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1 Introduction

Double Lie algebroids first arose as the infinitesimal form of double Lie groupoids [11,
14]. In the same way as the Lie theory of Lie groupoids and Lie algebroids expresses
many of the basic infinitesimalization and integration results of differential geometry,
the process of taking the double Lie algebroid of a double Lie groupoid captures
two-stage differentiation processes, such as the iterated tangent bundle of a smooth
manifold, and the relations between a Poisson Lie group, its Lie bialgebra and its
symplectic double groupoid.

The transition from a double Lie groupoid to its double Lie algebroid is straightfor-
ward. To define an abstract concept of double Lie algebroid, however, is much more
difficult, since there is no meaningful way in which a Lie algebroid bracket can be
said to be a morphism with respect to another Lie algebroid structure. The solution
ultimately found was to extend the duality between Lie algebroids and Lie-Poisson
structures to the double context, using the duality properties of double vector bun-
dles [16]. This definition was given a simple and elegant reformulation in terms of
super geometry by Th. Voronov [26]. In terms of super geometry, an ordinary Lie
algebroid structure on a vector bundle corresponds to a homological vector field Q
of weight 1 on the parity-reversed bundle. A double vector bundle D with Lie alge-
broid structures on both bundle structures on D therefore involves two homological
vector fields and if these are of suitable weights with respect to the grading from the
double vector bundle structure, the main compatibility condition of [26] is that they
commute.

In the present paper we give a third formulation of double Lie algebroids, in terms
of representations up to homotopy as defined in [1,4]; this differs from the concept of
the same name introduced in [3].

In fact the representations up to homotopy which are relevant are concentrated in
degrees 0 and 1 and we refer to them as 2-representations for brevity (see Defini-
tion 2.8). A 2-representation is a special form of Quillen’s notion of superconnection;
see below following 2.7. We could paraphrase the content of the paper as showing
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Double Lie algebroids and representations up to homotopy

that double Lie algebroids can be regarded as matched pairs of flat Lie algebroid
superconnections.

We now give a more detailed description of the background to the paper. Consider
first a double vector bundle D with Lie algebroid structures on two parallel sides,
which are compatible with the vector bundle structures on the other sides; these are
the LA–vector bundles of [16, Definition 3.3] and, in an equivalent reformulation, the
VB-algebroids of [4]. Further suppose that D is ‘decomposed’; that is, as a manifold
it is the fibre product A ×M B ×M C of three vector bundles A, B, C on the same
base M , and the vector bundle structures on D are the pullbacks of B ⊕C to A and of
A ⊕ C to B. Then [4] showed that LA–vector bundle structures on D are in bijective
correspondence with 2-representations defined in terms of A, B and C .

Decompositions of double vector bundles may themselves be regarded as exten-
sions of the notion of connection. One definition of a connection in a vector bundle
(E, q, M) is a map C : E ×M T M → T E which is linear both as a map from the
pullback of T M over the projction E → M and as a map from the pullback of
E over the projection T M → M , and which is right-inverse to both projections.
This formulation, which can be found in Dieudonné, is precisely a decomposition of
T E in our sense. However for a decomposition of a double vector bundle to pos-
sess connection-like properties it is necessary for there to be bracket structures on
at least one pair of parallel sides; that is, for it to have a LA–vector bundle struc-
ture.

We assume, as part of the definition of a double vector bundle, that a decomposition
exists; this property is preserved by the various prolongation and dualization processes
studied here and in the references. Decompositions may be regarded as trivializations
of D at the double level; in this paper we do not need to trivialize A, B and C . For a
formulation in coordinate terms, see [26].

Now consider an arbitrary double Lie algebroid D. The Lie algebroid structures
on D may be considered as a pair of LA–vector bundle structures and accordingly
a decomposition of D expresses the double Lie algebroid structure as a pair of
2-representations. Our main result (Theorem 3.6) determines the compatibility con-
ditions between these and, conversely, proves that a suitable pair of 2-representations
defines a double Lie algebroid structure on D.

Our formulation is significantly different from both the original formulation and
that of [26]. Our treatment resembles the coordinate treatment in [26] inasmuch as the
three intrinsic conditions of [16] are replaced by a greater number of conditions which
are dependent on auxiliary data, but which are easier to work with. On the other hand,
our methods are entirely ‘classical’ rather than supergeometric, and rely on a global
decomposition rather than a local trivialization.

Our formulation may also be regarded as a considerable generalization of the
description of a vacant double Lie algebroid in terms of a matched pair of repre-
sentations [16, §6]—that is, of representations of Lie algebroids in the strict sense,
without curvature. For this reason we regard the conditions (M1) to (M7) in Definition
3.1 as defining a matched pair of 2-representations.

In turn, [7] shows that the bicrossproduct of a matched pair of 2-representations is
a split Lie 2-algebroid, in the same way that the bicrossproduct of a matched pair of
representations of Lie algebroids is a Lie algebroid [10,18]. In a different direction,
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[8] will apply our main result to show that double Lie algebroids which are transitive
in a sense appropriate to the double structure are determined by a simple diagram of
morphisms of ordinary Lie algebroids.

We now describe the contents of the paper.
In Sect. 2 we recall the basic notions needed throughout the paper. We begin with

double vector bundles, the special classes of sections with which it is easiest to work,
and the nonstandard pairing between their duals. In Sect. 2.2 we recall LA–vector
bundles and double Lie algebroids, and in Sect. 2.3 we finally define 2-representations.

In Sect. 3 we state our main result and apply it to the double Lie algebroids which
arise from the tangent and cotangent prolongations of a Lie algebroid. The main work
of the proof of Theorem 3.6 is given in Sect. 4.

We have included definitions of the key concepts required; in particular it is not
necessary to have a detailed knowledge of [1,4,16] or [26].

2 Background and definitions

2.1 Double vector bundles, decompositions and dualization

We briefly recall the definitions of double vector bundles, of their linear and core
sections, and of their linear splittings and lifts. We refer to [4,15,20] for more detailed
treatments.

Definition 2.1 A double vector bundle is a commutative square

D
πB

πA

B

qB

A qA
M

satisfying the following four conditions:

1. all four sides are vector bundles;
2. πB is a vector bundle morphism over qA;
3. +B : D ×B D → D is a vector bundle morphism over + : A ×M A → A, where

+B is the addition map for the vector bundle D → B;
4. the scalar multiplication R × D → D in the bundle D → B is a vector bundle

morphism over the scalar multiplication R × A → A,

together with a fifth condition (5) below.

The corresponding statements for the operations in the bundle D → A follow.
Given a double vector bundle (D; A, B; M), the vector bundles A and B are called

the side bundles. The core C of a double vector bundle is the intersection of the kernels
of πA and πB . It has a natural vector bundle structure over M , the restriction of either
structure on D, the projection of which we call qC : C → M . The inclusion C ↪→ D
is usually denoted by
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Cm � c �−→ c ∈ π−1
A (0Am) ∩ π−1

B (0Bm).

Given any three vector bundles A, B,C on the same basemanifoldM , the fibre product
D := A×M B×M C has a natural structure of double vector bundle with side bundles
A and B and core C ; the vector bundle structure on D → A is the pullback of B ⊕C
to A and likewise the vector bundle structure on D → B is the pullback of A ⊕ C to
B. We can now state the fifth condition of Definition 2.1:

5. there is a diffeomorphism from D to the double vector bundle D = A×M B×MC ,
whereC is the core of D, which is the identity on A, B andC and is an isomorphism
of vector bundles D → D over A and B.

Amorphism of double vector bundles from (D; A, B; M) to (D′; A′, B ′; M ′) con-
sists of smooth maps φ : D → D′, φA : A → A′, φB : B → B ′ and φM : M → M ′
such that each of (φ, φA), (φ, φB), (φA, φM ) and (φB, φM ) is a vector bundle mor-
phism.

Given a double vector bundle (D; A, B; M), the space of sections �B(D) is gen-
erated as a C∞(B)-module by two distinguished classes of sections (see [16]), the
linear and the core sections which we now describe.

Definition 2.2 For a section c : M → C , the corresponding core section c† : B → D
is defined as

c†(bm) = 0̃bm +A c(m), m ∈ M, bm ∈ Bm . (1)

We denote the corresponding core section A → D by c† also, relying on the
argument to distinguish between them.

Definition 2.3 A section ξ ∈ �B(D) is called linear if ξ : B → D is a bundle
morphism from B → M to D → A over a section a ∈ �(A).

The space of core sections of D over B will be written �c
B(D) and the space of linear

sections ��
B(D). Given ψ ∈ �(B∗ ⊗C), there is a linear section ˜ψ : B → D over the

zero section 0A : M → A given by

˜ψ(bm) =˜0bm +A ψ(bm). (2)

We call ˜ψ a core-linear section.

Example 2.4 Let A, B, C be vector bundles overM and consider D = A×M B×MC
with the vector bundle structures described in Definition 2.1. We call a double vector
bundle of this type decomposed or a trivial double vector bundle with core C . The
core sections are given by

c† : bm �→ (0Am, bm, c(m)), where m ∈ M, bm ∈ Bm, c ∈ �(C),

and similarly for c† : A → D. The space of linear sections ��
B(D) is naturally identi-

fied with �(A) ⊕ �(B∗ ⊗ C) via

(a, ψ) : bm �→ (a(m), bm, ψ(bm)), where ψ ∈ �(B∗ ⊗ C), a ∈ �(A).
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In particular, the fibered product A×M B is a double vector bundle with side bundles
A and B and core M × 0.

2.1.1 Decompositions and lifts

A decomposition of (D; A, B; M) is a diffeomorphism I : D → D = A×M B×M C ,
as in Definition 2.1; that is, I is an isomorphism of double vector bundles over the
identity maps on A, B and C .

Given an injective morphism of double vector bundles 	 : A ×M B ↪→ D over
the identity on the sides A and B, define a decomposition of D by I(am, bm, cm) =
	(am, bm) +B (0̃bm +A cm). Decompositions of D are in bijective correspondence
with such morphisms 	. We will often refer to 	 as a decomposition of D.

Decompositions of D are also equivalent to splittings σA of the short exact sequence
of C∞(M)-modules

0 −→ �(B∗ ⊗ C) ↪→ ��
B(D) −→ �(A) −→ 0,

where the third map is the map that sends a linear section (ξ, a) to its base section
a ∈ �(A). The splitting σA will be called a lift. Given a decomposition, the lift
σA : �(A) → ��

B(D) is given by σA(a)(bm) = 	(a(m), bm) = I
−1(a(m), bm, 0m)

for all a ∈ �(A) and bm ∈ B.
In the case of the tangent double of a vector bundle E → M , the lift from vector

fields on M to vector fields on E (see Sect. 2.1.2) would be the horizontal lift corre-
sponding to a connection. We avoid the word ‘horizontal’ here since ‘horizontal’ and
‘vertical’ refer to the two structures on D.

By the symmetry of a decomposition, this implies that a lift σA : �(A) → ��
B(D)

is equivalent to a lift σB : �(B) → ��
A(D). Given a lift σA : �(A) → ��

B(D), the
corresponding lift σB : �(B) → ��

A(D) is given by σB(b)(a(m)) = σA(a)(b(m)) for
all a ∈ �(A), b ∈ �(B).

Note finally that two decompositions of D differ by a section φ12 of A∗⊗B∗⊗C �
Hom(A, B∗ ⊗ C) � Hom(B, A∗ ⊗ C) in the following sense. For each a ∈ �(A)

the difference σ 1
A(a) −B σ 2

A(a) of lifts is the core-linear section defined by φ12(a) ∈
�(B∗ ⊗ C). By symmetry, σ 1

B(b) −A σ 2
B(b) = φ̃12(b) for each b ∈ �(B).

