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A statistical approach to the inclusion of electrode contact
impedance uncertainty in electrical tomography

reconstruction

Robert G. Aykroyd∗

University of Leeds

ABSTRACT

Electrical tomography is a visualisation tool used for industrial process monitoring. The

complete electrode model relates an unknown conductivity field with the measurements but

also involves unknown electrode contact impedances. Here, a real data analysis shows

that the contact impedances vary spatially and with time. Then, the main reconstruction

process is repeated using contact impedance values drawn at random from a fitted contact

impedance distribution, and a model average calculated as the final reconstruction. This

additional source of variation can then be appropriately accounted for thereby preventing

overly optimistic assumption in subsequent decision making.

Keywords: Bayesian model averaging; electrical impedance tomography; finite-element

method; temporal variability; uncertainty quantification.

1 Introduction

Electrical tomographic techniques, where a section through an object is imaged using voltage

measurements taken outside the object, are well known, especially for industrial and medical ap-

plications. Electrodes are attached to the boundary of the object, then currents are applied and

measurements of voltage are recorded at the electrodes. The relationship between resistivity

and voltages is non-linear and to find the resistivity for given voltages is an inverse problem re-

quiring regularization in order to ensure stability and reliability (Kaipio, Kolehmainen, Vauhkonen

and Somersalo, 1999). If the contents of the domain are known, then boundary voltages can be

calculated through the solution of Maxwell’s equations and corresponding boundary conditions

(Somersalo, Cheney and Isaacson, 1992) for electromagnetism. Such inverse problems can-

not be solved analytically and instead require substantial numerical effort. The most common
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approach is to divide-up the region of interest into a grid of pixels, whose values require estima-

tion. In practice this is done numerically, and often using the finite element method (Vauhkonen,

Lionheart, Heikkinen, Vauhkonen and Kaipio, 2001; Lionheart, 2004). This is the direct prob-

lem or forward solution. It is well posed and voltages can be obtained at least to the accuracy

of measurements. The resulting image reconstruction usually becomes an ill-conditioned and

ill-posed inverse problem. It has been shown, see for example (Heikkinen, Vilhunen, West and

Vauhkonen, 2002) and (Paulson, Breckon and Pidcock, 1992), that it is important to model con-

tact impedance. Contact impedances which can be very large for several industrial applications

(Vilhunen, Kaipio, Vauhkonen, Savolainen and Vauhkonen, 2002; Heikkinen et al., 2002). The

contact impedance is a nuisance parameter but has considerable influence. For this reason

contact impedance needs to be modelled with great care. In the work presented here, a novel

approach is taken to determine a plausible range for the contact impedances from the data

obtained in a calibration step of the experiment and its inclusion in the reconstruction process.

This paper is organized as follows. Background to the complete electrode mode for EIT is

described in section 2 along with details of statistical modelling. The proposed technique for

quantifying the effects of the electrode contact impedance on reconstruction reliability is given

in Section 3. Section 4 gives information about the data and the results of its analysis. The final

discussion appears in Section 5.

2 Electrical tomography model

Suppose that the cross section of the circular tank is partitioned into n triangular pixels, labelled

by the integers 1, 2, . . . , n. In the direct problem, the resistivity ρi of each pixel (i = 1, 2, . . . , n)

is specified. An assumption here is that resistivity ρi is constant across pixel i. The electric

field potential, φ, is required at points of the domain boundary from which potential differences,

voltages, can be calculated.

Within the domain Ω Maxwell’s equations can be condensed to the condition

∇ · (σ∇φ) = 0, (2.1)

for the conductivity vector σ ∈ (R+)
n

with σ = 1/ρ. The boundary of the domain (∂Ω) will

comprise electrodes Ek (k = 1, 2, . . . ,K), and edges where the boundary is insulating. Current

pattern I = {I1, I2, . . . , IK}, with Ik the amplitude of the current injected through the electrode

Ek, is applied to the electrodes with appropriate boundary conditions on the electrodes.

