷1 is a vector of coefficients corresponding to prognostic variables, 𝜷2 is a vector of 

coefficients corresponding to treatment effect modifiers 𝑿𝐸𝑀.  

An estimate of the mean response for the new treatment as if it had been evaluated in study 𝑃′ subject to the mean covariate values in study 𝑃′. Ishak et al., (2015) (Ishak et al., 2015) 

suggest that a benefit of using prediction models in the case of a continuous variable affecting 

response is in its ability to make predictions outside the range of values observed in the index 

study. However, the method produces biased estimates in the case of non-linear models 

because the expectation of a function is not the same as the function evaluated as its 

expectation i.e. 𝐸𝑋[𝑓(𝑋)] ≠ 𝑓(𝐸[�̅�]). 
As with MAICs, Signorovitch et al. (2010) (Signorovitch et al., 2010) and Ishak et al. (2015) 

(Ishak et al., 2015) suggest that STCs can be used to compare treatments across studies in 

which there is no common comparator, including single-arm studies, the assumption being 

that there are no unobserved prognostic variables or treatment effect modifiers. 

In the case of talimogene laherparepvec, the application of STCs was inappropriate because it 

would produce adjusted responses as if talimogene laherparepvec had been evaluated in 

patient populations defined by the comparator treatments, which would be outside of its 

licensed indication. 

4.5 Model-Based Meta-Analysis (MBMA) 

A model-based meta-analysis is an extension of conventional meta-analyses and is a 

relatively mature field in terms of applications; the first published examples appeared in the 

1990s (Mould, 2012b). There is no single approach to, or guidance on, implementing a 

model-based meta-analysis, which may depend on the context as well as the analyst (Mould, 

2012a) (Zhao et al., 2012) (Assawasuwannakit et al., 2015). The appropriateness and 

properties of a model-based meta-analysis is further complicated in models that combine a 

mixture of IPD data and aggregate data (Kimko et al., 2012) (Van Wart et al., 2013) (Ravva 

et al., 2014) (Van Wart et al., 2014). 

Applications of MBMAs often involve fitting compartmental pharmacokinetic models but are 

increasingly being applied to other outcome measures collected longitudinally in studies with 

multiple doses and/or multiple treatments (Ahn and French, 2010) (Mandema et al., 2011) 

(Mandema et al., 2011) (Demin et al., 2012) (Gibbs et al., 2012) (Kimko et al., 2012) 

(Denney and Nucci, 2013) (Salinger et al., 2013) (Zhou and Al-Huniti, 2013) (Mandema et 

al., 2014) (Mercier et al., 2014) (Li et al., 2015b) (Li et al., 2015a). Some analysts adhere to 

the principle of concurrent controls and include fixed study effects while others assume 



random study effects, which are generally not recommended in conventional meta-analyses. 

Mawdsley et al. (2016) (Mawdsley et al., 2016) showed how to implement a MBMA in the 

context of an NMA while respecting the randomisation. The rationale for the choice depends 

on previously published applications and the availability of data as well as the objectives of 

the analysis. In particular, the aim of a model-based meta-analysis is often seen to be broader 

than simply estimating a relative treatment effect, which is the main parameter estimated in a 

conventional meta-analysis. The evidence as a whole is typically used to describe the 

longitudinal placebo (or natural history) response in a particular disease in addition to 

describing any dose-response relationships or comparisons between multiple treatments by 

placing random effects on baseline responses as well as relative treatment effects in each 

study. Estimating treatment specific responses is also an objective in an HTA but the 

recommendation in this case is to fit separate treatment effect and baseline models and to 

combine the results from the separate models. The validity of MBMA models has typically 

been justified in terms of goodness-of-fit or their predictive ability without any discussion 

regarding the issue of respecting the randomisation. 

