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COMBINED RUPTURE MECHANISMS IN SHALLOW FOUNDATIONS  1 

A. Gajo and C. C. Smith 2 

 3 

 4 

Abstract 5 

Conventional ultimate limit state (ULS) shallow foundation design is typically based on a 6 

simplified analysis that fails to consider the possible existence of a combined structural and 7 

geotechnical failure, which is shown here to significantly affect the limit load. Neglecting this 8 

occurrence may lead to unsafe design, whereas a full analysis can be beneficial for the 9 

dimensioning. With the emphasis on separate SLS and ULS design in modern design codes 10 

such as Eurocode 7 (EN 1997-1, 2004), this paper explores unsafe loading scenarios and the 11 

benefits to be gained from a rigorous ULS design based on combined failure. For the sake of 12 

simplicity, a long foundation slab subjected to three different loading conditions is analysed 13 

using elastic, elasto-plastic and rigid-plastic methods and the results compared for a range 14 

of foundation strengths and stiffnesses. It is found that the limit load may be significantly 15 

influenced by plastic hinges in the structure and for each load condition it is possible to 16 

derive a curve relating ultimate load to plastic bending moment representing the ultimate 17 

limit state of the foundation.  18 

 19 

 20 

 21 
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Introduction 1 

The evaluation of the ultimate limit state (ULS) load capacity of shallow foundations is a 2 

standard and well-accepted procedure for foundations (such as isolated footings), which do 3 

not undergo any structural rupture themselves and in which the rupture mechanism 4 

develops only in the soil beneath the foundation. The situation can be completely different 5 

in deformable foundation structures (such as beams and slabs) in which, for applied loads 6 

well below the limit load of a fully rigid foundation, plastic hinges may form in the 7 

foundation structure leading to combined rupture mechanisms which develop partly in the 8 

soil and partly in the foundation structure itself. This case must be treated by considering a 9 

global mechanism of collapse. To the authors’ knowledge, this possibility is not usually taken 10 

into account in current design practice of shallow foundation design (e.g. Fang, 1991, 11 

Smoltczyk, 2003, Burland et al. 2012) and has never been analysed from a theoretical point 12 

of view, notwithstanding the fact that in the current design practice the combined rupture 13 

in the soil and in the structural element is routinely taken into account for other 14 

geotechnical structures such as horizontally-loaded, flexible piles (see Broms’ theory) or 15 

sheet pile walls (see Ukritchon et al., 2003, for braced excavations). In fact, although 16 

Eurocode EN 1997-1 differentiates between stiff and flexible foundations, it does not give 17 

any guidance on how to take account of soil-foundation interaction at ULS for the 18 

evaluation of the bearing pressure distribution under a flexible foundation (e.g. Frank et al. 19 

2004). 20 

Unfortunately, neither theoretical nor numerical instruments are available for this kind of 21 

analysis, nor experimental measurements have ever been performed. Therefore, the 22 

analyses that will be shown below are a first attempt to consider this problem and concern 23 
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the combined ruptures occurring in a very simple, plane strain case representing a very long 1 

foundation slab, resting on a thick layer of soft clay, loaded under undrained conditions. The 2 

results will be compared with conventional analysis. To gain full insight into the problem, 3 

the analysis is performed using four different methods: 4 

 5 

1.� Conventional methods where the pressure on the foundation base is derived from 6 

an analysis involving failure in the soil only.  7 

2.� Rigid-plastic analysis using the upper bound computational limit analysis (CLA) 8 

method Discontinuity Layout Optimization (DLO) (Smith and Gilbert, 2007), 9 

3.� Elasto-plastic finite element analysis (EPFEM) performed with both ABAQUS (Hibbitt, 10 

Karlsson & Sorensen, 2009) and PLAXIS (Brinkgreve, 2002) 11 

4.� A Winkler model using (i) linear elastic springs (LW) and (ii) linear elastic-perfectly-12 

plastic springs (NLW), working only in compression in both cases; these models were 13 

analysed with ABAQUS (Hibbitt, Karlsson & Sorensen, 2009).  14 

 15 

The specific objectives are: 16 

1.� compare the elasto-plastic, rigid-plastic, and the Winkler models (LW, NLW), to 17 

determine the relative abilities of each method to analyse the combined 18 

soil/structure ULS; 19 

2.� compare the ULS plastic moment of resistance derived from a combined soil and 20 

structural failure mechanism with typical serviceability limit state (SLS) bending 21 

moments. 22 

 23 
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The manuscript is not intended to be exhaustive in providing a complete and easily 1 

applicable method of analysis for current design practice. The aim of the work is rather to 2 

drive reader’s attention to a new class of soil-foundation interaction at ULS that has never 3 

been considered so far and that will deserve much more attention in the future for its 4 

theoretical treatment and experimental validation. Future developments will certainly have 5 

to provide routine analysis methods for considering foundations beam and slabs, subjected 6 

to complex loading conditions, under undrained and drained conditions. 7 

However the present work does not simply show the unexpected effects of a combined 8 

rupture mechanism, but it is also helpful for evaluating the cases of potentially unsafe 9 

design, that can be avoided by over dimensioning the structure if a full analysis is not 10 

performed. For simplicity, the presented analyses are limited to undrained conditions which 11 

is sufficient to illustrate the key concepts. Here the associative flow rule required by rigid-12 

plastic limit analysis is normally taken as a good representation of undrained behaviour and 13 

requires no further consideration. In contrast drained analyses are much more complex to 14 

be performed from a numerical point of view, and would require consideration of the 15 

possible impact of non-associativity and the effects of foundation size on bearing capacity. 16 