Data will be collected using several different current patterns. In our experiments a widely used

‘reference protocol’ is chosen where the current patterns consists of injecting current between

the reference electrode and each of the other electrodes in turn, hence producing K − 1 current

patterns (for details see West et al. 2001) and leading to m = (K−1)2 measured voltages. Note



that this protocol provides most information about the image nearer to the site of the reference

electrode. Although this is a widely used protocol, alternatives such as trigonometric or adaptive

current patterns (Isaacson 1986) may lead to better reconstruction.

This modelling leads to the boundary conditions on the electrodes

(
φ+ zkσ

∂φ

∂n

)∣∣∣∣
Ek

= Uk,

∫

Ek

σ
∂φ

∂n
dS = Ik, k = 1, 2, · · ·K,

whilst on the insulating boundaries between electrodes

σ
∂φ

∂n
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⋃
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Ek

= 0,


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(2.2)

where z = {z1, z2, . . . , zK} are the contact impedances on the electrodes, Uk denotes the poten-

tial on the kth electrode Ek, and n is the outward unit normal of the boundary. It is common to

assume a single contact impedance for all electrodes, that is z = z0{1, 1, . . . , 1}., however, here

estimation of the individual electrode contact impedances is considered.

The pixellization of the domain is determined by both physical and imaging considerations. The

aim is to use these data to reconstruct the unknown resistivity pattern at all the time points,

that is to estimate ρ = {ρ1, ρ2, . . . , . . . , ρm}. Physically we require the boundary pixels to have

an outer edge as long as the width of our electrodes, and the sum of edge length between

the electrodes to reflect the actual spacing of the electrodes. For useful imaging a moderately

large number of pixels are needed so that small features will cover several pixels. For a known

resistivity or conductivity distribution Equation (2.1) with boundary conditions Equation (2.2),

can be solved for the electrical potential using the finite element method (Vauhkonen et al.,

2001). This requires a finer mesh in order to deliver accurate solution, which can be most easily

handled by subdivision of the pixellization. Here, all calculations are performed in Matlab using

the EIDORS library (Polydorides and Lionheart, 2002).

The data are related to the resistivity through a measurement model

V = V
∗(ρ, z) + ǫ, (2.3)

where V
∗(ρ, z) are calculated from the forward model. This states that the measured voltages

are equal to the theoretical values plus a, usually small, measurement error. It is assumed that

the errors are independent and have common variance, which has been confirmed through ex-

tensive practical experience with the instrumentation. This leads to the likelihood: the conditional

distribution of V given ρ and z, defined as V|ρ, z ∼ N(V∗(ρ, z), σ2I), with density function

f(V|ρ, z) =
1

(2πσ2)m/2
exp

{
−

1

2σ2
||V −V

∗(ρ, z)||2
}
, (2.4)



where the 2-norm is used corresponding to a Gaussian distribution. The aim is then to recon-

struct the unknown resistivity pattern, that is to estimate ρ = {ρ1, ρ2, . . . , ρm}, given the data,

V = {V1, V2, . . . , Vn}, with the contact impedances z = {z1, z2, . . . , zK} taken as unknown nui-

sance parameters. It is worth noting, that if it were assumed that the contact impedances were

known then the left hand-side in Equation (2.4) would reduce to f(V |ρ). Estimation of the model

parameters will now be considered.

3 Statisical modelling and estimation

As previously mentioned, EIT is an ill-posed inverse problem which will require regularisation

to make stable estimation possible. This further modelling is most naturally discussed with the

Bayesian modelling framework. In this approach the likelihood function above is combined with

a prior distribution which quantifies expert opinion on the nature of the unknown quantities.

If we assume that there is no knowledge about the likely resistivity values but that they are

expected to vary reasonable smoothly, then this suggests a Markov random field model, such as

a Gaussian Markov model, which is written in terms of local variability. For example

π(ρ) ∝ exp

{
−

1

2τ2

∑
(ρi − ρ̄i)

2

}
(3.1)

where ρ̄i is the mean of the neighbours of pixel i and the variance parameter, τ2, controls the

amount of local smoothing. Although this is an improper prior, it will not create an improper pos-

terior distribution. In the usual approach, where the contact impedances are assumed known,

this is combined with the likelihood producing a posterior distribution

π(ρ|V , z) ∝ f(V |ρ, z)π(ρ) (3.2)

