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ABSTRACT 1 

Thoracic endovascular aortic repair (TEVAR) is commonly applied in type-B aortic 2 

dissection. For patients with dissection affects descending aorta and extends downward to 3 

involve abdominal aorta and possibly iliac arteries, false lumen (FL) expansion might occur 4 

post-TEVAR. Predictions of dissection development may assist in medical decision on 5 

re-intervention or surgery. In this study, two patients are selected with similar morphological 6 

features at initial presentation but with different long-term FL development post-TEVAR 7 

(stable and enlarged FL). Patient-specific models are established for each of the follow-ups. 8 

Flow boundaries and computational validations are obtained from Doppler ultrasound 9 

velocimetry. By analyzing the hemodynamic parameters, the false-to-true luminal pressure 10 

difference (PDiff) and particle relative residence time (RRT) are found related to FL 11 

remodeling. It is found that (i) the position of the first FL flow entry is the watershed of 12 

negative-and-positive PDiff and, in long-term follow-ups, and the position of largest PDiff is 13 

consistent with that of the greatest increase of FL width; (ii) high RRT occurs at the FL 14 

proximal tip and similar magnitude of RRT is found in both stable and enlarged cases; (iii) 15 

comparing to the RRT at 7days post-TEVAR, an increase of RRT afterwards in short-term is 16 

found in the stable case while a slight decrease of this parameter is found in the enlarged case, 17 

indicating that the variation of RRT in short-term post-TEVAR might be potential to predict 18 

long-term FL remodeling. 19 

 20 

Key Words: aortic dissection; hemodynamics; endovascular procedures.  21 
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INTRODUCTION 22 

Aortic dissection (AoD) is a severe cardiovascular disease, where a surge of blood 23 

flowing into the aortic wall via an initial tear or damage of the intima and splitting the 24 

single aortic lumen into a true and false lumen (TL and FL). Stanford type-B AoD 25 

indicates those with the dissection begins distal to the supraaortic branches. 26 

Interventional treatment of Stanford type-B AoD commonly involves thoracic 27 

endovascular aortic repair (TEVAR)[1]. In a number of patients, FL expansion is 28 

found post-TEVAR, especially in the infrarenal aorta. Recent study confirmed that 29 

abdominal aortic expansion can be frequently found after TEVAR and is independent 30 

from thoracic FL thrombosis[2]. Prediction of FL growth may contribute to early 31 

decision-making of re-intervention or surgery. The post-TEVAR development of 32 

dissection is highly dependent on local hemodynamics[3]. Medical imaging tools such 33 

as Doppler ultrasound[4] and phase-contrast MR (pcMR)[5] are able to capture the 34 

flow velocity within aorta. However, the former provides velocity information at a 35 

certain position of the vessel, and the latter reveals flow movement with relatively low 36 

spatial and temporal resolution[6, 7]. On the other hand, the uptake of 37 

18
F-fluorodeoxyglucose in PET-CT can indicate complications in AoD[8] and positive 38 

correlation between the uptake and wall shear stress is found in aortic aneurysm 39 

study[9]; however, PET-CT is relatively expensive and the flow information cannot be 40 

directly reported. Thus, computational simulations that can provide hemodynamic 41 

parameters, such as flow, pressure and shear stress distributions, may enrich analysis.  42 

  Previous computational works focusing on type-B AoD include investigations on 43 

hemodynamic features[10-14], luminal flow exchange[12, 15], post-TEVAR flow 44 

effects[16-18], tear-induced flow effects[19, 20] and fluid-structure interaction 45 

studies[21, 22]. Besides, 4D pcMR[5, 23] and phantom[24, 25] measurements have been 46 

conducted to compare with or validate the computed results. In this study, we 47 

investigate the flow-driven dissection development after TEVAR based on long-term 48 

multiple follow-ups. Flow conditions in patients with stable and enlarged FL are 49 

compared and key hemodynamic parameters that are related to dissection growth in 50 

abdominal aorta are proposed, facilitating medical decision-making on post-TEVAR 51 

treatment. 52 

 53 

 54 
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METHODS 55 

Image Acquisition and Model Reconstruction 56 

This study was approved by the institutional review board of the Chinese PLA 57 

General Hospital. Written informed consent was obtained from the patients involved 58 

in this study. Two male patients (PI and PII) with subacute Stanford type-B AoD 59 

underwent arterial-phase CT angiography (CTA) at initial presentation and during the 60 

follow-up examinations after TEVAR via a dual-source CT scanner (SOMATOM 61 

Definition Flash, SIEMENS, Germany). Details of the CTA scan and the patient 62 

information are described in S1, Supporting Document. Image segmentation and 63 

surface reconstruction of AoD were conducted through Mimics (Materialise, 64 

Belgium). The cross-sectional contours of the reconstructed geometries were mapped 65 

back to CTA images to ensure that the 3D models present the actual outline of the 66 

vessel lumen. Detailed views of the models are shown in Fig.1, where PI/II-1 67 

indicates the models pre-TEVAR while PI/II-2 and others are models post-TEVAR. 68 

After TEVAR, PI and PII have experienced six- (7days~53months) and four-times 69 

(7days~35months) CTA scans. The FL in PI was in stable condition (PI-2~7, Fig.1b) 70 

while that in PII was expanding (PII-2~5, Fig.1d). The models were meshed in ICEM 71 

(ANSYS Inc, Canonsburg, USA) with tetrahedral elements in the core region and 72 

prismatic cells (10 layers) in the boundary layer near the aortic wall. The grid 73 

resolution varies from 2,564,019 to 3,153,829 cells. 74 

 75 

Doppler Ultrasound and Boundary Conditions 76 

Time-variant velocities at ascending aorta (AAo), brachiocephalic trunk (BT), left 77 

common carotid artery (LCCA), left subclavian artery (LSA) were measured via 78 

Doppler ultrasound of the patients, and velocity variation at the distal thoracic aorta 79 

(DTAo, about 5cm above celiac trunk) was measured in the final examination of PI to 80 

provide validation of the computational results. This is because the true lumen (TL) 81 

remodeling at this position in PI is sufficient, so that relatively organized flow is 82 

found and the central line of vessel can be accurately identified. The velocity of AAo 83 

was measured through the apical 5-chamber view and the suprasternal long axis view 84 

of aortic arch. The two results were compared to ensure the maximum velocity at 85 

AAo could be captured. For other arteries (BT, LCCA, LSA and DTAo), Doppler 86 
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velocimetry has been conducted at the proximal and distal sites of the targeted 87 

measurement vessel. Mean velocity over a cardiac cycle at the two sites for each 88 

particular vessel was then calculated and compared. When the difference between 89 

them is less than 5%, the measured velocity is considered effective. Details of the 90 

measurement are described in S2, Supporting Document. 91 

  The upper edge of the velocity sonogram was extracted (Fig.1e) as the variation of 92 

the maximum velocity at the measured site. The flow rates at AAo, BT, LCCA and 93 

LSA, as the velocity boundary conditions, can then be calculated based on the 94 

measured time-variant maximum velocity and the assumed flat flow profile for AAo 95 

and parabolic flow profile for the others. The velocity boundary conditions of the 96 

models is shown in Fig.S1a, Supporting Document. Pulsatile waveforms of the 97 

pressure at celiac artery (CA), superiormesenteric artery (SMA), renal arteries and the 98 

outlets at common iliac arteries were obtained from previous study[26] (Fig.S1b, 99 

Supporting Document). As shown in Fig.1, two models in PII (PII-1 and PII-4) were 100 

cropped below the iliac bifurcation due to the relatively shorter CT scanning range. To 101 

eliminate the outlet effects, time-variant pressure distribution at the cropping plane 102 

has been calculated in PII-2~3 and PII-5. The averaged pressure information at this 103 

cropping plane was mapped to PII-1 and PII-4, serving as the pulsatile pressure 104 

outlets. 105 

 106 

Numerical Models 107 

The vessel wall was assumed as no-slip and rigid, due to low distensibility in 108 

long-term follow-ups[27]. The blood was treated as Newtonian and incompressible 109 

with density of 1044kg/m
3 

and dynamic viscosity of 0.00365kg·m
-1

·s
-1

[28]. The 110 

average Reynolds number over a cardiac cycle, calculated based on the equivalent 111 

diameter (�� = 2�����/ ) and velocity at the inlet of the ascending aorta in PI and 112 