The SLS condition has been considered by assuming a simple linear elastic response, as an 17 

approximation to the actual non-linear stress-strain response of soil (see e.g. Vardenaga & 18 

Bolton, 2011). This allows indicative results to be obtained while retaining a simple, 19 

commonly used method in engineering practice. 20 

The paper is organized as follows: the problems are firstly described and analysed through a 21 

conventional and a simplified analysis at ULS. Then the limit loads and the maximum 22 

bending moments are evaluated through different methods and are compared with each 23 
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other, leading to the definition of a limiting (or yield) surface (in a space of applied load 1 

versus maximum bending moment) for each loading condition. The discussion and the 2 

conclusions are finally given.     3 

 4 

Problem definition of exemplar cases 5 

The problem will be examined for an infinitely long shallow foundation of width B=10 m  6 

(i.e. plane strain)  for the three configurations of load distribution A-C shown in Table 1. 7 

The selected geometric condition and load distributions are intended to represent a broad 8 

range of practical situations, on which simple theoretical reasoning is possible. In particular 9 

the load distributions A and B can be considered representative of a beam foundation in 10 

which the most heavily loaded pillars are the central and the lateral ones, respectively. Load 11 

distribution C is representative of a condition with high eccentricity. It is assumed that the 12 

applied load is not influenced by settlements, thus the load conditions are typical of an 13 

overlying structure which is much more deformable than the foundation. Otherwise, the 14 

kinematic constraint of the overlying structure should be considered. 15 

The subsoil is assumed uniform with an undrained shear strength of ��=20 kPa for 16 

illustrative purposes. The foundation is perfectly shallow (i.e. the depth of the foundation 17 

base is zero) with the soil surface on either side under zero surcharge and the base of the 18 

foundation is assumed to be perfectly smooth. A no-tension interface was assumed 19 

between the soil and the foundation. Different values of the plastic moment of resistance 20 

Mp are assumed for the shallow footing, ranging between 100 and 1000 kNm/m. 21 
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The EPFEM analyses require the elastic behaviour to be considered, although, from plasticity 1 

theory, the elastic stiffness should be irrelevant at the ultimate limit state condition for an 2 

undrained problem. The subsoil stiffness was assumed as Eu=20 MPa (from the ratio Eu /cu 3 

=1000 which is meaningful value for a soft clay, e.g. Duncan & Buchigani, 1976), whereas 4 

two values of beam stiffness were assumed corresponding to different height concrete 5 

sections, h = 31 cm and h = 90 cm, made with a concrete having fbk=30 MPa (namely E=24.2 6 

GPa and Poisson ratio 0.3), which gives beam stiffnesses of EJ=0.06x10
6
 kNm

2
/m and 7 

EJ=1.47x10
6
 kNm

2
/m respectively. The Poisson ratio of the subsoil was assumed to be 0.495 8 

to ensure the volumetric incompressibility typical of undrained conditions, without inducing 9 

numerical difficulties.10 
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Conventional ULS Analysis assuming a stiff foundation 1 

At ULS, conventional analysis assumes a uniform pressure distribution beneath the base of 2 

the foundation. The calculations to determine the limit load and maximum bending moment 3 

using this assumption are therefore straightforward and are summarized in Table 1.  4 

For the eccentrically load case C, the assumed ULS pressure distribution is assumed to be 5 

uniform and limited to an effective bearing width �’ (Meyerhof, 1953). This simple pressure 6 

distribution will be shown to be consistent with maximum bending moments evaluated with 7 

numerical analyses.  8 

For a non-yielding foundation, the limit loads calculated in Table 1 for non-eccentric 9 

loadings are known to be exact plastic solutions, while for eccentrically loaded foundations, 10 

Ukritchon et al (1998) have shown that for zero surcharge (q = 0), the collapse load 11 

calculated by the Meyerhof approach closely matches their numerical lower bound and 12 

upper bound solutions and can therefore also be assumed to be close to exact.  13 

An assumption of uniform bearing pressure can therefore be used to determine a simple 14 

lower bound solution that includes both soil and foundation and is close to exact in terms of 15 

collapse load. This will enable definitive statements to be made concerning solutions to be 16 

derived later in the paper. For a lower bound, it is necessary to find a stress field in the soil 17 

that is a valid equilibrium stress field not violating yield and is in equilibrium with the 18 

uniform pressure ���� on the interface between the soil and foundation. This can be 19 

provided by the standard undrained footing lower bound solution. Additionally, assuming 20 

conventional beam bending theory is considered valid, the stress state in the foundation is 21 

also an equilibrium stress field not violating yield within the foundation, and also in 22 