2.1.2 The tangent double vector bundle of a vector bundle

LetqE : E → M be avector bundle. Then the tangent bundleT E has twovector bundle
structures; one as the tangent bundle of the manifold E , and the second as a vector
bundle over T M . The structuremaps of T E → T M are the derivatives of the structure
maps of E → M . The space T E is a double vector bundle with core bundle E → M .

T E

TqE

pE
E

qE

T M pM
M
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The core vector field corresponding to e ∈ �(E) is the vertical lift e↑ : E → T E ,
i.e. the vector field with flow φ : E × R → E , φt (e′

m) = e′
m + te(m). An element

of ��
E (T E) = X�(E) is called a linear vector field. It is well-known (see e.g. [15])

that a linear vector field ξ ∈ Xl(E) covering X ∈ X(M) corresponds to a derivation
D∗ : �(E∗) → �(E∗) over X ∈ X(M), and hence to a derivation D : �(E) → �(E)

over X ∈ X(M) (the dual derivation). The precise correspondence is given by1

ξ(�ε) = �D∗(ε) and ξ(q∗
E f ) = q∗

E (X ( f )) (3)

for all ε ∈ �(E∗) and f ∈ C∞(M). Here �ε is the linear function E → R corre-
sponding to ε. We will write ̂D for the linear vector field corresponding in this manner
to a derivation D of �(E). The choice of a decomposition for (T E; T M, E; M) is
equivalent to the choice of a connection on E : Since a decomposition gives us a linear
vector field σT M (X) ∈ Xl(E) for each X , we can define ∇ : X(M) × �(E) → �(E)

by σT M (X) = ̂∇X for all X ∈ X(M). Conversely, a connection ∇ : X(M)×�(E) →
�(E) defines a lift σ∇

T M for (T E; T M, E; M) and a decomposition of E .
We recall as well the relation between the connection and the Lie bracket of vector

fields on E . Given ∇, it is easy to see using the equalities in (3) that, writing σ for
σ∇
T M :

[σ(X), σ (Y )] = σ [X,Y ] − R∇(X,Y )↑,
[

σ(X), e↑]

= (∇Xe)
↑,

[

e↑, e′↑]

= 0,

(4)
for all X,Y ∈ X(M) and e, e′ ∈ �(E). That is, the Lie bracket of vector fields on
M and the connection encode completely the Lie bracket of vector fields on E . One
result of this paper is an extension of this description to general double Lie algebroids.

Now let us have a quick look at the other structure on the double vector bundle T E .
The lift σ∇

E : �(E) → ��
T M (T E) is given by

σ∇
E (e)(v) = T e(v) +T M (T 0E (v) −E ∇ve), v ∈ T M, e ∈ �(E). (5)

2.1.3 Dualization and lifts

Recall that double vector bundles can be dualized in two distinct ways. We denote the
dual of D as a vector bundle over A by D �A and likewise for D �B. The dual D �A
is itself a double vector bundle, with side bundles A and C∗ and core B∗ [13,16].

D
πB

πA

B

qB

A qA
M

D �A
πC∗

πA

C∗

qC∗

A qA
M

D �B
πB

πC∗

B

qB

C∗
qC∗ M

1 Since its flow is a flow of vector bundle morphisms, a linear vector field sends linear functions to linear
functions and pullbacks to pullbacks.
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Note also that by dualizing again D �B over C∗, we get

D �B �C∗ πA

πC∗

A

qA

C∗
qC∗ M,

with core B∗. In the same manner, we get a double vector bundle D �A �C∗ with
sides B and C∗ and core A∗.

Recall first of all that the vector bundles D �B → C∗ and D �A → C∗ are, up to
a sign, naturally in duality to each other [13]. The pairing

〈〈〈〈〈〈〈· , ·〉〉〉〉〉〉〉 : (D �A) ×C∗ (D �B) → R

is defined as follows: for � ∈ D �A and 
 ∈ D �B projecting to the same element
γm in C∗, choose d ∈ D with πA(d) = πA(�) and πB(d) = πB(
). Then 〈�, d〉A −
〈
, d〉B does not depend on the choice of d and we set 〈〈〈〈〈〈〈�, 
〉〉〉〉〉〉〉 = 〈�, d〉A − 〈
, d〉B .

This implies in particular that D �A is canonically (up to a sign) isomorphic to
D �B �C∗ and D �B is isomorphic to D �A �C∗. We will use this below.

Each linear section ξ ∈ �B(D) over a ∈ �(A) induces a linear section ξ� ∈
��
C∗(D �B �C∗) over a. Namely ξ induces a function �ξ : D �B → R which is

fibrewise-linear over B and, using the definition of the addition in D �B → C∗ [16,
Equation (7)], it follows that �ξ is also linear over C∗. The corresponding section of
D �B �C∗ → C∗ is denoted ξ� [16]. Thus

〈ξ�(γ ),
〉C∗ = �ξ (
) = 〈
, ξ(b)〉B (6)

for 
 ∈ D �B such that πB(
) = b and πC∗(
) = γ .
Given a decomposition 	 : A ×M B → D of D, we get hence a decomposition
	�,B : C∗ ×M A → D �B �C∗, defined by the corresponding lift σ�,B

A : �(A) →
��
C∗(D �B �C∗):

σ
�,B
A (a) = (σA(a))�

for all a ∈ �(A).
We now use the (canonical up to a sign) isomorphism of D �A with D �B �C∗ to

construct a canonical decomposition of D�A given a decomposition of D.We identify
D�A with D�B�C∗ using−〈〈〈〈〈〈〈· , ·〉〉〉〉〉〉〉. Thus we define the lift σ�

A : �(A) → ��
C∗(D�A)

by
〈〈〈〈〈〈〈σ�

A(a), ·〉〉〉〉〉〉〉 = −σ
�,B
A (a) (7)

for all a ∈ �(A). Note that by (6), this implies that

〈σ�
A(a)(γ ), σA(a)(b)〉A = 0 (8)
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for all γ ∈ C∗ and b ∈ B. The choice of sign in (7) is necessary for σ�
A(a) to be a linear

section of D �A over a. To be more explicit, check or recall from [15, Equation (28),
p. 352] that 〈〈〈〈〈〈〈σ�

A(a), α†〉〉〉〉〉〉〉 = −q∗
C∗ 〈α, a〉 for all α ∈ �(A∗) (and α† the corresponding

core section of D �B over C∗). But 〈σ�,B
A (a), α†〉C∗ = q∗

C∗ 〈a, α〉 by definition of the
pairing of D �B �C∗ with D �B. Hence, without the choice of sign that we make,
σ�
A(a) would be linear over −a, hence not a lift.
By (skew-)symmetry, given the lift σB : �(B) → ��

A(D), we identify D �B with
D �A �C∗ using 〈〈〈〈〈〈〈·, ·〉〉〉〉〉〉〉 and define the lift σ�

B : �(B) → ��
C∗(D �B) by 〈〈〈〈〈〈〈σ�

B(b), ·〉〉〉〉〉〉〉 =
σ

�,A
B (b) for all b ∈ �(B). (This time, we do not need the minus sign.) As a summary,

we have the equations:

〈〈〈〈〈〈〈σ�
A(a), σ �

B(b)〉〉〉〉〉〉〉 = 0, 〈〈〈〈〈〈〈σ�
A(a), α†〉〉〉〉〉〉〉 = −q∗

C∗ 〈α, a〉, 〈〈〈〈〈〈〈β†, σ �
B(b)〉〉〉〉〉〉〉 = q∗

C∗ 〈β, b〉, (9)

for all a ∈ �(A), b ∈ �(B), α ∈ �(A∗) and β ∈ �(B∗). See also [15, §9.2].

2.2 LA–vector bundles and double Lie algebroids

Let (D; A, B; M) be a double vector bundle

D
πB

πA

B

qB

A qA
M

with core C . Then (D; A, B; M) is a LA–vector bundle [12] if there are Lie algebroid
structures on D → B and A → M , such that the vector bundle operations in D → A
are Lie algebroid morphisms over the corresponding operations in B → M . As a
consequence, the anchor �B : D → T B is a morphism of double vector bundles.

An equivalent concept was introduced in [4] with the name VB-algebroid: (D →
B; A → M) is aVB-algebroid if D → B is a Lie algebroid, the anchor�D : D → T B
is a bundle morphism over ρA : A → T M and the Lie bracket is linear:

[��
B(D), ��

B(D)] ⊂ ��
B(D), [��

B(D), �c
B(D)] ⊂ �c

B(D), [�c
B(D), �c

B(D)] = 0.

The vector bundle A → M is then also a Lie algebroid, with anchor ρA and bracket
defined as follows: if ξ1, ξ2 ∈ ��

B(D) are linear over a1, a2 ∈ �(A), then the bracket
[ξ1, ξ2] is linear over [a1, a2].
Example 2.5 For a vector bundle E on M , the tangent double vector bundle
(T E; E, T M; M) has an LA–vector bundle structure (T E → E, T M → M) with
respect to the standard Lie algebroid structures on T E → E and T M → M .

If D is an LA–vector bundle with Lie algebroid structures on D → B and A → M
the dual vector bundle D � B → B has a Lie-Poisson structure (a linear Poisson
structure), and the structure on D�B is also Lie-Poisson with respect to D�B → C∗
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[16, 3.4]. Dualizing this bundle gives a Lie algebroid structure on D �B �C∗ → C∗.
This equips the double vector bundle (D � B �C∗;C∗, A; M) with a LA–vector
bundle structure. Using the isomorphism defined by −〈〈〈〈〈〈〈·, ·〉〉〉〉〉〉〉, the double vector bundle
(D �A; A,C∗; M) also has a LA–vector bundle structure.

Definition 2.6 [16] A double Lie algebroid is a double vector bundle (D; A, B; M)

with core denoted C , and with Lie algebroid structures on each of A → M , B → M ,
D → A and D → B such that each pair of parallel Lie algebroids gives D the
structure of an LA–vector bundle, and such that (D �A �C∗, D �B �C∗) with the
induced Lie algebroid structures on base C∗ as defined above, is a Lie bialgebroid.

Equivalently, D is a double Lie algebroid if the pair (D�A, D�B)with the induced
Lie algebroid structures on base C∗ and the pairing 〈〈〈〈〈〈〈·, ·〉〉〉〉〉〉〉, is a Lie bialgebroid. One aim
of this paper is to reformulate this definition in terms of specific classes of sections,
so as to allow the user to bypass frequent use of the duality of doubles; see Theorem
3.6.

2.3 Representations up to homotopy and LA–vector bundles

Let A → M be a Lie algebroid and consider an A-connection ∇ on a vector bundle
E → M . Then the space �•(A, E) of E-valued Lie algebroid forms has an induced
operator d∇ given by the É. Cartan formula:

d∇ω(a1, . . . , ak+1) =
∑

i< j

(−1)i+ jω([ai , a j ], a1, . . . , âi , . . . , â j , . . . , ak+1)

+
∑

i

(−1)i+1∇ai (ω(a1, . . . , âi , . . . , ak+1))

for all ω ∈ �k(A, E) and a1, . . . , ak+1 ∈ �(A).
Let now E = ⊕

k∈Z Ek be a graded vector bundle. Consider the space �•(A, E)

with grading given by

�•(A, E)k =
⊕

i+ j=k

�i (A, E j ).

Definition 2.7 [1] A representation up to homotopy of A on E is a mapD : �•(A, E)

→ �•(A, E) with total degree 1 and such that D2 = 0 and

D(α ∧ ω) = dAα ∧ ω + (−1)|α|α ∧ D(ω), for α ∈ �(∧•A∗), ω ∈ �•(A, E),

where dA : �(∧•A∗) → �(∧•A∗) is the Lie algebroid differential.