PII, were between 2066-2197 and 2844-2960, respectively. Our previous study 113 

confirmed that laminar simulations with adequately fine mesh resolutions, especially 114 

refined near the walls, can capture flow patterns as turbulence model[15]. To further 115 

confirm this, we solved the flow in the first follow-up cases (PI-2 and PII-2) by both 116 

laminar and k-ω SST turbulence models, where the flow in the abdominal aortic 117 

region is the fastest during the follow-ups. Similar flow patterns were found and the 118 

discrepancy of the maximum velocity and wall shear stress (WSS) in the abdominal 119 
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aorta was 4.2% and 5.2% respectively (the laminar and turbulent results of PII-2 were 120 

shown in Fig.S2, Supporting Document), ensuring the rationality of laminar model to 121 

be applied in the current problem. A finite volume solver, CFD-ACE+ (ESI Group, 122 

France) was employed. The heart-beat cycle of the patients was measured at each 123 

clinical examination. The averaged cardiac cycle for PI and PII were 71 and 124 

69beat/min respectively. Temporal discretization of numerical models was assigned as 125 

45step/cycle. Simulation was carried out for 5 cardiac cycles to achieve a periodic 126 

solution and results of the final cycle were presented. Grid and temporal 127 

independency analyses on finer grids and finer temporal discretizations were 128 

conducted to ensure the base resolution with the base time step settings are adequate 129 

(S3, Supporting Document). 130 

 131 

RESULTS 132 

Aortic Remodeling 133 

Aortic remodeling was assessed by: (i) size and numbers of the aortic tears (AoT), (ii) 134 

change of luminal volume, and (iii) growth of aortic diameter. There are four major 135 

AoTs along the aorta for both patients at initial presentation. The primary entry 136 

(AoT-1) in both patients is located at the proximal region of descending aorta and the 137 

locations of other AoTs (AoT-2~4) are displayed in Fig.1. After TEVAR, the primary 138 

entry was sealed and after the first follow-up of PI, AoT-2 was disappeared. 139 

Considering the position and local aortic curvature of the tears, AoT-4 is the exit of 140 

the flow from FL to TL, while the function of AoT-2 and AoT-3 is uncertain. Since 141 

only the flow entries towards the FL is able to bring mechanical impact into the 142 

dissection, size measurement was only performed on AoT-2 and AoT-3 (Table 1). 143 

Post-TEVAR, both AoT-2 and AoT-3 in PI and PII are enlarged, probably due to the 144 

greater flow impact on these sites after AoT-1 was sealed. 145 
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 146 

The change of luminal volume is shown in Fig.2. The volume of TL (VTL) involves 147 

the initial dissection-affected TL region, while VTL-Part indicates the 148 

dissection-affected TL region during the follow-ups. Variations of VTL, volume of FL 149 

(VFL) and the ratio between VTL-Part and VFL are displayed in Fig.2b. VFL in the stable 150 

case (PI) reduces gradually post-TEVAR, except for the final examination, where a 151 

trivial increase of VFL is found (131.6mm
3
 in 20months). However, VFL in the 152 

expanding case (PII) reduces in the first two follow-ups but enlarges afterwards, 153 

where the VFL growths in PII-4 and PII-5 are 2,138mm
3
 and 34,989mm

3
 respectively, 154 

the durations of which are both 17months (Fig.2b). For both cases, the TL-to-FL 155 

volume ratio (VTL-Part/VFL) keeps increasing, except for PI-6 and PII-3 (pointed by 156 

arrows). This is because significant FL regression occurs at the proximal region (blue 157 

squares in Fig.1b,1d), which shortens the comparison region. Since TL remodeling is 158 

insufficient in this region, value of VTL-Part/VFL reduces. The averaged increase rates of 159 

VTL-Part/VFL in the follow-ups of PI and PII are 1.8% and 0.3% per month, 160 

respectively, indicating a significant luminal remodeling difference. 161 

  The aortic diameter (D) is measured in each model, taking into account the width of 162 

TL and FL (WTL and WFL) and the thickness of flap. As shown in Fig.1f, 163 

measurements have been conducted in the axial plane of the CTA datasets, along a 164 

line that crosses the centre of the flap and is perpendicular to the flap. Four 165 

measurement positions are selected in the abdominal aorta. As shown in Fig.2a, they 166 

are 1cm below diaphragm (L1), 1cm above CA (L2), 3.5cm below SMA (L3) and 9cm 167 

below SMA (L4). Fig.2c~e display the variation of D, WTL and WFL respectively. 168 

Positive TL remodeling is found in PI and PII in general, except for L3 and L4 in PI-3 169 

 

Table 1. The size of the aortic tears in the patients with long-term follow-ups 

Tear Geometry PI-1 PI-2 PI-3 PI-4 PI-5 PI-6 PI-7 

AoT-2 

H [mm] 7.87 7.15 - - - - - 

W [mm] 8.97 10.76 - - - - - 

A [mm2] 64.61 70.71 - - - - - 

AoT-3 

H [mm] 13.86 18.79 17.93 15.31 18.23 8.81 8.57 

W [mm] 10.04 9.38 6.03 8.90 7.30 6.72 5.75 

A [mm2] 116.13 150.82 106.40 119.19 128.82 93.49 44.09 

Tear Geometry PII-1 PII-2 PII-3 PII-4 PII-5   

AoT-2 

H [mm] 8.17 8.41 5.74 11.04 11.20   

W [mm] 9.34 9.96 7.36 9.59 6.03   

A [mm2] 62.61 70.47 37.33 89.50 54.05   

AoT-3 

H [mm] 9.91 9.55 7.77 6.25 6.19   

W [mm] 10.01 11.47 9.34 8.04 9.90   

A [mm2] 85.27 99.32 61.51 40.35 53.32   

H-Height; W-Width; A-Area. 
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and L3 in PII-4~5. WFL at the proximal region of PI (L1 and L2) reduces greatly 170 

during the follow-up, while in the distal region (L3 and L4), variation of WFL is stable. 171 

In PII, WFL increases sharply since the second follow-up (PII-3). Comparing the 172 

variation of WTL, WFL and D, it can be found that the variation pattern of D is mainly 173 

determined by the variation of WFL. 174 

 175 

Flow Pattern, Validation and Luminal Flow Exchange 176 

Fig.3 shows the flow streamlines at systolic peak where the color map of velocity 177 

magnitude is restricted to a certain range in PI (0~2.51m/s) and PII (0~3.78m/s) to 178 

assist visualization of the longitudinal velocity variation. At systolic peak, fast and 179 

organized flow is found in TL; while vortical and relatively slow flow presents in FL. 180 

Highest velocity presents in the short-term follow-ups (PI-2~3, 4months for PI; 181 

PII-2~3, 1months for PII) at the region below stentgraft and above AoT-2 and -3, 182 

where TL remodeling is insufficient and the blood has not been diverted. In long-term 183 

follow-ups (PI-4~7 and PII-4~5), the flow in the proximal FL is generally slow 184 

(<0.5mm/s); while below AoT-2 (the first re-entry), where blood perfusion occurs, 185 

faster flow up to 1.53m/s in PI and 2.22m/s in PII are found in the FL with helical 186 

feature (Fig.3c). 187 

To validate the computational results, Doppler ultrasound velocimetry was 188 

performed at distal thoracic aorta (5cm above CA) along the centerline of TL. This 189 

was only conducted at the final examination of PI, because its TL in the distal thoracic 190 

aorta is fully remodeled and the local flow is therefore organized (Fig.3a). The 191 

measured and computed velocities at the centre of the cross-section of the vessel, 5cm 192 

above CA, are 1.58m/s and 1.66m/s respectively, indicating a difference of 5.1%. 193 

Moreover, the computed velocity variation pattern is similar to the measured one 194 

(Fig.S3, Supporting Document), ensuring the rationality of computational results. 195 

Fig.4 displays the luminal flow exchange via the primary entry for initial 196 

presentation and that via AoT-2 and AoT-3 during the follow-ups. As 197 

abovementioned, AoT-4 functions as the outlet of FL throughout the cardiac cycle, 198 

thus it is not displayed in Fig.4. As shown in Fig.4a (positive values indicates flow 199 

enters FL), before treatment, the TL-to-FL flow exchange in PI and PII presents 200 

similar pattern: the primary entry serves as the main flow inlet of FL; AoT-2 functions 201 

as the outlet of FL in the initial part of systole and behaves as inlet in the rest part of 202 
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cardiac cycle; and AoT-3 mainly serves as the outlet of FL. There are 31.48% and 203 

40.00% of the total flow diverted to FL over a cardiac cycle for PI and PII 204 

respectively, at initial presentation. After TEVAR, the function of the tears changes. In 205 

PI, AoT-2 becomes the inlet of FL in the entire heart-beat cycle (Fig.4b), while AoT-3 206 

functions as the inlet of FL during systole and serves as the outlet in diastole (Fig.4c). 207 

Since the second follow-up of PI, AoT-2 is closed and AoT-3 gradually becomes the 208 

inlet of FL throughout the entire cardiac cycle. The flow entering FL are 16.67%, 209 