Page 7 of 36



8 

 

equilibrium with (i) the structural loading applied to the top of the foundation and (ii) the 1 

uniform pressure ���� along the pressure bearing interface between the soil and 2 

foundation. It is assumed that yield is not violated if the maximum bending moment does 3 

not exceed the bending strength. (Other yield violations e.g. in shear are possible but 4 

assumed unlikely).  5 

Therefore if the bending strength is specified as the derived maximum moment based on a 6 

uniform pressure distribution and the equations of Table 1, then the result is a lower bound 7 

solution for the collapse load. It will always carry the load and may be able carry a higher 8 

load.  9 

Further statements may be made using the following theorem of plasticity (Chen, 2007): 10 

“Increasing (decreasing) the yield strength of the material in any region cannot weaken 11 

(strengthen) the body.”               (Theorem 1) 12 

Reduction of the foundation strength can therefore only lead to a lower or the same 13 

collapse load. Hence combined rupture will occur at a lower or equal load to those 14 

predicted above.  15 

 16 

Simple Analysis of Bending Moments for loads below the ULS  17 

At loadings lower than that required to generate a ULS in either soil or structure, the 18 

pressure distribution may be estimated as a uniform pressure in the same way as for the 19 

ULS, but scaled proportionally to the loading (in effect mobilising only part of the soil 20 

strength) allowing equations of Table 1 to be used.  This will be termed a scaled-ULS 21 

Page 8 of 36



9 

 

analysis. This approach is straightforward although it is only approximate, in particular when 1 

the distribution of contact pressures is evaluated with FEM for SLS conditions that more 2 

closely resemble an elastic stress field, for which a Boussinesq like pressure distribution 3 

would be expected. 4 

For the common case of an undrained soil and horizontal soil surface the status of this 5 

scaled-ULS solution can be straightforwardly determined using the previously quoted 6 

theorem of plasticity.  7 

Consider a foundation design for a soil of undrained strength cu/n, where n is a scale factor.  8 

Eccentricity is unaffected by the change in bearing pressure and therefore the collapse load 9 

and maximum bending moments will be linear functions of the bearing pressure and are 10 

thus also scaled by the factor n. A foundation with bending strength scaled by n will always 11 

be able to carry a load also scaled by n.  12 

Using Theorem 1, increasing the undrained soil strength back to cu cannot weaken the body, 13 

therefore the scaled collapse load is also a lower bound to the scenario of a scaled 14 

foundation bending strength and the original soil strength. However it is likely to be a 15 

significant underestimate and a combined rupture analysis is recommended to ensure 16 

maximum utilisation of the soil and structural strengths. 17 

Note that theorem 1 applies to the exact solution (namely when the upper and lower 18 

bounds coincide with each other) and works also with the lower bound when the soil is 19 

strengthened. As a result, the reasoning given above can be applied to symmetrically loaded 20 

foundations and for eccentrically loaded foundations (where  q = 0). 21 

 22 
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 1 

Limit loads from DLO and EPFEM analyses 2 

The DLO procedure directly determines the limit load using optimization techniques to 3 

identify the critical collapse mechanism. Since the foundation stiffness is not relevant in a 4 

CLA analysis, the footing was modelled as a one dimensional element with a specified plastic 5 

moment of resistance.  The method discretises the domain into a grid of nodes and the 6 

critical collapse mechanism is constructed from a discrete set of slip-lines which may link 7 

any pair of nodes. The accuracy of the DLO result is therefore a function of the nodal density 8 

employed.  Each model was evaluated using nodal spacings on a square grid of B/20, B/40 9 

and B/80, which demonstrated convergence with 1% difference between the latter two 10 

results. The analyses reported in this paper were thus undertaken with a nodal spacing of 11 

B/40 and with the boundaries located at a sufficient distance so as not to constrain the 12 

identified failure mechanism.  The commercial DLO code LimitState:GEO (LimitState, 2013) 13 

was employed in this study using a 1-dimensional ‘engineered element’ (which can undergo 14 

a plastic yielding in bending) to model the foundation. A no-tension condition was modelled 15 

on the soil/foundation interface. 16 

The limit load evaluated from the EPFEM analyses is assumed to coincide with the load at 17 

which the convergence of the interactive procedure fails, provided the load-displacement 18 

curve of the foundation shows a horizontal plateau, denoting the formation of a rupture 19 

mechanism. Since it is well known that EPFEM method is not reliable for capturing limit 20 

state conditions, two commercial finite element codes have been employed: ABAQUS and 21 

PLAXIS, in order to evaluate the consistency of the numerical results with different meshes 22 

and boundary conditions. Figure 1 shows the typical finite element meshes used in the two 23 
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codes: about 8500 8-noded, parabolic elements were employed in ABAQUS (implying nearly 1 

26000 nodes and 52000 unknowns), whereas 15 noded-triangular elements were used in 2 

PLAXIS. Uniform meshes were preferred with respect to optimised meshes (with smaller 3 

elements close to foundations), for an easier analysis of the effects of mesh size. Models 4 

with different nodal spacings on a square grid of B/10, B/20 and B/40, were employed in 5 