Note that Gracia-Saz and Mehta [4] defined this concept independently and called it a
“superrepresentation”; it is related to Quillen’s notion of superconnection [22] in the
same way that representations of Lie algebroids are related to the general notion of
A-connection.
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The representations up to homotopy which we will consider are always on graded
vector bundles E = E0⊕E1 concentrated on degrees 0 and 1; so-called 2-term graded
vector bundles. In this case the data of [1] can be reformulated as follows (see [1,4]).

Definition 2.8 Let A be a Lie algebroid and let E = E0 ⊕ E1 be a 2-term graded
vector bundle on the same base. Then a 2-term representation up to homotopy or, for
brevity, a 2-representation of A on E , consists of
(i) a map ∂ : E0 → E1,
(ii) two A-connections, ∇0 and ∇1 on E0 and E1, respectively, such that ∂ ◦ ∇0 =

∇1 ◦ ∂ ,
(iii) an element R ∈ �2(A,Hom(E1, E0)) such that R∇0 = R ◦ ∂ , R∇1 = ∂ ◦ R and

d∇Hom R = 0, where∇Hom is the connection induced on Hom(E1, E0) by∇0 and
∇1.

Proposition 2.9 Let A be a Lie algebroid and let E = E0 ⊕ E1 be a 2-term graded
vector bundle on the same base. Given a 2-representation of A on E , defineD : �E0 →
�1(A, E0) ⊕ �E1 by D(e0) = ∇0(e0) ⊕ ∂(e0) and define D : �1(A, E0) ⊕ �E1 →
�2(A, E0) ⊕ �1(A, E1) by

D(ω ⊕ e1) = (−R(e1) − d∇0(ω)) ⊕ (∂(ω) − ∇1(e1)).

Then D extends to a representation up to homotopy of A on E . This defines a bijec-
tive correspondence between 2-representations of A on E and representations up to
homotopy of A on E .

Let (D → B; A → M) be an LA–vector bundle. Recall that since the anchor �B

is linear, it sends a core section c†, c ∈ �(C) to a vertical vector field on B. This
defines the core-anchor ∂B : C → B given by, �B(c†) = (∂Bc)↑ for all c ∈ �(C)

(see [11]).
Choose further a decomposition 	 : A ×M B → D. Since the anchor of a linear

section is linear, for each a ∈ �(A) the vector field �B(σA(a)) defines a deriva-
tion of �(B) with symbol ρ(a) (see Sect. 2.1.2). This defines a linear connection
∇ AB : �(A) × �(B) → �(B):

�B(σA(a)) = ∇̂ AB
a

for all a ∈ �(A). Since the bracket of a linear section with a core section is again a
core section, we find a linear connection ∇ AC : �(A) × �(C) → �(C) such that

[σA(a), c†] = (∇ AC
a c)†

for all c ∈ �(C) and a ∈ �(A). The difference σA[a1, a2] − [σA(a1), σA(a2)] is a
core-linear section for all a1, a2 ∈ �(A). This defines a vector valued Lie algebroid
form R ∈ �2(A,Hom(B,C)) such that

[σA(a1), σA(a2)] = σA[a1, a2] − ˜R(a1, a2),

for all a1, a2 ∈ �(A). See [4] for more details on these constructions.
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The following theorem is proved in [4].

Theorem 2.10 Let (D → B; A → M) be a LA–vector bundle and choose a
decomposition 	 : A ×M B → D. The triple (∇ AB,∇ AC , R) defined as above is
a 2-representation of A on the complex ∂B : C → B.

Conversely, let (D; A, B; M) be a double vector bundle such that A has a Lie alge-
broid structure and choose adecomposition	 : A×M B → D.Then if (∇ AB ,∇ AC , R)

is a 2-representation of A on a complex ∂B : C → B, then the four equations above
define a LA–vector bundle structure on (D → B; A → M).

The following formulas for the brackets of linear and core sections with core-linear
sections will be very useful in the proof of our main theorem. In the situation of the
previous theorem, we have

[

σA(a), ˜φ
] = ∇̃Hom

a φ (10)

and
[

c†, ˜φ
]

= (φ(∂Bc))
† (11)

for alla ∈ �(A),φ ∈ �(Hom(B,C)) and c ∈ �(C). To see this,writeφ as
∑

fi j ·βi ·c j
with fi j ∈ C∞(M), βi ∈ �(B∗) and c j ∈ �(C). Then ˜φ = ∑

q∗
B fi j · �βi · c†j and one

can use the formulas in Theorem 2.10 and the Leibniz rule to compute the brackets
with σA(a) and c†.

Note that (10) and (11) can also be proved by diagrammatic methods.

Example 2.11 Choose a linear connection ∇ : X(M) × �(E) → �(E) and consider
the corresponding decomposition 	∇ of T E as in Sect. 2.1.2. The description of the
Lie bracket of vector fields in (4) shows that the 2-representation induced by 	∇ is
the 2-representation of T M on IdE : E → E given by (∇,∇, R∇).

Remark 2.12 Let 	1, 	2 : A ×M B → D be two decompositions of a LA–vector
bundle (D → B, A → M), and write φ12 for the section of A∗ ⊗ B∗ ⊗ C defined in
Sect. 2.1.1. Regarding φ12 as an element of Hom(A, B∗ ⊗ C) and as an element of
Hom(B, A∗⊗C), the two corresponding 2-representations are related by the following
identities [4].

∇B,2
a = ∇B,1

a + ∂B ◦ φ12(a), ∇C,2
a = ∇C,1

a + φ12(a) ◦ ∂B

and

R2(a1, a2) = R1(a1, a2) + (d∇Hom(B,C)φ12)(a1, a2) + φ12(a1)∂Bφ12(a2)

−φ12(a2)∂Bφ12(a1)

for all a, a1, a2 ∈ �(A).

2.3.1 Dualization and 2-representations

Let (D; A, B; M) be a LA–vector bundlewith Lie algebroid structures on D → B and
A → M . Let	 : A×M B → D be a decomposition of D and denote by (∇B,∇C , R)
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the 2-representation of the Lie algebroid A on ∂B : C → B. We have seen above that
(D �A; A,C∗; M) has an induced LA–vector bundle structure, and we have shown
that the decomposition 	 induces a natural decomposition 	� : A ×M C∗ → D �B
of D �A. The 2-representation of A that is associated to this decomposition is then
(∇C∗

,∇B∗
,−R∗) on the complex ∂∗

B : B∗ → C∗. This is easy to verify, and proved
in the appendix2 of [2]. One only needs to recall for the proof that, by construction,
�σ�

A(a) equals �σA(a) as a function on D �B.

2.3.2 The tangent of a Lie algebroid

Let (A → M, ρ, [· , ·]) be a Lie algebroid. Then the tangent T A → T M has a Lie
algebroid structure with bracket defined by [Ta1, Ta2] = T [a1, a2], [Ta1, a†2] =
[a1, a2]† and [a†1, a†2] = 0 for all a1, a2 ∈ �(A). The anchor of Ta is ̂[ρ(a), ·] ∈
X(T M) and the anchor of a† is ρ(a)↑ for all a ∈ �(A). This defines a LA–vector
bundle structure (T A → T M; A → M) on (T A; T M, A; M).

Given a T M-connection on A, and so a decomposition 	∇ of T A as in Section
2.1.2, the 2-representation of A on ρ : A → T M encoding the LA–vector bundle is
(∇bas,∇bas, Rbas∇ ), where the connections are defined by

∇bas : �(A) × X(M) → X(M), ∇bas
a X = [ρ(a), X ] + ρ(∇Xa),

and

∇bas : �(A) × �(A) → �(A), ∇bas
a1 a2 = [a1, a2] + ∇ρ(a2)a1,

with Rbas∇ ∈ �2(A,Hom(T M, A)) given by

Rbas∇ (a1, a2)X = −∇X [a1, a2] + [∇Xa1, a2] + [a1,∇Xa2] + ∇∇bas
a2

Xa1 − ∇∇bas
a1

Xa2

for all X ∈ X(M), a, a1, a2 ∈ �(A).

3 Main theorem and examples

Wedefine in this section the notion ofmatched pair of 2-representations.We then state
our main result, Theorem 3.6: a double vector bundle endowed with two LA–vector
bundle structures (one horizontal, one vertical) is a double Lie algebroid if and only
if, for each decomposition, the two induced 2-representations form a matched pair.

In the second part of this section, we work out the example of the structures on the
tangent double vector bundle of a Lie algebroid.

2 The construction of the “dual” decomposition of D �A, given a decomposition of D, is done in [2] by
dualizing the decomposition and taking its inverse. The resulting decomposition of D �A is the same.
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3.1 Matched pairs of 2-representations and main result

Definition 3.1 Let (A → M, ρA, [· , ·]) and and (B → M, ρB , [· , ·]) be twoLie alge-
broids and assume that A acts on ∂B : C → B up to homotopy via (∇ AB,∇ AC , RA)

and B acts on ∂A : C → A up to homotopy via (∇BA,∇BC , RB). Then we say that
the two 2-representations form a matched pair if the following hold:3

(M1) ∇∂Ac1c2 − ∇∂Bc2c1 = −∇∂Ac2c1 + ∇∂Bc1c2,
(M2) [a, ∂Ac] = ∂A(∇ac) − ∇∂Bca,
(M3) [b, ∂Bc] = ∂B(∇bc) − ∇∂Acb,
(M4) ∇b∇ac − ∇a∇bc − ∇∇bac + ∇∇abc = RB(b, ∂Bc)a − RA(a, ∂Ac)b,
(M5) ∂A(RA(a1, a2)b) = −∇b[a1, a2] + [∇ba1, a2] + [a1,∇ba2] + ∇∇a2b

a1
− ∇∇a1b

a2,
(M6) ∂B(RB(b1, b2)a) = −∇a[b1, b2] + [∇ab1, b2] + [b1,∇ab2] + ∇∇b2a

b1
− ∇∇b1a

b2,

for all a, a1, a2 ∈ �(A), b, b1, b2 ∈ �(B) and c, c1, c2 ∈ �(C), and

(M7) d∇ A RB = d∇B RA ∈ �2(A,∧2B∗⊗C) = �2(B,∧2A∗⊗C), where RB is seen
as an element of�1(A,∧2B∗ ⊗C) and RA as an element of�1(B,∧2A∗ ⊗C).

Remark 3.2 The conditions in Definition 3.1 imply that

ρA ◦ ∂A = ρB ◦ ∂B . (12)

Specifically, if A has nonzero rank, then (12) can be obtained from (M2) by replacing
a with f a for f ∈ C∞(M). If B has nonzero rank, then (12) can similarly be obtained
from (M3). If both A and B have rank zero, then it is trivially satisfied.

Remark 3.3 The conditions in Definition 3.1 also imply that

[ρA(a), ρB(b)] = ρB(∇ab) − ρA(∇ba) (M0)

for all a ∈ �(A) and b ∈ �(B). Specifically, if A has nonzero rank, then (M0) can
be obtained from (M5) by replacing a2 with f a2 for f ∈ C∞(M). If B has nonzero
rank, then (M0) can be similarly obtained from (M6). If both A and B have rank zero,
then it is trivially satisfied.

Remark 3.4 Note that ifC is trivial, then ∂A, ∂B , RA, RB and∇ AC ,∇BC are trivial. In
that case, equations (M1)–(M4), (M7) and the left hand sides of (M5) and (M6) vanish.
Bearing in mind that (M5)–(M6) imply (M0), we find the definition of a matched pair
of representations of Lie algebroids [10,18]. In particular we find that (M0) is in fact
redundant in the definition of a matched pair of representations of Lie algebroids.