Estimates of ρ are now obtained as

ρ̂ = argmax
ρ

π(ρ|V , z). (3.3)

In the approach proposed here, it is acknowledged that the contact impedances are not known,

but must also be modelled and estimated. It will be assumed, however, that the prior information

about z is independent of that about ρ and hence the joint prior can be written as the product

of two separate components, that is π(ρ, z) = π(ρ) × π(z) where the prior distribution for the

contact impedances be denoted, π(z). Hence the posterior density, to be used for estimation is

now

π(ρ, z|V ) ∝ f(V |ρ, z)π(ρ)π(z) ∝ π(ρ|V , z)π(z). (3.4)

It will later be shown that an independence assumption is reasonable, and hence π(z) = π(z1) ·

π(z2) · · ·π(zK). Joint estimates of ρ and z would then be given by

(ρ̂, ẑ) = argmax
ρ,z

π(ρ, z|V ). (3.5)



In practice the contact impedances are nuisance parameters, and hence estimation is performed

using the marginal posterior density

π(ρ|V ) =

∫

z

π(ρ, z|V )dz ∝

∫

z

π(ρ|V , z)π(z)dz (3.6)

then

ρ̂ = argmax
ρ

π(ρ|V ). (3.7)

This estimate can be approximated, using an importance sampling approach, as

ρ̂ =
1

M

M∑

i=1

ρ∗
i (3.8)

where ρ∗
i is the posterior estimate of ρ calculated using a set of contact impedance values zi,

that is

ρ∗
i = argmax

ρ
π(ρ|V , zi), i = 1, 2, . . . ,M, (3.9)

where zi is a set of contact impedances drawn from the prior distribution, that is zi ∼ π(z),

and using the independence assumption, zi,1 ∼ π(z1), zi,2 ∼ π(z2) . . . zi,K ∼ π(zK), with

zi = (zi,1, zi,2, . . . , zi,K). An initial calibration stage of the experiment will be used to estimate the

separate contact impedance prior distributions, and also to validate the independence assump-

tion.

4 Experimental results from EIT data

4.1 Data description

A sequence of nine laboratory experiments were undertaken to investigate the mixing of two

liquids in a tank. The circular cross-sectioned tank had a diameter of 15cm and a height of

30cm, with eight electrodes of hight 3cm and width 1cm, extending the whole depth of the liquid

contents. At the start of the experiments the tank contained plain water. Then, occasionally, the

water was stirred and at four well-spaced times concentrated potassium chloride solution was

injected into the tank. During some of the other experiments solid objects were placed into the

tank but these are not important for the current paper. Further details of the experimental set-up

can be found in (West, Meng, Aykroyd and Williams, 2005).

In one of the experiments, after an initial stationary period, the water was stirred and then left

for about 100 time points. This creates the first dataset analysed to investigate temporal sta-

bility of the contact impedance values, and will be referred to as the temporal data. Further, it

is important to note that each of the nine experiments started with the tank containing a homo-

geneous internal resistivity distribution with data recorded at between 5 and 10 time points at

approximately 2 second intervals. In the original experimental design it was intended that data



from these time points would be used for calibration – this part of each experiment is referred to

as calibration data. Also, in four of these experiments concentrated potassium chloride solution

was injected into the tank. Hence, this creates the second set of data to be analysed made-up

of nine calibration datasets to allow the study of the influence of changes in internal resistivity

on the electrode contact impedances. The first three expected to have constant internal resis-

tivity, the next four have successive reductions in resistivity, with the final two fixed at the lowest

resistivity level.

4.2 Analysis of calibration data

The calibration data contains 100 data points, referred to as frames, each with 49 measured

voltages. Figure 1 shows scatterplots for the estimates of resistivity, ρ̂, and the eight contact

impedances, ẑ1, ẑ2, . . . , ẑ8, for the 100 frames. In all panels there is substantial variation but no

apparent systematic patter, such as serial correlation.
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Figure 1: Scatterplots of estimated resistivity and electrode contact impedances.