6.98%, 8.24%, 9.59%, 5.43%, 3.09% of the total flow for case PI-2~7 respectively, 210 

the variation of which is consistent to the variation of tear size (Table 1) and it is 211 

generally reducing. In PII, both of AoT-2 and AoT-3 are existed during the follow-ups. 212 

AoT-2 mainly serves as the inlet of FL; especially in model PII-4 and PII-5, positive 213 

values of mass flow rate are found in the entire cardiac cycle (Fig.4b). AoT-3 diverts a 214 

small amount of flow into the FL during systole and mainly behaves as the outlet of 215 

FL (Fig.4c). There are 5.22%, 3.06%, 14.76% and 10.23% of the total flow diverted 216 

into FL in case PII-2~5 respectively, the variation of which is also consistent with the 217 

variation of tear size. 218 

 219 

Loading Distribution along the Aorta 220 

Fig.5a~b display the pressure drop at systolic peak (PDsys, the difference between the 221 

local pressure and the pressure at the bottom of the model). In TL, PDsys reduces 222 

from the inlet of AAo to the outlets of common iliac arteries. At initial presentation 223 

(PI-1 and PII-1), FL diverts part of the total flow (31.48% for PI and 40.00% for PII), 224 

maintaining PDsys in relatively low values. After TEVAR, in short-term follow-ups 225 

(PI-2~3 and PII-2~3), proximal descending aorta is supported by stentgraft and 226 

reshaped; however, below the endograft, TL remains collapsed, inducing larger 227 

resistance and resulting in higher velocity and regional lower pressure in this region 228 

(indicated by arrows in Fig.5a~b). In long-term follow-ups (PI-4~7 and PII-4~5), TL 229 

remodeling in distal thoracic aorta is improved; PDsys thus gradually reduces along 230 

aorta. In contrary, PDsys in FL is relatively uniform, which is probably due to the 231 

higher energy exchange induced by the vortical flow. Fig.5d shows the variation of 232 

the maximum PDsys during the follow-ups. For both patients, the maximum PDsys 233 

increases greatly soon after TEVAR (7days); along with the progress of TL 234 

remodeling, the maximum PDsys reduces. The PDsys in normal aorta model (Fig.5c) 235 
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based on the same boundary conditions as PI and PII is also computed and the 236 

averaged maximum PDsys is shown by the dash line in Fig.5d. Since the growth of 237 

FL in the two patients shows obvious difference, the similar variation pattern of 238 

PDsys indicates that the pressure drop is mainly affected by TL remodeling. 239 

  The mean arterial pressure drop (PDmean) from AAo to the common iliac arteries 240 

during a cardiac cycle is also calculated. It is 6.29mmHg for the initial model of PI 241 

and 4.70mmHg for the final model (53months post-TEVAR), which is slightly higher 242 

than that in normal aorta for the studied segment (4mmHg[29]). The PDmean of PII at 243 

the initial and final (35months post-TEVAR) models are 6.53mmHg and 6.07mmHg, 244 

respectively, consistent with its insufficient TL remodeling. 245 

  In the final examination of PI (PI-7), VFL is slightly increased, D and WFL also 246 

increase at L3 (Fig.2); however, the flow exchange and tear size at this stage are both 247 

reduced. Fig.5e displays the pressure distribution at systolic peak (Psys) on a slice of 248 

FL for PI-6~7. It shows that the smaller tear size reduces the flow entering FL, 249 

however, it increases the velocity and induces higher pressure impact on the outer 250 

wall of FL (indicated by arrows in Fig.5e). The highest pressure of the impact region 251 

in PI and PII at final examination are 114.37 and 115.41mmHg respectively. Besides, 252 

by blanking the region with Psys<109.15mmHg, which is the 95% of the averaged 253 

maximum pressure in PI and PII at final examination, Fig.5f shows that the high 254 

pressure region (in red) in the FL of PII is much larger than that in PI. In fact, the FL 255 

growth rates of PI and PII at the final examination are 0.22mm
3
/day and 256 

68.61mm
3
/day respectively. 257 

 258 

Luminal Pressure Difference, Wall Shear Stress and Relative Residence Time 259 

To investigate the pressure difference (PDiff) between TL and FL, a series of slices 260 

that are perpendicular to the centerline of TL are extracted and the net pressures in TL 261 

(PTL) and FL (PFL) on each slice over a cardiac cycle are calculated. Fig.6 displays 262 

PDiff (PDiff=PFL-PTL) in each model. In both patients, pre-TEVAR (Fig.6a,6e), PFL is 263 

smaller than PTL at the level above AoT-2; while, below AoT-2, PFL is larger than PTL, 264 

pushing the FL towards TL. Post- TEVAR, the primary entry is closed. In PI, negative 265 

values of PDiff are found above AoT-3 (Fig.6b~c), indicating higher PTL presents in 266 

this region, which supports the aortic wall and assists in TL expansion. However, in 267 

the region below AoT-3 in PI, due to the blood perfusion into the FL, positive values 268 
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of PDiff present, indicating FL propulsion on the TL. In the final follow-up of PI 269 

(Fig.6d), the maximum value of PDiff is 0.22mmHg. This maximum PDiff occurs 270 

close to L3. At this position, WFL and WTL increase by 1.02mm and 0.46mm 271 

respectively (Fig.2), indicating this small value of PDiff (0.22mmHg) is not large 272 

enough to squeeze TL but the local pressure in FL (Fig.5e) is able to induce further 273 

FL expansion. On the other hand, in PII, post-TEVAR, AoT-2 becomes the main inlet 274 

of the flow into FL. Higher above this tear, PTL is larger than PFL, supporting TL 275 

expansion (Fig.6e~f). In the near region above AoT-2, TL remodeling is insufficient 276 

for the short-term follow-ups but PFL gradually increases; thus, regional positive PDiff 277 

is found in PII-3 above AoT-2 (arrow indicated in Fig.6f). Below AoT-2, positive 278 

values of PDiff dominate and the maximum PDiff in the final examination of PII is 279 

1.39mmHg, more than 6-times as high as that in PI, occurring close to L3. Taking 280 

account of that, in PII-5, WTL decreases yet WFL increases at L3 (Fig.2d~e), this high 281 

PDiff propels TL collapse and the local pressure pushes FL growth. 282 

  Fig.7 shows the wall shear stress (WSS) distribution on the flap at systolic peak. Its 283 

variation over a cardiac cycle is shown in Video S1-6, Supporting Document. In both 284 

patients, the WSS on the flap at the FL side (WSSFL) is significantly smaller than that 285 

on the TL side (WSSTL); and the WSSTL in PII is generally higher than that in PI. At 286 

initial presentation, the maximum WSSTL occurs at the edge of primary entry; while 287 

the maximum WSSFL occurs at the proximal descending aorta along the side opposite 288 

to the primary entry (indicated by arrows in Fig.7b). In follow-ups, the maximum 289 

WSSTL occurs at the region where TL presents most collapse; while the maximum 290 

WSSFL occurs at the edge of the tears. AoT-3 and AoT-2 are the main FL flow entries 291 

for PI and PII in follow-ups, which induces helical flow in the downstream and high 292 

WSSFL on the side opposite to the tears (indicated by hollow arrows in Fig.7b). To 293 

further visualize the variation of WSSFL at different regions along the flap on the FL 294 

side, the color map is assigned to 0~5Pa (Fig.7c) and 0~0.5Pa (Fig.7d) to show the 295 

distal and proximal region respectively. In PI, WSSFL at the region below AoT-3 296 

reduces obviously from PI-4 to PI-6; however, in the final examination, it is slightly 297 

increased, although the maximum WSSFL in this region is still smaller than 1Pa. In 298 

PII, WSSFL presents obvious increase in PII-4 and reduces slightly in PII-5; the 299 

maximum WSSFL at the region between AoT-2 and AoT-3 in the final examination is 300 

5.21Pa. 301 

  Particle residence time is proposed to be related to thrombosis establishment[14]. 302 
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The relative residence time (RRT), which is based on the time-averaged WSS 303 

(TAWSS) and oscillatory shear index (OSI), [(1-2∙OSI)∙TAWSS]
-1

, reflects particle 304 

residence time and thus may correspond with the region of thrombosis[14, 30]. 305 

Fig.8a~b show the RRT distributions (normalized by the maximum RRT value) in PI 306 

and PII post-TEVAR, respectively. In PI, the highest RRT occurs at the FL proximal 307 

tip in PI-2~5; while in PI-6~7, RRT is greatly decreased and the highest RRT no 308 

longer occurs at the FL tip. In PII, the highest RRT also occurs at the FL proximal tip. 309 