3 For the sake of simplicity, from now on we usually write ∇ for all four connections. It is always clear
from the arguments which connection is meant. We write ∇A for the A-connection induced by ∇AB and
∇AC on ∧2B∗ ⊗ C and ∇B for the B-connection induced on ∧2A∗ ⊗ C .
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Remark 3.5 The vector bundleC inherits a Lie algebroid structure with anchor ρC :=
ρA ◦ ∂A = ρB ◦ ∂B and with bracket given by [c1, c2] = ∇∂Ac1c2 − ∇∂Bc2c1 for all
c1, c2 ∈ �(C). Using Remark 2.12 one can see that the Lie algebroid structure on C
does not depend on the choice of splitting.

The proof of the Jacobi identity is not completely straightforward; it follows from
(M2), (M3) and (M4). A detailed proof of a more general result, but with the same type
of computation, is given in [7, Theorem 7.7]. Note that (M2) together with ∂A◦∇BC =
∇BA ◦ ∂A (Equation (ii) in Definition 2.8) shows that ∂A : C → A is a Lie algebroid
morphism. In the same manner, (M3) together with ∂B ◦∇ AC = ∇ AB ◦ ∂B shows that
∂B : C → B is a Lie algebroid morphism.

The Lie algebroid structure on C was defined intrinsically in [16]. Referring to
Definition 2.6, the Lie bialgebroid (D � A �C∗, D � B �C∗) induces a Poisson
structure (natural up to sign) on its base C∗; this Poisson structure is linear [16, §4]
and so induces a Lie algebroid structure on C . As with the specific formula for the
bracket above, the sign of the Poisson structure is determined by the requirement that
∂A and ∂B be morphisms of Lie algebroids.

Theorem 3.6 is our main result. The proof is in Sect. 4.

Theorem 3.6 Let (D; A, B; M) be a double vector bundle with LA–vector bundle
structures on both (D → A, B → M) and (D → B, A → M). Choose a decom-
position 	 of D and let DA and DB be the two 2-representations defined by the
lifts σA and σB. Then (D; A, B; M) is a double Lie algebroid if and only if the two
2-representations form a matched pair.

Remark 3.7 An immediate consequence of Theorem 3.6 is that, if DA and DB are
2-representations that form a matched pair, and D′

A and D′
B are the 2-representations

obtained by the transformation in Remark 2.12, then D′
A and D′

B will also form a
matched pair. In other words, equations (M1) to (M7) are invariant under the transfor-
mation in Remark 2.12,

Remark 3.8 Given a matched pair of representations of Lie algebroids A and B on
the same base M , the direct sum vector bundle A ⊕ B has a Lie algebroid structure,
the bicrossproduct Lie algebroid, denoted A �� B [10,18]. The matched pair structure
also induces on the decomposed double vector bundle A×M B a double Lie algebroid
structure and, conversely, any vacant double Lie algebroid (that is, a double Lie alge-
broid for which the core is zero) arises from a matched pair of Lie algebroids in this
way [16, §6].

3.2 Comparison with the equations of Voronov

In [26] Th. Voronov extended the notion of double Lie algebroid to supergeometry
and thereby gave an exceptionally elegant reformulation of the original definition. A
vector bundle Amay be characterized as a Lie algebroid if its parity-reversion�A has
a vector field Q of degree +1 which is homological in the sense that Q2 = 0 [24,25].

Consider now a supermanifold D with a double vector structure (D; A, B; M).
Write �AD and �BD for the parity reversions and let QA and QB be homological
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vector fields on �AD and �BD which have degrees (1, 0) and (0, 1). It follows that
QA and QB induce Lie algebroid structures on �A and �B. Then [26] defines D to
be a (super) double Lie algebroid if [QA, QB] = 0.

Most of the calculations in [26] are carried out in terms of coordinates. Equations
(47) and (48) of [26] give coordinate descriptions of the homological vector fields that
are equivalent to the two Lie algebroid structures D �A → C∗ and D �B → C∗.

The main work of [26] is to establish an equivalence between the Lie bialgebroid
condition in the definition of a double Lie algebroid (Condition III in [26]) and the
commutativity condition which we refer to briefly as [QA, QB] = 0. (In fact QA

and QB are defined on different bundles, but admit“parity reversions” to �2D =
�A�BD ∼= �B�AD and it is these parity reversions which must commute.)

This is expressed in terms of eight coordinate equations (50)–(57). We now relate
these to our equations (M1) to (M7) and (M0).

A choice of coordinates as in [26] constitutes a local choice of decomposition of
D, and yields local decompositions of the duals D�A and D�B. By Remark 3.7, it is
in fact enough to check (M1) to (M7) in local decompositions. As in [26] the letters ξi
denote basis sections for A and ξ i denote the dual basis sections for A∗. The letters ηα

denote basis sections for B and ηα denote the dual basis sections for B∗. The letters
xa denote coordinates on the base manifold M . Finally the letters zμ are basis sections
for C and zμ are the dual basis sections for C∗.

In what follows, we refer to equations from [26] with an initial ‘V’. The coefficients
in (V47) can be formulated in our terms as

Qa
α = ρB(ηα)(xa), Q j

iα = −〈ξ j ,∇ηα ξi 〉, Q j
μ = 〈∂∗

Aξ j , zμ〉,
Qλ

iβα = 〈R(ηα, ηβ)ξi , z
λ〉, Qγ

βα =〈[ηβ, ηα]B, ηγ 〉, Qλ
μα =−〈zλ,∇ηα zμ〉, (13)

where R, ∇ and ∂ refer to the 2-representations induced by the local decomposition.
We believe that the term ξiη

αQ j
iα in (V47) should have a minus sign for consistency

with (V26) and (V28).
Similarly the coefficients in (V48) are

Qa
i = ρA(ξi )(xa), Qβ

αi = −〈ηβ,∇ξi ηα〉, Qβ
μ = 〈∂∗

Bηβ, zμ〉,
Qλ

α j i = 〈R(ξi , ξ j )ηα, zλ〉, Qk
ji = 〈[ξ j , ξi ]A, ξ k〉, Qλ

μi = −〈zλ,∇ξi zμ〉. (14)

We now describe briefly howVoronov’s nine equations (V50) to (V58) correspond
to our seven equations (M1)–(M7) together with (12) and (M0).We treat two equations
in detail and state the remaining correspondences, leaving details to the reader.

Equation (V50): Qa
αQ

α
μ − Qi

μQ
a
i = 0 is satisfied for all μ and a if and only if

ρB(ηα)(xa)〈∂∗
Bηα, zμ〉 = ρA(ξi )(xa)〈∂∗

Aξ i , zμ〉

for all μ and a. But this is

ρB
(〈∂∗

Bηα, zμ〉ηα

)

(xa) = ρA

(

〈∂∗
Aξ i , zμ〉ξi

)

(xa)
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and we have 〈∂∗
Bηα, zμ〉ηα = 〈ηα, ∂Bzμ〉ηα = ∂B(zμ) and 〈∂∗

Aξ i , zμ〉ξi =
〈ξ i , ∂Azμ〉ξi = ∂A(zμ) because of the choices of the dual basis {ξi } and {ξ i }, and
{ηα} and {ηα}. Hence, Equation (V50) now reads ρA(∂A(zμ))(xa) = ρB(∂B(zμ))(xa)
for all μ, a. Since xa are coordinates on the base manifold and {zμ} is a basis for C ,
we get ρA ◦ ∂A = ρB ◦ ∂B .

Equation (V51): 0 = −Qi
μQ

λ
νi + Qα

μQ
λ
να − Qi

νQ
λ
μi + Qα

ν Q
λ
μα for all μ, ν, λ is

0 =〈∂∗
Aξ i , zμ〉〈zλ,∇ξi zν〉 − 〈∂∗

Bηα, zμ〉〈zλ,∇ηα zν〉
+ 〈∂∗

Aξ i , zν〉〈zλ,∇ξi zμ〉 − 〈∂∗
Bηα, zν〉〈zλ,∇ηα zμ〉

for all μ, ν, λ. As before, this is

0 = 〈zλ,∇∂Azμ zν〉 − 〈zλ,∇∂B zμ zν〉 + 〈zλ,∇∂Azν zμ〉 − 〈zλ,∇∂B zν zμ〉
= 〈zλ,∇∂Azμ zν − ∇∂B zμ zν + ∇∂Azν zμ − ∇∂B zν zμ〉

for all μ, ν, λ. This implies∇∂Azμ zν −∇∂B zν zμ = −(∇∂Azν zμ −∇∂B zμ zν) for all μ, ν,
which is exactly (M1).

As the reader can see, the proof of the equivalences requires writing out Voronov’s
equations in terms of the 2-representations (see (13) and (14)), and using the duality
of the coordinates. The proof of the remaining equivalences can be done in the same
manner. We leave the details to the reader.

Equation (V52): Qβ
α j Q

a
β + Qb

j ∂bQ
a
α − Qi

jα Qa
i = Qb

α ∂bQa
j is our (M0).

Equation (V53): Qa
j∂a Q

i
μ + Qk

μ Qi
jk − Qα

μ Qi
jα = −Qλ

μj Q
i
λ is (M2).

Equation (V54):

Qi
μ Qλ

β j i − Qα
β j Q

λ
μα + Qλ

ν j Q
ν
μβ − Qa

j ∂aQ
λ
μβ + Qλ

μi Q
i
jβ − Qα

μ Qλ
jβα

= −Qa
β ∂aQ

λ
μj + Qν

μj Q
λ
νβ

is (M4).

Equation (V55): −Qi
μ Qγ

αi + Qγ
λ Qλ

μα − Qβ
μ Qγ

βα = −Qa
α ∂aQ

γ
μ is (M3).

Equation (V56):

Qβ
α j Q

k
iβ + Qk

jl Q
l
iα + Qa

j ∂aQ
k
iα − Qβ

αi Q
k
jβ − Qk

il Q
l
jα − Qa

i ∂aQ
k
jα

= Qa
α ∂aQ

k
i j − Ql

i j Q
k
lα − Qμ

αi j Q
k
μ

is (M5), providing the last term in (V56) is changed to a positive sign.
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Equation (V57):

Qλ
αik Q

k
jβ − Qλ

βik Q
k
jα − Qγ

αi Q
λ
jβγ + Qγ

βi Q
λ
jαγ + Qλ

μi Q
μ
jβα − Qa

i ∂aQ
λ
jβα

−Qλ
α jk Q

k
iβ + Qλ

β jk Q
k
iα + Qγ

α j Q
λ
iβγ − Qγ

β j Q
λ
iαγ − Qλ

μj Q
μ
iβα + Qa

j∂aQ
λ
iβα

= −Qk
i j Q

λ
kβα − Qλ

μαQ
μ
βi j + Qλ

μβQ
μ
αi j + Qa

α∂aQ
λ
βi j − Qa

β∂aQ
λ
αi j + Qλ

γ i j Q
γ
βα

is (M7).

Equation (V58):

Qγ

βk Q
k
jα − Qγ

αk Q
k
jβ + Qλ

jβα Qγ
λ − Qε

α j Q
γ
βε + Qε

β j Q
γ
αε − Qa

j ∂aQ
γ
βα

= −Qε
βα Qγ

ε j − Qa
α ∂aQ

γ

β j + Qa
β ∂aQ

γ

α j (15)

is (M6), providing the third term in (V58) is changed to a negative sign.

Remark 3.9 Regarding differences in signs, it is worth observing that, given a Lie
bialgebroid (E, E∗), taking the opposite structure on either E or E∗, or reversing
their order, still results in a Lie bialgebroid. Thus varying the Lie bialgebroid chosen
in the definition of double Lie algebroid has no important consequence, though some
choices are easier to work with than others.

We now verify equations (M1) to (M7) on a basic example.