ABAQUS for load case A, in order to evaluate the accuracy of failure load versus mesh 6 

refinement: the numerical results show 0.05 % difference between the former two meshes 7 

and a much smaller difference between the latter two. The horizontal displacements were 8 

constrained on the lateral, vertical boundaries, whereas all displacements at the bottom 9 

were constrained in PLAXIS and only the vertical displacements in ABAQUS. The slight 10 

difference of the boundary condition at the bottom of the mesh was introduced to evaluate 11 

the variation of the numerical results. It will be shown below that the failure loads obtained 12 

with the different commercial codes are perfectly consistent with each other, because the 13 

lower boundary is sufficiently deep. 14 

A no-tension kind of soil-foundation interface with null tangential stresses was considered 15 

with both ABAQUS and PLAXIS. 16 

The typical computed response of applied load (expressed in terms of load multiplier) versus 17 

the vertical settlement of the foundation (in this case load case C and Mp = 200 kNm/m 
 

18 

were considered) is shown in Fig. 2. Most analyses have been performed with ABAQUS, 19 

whereas the PLAXIS analyses were mostly undertaken for the purposes of verification.  20 

Since FEM analyses apparently fulfil both equilibrium conditions and rupture criteria, they 21 

could be considered at a first glance to provide a lower bound solution. However the 22 

equilibrium condition is not exactly satisfied in FEM analyses (it is satisfied only in weak 23 
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form for a stress distribution which is not continuous at inter element boundaries), thus the 1 

limit loads computed with the FEM method cannot be consider a rigorous lower bound.  2 

 3 

 4 

 5 

The limit load evaluated using the linear elastic (LW) and elasto-plastic Winkler model 6 

(NLW) 7 

The limit load and maximum bending moments were tentatively evaluated also with a 8 

Winkler model incorporating linear elastic or linear elastic-perfectly plastic springs (that will 9 

be denoted below as elasto-plastic Winkler model) in order to determine to what extent a 10 

standard and enhanced Winkler model can capture the combined rupture mechanisms 11 

predicted by the more accurate methods discussed above. The elastic stiffness of the non-12 

linear springs was assumed to equate to 3.555x10
6
 kN/m

3
 (corresponding to the stiffness 13 

value yielding the same mean settlement of a very long foundation lying on an elastic soil 14 

layer with Eu=20 MPa and Poisson ratio 0.5); for the elasto-plastic model, the limiting value 15 

of soil pressure is assumed to equate to qlim=102.8 kPa (from the theoretical value of the 16 

limiting pressure of the shallow foundation per unit width). A no-tension kind of contact at 17 

soil-structure interface was modelled so that the foundation can detach from the subsoil. 18 

 19 

 20 

 21 
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Comparison between DLO and EPFEM analyses at ULS 1 

Figs. 3(a), 3(c), 3(e) and 4(a), 4(c) and 4(e) show the deformed collapse slip line mechanisms 2 

evaluated with DLO code for the load cases A through C, in the cases of very large and very 3 

small resisting moments of the foundation. Figures 3(b), 3(d), 3(f) and 4(b), 4(d) and 4(f) 4 

show the deformed central portion of the FEM meshes (used with ABAQUS) and the 5 

contours of equivalent plastic strain amplitude for the load cases A through C, for very large 6 

and very small resisting moments Mp of the foundation and for different concrete section 7 

heights (h=31 cm and h=90 cm). It can be seen that there is a good qualitative match to the 8 

identified mechanisms.  9 

When large resisting moments are considered, no plastic hinge forms in the foundation and 10 

the computed limit load can be compared with well-known theoretical values. In contrast, 11 

when small resisting moments are considered, one or more plastic hinges form in the 12 

foundation and the theoretical traditional analyses are not always possible. In the latter 13 

case the occurrence of a combined rupture mechanism is considered to occur.  14 

The computed results are summarised in Tables 2-4 for load cases A through C, respectively. 15 

From these analyses the following conclusions can be drawn: 16 

-� in the case of a large resisting moment (lines 2 and 3 of Table 2) the good 17 

consistency of the EPFEM results obtained with h = 90 and h = 31 cm  shows that the 18 

computed limit load is insensitive to the elastic stiffness of the foundation, as 19 

expected from plasticity theory; 20 

-� when no plastic hinge forms (first three-four lines of each Table), the limit load 21 

calculated with EPFEM and DLO is fairly consistent with conventional analysis; 22 
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-� the lower the resisting moment of the foundation, the lower the limit load is, due to 1 

a combined rupture mechanism in the soil and in the foundation; 2 

-� in the case of a combined rupture mechanism, the evaluations obtained with 3 

different FEM codes (i.e. ABAQUS and PLAXIS) and DLO are consistent with each 4 

other to within a small margin. 5 

Finally Fig. 5 shows the comparison between the bending moments calculated with the DLO 6 

and EPFEM analyses. Only load cases B and C, with Mp=200 kNm/m and Mp=500 kNm/m  7 

(Figs. 3(e), 3(f) and 4(c), 4(d), respectively) are considered for the sake of brevity. As 8 

illustrated by this case the comparison between the different numerical approaches is 9 

excellent. 10 

 11 

 12 

The maximum bending moments evaluated with linear elastic Winkler (LW) and elasto-13 

plastic Winkler (NLW) model 14 

Load cases A and C were modelled using a linear elastic-perfectly-plastic springs, Winker 15 