Fig.8d displays the variation of the maximum RRT (normalized by the maximum 310 

RRT at the first follow-up, i.e. PI-2 and PII-2 for PI and PII respectively). The RRT 311 

variation in PI and PII shows significant difference during short-term follow-up: the 312 

normalized maximum RRT in PI increases greatly in PI-3 (from 1 to 5.516) and 313 

gradually decreases afterwards to 0.00405 in PI-7; while in PII, it decreases in PII-3 314 

(from 1 to 0.025) and then maintains between 0.00324-0.319. The difference in the 315 

maximum RRT's variation pattern shows potential to predict different FL remodeling 316 

in the two patients. 317 

 318 

DISCUSSION 319 

Thoracic endografts, aiming to seal the primary entry and diverting blood flow into 320 

TL, are increasingly used in treating type-B aortic dissection[31]. Ideally, this 321 

approach would lead to thrombosis establishment in the FL and morphologic change 322 

in TL, to stabilize the aorta and consequently reduce aorta-related death. Previous 323 

studies confirmed the favorable results of TEVAR; however, also reported FL 324 

expansion on the segment distal to endografts, usually in the infrarenal aorta[32, 33]. 325 

This is related to the patency of FL[33] or, in other words, it is related to the flow field 326 

and hemodynamic conditions in AoD. Current literatures provide little information 327 

concerning the fate of the abdominal aorta post-TEVAR and, to our knowledge, 328 

computational studies on long-term multiple follow-up cases that are able to report 329 

the change of hemodynamic parameters have been lacking. Therefore, in the current 330 

study, we investigate two patients showing similar physical and hemodynamic 331 

features at initial presentation but presenting different FL development (stable in PI 332 

and expanded in PII) during the follow-ups. We preliminarily identify the possible 333 

hemodynamic parameters that could help to evaluate/predict FL enlargement and 334 

thrombosis formation. In this study, the variation trends of the hemodynamic 335 
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parameters are more important than their absolute values. 336 

The mechanical load acting on the FL boundary, which includes the outer wall of 337 

FL and the flap, induces FL enlargement and at the same time restricts TL 338 

remodeling. The pressure that is normally applied on the FL wall plays a key role in 339 

luminal remodeling[34] and the local flow directly relates to its distribution and 340 

magnitude. The flow can be assessed by its amount and the velocity. The first is 341 

mainly related to the size of tears. By comparing Fig.4b~c and Table 1, it can be 342 

found that the absolute flow mass passes each tear per second has positive relationship 343 

with the size of the tear. This can be shown on AoT-3 of PI and AoT-2~3 of PII, since 344 

they have multiple follow-up data, and it is consistent with previous report[14]. The 345 

second, velocity, is determined by both the flow rate as well as the tear size; a smaller 346 

tear size is correspondent to smaller flow rate yet accelerates the flow at the same 347 

time. For instance, in the final two examinations of PI (PI-6 and PI-7), the amount of 348 

the blood entering FL via AoT-3 decreases from 5.43% to 3.09% of the total flow and 349 

the tear size decreases from 93.49mm
2
 to 44.09mm

2
. However, the flow passing this 350 

tear has been accelerated and induces stronger impact on the FL outer wall (Fig.5e). If 351 

studying a longer period (PI-4~7), the variation of WFL at L3 (Fig.2e), where just 352 

below AoT-3 in PI, is similar to the variation of the ratio between the diverted flow 353 

amount and the tear size.  354 

  Along the aorta, the pressure in TL decreases generally but that in FL, due to the 355 

vortical flow and its higher energy exchange, it does not present significant spatial 356 

difference. The AoTs, functioning as the bridge between TL and FL, transport blood 357 

flow and also pressure gradient. This induces similar pressure in the TL and FL near 358 

the tears. Because of the relatively uniform PFL and its connection with PTL at the 359 

tears, in general, PFL is smaller than PTL in the proximal region (above the AoTs) and 360 

higher than PTL in the downstream. This general distribution feature is shown in Fig.5 361 

in all of the post-interventional cases at the moment of systolic peak and similar 362 

patterns can be found in other time steps of the cardiac cycle. 363 

  At the flap, PFL and PTL conflict each other; the difference between them (PDiff) 364 

may be associated with subsequent luminal remodeling[14]. Luminal remodeling is a 365 

long-term effect; investigation of PDiff in short-term follow-ups may show the 366 

variation trends of lumen remodeling, while PDiff in long-term follow-ups may be 367 

consistent to lumen remodeling results. Indeed, taking L3 as an example, in short-term 368 

(PI-2~3, PII-2~3), PD in PII increases from 1.44 to 2.93mmHg (7days-1month); 369 
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while, PDiff in PI remains about 0.55mmHg (7days-4month). This, earlier than 370 

luminal change (Fig.2), shows the potential of FL enlargement for PII. In long-term 371 

follow-ups (PI-4~7, PII-4~5), AoT-3 becomes the main FL flow entry in PI and 372 

AoT-2 is the main entry in PII. PDiff increases from negative to positive slightly 373 

below the position of AoT-3 in PI and AoT-2 in PII. Moreover, in both patients, in the 374 

final examination, the maximum PDiff occurs near L3, where WFL increases the most 375 

(among the compared four positions) and WTL in PII decreases. The abovementioned 376 

indicates: (i) in short-term follow-ups, great increase of PDiff may imply potential FL 377 

expansion; (ii) while, in long-term follow-up, the position of the first flow entry of FL 378 

is the negative-to-positive watershed of PDiff, the position of the maximum PDiff is 379 

consistent with the greatest WFL increase, and when the maximum PDiff is small 380 

(0.22mmHg in PI-7), the pressure induces slight FL expansion without restricted acts 381 

on TL, but when it is relatively large (1.39mmHg in PII-5), both FL expansion and TL 382 

collapse are found. In clinical examinations, monitoring PDiff at early-stage and 383 

identifying the position of FL entries and the position of largest PDiff may assist in 384 

wisely control of the untreated aorta segment. 385 

The WSS is related to the formation of thrombosis. Previous studies suggested that 386 

the tearing of the aortic wall and high WSS in the near region of the tears could 387 

promote initial activation of platelets as well as the formation of platelet aggregates; 388 

while, the highly vortical flow pattern in the FL corresponding with low WSS 389 

promotes platelet aggregation and deposition, so that leads to surface thrombosis [35, 390 

36]. In other words, lower WSS may induce surface thrombus and thus lead to 391 

constructive FL remodeling [37, 38]. In the long-term follow-ups (PI-4~5 and 392 

PII-4~5), complete thrombosis is found at the proximal region of dissection and 393 

partial thrombosis remains above the re-entries. The partial thrombosis in both PI and 394 

PII is aligned with the intimal flap; thus, WSS on the flap along the TL and FL sides 395 

are compared. The WSSFL is significantly lower than WSSTL throughout the cardiac 396 

cycle; the low WSSFL possibly induces surface thrombus along the flap in FL while 397 

the high WSSTL can keep the TL patent. The lowest WSSFL (<0.25Pa) occurs at the 398 

proximal region of FL (Fig.7d), implying potential thrombosis in these regions. 399 

Indeed, partial thrombosis in PI-4~5 with very low WSSFL turns to complete 400 

thrombosis in PI-6~7 (indicated by arrow inFig.7d). Moreover, in PII, the WSSFL at 401 

the tip of the flap in PII-3 is small (<0.25Pa). In its next follow-up (PII-4), growth of 402 

partial thrombosis can be found (indicated by arrow in Fig.7d). However, slightly 403 
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higher WSSFL is shown in PII-4 at the proximal tip, and in its next follow-up (PII-5), 404 

the partial thrombosis is slightly reduced (indicated by hollow arrow in Fig.7d). This 405 

indicates the surface thrombosis is possibly very sensitive to WSS, and during the 406 

long-term recovery, FL regression/growth could be repeatedly occurred at the 407 

proximal tip of the FL.  408 

The derived parameter of shear stress - RRT is related to particle residence and may 409 

reflect thrombosis establishment as well[14]. To identify the location of high RRT, 410 

Fig.8a~b draw the distribution of the normalized RRT to its maximum value in each 411 

model. It shows that high RRT corresponds to the region with highly vortical and low 412 

velocity flow. This occurs at the FL proximal tip for both the patients (PI-2~5, 413 

PII-2~5). Moreover, Fig.8ccompares the magnitude of RRT in PI-5 and PII-4, in 414 

which the follow-up periods are similar (21 and 18months for PI and PII 415 

respectively). The maximum RRT in PI-5 and PII-4 are 68.94 and 70.66Pa
-1

 416 

respectively. The similar distribution pattern and magnitude of RRT in PI and PII 417 

indicates that the values of RRT alone may not be able to predict FL remodeling. To 418 

further investigate this, the variation of the maximum RRT is studied (Fig.8d). The 419 

maximum RRTs in PI-3~7 and PII-3~5 are normalized to the correspondent first 420 

follow-up results (PI-2 and PII-2, 7days post-TEVAR). The variation patterns of this 421 

normalized maximum RRT show significant difference between PI and PII. This 422 

implicates that, post-TEVAR, variation of RRT in short- to middle-term follow-up 423 