3.3 The tangent double vector bundle of a Lie algebroid

Let A → M be a Lie algebroid with anchor ρ. We have seen in Sect. 2.3.2 that

T A

TqA

pA
A

qA

T M pM
M

is endowed with two LA–vector bundle structures. The vertical structure (T A →
A, T M → M) is the standard tangent bundle Lie algebroid (Example 2.5) and (T A →
T M, A → M) is the tangent prolongation of A → M as in Sect. 2.3.2. We refer to
T A loosely as the tangent double Lie algebroid.

Recall fromSect. 2.1.2 that a linear connection∇ : X(M)×�(A) → �(A) defines a
decomposition	∇ : A×MT M → T A. This decomposition induces the two following
2-representations:

(i) The LA–vector bundle (T A → A, T M → M) is described by the 2-
representation of T M on IdA : A → A via (∇,∇, R∇) (Example 2.11). The
anchor of T M is IdT M and the bracket is the Lie bracket of vector fields.

(ii) The LA–vector bundle (T A → T M, A → T M) is described by the 2-
representation of A on ρ : A → T M via (∇bas,∇bas, Rbas∇ ) as in Sect. 2.3.2.
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We check that these two 2-representations form a matched pair. This will provide a
new proof of the fact that the tangent double of a Lie algebroid is a double Lie algebroid
[16]. Conditions (M1) and (M2) in Definition 3.1 are just two times the definition of
∇bas : �(A) × �(A) → �(A) and (M3) is the definition of ∇bas : �(A) × X(M) →
X(M). Condition (M5) is the definition of Rbas∇ . Hence, we only need to check (M4),
(M6) and (M7).

In the following, X, X1, X2 will be arbitrary vector fields on M and a, a1, a2 arbi-
trary sections of A.
(M4) The left-hand side of (M4) is

∇X∇bas
a1 a2 − ∇bas

a1 ∇Xa2 − ∇bas∇Xa1a2 + ∇∇bas
a1

Xa2

= ∇X [a1, a2] + ∇X∇ρ(a2)a1 − [a1,∇Xa2] − ∇ρ(∇Xa2)a1
− [∇Xa1, a2] − ∇ρ(a2)∇Xa1 + ∇[ρ(a1),X ]a2 + ∇ρ(∇Xa1)a2.

The second and sixth terms add up to R(X, ρ(a2))a1 + ∇[X,ρ(a2)]a1 and the first,
third, and fifth terms to −Rbas∇ (a1, a2)X + ∇∇bas

a2
Xa1 − ∇∇bas

a1
Xa2. The definition of

∇bas : �(A) × X(M) → X(M) yields then immediately the right hand side of (M4),
namely

R(X, ρ(a2))a1 − Rbas∇ (a1, a2)X.

(M6) This equation is easily verified:

− ∇bas
a [X1, X2] + [∇bas

a X1, X2] + [X1,∇bas
a X2] + ∇bas∇X2a

X1 − ∇bas∇X1a
X2

= −[ρ(a), [X1, X2]] − ρ(∇[X1,X2]a) + [[ρ(a), X1] + ρ(∇X1a), X2]
+ [X1, [ρ(a), X2] + ρ(∇X2a)] + [ρ(∇X2a), X1]
+ ρ(∇X1∇X2a) − [ρ(∇X1a), X2] − ρ(∇X2∇X1a)

= ρ(R∇(X1, X2)a)

To get the second equality, we use the Jacobi identity for the Lie bracket of vector
fields. The four remaining terms cancel pairwise.

(M7)As one would expect, checking (M7) is a long, but straightforward computation.
We carry this out in detail here, but will omit similar calculations in later cases. We
begin by computing

(d∇ Rbas∇ )(X1, X2)(a1, a2) = −Rbas∇ (a1, a2)[X1, X2]
+ ∇X1(R

bas∇ (a1, a2)X2) − ∇X2(R
bas∇ (a1, a2)X1)

− Rbas∇ (∇X1a1, a2)X2 − Rbas∇ (a1,∇X1a2)X2

+ Rbas∇ (∇X2a1, a2)X1 + Rbas∇ (a1,∇X2a2)X1.

123



A. Gracia-Saz et al.

This expands out to

∇[X1,X2][a1, a2] − [∇[X1,X2]a1, a2] − [a1,∇[X1,X2]a2] + ∇∇bas
a1

[X1,X2]a2 − ∇∇bas
a2

[X1,X2]a1

+ ∇X1

(

−∇X2 [a1, a2] +�����[∇X2a1, a2] +�����[a1,∇X2a2] − ∇∇bas
a1

X2
a2 + ∇∇bas

a2
X2
a1

)

− ∇X2

(

−∇X1 [a1, a2] +�����[∇X1a1, a2] +�����[a1,∇X1a2] − ∇∇bas
a1

X1
a2 + ∇∇bas

a2
X1
a1

)

+������∇X2 [∇X1a1, a2] − [∇X2∇X1a1, a2] −������[∇X1a1,∇X2a2] + ∇∇bas∇X1
a1

X2
a2 − ∇∇bas

a2
X2

∇X1a1

+������∇X2 [a1,∇X1a2] −������[∇X2a1,∇X1a2] − [a1,∇X2∇X1a2] + ∇∇bas
a1

X2
∇X1a2 − ∇∇bas∇X1

a2
X2
a1

−������∇X1 [∇X2a1, a2] + [∇X1∇X2a1, a2] +������[∇X2a1,∇X1a2] − ∇∇bas∇X2
a1

X1
a2 + ∇∇bas

a2
X1

∇X2a1

−������∇X1 [a1,∇X2a2] +������[∇X1a1,∇X2a2] + [a1,∇X1∇X2a2] − ∇∇bas
a1

X1
∇X2a2 + ∇∇bas∇X2

a2
X1
a1.

Twelve terms of this equation cancel pairwise as shown, and a reordering of the
remaining terms yields

− R∇(X1, X2)[a1, a2] + [R∇(X1, X2)a1, a2] + [a1, R∇(X1, X2)a2]
+ R∇(X2,∇bas

a1 X1)a2 + ∇[X2,∇bas
a1

X1]a2 − R∇(X2,∇bas
a2 X1)a1 − ∇[X2,∇bas

a2
X1]a1

− R∇(X1,∇bas
a1 X2)a2 − ∇[X1,∇bas

a1
X2]a2 + R∇(X1,∇bas

a2 X2)a1 + ∇[X1,∇bas
a2

X2]a1
+ ∇∇bas

a1
[X1,X2]a2 − ∇∇bas

a2
[X1,X2]a1 − ∇∇bas∇X2

a1
X1
a2

+ ∇∇bas∇X2
a2

X1
a1 + ∇∇bas∇X1

a1
X2
a2 − ∇∇bas∇X1

a2
X2
a1.

By (M6), this equals

− R∇(X1, X2)[a1, a2] + [R∇(X1, X2)a1, a2] + [a1, R∇(X1, X2)a2]
+ R∇(X2,∇bas

a1 X1)a2 − R∇(X2,∇bas
a2 X1)a1 − R∇(X1,∇bas

a1 X2)a2

+ R∇(X1,∇bas
a2 X2)a1 + ∇ρ(R∇ (X1,X2)a2)a1 − ∇ρ(R∇ (X1,X2)a1)a2,

which is

− R∇(X1, X2)[a1, a2] − ∇bas
a2 R∇(X1, X2)a1 + ∇bas

a1 R∇(X1, X2)a2

− R∇(∇bas
a1 X1, X2)a2 + R∇(∇bas

a2 X1, X2)a1 − R∇(X1,∇bas
a1 X2)a2

+ R∇(X1,∇bas
a2 X2)a1 = (d∇basR∇)(a1, a2)(X1, X2).

This completes the verification that the 2-representations associatedwith the tangent
double of a Lie algebroid form a matched pair.

Remark 3.10 Infinitesimal ideal systems [5,9] may also be understood in terms of
2-representations. It is proved in [2] that infinitesimal ideal systems are in bijective cor-
respondencewith double subbundles of (T A; A, T M; M) of the form (F; A, FM ; M),
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such that (F → A, FM → M) and (F → FM , A → M) are sub-LA–vector bundles
of (T A → A, T M → M) and (T A → T M, A → M), respectively.

More explicitly, suppose given a decomposition of T A that is adapted to the double
subbundle F in the sense that the LA–vector bundle (F → A, FM → M) is described
by the 2-representation (IdA : A → A, ∇̄, ∇̄, R∇̄), where ∇̄ : �(FM )×�(A) → �(A)

is the restriction to FM of the connection ∇ corresponding to the decomposition
[2]. Then the LA–vector bundle (F → FM , A → T M) is described by the 2-

representation of A on ρ : J → FM via (∇bas,∇bas, Rbas∇ ), where the ∇bas are the
(well-defined!) restrictions of the basic connections to �(A) × �(J ) → �(J ) and
�(A) × �(FM ) → �(FM ) [2].

It is easy to see that (M1)–(M7) for the tangent double (T A; A, T M; M) restrict to
(M1)–(M7) for this pair of 2-representations. This refines the result in [2] to a bijective
correspondence between infinitesimal ideal systems and sub-double Lie algebroids of
(T A; A, T M; M).

3.4 The cotangent double of a Lie bialgebroid

Let (A, ρ, [· , ·]) be a Lie algebroid over a smooth manifold M , and assume that A∗
also has a Lie algebroid structure, with anchor denoted by ρ� and with bracket [· , ·]�.

Since A∗ is a Lie algebroid, A has a linear Poisson structure, and so (T ∗A →
A, A∗ → M) has a LA–vector bundle structure. The Lie algebroid bracket is given
by

[d�α1 ,d�α2 ] = d�[α1,α2], [d�α, q∗
Aθ ] = q∗

A(£ρ�(α)θ), [q∗
Aθ1, q

∗
Aθ2] = 0 (16)

for all α, α1, α2 ∈ �(A∗) and θ, θ1, θ2 ∈ �1(M). The anchor is given by

�A(d�α) = £̂ρ�(α) ∈ X(A), �A(q∗
Aθ) = (ρ∗

� θ)↑ ∈ X(A) (17)

(see Sect. 2.1.2 for the notation). Likewise the Lie algebroid structure on A induces a
LA–vector bundle structure on (T ∗(A∗) → A∗, A → M), satisfying corresponding
equations. Using the natural diffeomorphism T ∗(A∗) → T ∗A of [17], this LA–vector
bundle structure may be transferred to (T ∗A → A∗, A → M) and equips the double
vector bundle

T ∗A A∗

A M

(18)

with two LA–vector bundle structures. If (A, A∗) is a Lie bialgebroid then (18) is
a double Lie algebroid with core T ∗M ([16]; see also [23]). We now establish an
equivalent result in terms of 2-representations.

A linear connection ∇ : X(M) × �(A) → �(A), is equivalent to a decomposition
	∇ of T A and so to a decomposition 	�∇ of (18). Using (8), one can check that
	�∇ : A×A∗ → T ∗A sends (am, αm) to dam�α−(Tamq)∗〈∇·α, am〉 for any α ∈ �(A∗)
such that α(m) = αm (see also [6]).
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A computation shows that the representation up to homotopy defined by (T ∗A →
A, A∗ → M) and the decomposition 	� is given by the morphism ρ∗

� : T ∗M → A,
by the connections

(∇∗)bas∗ : �(A∗) × �(A) → �(A), (∇∗)bas∗ : �(A∗) × �1(M) → �1(M), (19)

and by
Rbas∇∗

∗ ∈ �2(A∗,Hom(A, T ∗M)). (20)

(Recall from the previous example that since we have an ordinary connection∇∗—the
dual connection to∇—on A∗, we can define the basic A∗-connections on A∗ and T M .
The two connections above are their duals.)