(NLW) approach. The results in Tables 2 and 4 show that reasonably good results can be 16 

obtained with the NLW model, even in terms of foundation detachment. However the main 17 

drawback of the NLW model is that a reliable estimate of the limit value of soil pressure can 18 

be easily obtained only when the limit value of contact pressure is not very sensitive to the 19 

geometry of the portion of the foundation that is in contact with subsoil. Under undrained 20 

conditions this holds reasonably true because the influence of the shape factors on the limit 21 

value of contact pressure is fairly small, in contrast for a 2D slab foundation lying on 22 
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granular soil (or on clay under drained conditions) the evaluation of the limit value of subsoil 1 

pressure is made more difficult by the further dependence of the limit load on the width of 2 

the portion of foundation which is in contact with subsoil. 3 

The bending moments at ULS loadings computed with the linear elastic Winkler (LW) model 4 

are significantly smaller (particularly for the low stiffness foundation) than the bending 5 

moments computed with the EPFEM/DLO computation and with the NLW model. This is 6 

fairly reasonable because the LW model cannot account for plastic contact pressure 7 

redistribution beneath the base of the foundation, thus the contact pressure can be locally 8 

much larger that the limiting value at rupture, and therefore does not require the 9 

foundation to spread the load laterally to other parts of the soil body to take the load.  This 10 

consequently reduces the required bending moments.  This is particularly evident for stiff 11 

foundations in which EPFEM analyses tend to produce a Boussinesq like pressure 12 

distribution with maximum pressure at the foundation edges, thus generating larger 13 

bending moments for a given load than LW model (that tends to produce a uniform 14 

pressure distribution). 15 

 16 

 17 

Yield surface  18 

The analyses presented in the previous Sections show that the ULS loads evaluated with the 19 

computational upper bound limit analysis (DLO procedure) and with the EPFEM analysis 20 

(both ABAQUS and PLAXIS FEM programs) are very consistent with each other, both in the 21 
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case of a rupture occurring only in the soil and, most importantly, in the case of a combined 1 

rupture mechanism.  2 

Figure 6 shows the ultimate load versus the plastic bending moment, as evaluated with DLO 3 

and EPFEM procedures, in load cases A through C. These curves will be referred below with 4 

the term ULS curves. It can be observed that each curve has an initial curved part followed 5 

by a horizontal line: the curved part models the combined rupture mechanism, whereas the 6 

straight part concerns the rupture occurring only in the subsoil. Note that the ULS curves do 7 

not begin from the axis origin: for zero plastic bending moment, the ultimate load coincides 8 

with that of a fully flexible foundation.  9 

For the sake of comparison, Figure 6 shows in addition the plot of maximum bending 10 

moments versus the applied load, resulting from soil-foundation interaction analysis and 11 

computed with different approaches, namely the EPFEM analysis, the linear Winkler model 12 

(LW) and the non-linear Winkler model (NLW). These curves will be referred below with the 13 

term SLS curves. The soil-foundation interaction analyses at SLS were performed under the 14 

assumption that the resisting plastic moment of the foundation is very large.  A properly 15 

dimensioned beam must be represented in Fig. 6 by a point on the SLS curve lying entirely 16 

below the ULS curves. The ULS curves represent an upper bound limit, or type of yield 17 

surface, that gives the largest load that can be sustained for a given moment of resistance. 18 

The actual acceptable SLS loading will depend on the settlement criteria which is beyond the 19 

scope of this paper. 20 

The scaled-ULS curve is also plotted and appears as a straight line in Fig. 6 joining the origin 21 

to the horizontal line representing the conventional ULS capacity. Since it has been 22 

established that the scaled-ULS analysis is a lower bound, then for a given maximum 23 
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bending moment, it will always predict a lower allowable maximum load when compared to 1 

the ULS maximum moment evaluated from a combined rupture mechanism (assuming that 2 

this is close to the true plastic solution). Alternatively the corollary is that for a given limit 3 

load, the maximum bending moment evaluated with the scaled-ULS is always larger than 4 

the ULS maximum moment evaluated from a combined rupture mechanism, thus a 5 

foundation structure which is dimensioned to resist a maximum bending moment derived 6 

from a scaled-ULS analysis would be safe though may lead to a large oversize of the 7 

foundation section for a given limit load.  8 

The required bending moment from the scaled-ULS (conventional) analysis is typically larger 9 

than the FE based SLS but this is not universally true as shown by the EPFEM (h = 90 cm) 10 

results in case A. For a centrally loaded stiff foundation on an elasto-plastic undrained soil 11 

the pressure distribution will tend to produce a Boussinesq-like distribution with maximum 12 

pressures at the foundation edges and small pressure at foundation centre (in the form of 13 

an inverted parabola) leading to larger peak bending moment in comparison to an 14 

assumption of uniform pressures over the full length of the foundation.  (Since this, and 15 

indeed any SLS solution is an equilibrium stress field nowhere violating yield it can simply be 16 

regarded as a generally poorer ULS lower bound than the scaled-ULS result). 17 

Finally it is observed that the NLW approach does not always provide a good match with 18 