Although we envisaged that a MBMA might be applicable in the context of time-to-event 

data, we did not find any specific examples of the analysis of OS and PFS, although Reddy et 

al. (2013) (Reddy et al., 2013) described a joint PK/PD and time-to-dropout model and Feng 

et al. (2013) (Feng et al., 2013) addressed the problem of assessing the exposure-response 

relationship of ipilimumab on overall survival using Cox proportional hazards regression 

adjusted for various covariates without accounting for study effects or heterogeneity between 

studies. The reason we did not find examples in the analysis of time-to-event data is most 

likely because such data are not strictly longitudinal within patient and the model for the data 

is a survivor function rather than a repeated measures model. 

4.6 Multivariate Meta-Analysis 

Disconnected networks can arise in the case of individual outcome measures within a study 

even though the studies as a whole might form a connected network. In this situation, it might 

be possible to borrow strength across outcome measures using a multivariate NMA (Achana 

and Cooper, 2014). Abrams et al (2016) (Abrams et al., 2016) used this approach to connect 

disconnected networks based on whether treatment was first or second-line in patients with 

rheumatoid arthritis. Multivariate NMA is a developing area of research that typically 

synthesises sample estimates of treatment effect (e.g. sample log hazard ratio) using a 

multivariate normal likelihood function. We are not aware of any published methodology on 

multivariate meta-analyses in the context of time-to-event outcome measures that model the 

underlying data generation process exactly and compare treatments in more flexible models 

that do not assume hazards are proportional for each treatment. 

4.7 Class Effect Models 

In a connected (i.e. anchored) network meta-analysis model it is sometimes possible to 

include a further hierarchy by assuming that treatment effects within classes are exchangeable 

such that: 



𝜃𝑖𝑘 = 𝜇𝑖 + 𝛿𝑖,𝑏𝑘𝑐 𝐼{𝑘≠1} 𝛿𝑏𝑘,𝑐~𝑁(𝑑𝐴𝑘,𝑐 − 𝑑𝐴𝑏,𝑐, 𝜏2) 𝑑𝐴𝑘,𝑐~𝑁(𝜇𝑐, 𝜎𝑐2) 
where 𝜇𝑐 represents the pooled effect for the cth class of interventions, 𝜎𝑐2 represents the 

between-treatment variance within the cth class (which may assumed to be common to each 

class of treatments), and A is the reference treatment. 

The model relies on the assumption that treatment can be classified into sensible classes. The 

advantages of this model, particularly when there is a limited amount of evidence about 

specific treatment effects within a class, are that it borrows strength about, and increases the 

precision of, individual estimates of treatment effect. However, this form of class effects 

model cannot be applied when the evidence base comprises disconnected networks. 

Dequen et al. (2012) (Dequen et al., 2012) created a connected network at a class level where 

the treatments comprised a disconnected network by assuming that treatments were clinically 

equivalent within class. This approach meant that pairwise studies comparing treatments in 

the same drug class were excluded from the analysis and assumes that there is no treatment 

within drug class variability, including, for example, differences in effect according to dose. 

In addition, it raises the question whether decision-makers would be willing to approve 

treatments that might have relatively little evidence about their specific effect using evidence 

from other treatments, or whether companies would be prepared to accept this approach to 

sharing evidence. 

Table 1 presents the treatment classes for the treatments in the assessment of talimogene 

laherparepvec. The OPTiM study is still isolated even after considering treatments as a class 

so that this approach was not feasible as part of the submission to NICE of talimogene 

laherparepvec. 

5. Discussion 

A network meta-analysis provides a basis for simultaneously comparing all treatments of 

interest even if they have not been compared directly in head-to-head studies but assumes that 

the studies form a connected network of studies and that the distribution of treatment effect 

modifiers is balanced across studies comparing different pairs of treatments. It might be 

possible to avoid disconnected networks by careful consideration of relevant treatments to 

include as comparators in RCTs at the design stage or by expanding the comparator decision 

set to include additional treatments to link disconnected networks at the analysis stage. 