Next theLA–vector bundle (T A → T M, A → M) dualises over A to ((T A)�A →
A∗, A → M), which is (T ∗A → A∗, A → M). Recall that the decomposi-
tion 	∇ of T A and this LA–vector bundle structure define the 2-representation
(ρ : A → T M,∇bas,∇bas, Rbas∇ ). The discussion in Sect. 2.3.1 yields then that the 2-
representation of A describing (T ∗A → A∗, A → M) in terms of the decomposition
	�∇ is on the complex ρ∗ : T ∗M → A∗ and is defined by the connections

∇bas∗ : �(A) × �(A∗) → �(A∗), ∇bas∗ : �(A) × �1(M) → �1(M), (21)

and the curvature term

− Rbas∇
∗ ∈ �2(A,Hom(A∗, T ∗M)). (22)

A long, but straightforward computation shows that (M1)–(M7) for the two 2-repre-
sentations in (19)–(20) and in (21)–(22) are equivalent to (B1)–(B3) below, and hence
to (A, A∗)being aLie bialgebroid.Hencewe recover the fact that (T ∗A; A∗, A; M) is a
doubleLie algebroid if andonly if (A, A∗) is aLie bialgebroid.Conversely, (M1)–(M7)
provide interesting identities relating the basic curvatures and connections defined by
two dual connections on a Lie bialgebroid. As a summary, we have the following
corollary of our main theorem.

Theorem 3.11 Let (A, ρ, [· ·]) and (A, ρ�, [· ·]�) be two Lie algebroids in duality.
Then (A, A∗) is a Lie bialgebroid if and only if for any connection∇ : X(M)×�(A) →
�(A), the 2-representation (ρ∗

� : T ∗M → A, (∇∗)bas∗, (∇∗)bas∗, Rbas∇∗
∗
) of A∗ and the

2-representation (ρ∗ : T ∗M → A,∇bas∗,∇bas∗,−Rbas∇
∗
) of A form a matched pair.

4 Proof of the main theorem

Wewill prove the theoremby checking the Lie bialgebroid condition only on particular
families of sections; the linear sections and the core sections. The main difficulty is
to understand the additional conditions which have to be verified by the families of
sections for the proof to be complete. This is done in Sect. 4.1. In Sect. 4.2, we will
show how the equations found in Sect. 4.1 imply (M1)–(M7) and vice-versa.
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4.1 Families of sections of Lie bialgebroids

We recall the definition of a Lie bialgebroid [17]; see also [15, Chapter 12]. We will
then show how the equation defining a Lie bialgebroid (A, A∗) need be verified only
on families of spanning sections of A and A∗.
Definition 4.1 Let qA : A → M and qA∗ : A∗ → M be a pair of dual vector bundles,
and suppose each has a Lie algebroid structure, with anchors ρ : A → T M and
ρ∗ : A∗ → T M respectively, and brackets [· , ·] and [· , ·]∗.

Then (A, A∗) is a Lie bialgebroid if for all a1, a2 ∈ �(A):

dA∗ [a1, a2] = [dA∗a1, a2] + [a1,dA∗a2]. (23)

The brackets on the RHS are extensions to 2-vectors by standard Schouten calculus.
It is often very convenient to check this condition only on the elements of a

given set of sections S ⊆ �(A) which spans �(A) as a C∞(M)-module. We will
formalize this technique shortly. We first need to recall some consequences of the
definition.

The proof of the following proposition is a straightforward computation.

Proposition 4.2 Let A and A∗ be dual vector bundles with Lie algebroid structures.
For a1, a2 ∈ �(A), α1, α2 ∈ �(A∗) and f ∈ C∞(M), we have

(dA∗ [a1, f a2] − [dA∗a1, f a2] − [a1,dA∗( f a2)])(α1, α2)

= f · (dA∗ [a1, a2] − [dA∗a1, a2] − [a1,dA∗a2]))(α1, α2)

− 〈a2, α2〉 · ([ρ(a1), ρ∗(α1)]( f ) − ρ∗(£a1α1)( f ) + ρ(£α1a1)( f ) − ρ∗(dA f )〈a1, α1〉
)

+ 〈a2, α1〉 · ([ρ(a1), ρ∗(α2)]( f ) − ρ∗(£a1α2)( f ) + ρ(£α2a1)( f ) − ρ∗(dA f )〈a1, α2〉
)

.

(24)

Now assume that (A, A∗) is a Lie bialgebroid. Take any a1 ∈ �A and any nonva-
nishing local section α1 ∈ �(A∗). Choose a (local) nonvanishing a2 ∈ �(A) and an
α2 ∈ �(A∗) such that 〈a2, α1〉 = 0 and 〈a2, α2〉 = 1. (If A has rank 1 then (25) below
is vacuously true.) Equation (24) now reduces to

[ρ(a1), ρ∗(α1)]( f ) − ρ∗(£a1α1)( f ) + ρ(£α1a1)( f ) − ρ∗(dA f )〈a1, α1〉 = 0 (25)

for all a1 ∈ �(A), f ∈ C∞(M), and local nonvanishing α1 ∈ �(A∗). A straightwor-
ward computation shows that the left-hand side of (25) is tensorial in the term α1.
Hence, (25) holds for all α1 ∈ �(A∗). (For another proof, see [15, 12.1.8].)

On the other hand, the left-hand side of (25) is not tensorial in the term a1. We
multiply a1 by a function g ∈ C∞(M) in this equation, expand out, and subtract

g · ([ρ(a1), ρ∗(α1)]( f ) − ρ∗(£a1α1)( f ) + ρ(£α1a1( f ) − ρ∗(dA f )〈a1, α1〉
) = 0.

We get that

〈a1, α1〉 · (−ρ∗(dAg)( f ) − ρ∗(dA f )(g)) = 0.
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Again, since a1 and α1 were arbitrary, we have found

−ρ∗(dAg)( f ) = ρ∗(dA f )(g) for all f, g ∈ C∞(M),

which is easily seen to be equivalent to

− ρ ◦ ρ∗∗ = ρ∗ ◦ ρ∗, (26)

see also [17], [15, §12.1]. The map ρ∗ ◦ρ∗ : T ∗M → T M defines a Poisson structure
on M , which we take to be the Poisson structure on M induced by the Lie bialgebroid
structure.

These considerations lead to the following result.

Proposition 4.3 Let qA : A → M and qA∗ : A∗ → M be a pair of dual vector
bundles, and suppose each has a Lie algebroid structure, with anchors ρ : A → T M
and ρ∗ : A∗ → T M respectively, and brackets [· , ·] and [· , ·]∗. Let S be a subset of
�(A) which spans �(A) as a C∞(M)-module.

Then (A, A∗) is a Lie bialgebroid if and only if the following three conditions hold.

(B1) dA∗ [a1, a2] = [dA∗a1, a2] + [a1,dA∗a2] for all a1, a2 ∈ S,
(B2) [ρ(a), ρ∗(α)]( f ) − ρ∗(£aα)( f ) + ρ(£αa)( f ) − ρ∗(dA f )〈a, α〉 = 0 for all

a ∈ S, α ∈ �(A∗) and f ∈ C∞(M), and
(B3) −ρ ◦ ρ∗∗ = ρ∗ ◦ ρ∗.

Proof We proved above that these three conditions hold when (A, A∗) is a Lie bialge-
broid. For the converse, a quick computation using (B1) and the considerations before
the proposition shows that

(dA∗ [ga1, f a2] − [dA∗(ga1), f a2] − [ga1, dA∗( f a2)])(α1, α2)
= f g · (dA∗ [a1, a2] − [dA∗a1, a2] − [a1,dA∗a2]))(α1, α2)

− f g〈a2, α2〉 · ([ρ(a1), ρ∗(α1)]( f )−ρ∗(£a1α1)( f )+ρ(£α1a1)( f ) − ρ∗(dA f )〈a1, α1〉
)

+ f g〈a2, α1〉 · ([ρ(a1), ρ∗(α2)]( f )−ρ∗(£a1α2)( f )+ρ(£α2a1)( f ) − ρ∗(dA f )〈a1, α2〉
)

+ f g〈a1, α1〉 · ([ρ(a2), ρ∗(α2)]( f )−ρ∗(£a2α2)( f )+ρ(£α2a2)( f ) − ρ∗(dA f )〈a2, α2〉
)

− f g〈a1, α2〉 · ([ρ(a2), ρ∗(α1)]( f )−ρ∗(£a2α1)( f )+ρ(£α1a2)( f )−ρ∗(dA f )〈a2, α1〉
)

.

for all a1, a2 ∈ S, α1, α2 ∈ �(A∗) and f, g ∈ C∞(M). This vanishes by (B1)
and (B2). Since the Lie bialgebroid condition is additive and �(A) is spanned as a
C∞(M)-module by S, we are done. ��

Remark 4.4 In Proposition 4.3, the first two conditions are C∞(M)-linear in the
�(A∗)-argument, so it is sufficient to check them on a subset R ⊆ �(A∗) that spans
�(A∗) as a C∞(M)-module.
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4.2 The Lie bialgebroid conditions on lifts and on core sections

We write here �A : D�A → TC∗ for the anchor of D�A → C∗ and �B : D�B →
TC∗ for the anchor of D �B → C∗. We set

S := �c
C∗(D �A) ∪ σ�

A(�(A))

and

R := �c
C∗(D �B) ∪ σ�

B(�(B)).

Proposition 4.5 Condition (B3) on S andR is equivalent to ρA ◦ ∂A = ρB ◦ ∂B and
(M1).

Proof Since �A ◦ �∗
B and �B ◦ �∗

A are vector bundle maps T ∗C∗ → TC∗, it is
sufficient to check (B3) on dF for F ∈ C∞(C∗). In fact, it is even sufficient to check
(B3) on d(q∗

C∗ f ) for f ∈ C∞(M) and d�c for c ∈ �(C).
Choose first f ∈ C∞(M) and consider q∗

C∗ f ∈ C∞(C∗). We have for any section
b ∈ �(B):

〈〈〈〈〈〈〈�∗
B(dq∗

C∗ f ), σ �
B(b)〉〉〉〉〉〉〉 = ̂∇∗

b (q∗
C∗ f ) = q∗

C∗(ρB(b) f )

and for any α ∈ �(A∗):

〈〈〈〈〈〈〈�∗
B(dq∗

C∗ f ), α†〉〉〉〉〉〉〉 = (∂∗
Aα)↑(q∗

C∗ f ) = 0.

This shows that
�∗

B(dq∗
C∗ f ) = (ρ∗

Bd f )† ∈ �c
C∗(D �A). (27)

We get consequently�A ◦�∗
B(dq∗

C∗ f ) = (∂∗
Bρ∗

Bd f )↑ ∈ X(C∗). In the same manner,
we find �A ◦ �∗

B(dq∗
C∗ f ) = (−∂∗

Aρ∗
Ad f )↑ ∈ X(C∗). The equality of �A ◦ �∗

B and
−�B ◦ �∗

A on pullbacks is hence equivalent to ρA ◦ ∂A = ρB ◦ ∂B .
We continue with linear functions. Choose c ∈ �(C). Then for any section b ∈

�(B), we get

〈〈〈〈〈〈〈�∗
B(d�c), σ

�
B(b)〉〉〉〉〉〉〉 = ̂∇∗

b (�c) = �∇bc

and for any α ∈ �(A∗):

〈〈〈〈〈〈〈�∗
B(d�c), α

†〉〉〉〉〉〉〉 = (∂∗
Aα)↑(�c) = q∗

C∗〈α, ∂Ac〉.