EPFEM for SLS loading. However NLW is conservative for determining the required ULS 19 

bending moment for a given load. As expected this is not true for LW which is always 20 

inappropriate for ULS analysis and appears to match the NLW analysis only for loads 21 

approximately less than half the ULS load based on the cases studied. (It is also noted that 22 

the EPFEM analysis for h = 31 cm does exceed the ULS curve by a small amount. However 23 
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this is attributed to numerical tolerances. It would be expected that the curves simply 1 

merge). 2 

 3 

Discussion 4 

A shallow foundation of the type investigated should be sized to satisfy SLS and ULS 5 

considerations. In terms of bending strength, the designer may choose a strength, Mp, based 6 

on a simple ULS soil rupture only analysis (the start of the straight, horizontal, line portion of 7 

the ULS curves in Fig. 6). This will definitely suffice to avoid ULS but is likely to be very 8 

overconservative value of the bending strength Mp at lower loads.   9 

In contrast an economic ULS design should be based on combined rupture analysis given by 10 

the curved portion of the ULS curves in Fig. 6. As would be expected, and examining Fig. 6,  11 

the ULS load capacity for a given bending strength Mp is always larger than the computed 12 

SLS load corresponding to a maximum bending moment Mmax = Mp. An SLS load/moment 13 

combination is a valid stress distribution in equilibrium and nowhere violating yield (if Mp = 14 

Mmax ). Using the lower bound theorem the SLS load will always be carried but a larger or 15 

equal load may be carried before reaching ULS. This will be true of SLS results generated 16 

using EPFEM results (though this may not be fully rigorous if the FEM analysis satisfies 17 

equilibrium in a weak form only). It is interesting to note that the results generated by NLW 18 

in the current study also seem to generate consistent lower bounds, but this is not proven in 19 

general. 20 

While it follows that, for a given load, the given required bending strength from the graph is 21 

always less than the SLS maximum bending moments, it must be remembered that a ULS 22 
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design calculation will typically be subjected to much larger factors of safety than a SLS 1 

design calculation and this will mean that SLS governs in some cases while ULS will govern in 2 

others.  The choice of factoring approaches therefore also may have a significant influence 3 

on the design. This is an area that requires further investigation.  4 

CONCLUSIONS 5 

This work explores for the first time (to the best of the authors’ knowledge) how the limit 6 

load of a shallow foundation is affected by the occurrence of a combined rupture 7 

mechanism involving both the soil and the foundation. This analysis is performed by using 8 

two different numerical approaches (namely DLO and EPFEM analyses) for a simple 2D 9 

problem under undrained conditions. The excellent consistency among the different 10 

numerical results support the reliability of the numerical evaluations, for which neither 11 

analytical nor experimental evaluation has been proposed so far.  12 

The main conclusions can be summarised as follows. 13 

 14 

1.� Both ULS DLO and EPFEM analyses provide an upper load limit, expressed in terms of 15 

ultimate load vs resisting moment, which can never be passed by the maximum bending 16 

moment vs applied load relationships evaluated at working SLS state (by using EPFEM 17 

methods). This upper limit represents the locus of the conditions in which the strength 18 

of all materials in the system (namely both the soil and the foundation) is fully mobilized 19 

(namely the so-called combined rupture mechanism). This can be regarded as a yield or 20 

limit surface for the soil-foundation system.   21 

 22 
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2.� A design based on a moment resistance calculated from a simple soil rupture only ULS 1 

analysis (with foundation assumed rigid) should always be safe (lower bound). For 2 

undrained problems, the limit soil pressure can be assumed constant along the effective 3 

bearing width, although this assumption might lead to unexpectedly large, moment 4 

resistances in the case of flexible foundations. 5 

 6 

3.� Simple parallel scaling down of ULS loads and moments (scaled-ULS) from such an 7 

analysis can also be shown to give a lower bound. In other words, such an analysis will 8 

give conservative overestimates of the required ULS foundation bending strength (or 9 

equivalently an underestimate of the ULS  load for a given bending strength) for 10 

undrained problems.  11 

 12 

4.� If soil pressures are kept below the limiting value by using an elasto-plastic Winkler 13 

model (thus at no point the predicted soil pressure exceeds the plastic limit bearing 14 

value), then reasonable estimates of SLS design moments can be obtained comparable 15 

to EPFEM methods, especially for low stiffness foundations. However the plastic limit 16 

bearing pressure can only be explicitly defined for undrained conditions and for a 2D 17 

problem or a foundation beam, because in the other cases (under a foundation slab in 18 

3D conditions or for drained loads) the plastic limit bearing pressure depends on the 19 

effective dimensions of the foundations (thus an implicit calculation is necessary).   20 

 21 

5.� Caution must be used with elastic Winkler models. Particularly for low-stiffness 22 

foundations, maximum predicted bending moments may strongly underestimate those 23 

required to avoid a ULS condition. 24 
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 1 

6.� A combined rupture ULS analysis should lead to more efficient foundation design. 2 