Figure 2 shows the same information as a kernel density estimate (in grey), using R function

density with default settings, along with fitted Gaussian curves (in black). Corresponding

sample mean, standard deviations, skewness and kurtosis are shown in Table 1. Figures 3 sum-



marises the values as boxplots. The resistivity estimates are centred on 20.6 Ωm with moderate

standard deviation showing good stability within the temporal sequence. The electrode contact

impedances are also consistently estimated with slightly narrower distribution for ẑ1, the contact

impedance for the reference electrode, than the other electrodes. There have, however, very dif-

ferent values ranging from mean values of 0.42 to 1.05. The skewness and excess kurtosis val-

ues, along with the density and boxplots, indicate good agreement with a Gaussian distribution.

Applying the Shapiro-Wilk normality test accepts normality (applying the Bonferroni correction

turns the one marginally significant value leading to all clearly non-significant). The autocorrela-

tion functions, shown in Figure 4, contain a few values marginally outside the confidence bands.

None of these are substantial and hence supports an absence of temporal correlation. This

indicates that the separate frames in the sequence can be treated as independent.
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ẑ2

D
en

si
ty

(c)

0.4 0.6 0.8 1.0

0
5

10
15

20

ẑ3
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Figure 2: Kernel density estimates (in grey) and fitted Gaussian curves (in black) of the estimated

resistivity and electrode contact impedances.

4.3 Estimation of resistivity

In this section the frames from the nine calibration phases are analysed estimating interior resis-

tivity, ρ, and electrode contact impedances, z1, z2, . . . , z8. Recall that during each of experiments
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Figure 3: Boxplots of the estimtes of resistivity and electrode contact impedances.

Mean Std. Dev. Skewness Kurtosis

ρ 20.5822 0.1687 0.2635 0.5507

z1 0.5156 0.0241 0.4442 0.9191

z2 0.4252 0.0285 -0.1655 0.1204

z3 0.4207 0.0346 -0.5481 0.5075

z4 0.7908 0.0428 -0.3096 -0.3550

z5 0.5594 0.0398 -0.0817 -0.5974

z6 0.5640 0.0363 -0.1331 -0.6724

z7 1.0482 0.0376 -0.1732 -0.3202

z8 0.5066 0.0316 0.1295 -0.4715

Table 1: Summary results of estimation across n = 100 real datasets showing mean, standard

deviation, skewness and kurtosis for the resistivity (Ωm) and contact impedance (Ω) estimates.

3 to 6, concentrated potassium chloride solution was injected into tank of water. Before the next

set of calibration frames this will have completely dispersed producing another homogeneous

internal resistivity distribution, but with a lower resistivity.

Figure 5 shows the sequence of estimated resistivity and contact impedance values. The dots

show the mean value of five frames surrounded by a grey region indicating the range of values

with the five estimates. The black dots represent estimates from datasets immediately following

the addition of salty water, whereas the black dots come from datasets following no change. In

(a) the estimated resistivity values start just above 20Ωm for the first three experiments. After

the first injection of salty water the next estimate of resistivity jumped down to about 5Ωm. The

subsequent estimates show a further gentle reduction in value. The grey band is very narrow

for the six cases but increases moderately for the final three values. These resistivity estimates

in agreement with recognised values (Helmenstine, 2016) of 20 Ωm (range 20-2000) for drink-

ing water and 0.2 Ωm for salty (sea) water. The pattern is similar for the electrode contact

impedances, in that there is initial high contact impedances, then a substantial decrease, and
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Figure 4: Autocorrelation functions for the estimates of resistivity and electrode contact

impedance.

finally a small increase. There is also a final increase in the range of estimates, especially in the

final three of four cases. These results show that there is substantial differences between the

electrode contact impedances, varying from about 0.4 to more than 1.0 Ω. Further, the values

vary substantially across the nine experiments and suggest that great care must be used when

setting contact impedances for estimates of an internal inhomogeneous resistivity distribution.

4.4 Reconstruction of resistivity distributions

In this section previous results are used in the reconstruction of an internal inhomogeneous

resistivity distribution. The third experiment was the first which included the addition of concen-

trated potassium chloride.