This shows
�∗

B(d�c) = −σ�
A(∂Ac) + 〈̃∇·c, ·〉 ∈ �l

C∗(D �A), (28)

where 〈∇·c, ·〉 is seen as an element of �(Hom(C∗, B∗)). This leads to

�A ◦ �∗
B(d�c)(�c′) = −�∇∂A(c)c′ + �∇∂B (c′)c
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for all c′ ∈ �(C) and

�A ◦ �∗
B(d�c)(q

∗
C∗ f ) = −q∗

C∗(ρA ◦ ∂A(c) f )

for f ∈ C∞(M). We find similar equations for �B ◦ �∗
A(d�c)(�c′) and �B ◦

�∗
A(d�c)(q∗

C∗ f ), and can conclude that �A ◦ �∗
B = −�B ◦ �∗

A holds if and only
if ρA ◦ ∂A = ρB ◦ ∂B and (M1) are satisfied. ��

As a corollary of this proof, we find the following result. Recall that the map �B ◦
�∗

A : T ∗C∗ → TC defines a Poisson structure on C∗ (see (26) and the considerations
following it).

Corollary 4.6 The Poisson structure on C∗ induced by the Lie bialgebroid structure
is the linear Poisson structure dual to the Lie algebroid structure on C as in Remark
3.5. More explicitly, it is given by

{�c1, �c2} = (�B ◦ �∗
A)(q∗

C∗d�c1)(�c2) = �∇∂A(c1)(c2)−∇∂B (c2)(c1) = �[c1,c2],
{�c1, q∗

C∗ f } = (�B ◦ �∗
A)(q∗

C∗d�c1)(q
∗
C∗ f ) = q∗

C∗(ρA(∂A(c))( f ))

{q∗
C∗ f1, q

∗
C∗ f2} = (�B ◦ �∗

A)(q∗
C∗d f1)(q

∗
C∗ f ) = 0. (29)

Remark 4.7 Note that the apparent asymmetry between the structures over A and
B arises from unavoidable choices in the identifications between the various duals.
The Poisson structure on C∗ is nonetheless determined by requiring ∂A and ∂B to be
morphisms of Lie algebroids.

For the study of (B1) and (B2), we will need the following lemma. Recall that for
a Lie algebroid A, the Lie derivative £ : �(A) × �(A∗) → �(A∗) is defined by

〈£aα, a′〉 = ρA(a)〈α, a′〉 − 〈α, [a, a′]〉

for all a, a′ ∈ �(A) and α ∈ �(A∗).

Lemma 4.8 The Lie derivative £ : �C∗(D�A)×�C∗(D�B) → �C∗(D�B) is given
by the following identities:

£β†α† = 0, £β†σ�
B(b) = −〈b,∇∗· β〉†, £σ�

A(a)α
† = £aα

†,

£σ�
A(a)σ

�
B(b) = σ�

B(∇ab) + R̃(a, ·)b

for all a ∈ �(A), b ∈ �(B), α ∈ �(A∗) and β ∈ �(B∗). The Lie derivative £ : �C∗
(D �B) × �C∗(D �A) → �C∗(D �A) is given by:

£α†β† = 0, £α†σ�
A(a) = −〈a,∇∗· α〉†, £σ�

A(b)β
† = £bβ

†

£σ�
A(b)σ

�
A(a) = σ�

B(∇ba) + R̃(b, ·)a.

Note that in these equations, R(a, ·)b is seen as a section of Hom(C∗, A∗) and
R(b, ·)a is seen as a section of Hom(C∗, B∗).
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Proof We have

〈〈〈〈〈〈〈β†
2 , £β

†
1
α†〉〉〉〉〉〉〉 = (∂∗

Bβ1)
↑〈〈〈〈〈〈〈β†

2 , α
†〉〉〉〉〉〉〉 − 〈〈〈〈〈〈〈[β†

1 , β
†
2 ], α†〉〉〉〉〉〉〉 = 0 and

〈〈〈〈〈〈〈σ�
A(a), £

β
†
1
α†〉〉〉〉〉〉〉 = (∂∗

Bβ1)
↑(−q∗

C∗ 〈α, a〉) + 〈〈〈〈〈〈〈∇∗
aβ

†
1 , α

†〉〉〉〉〉〉〉 = 0

for arbitrary β1, β2 ∈ �(B∗), α ∈ �(A∗) and a ∈ �(A). This proves £
β
†
1
α† = 0.

Then we compute

〈〈〈〈〈〈〈β†
2 , £β

†
1
σ�
B(b)〉〉〉〉〉〉〉 = (∂∗

Bβ1)
†(q∗

C∗ 〈β2, b〉) − 〈〈〈〈〈〈〈[β†
1 , β

†
2 ], σ �

B(b)〉〉〉〉〉〉〉 = 0

which shows that £
β
†
1
σ�
B(b) is a section with values in the core, and

〈〈〈〈〈〈〈σ�
A(a), £

β
†
1
σ�
B(b)〉〉〉〉〉〉〉 = 0 + 〈〈〈〈〈〈〈∇∗

aβ
†
1 , σ

�
B(b)〉〉〉〉〉〉〉 = q∗

C∗ 〈b,∇∗
aβ1〉.

This proves £
β
†
1
σ�
B(b) = −〈b,∇∗· β1〉†, with 〈b,∇∗· β1〉 ∈ �(A∗). We also find

〈〈〈〈〈〈〈β†, £σ�
A(a1)α

†〉〉〉〉〉〉〉 = ̂∇∗
a1〈〈〈〈〈〈〈β†, α†〉〉〉〉〉〉〉 − 〈〈〈〈〈〈〈∇∗

a1β
†, α†〉〉〉〉〉〉〉 = 0 and

〈〈〈〈〈〈〈σ�
A(a2), £σ�

A(a1)α
†〉〉〉〉〉〉〉 = −̂∇∗

a1(q
∗
C∗〈α, a2〉) − 〈〈〈〈〈〈〈σ�

A[a1, a2] + (R(a1, a2)
∗)†, α†〉〉〉〉〉〉〉

= −q∗
C∗(ρA(a1)〈α, a2〉 − 〈α, [a1, a2]〉) = −q∗

C∗ 〈£a1α, a2〉

for arbitrary a1, a2 ∈ �(A) and α ∈ �(A∗). This proves the equality £σ�
A(a1)α

† =
£a1α

†.
The identity

〈〈〈〈〈〈〈β†, £σ�
A(a1)σ

�
B(b)〉〉〉〉〉〉〉 = ̂∇∗

a1q
∗
C∗〈β, b〉 − 〈〈〈〈〈〈〈∇∗

a1β
†, σ �

B(b)〉〉〉〉〉〉〉
= q∗

C∗
(

ρA(a1)〈β, b〉 − 〈∇∗
a1β, b〉) = q∗

C∗ 〈β,∇a1b〉

shows that £σ�
A(a1)σ

�
B(b) is the sum of σ�

B(∇a1b)with a section with values in the core.
To find out this core term, we finally compute

〈〈〈〈〈〈〈σ�
A(a2), £σ�

A(a1)σ
�
B(b)〉〉〉〉〉〉〉 = 0 − 〈〈〈〈〈〈〈σ ∗

A[a1, a2] + ˜R(a1, a2)∗, σ �
B(b)〉〉〉〉〉〉〉

= −�R(a1,a2)(b).

This shows that £σ�
A(a1)σ

�
B(b) = σ�

B(∇a1b) + ˜R(a1, ·)b.
The formulas describing the Lie derivative £ : �C∗(D � B) × �C∗(D � A) →

�C∗(D �A) can be verified in the same manner. ��
Proposition 4.9 Condition (B2) on S and R is equivalent to (M2), (M3), (M4) and
(M0).

Proof The idea of this proof is to check (B2) on linear and core sections in S andR,
and on linear and qC∗ -pullback functions on C∗. We start with core sections. Choose
α ∈ �(A∗) and β ∈ �(B∗). We have [�B(α†),�A(β†)] = [(∂∗

Aα)↑, (∂∗
Bβ)↑] = 0.
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By Lemma 4.8 and with 〈〈〈〈〈〈〈β†, α†〉〉〉〉〉〉〉 = 0, we find that (B2) is trivially satisfied on α†, β†

and any element of C∞(C∗).
Now choose a ∈ �(A), α ∈ �(A∗). Using Lemma 4.8 we find for all F ∈ C∞(C∗)

[�B(α†),�A(σ �
A(a))](F) − �A(£α†σ�

A(a))(F) + �B(£σ�
A(a)α

†)(F)

− �A(d
D�B F)〈〈〈〈〈〈〈σ�

A(a), α†〉〉〉〉〉〉〉
= −(∇∗

a (∂∗
Aα))↑(F) + 〈a,∇∗

∂B ·α〉↑(F)+(∂∗
A£aα)↑(F)+(�A ◦ �∗

BdF)q∗
C∗〈α, a〉.

In particular, for F = q∗
C∗ f , f ∈ C∞(M), this is 0 + (∂∗

Bρ∗
Bd f )↑q∗

C∗〈α, a〉 = 0 by
(27) and for F = �c, c ∈ �(C), this is

q∗
C∗(−〈∇∗

a (∂∗
Aα)), c〉 + 〈a,∇∗

∂Bcα〉 + 〈∂∗
A£aα, c〉 − (ρB ◦ ∂B(c))〈α, a〉)

by (28). But this equals q∗
C∗

(〈

α, ∂A (∇ac) − ∇∂Bca − [a, ∂Ac]
〉)

. This shows that (B2)
is in this case equivalent to (M2). In the same manner, (B2) on β† ∈ S for β ∈ �(B∗),
σ�
B(b) ∈ R for b ∈ �(B) and F ∈ C∞(C∗) is equivalent to (M3).
Now choose a ∈ �(A) and b ∈ �(B). (B2) on σ�

A(a), σ�
B(b) and q∗

C∗ f , f ∈
C∞(M), is

q∗
C∗ (([ρB(b), ρA(a)] − ρA(∇ba) + ρB(∇ab)) ( f )) = 0

by Lemma 4.8. This is (M0). Finally we compute (B2) on σ�
A(a), σ�

B(b) and �c, for
c ∈ �(C). This is

�∇b∇ac−∇a∇bc − �∇∇bac+RBA(b,∂Bc)a + �∇∇abc+RAB (a,∂Ac)b = 0

by Lemma 4.8. We find hence that (B2) on σ�
A(a), σ�

B(b) and �c is equivalent to (M4).
��

We conclude the proof of Theorem 3.6 with the study of (B1) on linear and core
sections.

Proposition 4.10 Condition (B1) on elements of S andR is equivalent to (M5), (M6)
and (M7).

In the proof of this proposition, we will use the following formulas. Let A and A∗
be a pair of Lie algebroids in duality. Then, for all a ∈ �(A) and α1, α2 ∈ �(A∗):

(dA∗a)(α1, α2) = ρA∗(α1)〈α2, a〉 − ρA∗(α2)〈α1, a〉 − 〈[α1, α2]A∗ , a〉.