However both SLS and ULS conditions must be considered and their interplay will be a 3 

function of the nature of the safety factoring adopted.  4 

At present, there is the need of practical and an expeditious means of analysis of combined 5 

rupture mechanisms for beams and slabs, under both undrained and drained conditions, 6 

that could be easily and generally employed in practical design analysis (i.e. something 7 

similar to Broms’ method for flexible piles subjected to horizontal loading). 8 

 9 

 10 

 11 

 12 
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B   width of foundation  16 
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cu   undrained shear strength 18 
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E    elastic modulus of concrete 1 

EJ    foundation bending stiffness  2 

fbk   characteristics concrete strength 3 

h   height of foundation section 4 

M   bending moment 5 

Mmax   maximum bending moment 6 

Mp   bending strength 7 

Nlim   limit load 8 

Nc, Nq, Nγ  bearing capacity factors 9 

m, n   scale factors 10 

q   surcharge pressure at the foundation base 11 

qlim   limit pressure beneath the foundation 12 

�   horizontal distance from the centre of the foundation 13 

γ   unit weight of soil 14 

 15 
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 1 

 2 

List of figure captions 3 

Figure 1. Finite element mesh employed with (a) ABAQUS and (b) PLAXIS FEM codes. 4 

Figure 2. Typical load displacement curve computed for load case (c) with ABAQUS: h=31cm 5 

and Mp=200 kNm/m. 6 

Figure 3.  Load case A: Mp = 500 kNm/m, with plastic hinge at x = 0.00 m: (a) CLA solution, 7 

(b) FEM solution (h=31 cm); load case A: Mp = 1200 kNm/m: (c) CLA solution, maximum 8 

bending moment 1032kNm/m, (d) FEM solution, maximum bending moment 1073kNm/m 9 

and h=90 cm; load case B: Mp = 200 kNm/m, with plastic deformation from -1.80 m to +1.80 10 

m: (e) CLA solution, (f) FEM solution (h=31 cm). 11 

Figure 4.  Load case B: Mp = 800 kNm/m  (a) CLA solution, max bending moment at 12 

foundation centre is 770 kNm/m, (b) FEM solution, max bending moment at foundation 13 

centre is 760 kNm/m and h = 90cm; load case C:, Mp = 200 kNm/m: (c) CLA solution, with 14 

plastic hinge at x = 1.75 m, (d) FEM solution (h=31 cm), with plastic hinge at x = 1.50 m; load 15 

case C: Mp = 500 kNm/m: (e) CLA solution, max bending moment 465 kNm/m, (f) FEM 16 

solution, max bending moment 466 kNm/m and h = 90 cm. 17 

Figure 5.  Bending moment distribution computed with DLO and EPFEM analyses for h = 31 18 

cm. (a) load case B and Mp=200 kNm/m.  (b) load case C and Mp=500 kNm/m.  19 
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Figure 6. Ultimate load vs resisting moment (for DLO and EPFEM analyses) and maximum 1 

bending moment vs applied load for soil-foundation interaction analyses (EPFEM, NLW and 2 

LW), evaluated for very large beam resisting moments: load cases A, B and C. 3 

 4 
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Figure 1. Finite element mesh employed with (a) ABAQUS and (b) PLAXIS FEM codes. 
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Figure 2. Typical load displacement curve computed for load case (c) with ABAQUS: h=31cm 

and Mp=200 kNm/m. 
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Figure 3.  Load case A: Mp = 500 kNm/m, with plastic hinge at x = 0.00 m: (a) CLA solution, (b) FEM solution (h=31 cm); load case A: Mp = 1200 

kNm/m: (c) CLA solution, maximum bending moment 1032kNm/m, (d) FEM solution, maximum bending moment 1073kNm/m and h=90 cm; 

load case B: Mp = 200 kNm/m, with plastic deformation from -1.80 m to +1.80 m: (e) CLA solution, (f) FEM solution (h=31 cm). 
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Figure 4.  Load case B: Mp = 800 kNm/m  (a) CLA solution, max bending moment at foundation centre is 770 kNm/m, (b) FEM solution, max 

bending moment at foundation centre is 760 kNm/m and h = 90cm; load case C:, Mp = 200 kNm/m: (c) CLA solution, with plastic hinge at x = 1.75 

m, (d) FEM solution (h=31 cm), with plastic hinge at x = 1.50 m; load case C: Mp = 500 kNm/m: (e) CLA solution, max bending moment 465 

kNm/m, (f) FEM solution, max bending moment 466 kNm/m and h = 90 cm. 
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Figure 5.  Bending moment distribution computed with DLO and EPFEM analyses for h = 31 

cm. (a) load case B and Mp=200 kNm/m.  (b) load case C and Mp=500 kNm/m.  
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Figure 6. Ultimate load vs resisting moment (for DLO and EPFEM analyses) and maximum 

bending moment vs applied load for soil-foundation interaction analyses (EPFEM, NLW and 

LW), evaluated for very large beam resisting moments: load cases A, B and C. 
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A: central loading B: split symmetrical loading C: split asymmetrical  loading 

 

 

 

 

 

 

 

 

 