The calibration frames, time points 1 to 5, are combined with the final five frames, time pints 44

to 49, are combined and analysed as in the previous section with their mean, standard deviation

and range shown in Table 2. Although the mean values might give a typical value, there is
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ẑ 1

(b)

2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Experiment number
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ẑ 4
(e)

2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Experiment number
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Figure 5: Model estimates (points and line with range shown as a grey band) from sequence of

experiments, where the red points correspond to experiments including addition of salty water.

substantial variation. Fixing values at the mean might give a potentially misleading interpretation

from any resulting reconstruction.

Figure 6 shows a standard reconstruction using the mean contact impedance values given in

Table 2. The low resistivity region in the top-left is clearly visible indicating the location of the

added salty water. There is a reasonably constant background resistivity, about 20Ωm, and a

well-defined low resistivity region, of about 5 Ωm.

Using the approach proposed early, 100 sets of electrode contact impedances are simulated

from independent Gaussian distributions using the means and standard deviations in Table 2.

This results in 100 estimates of the internal resistivity distributions. These have been summaries

by their mean and width of a confidence interval in Figure 7. The model average is very similar to

the single reconstruction with fixed contact impedances shown on Figure 6, but the confidence

interval width image shows substantial and spatially correlated values. These latter values can

be as large as 4Ωm which represents a substantial extra contribution to the level of uncertainty.

As a final comparison, Figure 8 shows the difference between the two mean value reconstruc-

tions in Figures 6 and 7(a). The differences range from almost -2 to +1.5 Ωm. These differences



ρ z1 z2 z3 z4 z5 z6 z7 z8

Mean 20.3145 0.2162 0.4321 0.2620 0.7882 0.4390 0.6017 1.0906 0.5688

Std. Dev. 0.8079 0.0796 0.0779 0.0718 0.0725 0.0607 0.0753 0.0704 0.0506

Min 18.1400 0.1507 0.3379 0.1978 0.6228 0.3725 0.5235 1.0208 0.4971

Max 20.9820 0.4274 0.6343 0.4398 0.8707 0.5382 0.7658 1.2662 0.6946

Table 2: Calibration results taken from Frames 1-10 showing mean and standard deviation for

the resistivity (Ωm) and contact impedance (Ω) estimates.
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Figure 6: Standard Gauss-Newton reconstruction of resistivity distribution (Ωm).

being caused by variability in electrode contact impedances.
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Figure 7: Result of model averaging (left) and corresponding width of confidence interval (right)

– both expressing in Ωm.
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5 Discussion

Electrical impedance tomography has the capability of providing unrivalled information about im-

portant processes. The technique is most widely used in industrial process monitoring where be-

ing non-invasive and being cheap make is ideal for visualizing otherwise inaccessible equipment.

Of course, to obtain useful out from the image reconstruction requires accurate input. Although,

the external voltage measurement provide the biggest component of the required input, electrode

contact impedances make a vital contribution also. Although the contact impedance values from

the calibration data should provide good estimates it is common for contact impedances to vary

with time. This will be particularly true when changes in internal resistivity are also present. The

results presented here have demonstrated this using real experimental data. It is impossible that

the contact impedances are known, and standard values from previous research is likely to be of

little value. It is necessary to assign individual values for different electrodes and to incorporate

uncertainly into the reconstruction process.

A simple approach has been proposed to incorporate this extra source of variability into the es-

timation of the internal resistivity distribution. The fitted distributions for the contact impedances

from calibration data are used to simulate a sample of possible sets of contact impedance, and

each of these is then used in the reconstruction algorithm. A final reconstructions is produced by

averaging, and the usual measures of reliability and reproducibility can be obtained by combining

those from the sample of reconstructions. For example the total variance would be calculated

as the mean of the variances from the separate reconstructions plus the variance between the

separate reconstructions–a sum of within-group and between-group variability.

Whenever estimation and reconstruction are performed it is vital that care is taken to correctly

quantify uncertainly. It is hoped that this work has highlighted the need for further modelling. This

means identifying and measuring variability from different sources. Only with careful modelling

and calculation can results be used reliably. Such consideration can have great impact on the



decision making.
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