However, including multiple comparator treatments in an RCT or repeating an RCT with 

different comparators may not be possible if the patient population is relatively small or if 

doing so is prohibitively expensive. It is inevitable that there will be situations when evidence 

about all relative treatment effects of interest will comprise studies forming disconnected 

networks of evidence for reasons including those associated with the assessment of 

talimogene laherparepvec in the OPTiM study; when there is no single standard of care 



nationally or internationally; in single-arm studies of treatments in rare diseases (e.g. 

Waldenström’s Macroglobulinaemia (National Institute for Health and Care Excellence); and 

in studies evaluating different treatment durations without control groups (e.g. ledipasvir–
sofosbuvir for the treatment of chronic hepatitis C (National Institute for Health and Care 

Excellence, 2016a). Faced with such evidence, reimbursement agencies such as NICE must 

decide whether to recommend the new treatment based on an indirect estimate of the effect of 

the new treatment relative to comparators of interest. 

In this paper, we have presented the results of a systematic review of methods and 

applications described in the scientific literature that address the problem of making indirect 

comparisons between treatments across disconnected networks that was motivated by an STA 

of talimogene laherparepvec for the treatment of advanced melanoma. Our work compliments 

that by Goring et al. (2016) (Goring et al., 2016), that appeared after we completed our 

systematic review, and also of that by Phillippo et al (2016) (Phillippo et al., 2016), which 

focused primarily on the validity of MAIC and STC and appeared after we our submitted our 

work for peer review. 

The fundamental problem with making comparisons between treatments that have been 

evaluated in studies forming disconnected networks is that there may be differences between 

studies in the distribution of patient characteristics that are prognostic of response or are 

treatment effect modifiers. In this situation, a naïve, unadjusted indirect comparison produces 

a biased estimate of relative treatment effect and it is necessary to use alternative methods of 

analysis that are, by definition, not based on within-study estimates of treatment effect. In 

spite of the strong criticism that making comparisons between treatments evaluated in 

different studies, even after adjustment for observed variables that affect response, is a type 

of naïve indirect comparison and “its results are not worthy of consideration” (Hoaglin, 

2013), an indirect estimate of relative effect must be generated to estimate the health benefits 

that might be achievable with the new treatment but that would be foregone by committing 

resources to the current treatment i.e. the opportunity cost. 

Methods based on generating study-specific external controls and estimating relative 

treatment effects across networks using non-RCT evidence such as registry data or experts’ 
beliefs preserve the ability to make simultaneous comparisons between treatments (assuming 

that there is not an imbalance in treatment effect modifiers in studies comparing different 

pairs of treatments). We are more receptive than Goring et al. (2016) (Goring et al., 2016) 

appear to be regarding the use of expert beliefs, although we acknowledge that elicitation 

must follow a justifiable, documented and transparent process, and can be resource intensive. 

Indeed, it is precisely in the context where there is no sample data with which to estimate 

parameters that prior distributions elicited from experts can be useful. The concern regarding 

random baseline models is well known but they provide a basis for incorporating sample data 

other than from RCTs and have been recommended in sparse disconnected networks (Thom 

et al., 2015). Matching adjusted indirect comparisons and simulated treatment comparisons 

may be useful in some contexts but it is important to appreciate that inferences depend on the 

population characterised by the sample of patients in the comparator study and that the 

population could potentially differ with each comparator of interest; these approaches were 



not appropriate in the case of talimogene laherparepvec because inferences would be relative 

to the comparator treatment patient population rather than the talimogene laherparepvec 

patient population which would be outside its licensed indication. We are not aware of any 

research using MAICs or STCs that allow simultaneous inferences to be made across all 

treatment in the decision set in a specific population of interest. 