 

cu=20 kPa    qlim= (2+π) cu=102.8 kPa 

e = 0  B’ = 10 m e = 0  B’ = 10 m e = 2.40 m  B’ = 5.20 m 

Nlim = 10.00 x 102.8 = 1028 kN/m Nlim = 10.00 x 102.8 = 1028 kN/m Nlim = 5.20 x 102.8 = 535 kN/m 

Nlim
* 

= 1028 kN/m 

Nlim / Nlim
* 

= 1 Nlim / Nlim
* 

= 1 Nlim / Nlim
* 

= 0.52 

Mmax = 2.50 x Nlim /2 – 0.50 x Nlim /2 

                     = 1.00 x Nlim  

                             = 1028 kNm/m 

Mmax = 2.50 x Nlim /2 – 4.00 x Nlim /2 

                       = -0.75 x Nlim 

                     = -771 kNm/m 

Mmax = 0.5 x (5.00-0.84) 
2
 x Nlim /5.20 

                      – (4.00-0.84) x 0.80 x Nlim  

                   = -0.864 x Nlim 

                  = -462 kNm/m 

Mmax /qlimB
2
 = 1x10

-3
 Mmax /qlimB

2
 = -0.75x10

-3
 Mmax /qlimB

2
 = -0.45x10

-3
 

 

Table 1. Schematics of the load cases and principal relationships. B’ is the effective bearing width of the foundation 
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Resisting 

moment 

(kNm/m) 

Concrete 

section height 

(m) 

Analysis method 
Limit load 

(kN/m) 

Mmax (kNm/m) 

or plastic hinge 

location 

Rigid  CONVENTIONAL 1028 1028 

1200 

0.90 EPFEM (ABAQUS) 1050 1074 

0.31 EPFEM (ABAQUS) 1050 1073 

- DLO 1030 
1032 

1000 

- DLO 1026 one at x=0.00 m 

0.31 NLW (ABAQUS)  1021 one at x=0.00 m 

800 

0.90 EPFEM (ABAQUS) 935 one at x=0.00 m 

0.90 EPFEM (PLAXIS) 946 one at x=0.00 m 

- DLO 945 one at x=0.00 m 

0.90 NLW (ABAQUS)  923 one at x=0.00 m 

500 

0.31  EPFEM (ABAQUS) 764 one at x=0.00 m 

0.31 EPFEM (PLAXIS) 763 one at x=0.00 m 

- DLO 774 (790) one at x=0.00 m 

N/A 

0.90 LW (ABAQUS) 1028 985 

0.31 LW (ABAQUS) 1028 566 

 

Table 2. Parameters evaluated for load case A, with � the distance of plastic hinge from the 

centre of the foundation. The computed conventional limit load was used as the applied 

load in the LW analysis. 
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Resisting 

moment 

(kNm/m) 

Concrete 

section height 

(m) 

Analysis method 
Limit load 

(kN/m) 

Mmax (kNm/m) 

or plastic hinge 

location 

Rigid - CONVENTIONAL 1028 771 

800 

0.90 EPFEM (ABAQUS) 1050 760 

- DLO 1033  770 

500 

0.31 EPFEM (ABAQUS) 907 465 

0.31 EPFEM (PLAXIS) 915 475 

- DLO 891 (896) -0.6m to 0.6m 

200 

0.31 EPFEM (ABAQUS) 682 

Continuous 

plastic bending 

between -1.8m 

and +1.8m 

0.31 EPFEM (PLAXIS) 676 

M > 195 kNm/m 

between -0.70 

and 0.70, Mmax = 

197 kNm/m  

- DLO 667(680) 

Continuous 

plastic bending 

between -1.8m 

and +1.8m 

N/A 

0.90 LW (ABAQUS) 1028 733 

0.31 LW (ABAQUS) 1028 345 

 

Table 3. Parameters evaluated for load case B, with � the distance of plastic hinge from the 

centre of the foundation. The computed conventional limit load was used as the applied 

load in the LW analysis.  
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Resisting 

moment 

(kNm/m) 

Concrete 

section height 

(m) 

Analysis method 
Limit load 

(kN/m) 

Mmax (kNm/m) 

or plastic hinge 

location 

Rigid - CONVENTIONAL 535 462 at 0.84 m 

500 

0.90 EPFEM (ABAQUS) 556 466 at 1.00 m 

0.90 EPFEM (PLAXIS) 564 None 

- DLO 544  465 at 0.88 m 

0.90 NLW (ABAQUS)  591 500 

300 

0.31 EPFEM (ABAQUS) 484 one at x=1.00 m 

- DLO 473  one at x= 1.37 m 

0.31 NLW (ABAQUS)  466 one at x=1.50 m 

200 

0.31 EPFEM (ABAQUS) 433 one at x=1.50 m 

- DLO 422  one at x= 1.75 m 

100 

0.31 EPFEM (ABAQUS) 371 one at x=2.00 m 

- DLO 359  one at x =2.25m 

N/A 

0.90 LW (ABAQUS) 535 369 

0.31 LW (ABAQUS) 535 197 

 

Table 4. Parameters evaluated for load case C, with � the distance of plastic hinge from the 

centre of the. The computed conventional limit load was used as the applied load in the LW 

analysis. 
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