(PI-2~5, PII-2~4) may play a key role in thrombosis establishment: an increase of 424 

RRT after TEVAR and maintaining the relative normalized maximum RRT value to 425 

be above 1.0 (Fig.8d) may lead to positive FL remodeling. 426 

Common morphological predictors for re-intervention or surgery after TEVAR 427 

include aortic diameter >55mm and growth rate >10mm/year [39]. Hemodynamic 428 

condition of the dissected aorta plays an important role in driving TL and FL 429 

remodeling. In other words, hemodynamic parameters may have the potential to 430 

predict the dissection development earlier than morphological change. However, 431 

hemodynamic markers that can possibly predict FL development post-TEVAR have 432 

not been proposed yet, which would require long-term multiple follow-up analyses. 433 

The current study investigated the correlation of hemodynamic parameters to the 434 

development of post-TEVAR dissection. It preliminarily proposed the parameters that 435 

are potential to differentiate the enlarged and stable FL in an early stage post-TEVAR.  436 

Although this study was based on a limited number of patient cases and thus no 437 
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clinical conclusion can be drawn at this stage, it is the basis to future studies on a 438 

larger amount of patient cases and would contribute to the research regarding early 439 

decision-making on re-intervention or surgery for AoD after TEVAR.   440 

 441 

LIMITATIONS 442 

This study, based on long-term multiple follow-up data of two patients, preliminarily 443 

shows the relationship of the variations between hemodynamic parameters and 444 

luminal remodeling. However, critical values of these parameters should be better 445 

determined by involving a greater number of patient cases. Besides, more detailed 446 

mechanical analysis should involve the fluid-structure interaction analysis, which 447 

does not only provide the stress information in the aortic wall but also offer more 448 

accurate results on the WSS. However, due to the complex geometry and the lack of 449 

the actual material properties, the existed fluid-structure interaction studies on AoD 450 

often generate the aortic/dissection wall with arbitrary thickness and assume the 451 

mechanical properties of the aortic and dissection wall similar to the properties of 452 

aortic aneurysms. More accurate simulations are highly dependent on accurate model 453 

establishment and material property measurements, which are currently carried on in 454 

our laboratory. 455 
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FIGURE LEGENDS 

Fig.1 (a)~(d) display the reconstructed models of AoD (D-days, M-months); (e) is a 

sonogram of Doppler ultrasound velocimetry, the upper edge of which is 

shown in green; (f) shows an axial slice of CTA scan at initial presentation of 

PI, in which the segmented lumen boundary is shown in yellow. 

Fig.2 The luminal remodeling. (a) displays the measured axial positions (L1-4) and 

the regions to calculate luminal volume (VTL, VTL -Part and VFL); (b)~(e) show 

the variation of luminal volume, aortic diameter, width of TL and FL 

respectively. 

Fig.3 Flow patterns of AoD. (a)~(b) display the flow streamlines at systolic peak; (c) 

shows the streamlines at the proximal region of FL in the final model of PII. 

Fig.4 Flow exchange between the true and false lumen. (a) displays the variation of 

the mass flow rate towards the FL via the primary entry, AoT-2 and AoT-3 over 

a cardiac cycle at initial presentation; (b) and(c) respectively show the mass 

flow rate variation at AoT-2 and AoT-3 during the longitudinal follow-ups. 

Fig.5 Pressure distribution along the dissected aorta. (a) and (b) display the PDsys 

distribution in PI and PII respectively; (c) shows the PDsys in a normal aorta; 

(d) displays the variation of the maximum PDsys during the follow-up; (e) 

shows the Psys at a slice crossing the FL in the final two examinations of PI 

and in the final examination of PII; and (f) shows the region with Psys

09.15mmHg (in red). 

Fig.6 Pressure difference between FL and TL for PI (a)~(d) and PII (e)~(f). 

Fig.7 WSS distribution along the flap. (a) and (b) display the WSS distribution at 

systolic peak on the flap of TL and FL side respectively; (c) and (d) show the 

WSS distribution on the flap of FL side during the long-term follow-ups in 

different WSS ranges. 

Fig.8 RRT distribution and variation. (a) and (b) show the normalized RRT to its 

maximum value post-TEVAR in PI and PII respectively; (c) shows the RRT 

distribution at PI-5 and PII-4, where the follow-up periods in PI and PII are 

similar; and (d) displays the variation of the normalized maximum RRT to its 

value in the first follow-up (PI-2 for PI and PII-2 for PII). 
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ABSTRACT 1 

Thoracic endovascular aortic repair (TEVAR) is commonly applied in type-B aortic 2 

dissection. For patients with dissection affects descending aorta and extends downward to 3 

involve abdominal aorta and possibly iliac arteries, false lumen (FL) expansion might occur 4 

post-TEVAR. Predictions of dissection development may assist in medical decision on 5 

re-intervention or surgery. In this study, two patients are selected with similar morphological 6 

features at initial presentation but with different long-term FL development post-TEVAR 7 

(stable and enlarged FL). Patient-specific models are established for each of the follow-ups. 8 

Flow boundaries and computational validations are obtained from Doppler ultrasound 9 

velocimetry. By analyzing the hemodynamic parameters, the false-to-true luminal pressure 10 

difference (PDiff) and particle relative residence time (RRT) are found related to FL 11 

remodeling. It is found that (i) the position of the first FL flow entry is the watershed of 12 

negative-and-positive PDiff and, in long-term follow-ups, and the position of largest PDiff is 13 

consistent with that of the greatest increase of FL width; (ii) high RRT occurs at the FL 14 

proximal tip and similar magnitude of RRT is found in both stable and enlarged cases; (iii) 15 

comparing to the RRT at 7days post-TEVAR, an increase of RRT afterwards in short-term is 16 

found in the stable case while a slight decrease of this parameter is found in the enlarged case, 17 

indicating that the variation of RRT in short-term post-TEVAR might be potential to predict 18 

long-term FL remodeling. 19 

 20 

Key Words: aortic dissection; hemodynamics; endovascular procedures.  21 
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INTRODUCTION 22 

Aortic dissection (AoD) is a severe cardiovascular disease, where a surge of blood 23 

flowing into the aortic wall via an initial tear or damage of the intima and splitting the 24 

single aortic lumen into a true and false lumen (TL and FL). Stanford type-B AoD 25 

indicates those with the dissection begins distal to the supraaortic branches. 26 

Interventional treatment of Stanford type-B AoD commonly involves thoracic 27 

endovascular aortic repair (TEVAR)[1]. In a number of patients, FL expansion is 28 

found post-TEVAR, especially in the infrarenal aorta. Recent study confirmed that 29 

abdominal aortic expansion can be frequently found after TEVAR and is independent 30 

from thoracic FL thrombosis[2]. Prediction of FL growth may contribute to early 31 

decision-making of re-intervention or surgery. The post-TEVAR development of 32 

dissection is highly dependent on local hemodynamics[3]. Medical imaging tools such 33 

as Doppler ultrasound[4] and phase-contrast MR (pcMR)[5] are able to capture the 34 

flow velocity within aorta. However, the former provides velocity information at a 35 

certain position of the vessel, and the latter reveals flow movement with relatively low 36 

spatial and temporal resolution[6, 7]. On the other hand, the uptake of 37 

18
F-fluorodeoxyglucose in PET-CT can indicate complications in AoD[8] and positive 38 

correlation between the uptake and wall shear stress is found in aortic aneurysm 39 

study[9]; however, PET-CT is relatively expensive and the flow information cannot be 40 

directly reported. Thus, computational simulations that can provide hemodynamic 41 

parameters, such as flow, pressure and shear stress distributions, may enrich analysis.  42 