Specification of the patient population for the decision problem is an important part of the 

decision-making process. Inferences following the application of adjusted treatment response 

methods will generally differ from those following a random effects NMA. In a random 

effects NMA it is assumed that the study-specific population treatment effects are 

exchangeable (i.e. related but different) and it is generally recommended that inferences are 

be based on predictive distributions of effects in new studies rather than on the mean of the 

random effect distribution (Higgins et al, 2009). Inferences based on adjusted treatment 

response effects will generally depend on the sample of patients in one of the studies and this 

may not be generalizable to the target population. In the case of talimogene laherparepvec, 

the aim was to generate an adjusted OS survivor function that would be expected for a 

comparator treatment in a study other than the OPTiM study as if the comparator treatment 

had been included in the OPTiM study. 

In general, methods based on adjusted treatment responses have typically been proposed from 

a frequentist perspective which only account for sampling variation and do not allow for 

parameter uncertainty. Another source of uncertainty is structural uncertainty arising from 

model misspecification which produces biased estimates of relative effect, although it can be 

reduced using doubly robust estimation. Alternatively, it might be possible to incorporate 

external information to mitigate this or take a Bayesian perspective (Saarela et al, 2016). 

Generating joint posterior distributions about parameters should be seen as an important aim 

in health technology assessment in order to properly represent uncertainty about inputs to 

decision analytic models. 

Finally, in the case of the talimogene laherparepvec submission to NICE, an indirect 

comparison with ipilimumab was made using an external evidence-based adjustment 

according to the modified Korn model and by presenting a naïve unadjusted indirect 

comparison. Sensitivity analyses were also performed by weighting each of the ipilimumab 

studies by line of therapy proportional to that observed in the OPTiM study. Although the 

NICE Evidence Review Group (ERG) acknowledged the effort made to generate an indirect 

estimate of relative treatment effect in the target patient population, the ERG considered the 

application of the modified Korn model inappropriate because it was developed using data 

from people with predominantly Stage IVM1b and Stage IVM1c disease, which have 

different disease trajectories to Stage III-IV1a disease. Nevertheless, the NICE Appraisal 

Committee concluded that talimogene laherparepvec is clinically and cost-effective in people 

for whom treatment with systemically administered immunotherapies is not suitable. 

 

6. Conclusions 



In conclusion, this review has identified various methods that have been proposed for dealing 

with the problem of estimating the relative effect of treatments across disconnected networks. 

We have described the main assumptions and limitations associated with each method. 

Assessing which method or methods are appropriate often depend on the clinical context as 

well as the availability of data. While data sharing initiatives should help to mitigate some of 

the limitations associated with studies that provide only aggregate responses, there is a need 

for further research on their use. In particular, the properties of frequentist methods and the 

robustness of results should be evaluated in simulation studies across a range of study sample 

sizes; using different models for prognostic variables and treatment effect modifiers that are 

unobserved at the analysis stage; and across different outcome measures such as 

time-to-event with non-proportional hazards. Furthermore, examples should be generated 

using a Bayesian approach that allows the incorporation of external information to reflect 

parameter uncertainty in addition to sampling variation. 
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Table 1 Treatment classes involved in the assessment of talimogene laherparepvec   

Intervention Class 

Talimogene laherparepvec Oncolytic viral immunotherapy 

Dacarbazine (DTIC) Chemotherapy 

Dabrafenib BRAF inhibitor immunotherapy 

Ipilimumab CTLA-4 inhibitor immunotherapy 

Vemurafenib BRAF inhibitor immunotherapy 

GM-CSF Monomeric glycoprotein 

 

  



Appendix 

MEDLINE search strategy 

1     ("no head to head" or "no head-to-head").mp. (163) 

2     (network meta-analys* or network meta analys* or network metaanalys*).mp. (755) 

3     1 and 2 (12) = Search 1 

4     disconnected network*.mp. (17) 

5     (meta analys* or meta-analys* or metaanalys*).mp. (104932) 

6     4 and 5 (1) = Search 2 

7     ("absence of head to head" or "absence of head-to-head").mp. (61) 

8     2 and 7 (10) = Search 3 

[mp=title, abstract, original title, name of substance word, subject heading word, keyword 

heading word, protocol supplementary concept word, rare disease supplementary concept 

word, unique identifier] 

 

 

 