For all a1, a2 ∈ �(A) and α1, α2 ∈ �(A∗), we have

[dA∗a1, a2]A(α1, α2) = −(£a2dA∗a1)(α1, α2)

= −£ρA(a2)(dA∗a1(α1, α2)) + dA∗a1(£a2α1, α2)

+ dA∗a1(α1, £a2α2).
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Proof First choose α1, α2 ∈ �(A∗). We have d
D�A[α†

1, α
†
2] = 0. For β1, β2 ∈ �(B∗)

and a1, a2 ∈ �(A), we find using Lemma 4.8

[d
D�Aα

†
1, α

†
2](β†

1 , β
†
2 ) = −(∂∗

Aα2)
↑(d

D�Aα
†
1(β

†
1 , β

†
2 )) + d

D�Aα
†
1(£α

†
2
β
†
1 , β

†
2 )

+ d
D�Aα

†
1(β

†
1 , £α

†
2
β
†
2 ) = 0,

[d
D�Aα

†
1, α

†
2](σ �

A(a1), β
†
2 ) = −(∂∗

Aα2)
†(d

D�Aα
†
1(σ

�
A(a1), β

†
2 ))

+ d
D�Aα

†
1(£α

†
2
σ�
A(a1), β

†
2 )

+ d
D�Aα

†
1(σ

�
A(a1), £α

†
2
β
†
2 ) = 0,

and

[

d
D�Aα

†
1, α

†
2

]

(σ �
A(a1), σ

�
A(a2)) = −(∂∗

Aα2)
↑ (

d
D�Aα

†
1(σ

�
A(a1), σ

�
A(a2))

)

+ d
D�Aα

†
1

(

£
α
†
2
σ�
A(a1), σ

�
A(a2)

)

+ d
D�Aα

†
1(σ

�
A(a1), £α

†
2
σ�
A(a2))

= −(∂∗
Aα2)

↑q∗
C∗ (−ρA(a1)〈α1, a2〉

+ρA(a2)〈α1, a1〉 + 〈α1, [a1, a2]〉)
+ d

D�Aα
†
1

(

−〈a1,∇∗· α2〉†, σ �
A(a2)

)

+ d
D�Aα

†
1

(

σ�
A(a1),−〈a2,∇∗· α2〉†

)

= 0.

Thus, we have d
D�A[α†

1, α
†
2] = 0 =

[

d
D�Aα

†
1, α

†
2

]

+
[

α
†
1,dD�Aα

†
2

]

. Choose now

α ∈ �(A∗) and b ∈ �(B). We have d
D�A[σ�

B(b), α†] = d
D�A(∇∗

bα)†, and so in

particular d
D�A[σ�

B(b), α†](β†
1 , β

†
2 ) = 0, d

D�A[σ�
B(b), α†](σ �

A(a1), β
†
2 ) = 0 and

d
D�A

[

σ�
B(b), α†

]

(σ �
A(a1), σ

�
A(a2)) = q∗

C∗
(−ρA(a1)〈∇∗

bα, a2〉
+ρA(a2)〈∇∗

bα, a1〉 + 〈∇∗
bα, [a1, a2]〉

)

= −q∗
C∗

(

dA(∇∗
bα)(a1, a2)

)

.

On the other hand, we can check as above that [d
D�Aσ�

B(b), α†](β†
1 , β

†
2 ) = 0,

that [d
D�Aσ�

B(b), α†](σ �
A(a1), β

†
2 ) = 0 and that

[

d
D�Aσ�

B(b), α†
]

(σ �
A(a1), σ

�
A(a2))

= −(∂∗
Aα)↑

(

d
D�Aσ�

B(b)(σ �
A(a1), σ

�
A(a2))

)

+ d
D�Aσ�

B(b)(£α†σ�
A(a1), σ

�
A(a2)) + d

D�Aσ�
B(b)(σ �

A(a1), £α†σ�
A(a2))
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= (∂∗
Aα)†〈〈〈〈〈〈〈[σ�

A(a1), σ
�
A(a2)], σ �

B(b)〉〉〉〉〉〉〉
+ d

D�Aσ�
B(b)(−〈a1,∇∗· α〉†, σ �

A(a2)) + d
D�Aσ�

B(b)(σ �
A(a1),−〈a2,∇∗· α〉†)

= q∗
C∗

(〈∂∗
Aα, R(a1, a2)b〉 + ρA(a2)〈a1,∇∗

bα〉 − 〈b,∇∗
a2〈a1,∇∗· α〉〉

−ρA(a1)〈a2,∇∗
bα〉 + 〈b,∇∗

a1〈a2,∇∗· α〉〉)

= q∗
C∗

(

〈∂∗
Aα, R(a1, a2)b〉 + 〈a1,∇∗∇a2b

α〉 − 〈a2,∇∗∇a1b
α〉

)

.

Now using (10) and (11) we finally get
[

σ�
B(b),d

D�Aα†
]

(β
†
1 , β

†
2 ) = 0,

[

σ�
B(b),d

D�Aα†
]

(σ �
A(a1), β

†
2 ) = ̂∇∗

b

(

d
D�Aα†(σ �

A(a1), β
†
2 )

)

− d
D�Aα†(σ �

A (∇ba1) + ˜R(b, ·)a1, β†
2 )

− d
D�Aα†(σ �

A(a1), £bβ
†
2 ) = 0

and

[

σ�
B(b),d

D�Aα†
]

(σ �
A(a1), σ

�
A(a2))

= ̂∇∗
b

(

d
D�Aα†(σ �

A(a1), σ
�
A(a2))

)

− d
D�Aα†(σ �

A (∇ba1) + ˜R(b, ·)a1, σ �
A(a2))

− d
D�Aα†(σ �

A(a1), σ
�
A (∇ba2) + ˜R(b, ·)a2)

= q∗
C∗

(−ρB(b)(dAα(a1, a2)) + ρA(∇ba1)〈α, a2〉 − ρA(a2)〈∇ba1, α〉
− 〈α, [∇ba1, a2]〉 + ρA(a1)〈∇ba2, α〉 − ρA(∇ba2)〈a1, α〉 − 〈α, [a1,∇ba2]〉

)

.

We hence find that

d
D�A[σ�

B(b), α†] =
[

d
D�Aσ�

B(b), α†
]

+
[

σ�
B(b),d

D�Aα†
]

if and only if

dA(∇∗
bα)(a1, a2) + 〈∂∗

Aα, R(a1, a2)b〉 + 〈a1,∇∇a2b
∗α〉 − 〈a2,∇∗∇a1b

α〉
− ρB(b)(dAα(a1, a2)) + ρA(∇ba1)〈α, a2〉 − ρA(a2)〈∇ba1, α〉 − 〈α, [∇ba1, a2]〉
+ ρA(a1)〈∇ba2, α〉 − ρA(∇ba2)〈a1, α〉 − 〈α, [a1,∇ba2]〉 = 0

for all a1, a2 ∈ �(A∗). This is
〈

α, ∂AR(a1, a2)b + ∇b[a1, a2] − [∇ba1, a2] − [a1,∇ba2] + ∇∇a1b
a2 − ∇∇a2b

a1
〉

+ ([ρA(a1), ρB(b)] − ρB(∇a1b) + ρA(∇ba1)
) 〈α, a2〉

− ([ρA(a2), ρB(b)] − ρB(∇a2b) + ρA(∇ba2)
) 〈α, a1〉 = 0.
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By replacing in this equation a2 by f a2 with f ∈ C∞(M), we find (M0) since a1, a2, b
and α were arbitrary. Then, using (M0) twice, we obtain (M5).

We conclude the proof of the theorem with the most technical formula. Choose
b1, b2 ∈ �(B). We want to study the equation

d
D�A

[

σ�
B(b1), σ

�
B(b2)

] =
[

d
D�Aσ�

B(b1), σ
�
B(b2)

]

+
[

σ�
B(b1),dD�Aσ�

B(b2)
]

. (30)

We have d
D�A

[

σ�
B(b1), σ �

B(b2)
] = d

D�A
(

σ�
B[b1, b2] + R(b1, b2)∗†

)

and we find

easily that both sides of (30) vanish on β
†
1 , β

†
2 , for β1, β2 ∈ �(B∗). We have for

a ∈ �(A) and β ∈ �(B∗):

d
D�A

(

σ�
B[b1, b2] + ˜RBA(b1, b2)∗

)

(σ �
A(a), β†)

= q∗
C∗

(

ρA(a)〈[b1, b2], β〉 + 〈∂∗
Bβ, R(b1, b2)a〉 − 〈[b1, b2],∇∗

aβ〉)

= q∗
C∗

(〈∇a[b1, b2], β〉 + 〈∂∗
Bβ, R(b1, b2)a〉)

and

[

d
D�Aσ�

B(b1), σ
�
B(b2)

]

(σ �
A(a), β†) = −̂∇∗

b2

(

d
D�Aσ�

B(b1)(σ
�
A(a), β†)

)

+ d
D�Aσ�

B(b1)
(

σ�
A

(∇b2a
) + ˜R(b2, ·)a, β†

)

+ d
D�Aσ�

B(b1)
(

σ�
A(a), £b2β

†
)

.

Now, using (11) this becomes,

q∗
C∗

(−ρB(b2)ρA(a)〈b1, β〉 + ρB(b2)〈b1,∇∗
aβ〉 + ρA(∇b2a)〈b1, β〉 −��������〈∂∗

Bβ, R(b2, b1)a〉
− 〈b1,∇∗∇b2a

β〉 +��������〈∂∗
Bβ, R(b2, b1)a〉 + ρA(a)〈b1, £b2β〉 − 〈b1,∇∗

a£b2β〉)

= q∗
C∗

(−ρB(b2)〈∇ab1, β〉 + 〈∇∇b2a
b1, β〉 + 〈∇ab1, £b2β〉)

= q∗
C∗

(−〈[b2,∇ab1], β〉 + 〈∇∇b2a
b1, β〉).

Thus, we find that the two sides of (30) are equal on (σ �
A(a), β†) if and only if (M6)

is satisfied.
Finally we consider a1, a2 ∈ �(A). We have

d
D�A

(

σ�
B[b1, b2] + ˜R(b1, b2)∗

)

(σ �
A(a1), σ

�
A(a2))

= −̂∇∗
a1�R(b1,b2)a2 + ̂∇∗

a2�R(b1,b2)a1 + �R(b1,b2)[a1,a2]−R(a1,a2)[b1,b2] = �c

where c = −∇a1(R(b1, b2)a2) + ∇a2(R(b1, b2)a1) + R(b1, b2)[a1, a2] − R(a1, a2)
[b1, b2] ∈ �(C). On the other hand,
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[

d
D�Aσ�

B(b1), σ
�
B(b2)

]

(σ �
A(a1), σ

�
A(a2)) = −̂∇∗

b2

(

d
D�Aσ�

B(b1)(σ
�
A(a1), σ

�
A(a2))

)

+ d
D�Aσ�

B(b1)
(

σ�
A

(∇b2a1
) + ˜R(b2, ·)a1, σ �

A(a2)
)

+ d
D�Aσ�

B(b1)
(

σ�
A(a1), σ

�
A

(∇b2a2
) + ˜R(b2, ·)a2

)

and by (10) this is

̂∇∗
b2

�RAB (a1,a2)b1 − ̂∇∗
a2�R(b2,b1)a1 − 〈〈〈〈〈〈〈 ˜R(∇b2a1, a2)

∗ − ˜∇Hom
a2 (R(b2, ·)a1), σ �

B(b1)〉〉〉〉〉〉〉
+ ̂∇∗

a1�R(b2,b1)a2 + 〈〈〈〈〈〈〈 ˜R(∇b2a2, a1)
∗ − ˜∇Hom

a1 (R(b2, ·)a2), σ �
B(b1)〉〉〉〉〉〉〉

= �c1+c2 ,

where

c1 = ∇b2(R(a1, a2)b1) − ∇a2(R(b2, b1)a1) − R(∇b2a1, a2)b1 + 〈b1,∇Hom
a2 (R(b2, ·)a1)〉

= ∇b2(R(a1, a2)b1) + R(∇a2b1, b2)a1 − R(∇b2a1, a2)b1,

c2 = ∇a1(R(b2, b1)a2) + R(∇b2a2, a1)b1 − 〈

b1,∇Hom
a1 R(b2, ·)a2

〉

= R(∇a1b1, b2)a2 − R(a1,∇b2a2)b1.

Hence, we find that the two sides of (30) coincide on (σ �
A(a1), σ �

A(a2)) if and only
if (M7) is satisfied. ��

This completes the proof of Theorem 3.6.
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