  Previous computational works focusing on type-B AoD include investigations on 43 

hemodynamic features[10-14], luminal flow exchange[12, 15], post-TEVAR flow 44 

effects[16-18], tear-induced flow effects[19, 20] and fluid-structure interaction 45 

studies[21, 22]. Besides, 4D pcMR[5, 23] and phantom[24, 25] measurements have been 46 

conducted to compare with or validate the computed results. In this study, we 47 

investigate the flow-driven dissection development after TEVAR based on long-term 48 

multiple follow-ups. Flow conditions in patients with stable and enlarged FL are 49 

compared and key hemodynamic parameters that are related to dissection growth in 50 

abdominal aorta are proposed, facilitating medical decision-making on post-TEVAR 51 

treatment. 52 

 53 

 54 
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METHODS 55 

Image Acquisition and Model Reconstruction 56 

This study was approved by the institutional review board of the Chinese PLA 57 

General Hospital. Written informed consent was obtained from the patients involved 58 

in this study. Two male patients (PI and PII) with subacute Stanford type-B AoD 59 

underwent arterial-phase CT angiography (CTA) at initial presentation and during the 60 

follow-up examinations after TEVAR via a dual-source CT scanner (SOMATOM 61 

Definition Flash, SIEMENS, Germany). Details of the CTA scan and the patient 62 

information are described in S1, Supporting Document. Image segmentation and 63 

surface reconstruction of AoD were conducted through Mimics (Materialise, 64 

Belgium). The cross-sectional contours of the reconstructed geometries were mapped 65 

back to CTA images to ensure that the 3D models present the actual outline of the 66 

vessel lumen. Detailed views of the models are shown in Fig.1, where PI/II-1 67 

indicates the models pre-TEVAR while PI/II-2 and others are models post-TEVAR. 68 

After TEVAR, PI and PII have experienced six- (7days~53months) and four-times 69 

(7days~35months) CTA scans. The FL in PI was in stable condition (PI-2~7, Fig.1b) 70 

while that in PII was expanding (PII-2~5, Fig.1d). The models were meshed in ICEM 71 

(ANSYS Inc, Canonsburg, USA) with tetrahedral elements in the core region and 72 

prismatic cells (10 layers) in the boundary layer near the aortic wall. The grid 73 

resolution varies from 2,564,019 to 3,153,829 cells. 74 

 75 

Doppler Ultrasound and Boundary Conditions 76 

Time-variant velocities at ascending aorta (AAo), brachiocephalic trunk (BT), left 77 

common carotid artery (LCCA), left subclavian artery (LSA) were measured via 78 

Doppler ultrasound of the patients, and velocity variation at the distal thoracic aorta 79 

(DTAo, about 5cm above celiac trunk) was measured in the final examination of PI to 80 

provide validation of the computational results. This is because the true lumen (TL) 81 

remodeling at this position in PI is sufficient, so that relatively organized flow is 82 

found and the central line of vessel can be accurately identified. The velocity of AAo 83 

was measured through the apical 5-chamber view and the suprasternal long axis view 84 

of aortic arch. The two results were compared to ensure the maximum velocity at 85 

AAo could be captured. For other arteries (BT, LCCA, LSA and DTAo), Doppler 86 
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velocimetry has been conducted at the proximal and distal sites of the targeted 87 

measurement vessel. Mean velocity over a cardiac cycle at the two sites for each 88 

particular vessel was then calculated and compared. When the difference between 89 

them is less than 5%, the measured velocity is considered effective. Details of the 90 

measurement are described in S2, Supporting Document. 91 

  The upper edge of the velocity sonogram was extracted (Fig.1e) as the variation of 92 

the maximum velocity at the measured site. The flow rates at AAo, BT, LCCA and 93 

LSA, as the velocity boundary conditions, can then be calculated based on the 94 

measured time-variant maximum velocity and the assumed flat flow profile for AAo 95 

and parabolic flow profile for the others. The velocity boundary conditions of the 96 

models is shown in Fig.S1a, Supporting Document. Pulsatile waveforms of the 97 

pressure at celiac artery (CA), superiormesenteric artery (SMA), renal arteries and the 98 

outlets at common iliac arteries were obtained from previous study[26] (Fig.S1b, 99 

Supporting Document). As shown in Fig.1, two models in PII (PII-1 and PII-4) were 100 

cropped below the iliac bifurcation due to the relatively shorter CT scanning range. To 101 

eliminate the outlet effects, time-variant pressure distribution at the cropping plane 102 

has been calculated in PII-2~3 and PII-5. The averaged pressure information at this 103 

cropping plane was mapped to PII-1 and PII-4, serving as the pulsatile pressure 104 

outlets. 105 

 106 

Numerical Models 107 

The vessel wall was assumed as no-slip and rigid, due to low distensibility in 108 

long-term follow-ups[27]. The blood was treated as Newtonian and incompressible 109 

with density of 1044kg/m
3 

and dynamic viscosity of 0.00365kg·m
-1

·s
-1

[28]. The 110 

average Reynolds number over a cardiac cycle, calculated based on the equivalent 111 

diameter (�� = 2���� /!) and velocity at the inlet of the ascending aorta in PI and 112 

PII, were between 2066-2197 and 2844-2960, respectively. Our previous study 113 

confirmed that laminar simulations with adequately fine mesh resolutions, especially 114 

refined near the walls, can capture flow patterns as turbulence model[15]. To further 115 

confirm this, we solved the flow in the first follow-up cases (PI-2 and PII-2) by both 116 

laminar and k-ω SST turbulence models, where the flow in the abdominal aortic 117 

region is the fastest during the follow-ups. Similar flow patterns were found and the 118 

discrepancy of the maximum velocity and wall shear stress (WSS) in the abdominal 119 
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aorta was 4.2% and 5.2% respectively (the laminar and turbulent results of PII-2 were 120 

shown in Fig.S2, Supporting Document), ensuring the rationality of laminar model to 121 

be applied in the current problem. A finite volume solver, CFD-ACE+ (ESI Group, 122 

France) was employed. The heart-beat cycle of the patients was measured at each 123 

clinical examination. The averaged cardiac cycle for PI and PII were 71 and 124 

69beat/min respectively. Temporal discretization of numerical models was assigned as 125 

45step/cycle. Simulation was carried out for 5 cardiac cycles to achieve a periodic 126 

solution and results of the final cycle were presented. Grid and temporal 127 

independency analyses on finer grids and finer temporal discretizations were 128 

conducted to ensure the base resolution with the base time step settings are adequate 129 

(S3, Supporting Document). 130 

 131 

RESULTS 132 

Aortic Remodeling 133 

Aortic remodeling was assessed by: (i) size and numbers of the aortic tears (AoT), (ii) 134 

change of luminal volume, and (iii) growth of aortic diameter. There are four major 135 

AoTs along the aorta for both patients at initial presentation. The primary entry 136 

(AoT-1) in both patients is located at the proximal region of descending aorta and the 137 

locations of other AoTs (AoT-2~4) are displayed in Fig.1. After TEVAR, the primary 138 

entry was sealed and after the first follow-up of PI, AoT-2 was disappeared. 139 

Considering the position and local aortic curvature of the tears, AoT-4 is the exit of 140 

the flow from FL to TL, while the function of AoT-2 and AoT-3 is uncertain. Since 141 

only the flow entries towards the FL is able to bring mechanical impact into the 142 

dissection, size measurement was only performed on AoT-2 and AoT-3 (Table 1). 143 

Post-TEVAR, both AoT-2 and AoT-3 in PI and PII are enlarged, probably due to the 144 

greater flow impact on these sites after AoT-1 was sealed. 145 
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 146 

The change of luminal volume is shown in Fig.2. The volume of TL (VTL) involves 147 

the initial dissection-affected TL region, while VTL-Part indicates the 148 

dissection-affected TL region during the follow-ups. Variations of VTL, volume of FL 149 

(VFL) and the ratio between VTL-Part and VFL are displayed in Fig.2b. VFL in the stable 150 

case (PI) reduces gradually post-TEVAR, except for the final examination, where a 151 

trivial increase of VFL is found (131.6mm
3
 in 20months). However, VFL in the 152 

expanding case (PII) reduces in the first two follow-ups but enlarges afterwards, 153 

where the VFL growths in PII-4 and PII-5 are 2,138mm
3
 and 34,989mm

3
 respectively, 154 

the durations of which are both 17months (Fig.2b). For both cases, the TL-to-FL 155 

volume ratio (VTL-Part/VFL) keeps increasing, except for PI-6 and PII-3 (pointed by 156 

arrows). This is because significant FL regression occurs at the proximal region (blue 157 

squares in Fig.1b,1d), which shortens the comparison region. Since TL remodeling is 158 

insufficient in this region, value of VTL-Part/VFL reduces. The averaged increase rates of 159 

VTL-Part/VFL in the follow-ups of PI and PII are 1.8% and 0.3% per month, 160 

respectively, indicating a significant luminal remodeling difference. 161 

  The aortic diameter (D) is measured in each model, taking into account the width of 162 

TL and FL (WTL and WFL) and the thickness of flap. As shown in Fig.1f, 163 

measurements have been conducted in the axial plane of the CTA datasets, along a 164 

line that crosses the centre of the flap and is perpendicular to the flap. Four 165 

measurement positions are selected in the abdominal aorta. As shown in Fig.2a, they 166 

are 1cm below diaphragm (L1), 1cm above CA (L2), 3.5cm below SMA (L3) and 9cm 167 

below SMA (L4). Fig.2c~e display the variation of D, WTL and WFL respectively. 168 

Positive TL remodeling is found in PI and PII in general, except for L3 and L4 in PI-3 169 

 

Table 1. The size of the aortic tears in the patients with long-term follow-ups 

Tear Geometry PI-1 PI-2 PI-3 PI-4 PI-5 PI-6 PI-7 

AoT-2 

H [mm] 7.87 7.15 - - - - - 

W [mm] 8.97 10.76 - - - - - 

A [mm2] 64.61 70.71 - - - - - 

AoT-3 

H [mm] 13.86 18.79 17.93 15.31 18.23 8.81 8.57 

W [mm] 10.04 9.38 6.03 8.90 7.30 6.72 5.75 

A [mm2] 116.13 150.82 106.40 119.19 128.82 93.49 44.09 

Tear Geometry PII-1 PII-2 PII-3 PII-4 PII-5   

AoT-2 

H [mm] 8.17 8.41 5.74 11.04 11.20   

W [mm] 9.34 9.96 7.36 9.59 6.03   

A [mm2] 62.61 70.47 37.33 89.50 54.05   

AoT-3 

H [mm] 9.91 9.55 7.77 6.25 6.19   

W [mm] 10.01 11.47 9.34 8.04 9.90   

A [mm2] 85.27 99.32 61.51 40.35 53.32   

H-Height; W-Width; A-Area. 
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and L3 in PII-4~5. WFL at the proximal region of PI (L1 and L2) reduces greatly 170 

during the follow-up, while in the distal region (L3 and L4), variation of WFL is stable. 171 

In PII, WFL increases sharply since the second follow-up (PII-3). Comparing the 172 

variation of WTL, WFL and D, it can be found that the variation pattern of D is mainly 173 

determined by the variation of WFL. 174 

 175 

Flow Pattern, Validation and Luminal Flow Exchange 176 

Fig.3 shows the flow streamlines at systolic peak where the color map of velocity 177 

magnitude is restricted to a certain range in PI (0~2.51m/s) and PII (0~3.78m/s) to 178 

assist visualization of the longitudinal velocity variation. At systolic peak, fast and 179 

organized flow is found in TL; while vortical and relatively slow flow presents in FL. 180 

Highest velocity presents in the short-term follow-ups (PI-2~3, 4months for PI; 181 

PII-2~3, 1months for PII) at the region below stentgraft and above AoT-2 and -3, 182 

where TL remodeling is insufficient and the blood has not been diverted. In long-term 183 

follow-ups (PI-4~7 and PII-4~5), the flow in the proximal FL is generally slow 184 

(<0.5mm/s); while below AoT-2 (the first re-entry), where blood perfusion occurs, 185 

faster flow up to 1.53m/s in PI and 2.22m/s in PII are found in the FL with helical 186 

feature (Fig.3c). 187 

To validate the computational results, Doppler ultrasound velocimetry was 188 

performed at distal thoracic aorta (5cm above CA) along the centerline of TL. This 189 

was only conducted at the final examination of PI, because its TL in the distal thoracic 190 

aorta is fully remodeled and the local flow is therefore organized (Fig.3a). The 191 

measured and computed velocities at the centre of the cross-section of the vessel, 5cm 192 

above CA, are 1.58m/s and 1.66m/s respectively, indicating a difference of 5.1%. 193 

Moreover, the computed velocity variation pattern is similar to the measured one 194 

(Fig.S3, Supporting Document), ensuring the rationality of computational results. 195 

Fig.4 displays the luminal flow exchange via the primary entry for initial 196 

presentation and that via AoT-2 and AoT-3 during the follow-ups. As 197 

abovementioned, AoT-4 functions as the outlet of FL throughout the cardiac cycle, 198 

thus it is not displayed in Fig.4. As shown in Fig.4a (positive values indicates flow 199 

enters FL), before treatment, the TL-to-FL flow exchange in PI and PII presents 200 

similar pattern: the primary entry serves as the main flow inlet of FL; AoT-2 functions 201 

as the outlet of FL in the initial part of systole and behaves as inlet in the rest part of 202 
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cardiac cycle; and AoT-3 mainly serves as the outlet of FL. There are 31.48% and 203 

40.00% of the total flow diverted to FL over a cardiac cycle for PI and PII 204 

respectively, at initial presentation. After TEVAR, the function of the tears changes. In 205 

PI, AoT-2 becomes the inlet of FL in the entire heart-beat cycle (Fig.4b), while AoT-3 206 

functions as the inlet of FL during systole and serves as the outlet in diastole (Fig.4c). 207 

Since the second follow-up of PI, AoT-2 is closed and AoT-3 gradually becomes the 208 

inlet of FL throughout the entire cardiac cycle. The flow entering FL are 16.67%, 209 

6.98%, 8.24%, 9.59%, 5.43%, 3.09% of the total flow for case PI-2~7 respectively, 210 

the variation of which is consistent to the variation of tear size (Table 1) and it is 211 

generally reducing. In PII, both of AoT-2 and AoT-3 are existed during the follow-ups. 212 

AoT-2 mainly serves as the inlet of FL; especially in model PII-4 and PII-5, positive 213 

values of mass flow rate are found in the entire cardiac cycle (Fig.4b). AoT-3 diverts a 214 

small amount of flow into the FL during systole and mainly behaves as the outlet of 215 

FL (Fig.4c). There are 5.22%, 3.06%, 14.76% and 10.23% of the total flow diverted 216 

into FL in case PII-2~5 respectively, the variation of which is also consistent with the 217 

variation of tear size. 218 

 219 

Loading Distribution along the Aorta 220 

Fig.5a~b display the pressure drop at systolic peak (PDsys, the difference between the 221 

local pressure and the pressure at the bottom of the model). In TL, PDsys reduces 222 

from the inlet of AAo to the outlets of common iliac arteries. At initial presentation 223 

(PI-1 and PII-1), FL diverts part of the total flow (31.48% for PI and 40.00% for PII), 224 

maintaining PDsys in relatively low values. After TEVAR, in short-term follow-ups 225 

(PI-2~3 and PII-2~3), proximal descending aorta is supported by stentgraft and 226 

reshaped; however, below the endograft, TL remains collapsed, inducing larger 227 

resistance and resulting in higher velocity and regional lower pressure in this region 228 

(indicated by arrows in Fig.5a~b). In long-term follow-ups (PI-4~7 and PII-4~5), TL 229 

remodeling in distal thoracic aorta is improved; PDsys thus gradually reduces along 230 

aorta. In contrary, PDsys in FL is relatively uniform, which is probably due to the 231 

higher energy exchange induced by the vortical flow. Fig.5d shows the variation of 232 

the maximum PDsys during the follow-ups. For both patients, the maximum PDsys 233 

increases greatly soon after TEVAR (7days); along with the progress of TL 234 

remodeling, the maximum PDsys reduces. The PDsys in normal aorta model (Fig.5c) 235 
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based on the same boundary conditions as PI and PII is also computed and the 236 

averaged maximum PDsys is shown by the dash line in Fig.5d. Since the growth of 237 

FL in the two patients shows obvious difference, the similar variation pattern of 238 

PDsys indicates that the pressure drop is mainly affected by TL remodeling. 239 

  The mean arterial pressure drop (PDmean) from AAo to the common iliac arteries 240 

during a cardiac cycle is also calculated. It is 6.29mmHg for the initial model of PI 241 

and 4.70mmHg for the final model (53months post-TEVAR), which is slightly higher 242 

than that in normal aorta for the studied segment (4mmHg[29]). The PDmean of PII at 243 

the initial and final (35months post-TEVAR) models are 6.53mmHg and 6.07mmHg, 244 

respectively, consistent with its insufficient TL remodeling. 245 

  In the final examination of PI (PI-7), VFL is slightly increased, D and WFL also 246 

increase at L3 (Fig.2); however, the flow exchange and tear size at this stage are both 247 

reduced. Fig.5e displays the pressure distribution at systolic peak (Psys) on a slice of 248 

FL for PI-6~7. It shows that the smaller tear size reduces the flow entering FL, 249 

however, it increases the velocity and induces higher pressure impact on the outer 250 

wall of FL (indicated by arrows in Fig.5e). The highest pressure of the impact region 251 

in PI and PII at final examination are 114.37 and 115.41mmHg respectively. Besides, 252 

by blanking the region with Psys<109.15mmHg, which is the 95% of the averaged 253 

maximum pressure in PI and PII at final examination, Fig.5f shows that the high 254 

pressure region (in red) in the FL of PII is much larger than that in PI. In fact, the FL 255 

growth rates of PI and PII at the final examination are 0.22mm
3
/day and 256 

68.61mm
3
/day respectively. 257 

 258 

Luminal Pressure Difference, Wall Shear Stress and Relative Residence Time 259 

To investigate the pressure difference (PDiff) between TL and FL, a series of slices 260 

that are perpendicular to the centerline of TL are extracted and the net pressures in TL 261 

(PTL) and FL (PFL) on each slice over a cardiac cycle are calculated. Fig.6 displays 262 

PDiff (PDiff=PFL-PTL) in each model. In both patients, pre-TEVAR (Fig.6a,6e), PFL is 263 

smaller than PTL at the level above AoT-2; while, below AoT-2, PFL is larger than PTL, 264 

pushing the FL towards TL. Post- TEVAR, the primary entry is closed. In PI, negative 265 

values of PDiff are found above AoT-3 (Fig.6b~c), indicating higher PTL presents in 266 

this region, which supports the aortic wall and assists in TL expansion. However, in 267 

the region below AoT-3 in PI, due to the blood perfusion into the FL, positive values 268 
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of PDiff present, indicating FL propulsion on the TL. In the final follow-up of PI 269 

(Fig.6d), the maximum value of PDiff is 0.22mmHg. This maximum PDiff occurs 270 

close to L3. At this position, WFL and WTL increase by 1.02mm and 0.46mm 271 

respectively (Fig.2), indicating this small value of PDiff (0.22mmHg) is not large 272 

enough to squeeze TL but the local pressure in FL (Fig.5e) is able to induce further 273 

FL expansion. On the other hand, in PII, post-TEVAR, AoT-2 becomes the main inlet 274 

of the flow into FL. Higher above this tear, PTL is larger than PFL, supporting TL 275 

expansion (Fig.6e~f). In the near region above AoT-2, TL remodeling is insufficient 276 

for the short-term follow-ups but PFL gradually increases; thus, regional positive PDiff 277 

is found in PII-3 above AoT-2 (arrow indicated in Fig.6f). Below AoT-2, positive 278 

values of PDiff dominate and the maximum PDiff in the final examination of PII is 279 

1.39mmHg, more than 6-times as high as that in PI, occurring close to L3. Taking 280 

account of that, in PII-5, WTL decreases yet WFL increases at L3 (Fig.2d~e), this high 281 

PDiff propels TL collapse and the local pressure pushes FL growth. 282 

  Fig.7 shows the wall shear stress (WSS) distribution on the flap at systolic peak. Its 283 

variation over a cardiac cycle is shown in Video S1-6, Supporting Document. In both 284 

patients, the WSS on the flap at the FL side (WSSFL) is significantly smaller than that 285 

on the TL side (WSSTL); and the WSSTL in PII is generally higher than that in PI. At 286 

initial presentation, the maximum WSSTL occurs at the edge of primary entry; while 287 

the maximum WSSFL occurs at the proximal descending aorta along the side opposite 288 

to the primary entry (indicated by arrows in Fig.7b). In follow-ups, the maximum 289 

WSSTL occurs at the region where TL presents most collapse; while the maximum 290 

WSSFL occurs at the edge of the tears. AoT-3 and AoT-2 are the main FL flow entries 291 

for PI and PII in follow-ups, which induces helical flow in the downstream and high 292 

WSSFL on the side opposite to the tears (indicated by hollow arrows in Fig.7b). To 293 

further visualize the variation of WSSFL at different regions along the flap on the FL 294 

side, the color map is assigned to 0~5Pa (Fig.7c) and 0~0.5Pa (Fig.7d) to show the 295 

distal and proximal region respectively. In PI, WSSFL at the region below AoT-3 296 

reduces obviously from PI-4 to PI-6; however, in the final examination, it is slightly 297 

increased, although the maximum WSSFL in this region is still smaller than 1Pa. In 298 

PII, WSSFL presents obvious increase in PII-4 and reduces slightly in PII-5; the 299 

maximum WSSFL at the region between AoT-2 and AoT-3 in the final examination is 300 

5.21Pa. 301 

  Particle residence time is proposed to be related to thrombosis establishment[14]. 302 
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The relative residence time (RRT), which is based on the time-averaged WSS 303 

(TAWSS) and oscillatory shear index (OSI), [(1-2∙OSI)∙TAWSS]
-1

, reflects particle 304 

residence time and thus may correspond with the region of thrombosis[14, 30]. 305 

Fig.8a~b show the RRT distributions (normalized by the maximum RRT value) in PI 306 

and PII post-TEVAR, respectively. In PI, the highest RRT occurs at the FL proximal 307 

tip in PI-2~5; while in PI-6~7, RRT is greatly decreased and the highest RRT no 308 

longer occurs at the FL tip. In PII, the highest RRT also occurs at the FL proximal tip. 309 

Fig.8d displays the variation of the maximum RRT (normalized by the maximum 310 

RRT at the first follow-up, i.e. PI-2 and PII-2 for PI and PII respectively). The RRT 311 

variation in PI and PII shows significant difference during short-term follow-up: the 312 

normalized maximum RRT in PI increases greatly in PI-3 (from 1 to 5.516) and 313 

gradually decreases afterwards to 0.00405 in PI-7; while in PII, it decreases in PII-3 314 

(from 1 to 0.025) and then maintains between 0.00324-0.319. The difference in the 315 

maximum RRT's variation pattern shows potential to predict different FL remodeling 316 

in the two patients. 317 

 318 

DISCUSSION 319 

Thoracic endografts, aiming to seal the primary entry and diverting blood flow into 320 

TL, are increasingly used in treating type-B aortic dissection[31]. Ideally, this 321 

approach would lead to thrombosis establishment in the FL and morphologic change 322 

in TL, to stabilize the aorta and consequently reduce aorta-related death. Previous 323 

studies confirmed the favorable results of TEVAR; however, also reported FL 324 

expansion on the segment distal to endografts, usually in the infrarenal aorta[32, 33]. 325 

This is related to the patency of FL[33] or, in other words, it is related to the flow field 326 

and hemodynamic conditions in AoD. Current literatures provide little information 327 

concerning the fate of the abdominal aorta post-TEVAR and, to our knowledge, 328 

computational studies on long-term multiple follow-up cases that are able to report 329 

the change of hemodynamic parameters have been lacking. Therefore, in the current 330 

study, we investigate two patients showing similar physical and hemodynamic 331 

features at initial presentation but presenting different FL development (stable in PI 332 

and expanded in PII) during the follow-ups. We preliminarily identify the possible 333 

hemodynamic parameters that could help to evaluate/predict FL enlargement and 334 

thrombosis formation. In this study, the variation trends of the hemodynamic 335 
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parameters are more important than their absolute values. 336 

The mechanical load acting on the FL boundary, which includes the outer wall of 337 

FL and the flap, induces FL enlargement and at the same time restricts TL 338 

remodeling. The pressure that is normally applied on the FL wall plays a key role in 339 

luminal remodeling[34] and the local flow directly relates to its distribution and 340 

magnitude. The flow can be assessed by its amount and the velocity. The first is 341 

mainly related to the size of tears. By comparing Fig.4b~c and Table 1, it can be 342 

found that the absolute flow mass passes each tear per second has positive relationship 343 

with the size of the tear. This can be shown on AoT-3 of PI and AoT-2~3 of PII, since 344 

they have multiple follow-up data, and it is consistent with previous report[14]. The 345 

second, velocity, is determined by both the flow rate as well as the tear size; a smaller 346 

tear size is correspondent to smaller flow rate yet accelerates the flow at the same 347 

time. For instance, in the final two examinations of PI (PI-6 and PI-7), the amount of 348 

the blood entering FL via AoT-3 decreases from 5.43% to 3.09% of the total flow and 349 

the tear size decreases from 93.49mm
2
 to 44.09mm

2
. However, the flow passing this 350 

tear has been accelerated and induces stronger impact on the FL outer wall (Fig.5e). If 351 

studying a longer period (PI-4~7), the variation of WFL at L3 (Fig.2e), where just 352 

below AoT-3 in PI, is similar to the variation of the ratio between the diverted flow 353 

amount and the tear size.  354 

  Along the aorta, the pressure in TL decreases generally but that in FL, due to the 355 

vortical flow and its higher energy exchange, it does not present significant spatial 356 

difference. The AoTs, functioning as the bridge between TL and FL, transport blood 357 

flow and also pressure gradient. This induces similar pressure in the TL and FL near 358 

the tears. Because of the relatively uniform PFL and its connection with PTL at the 359 

tears, in general, PFL is smaller than PTL in the proximal region (above the AoTs) and 360 

higher than PTL in the downstream. This general distribution feature is shown in Fig.5 361 

in all of the post-interventional cases at the moment of systolic peak and similar 362 

patterns can be found in other time steps of the cardiac cycle. 363 

  At the flap, PFL and PTL conflict each other; the difference between them (PDiff) 364 

may be associated with subsequent luminal remodeling[14]. Luminal remodeling is a 365 

long-term effect; investigation of PDiff in short-term follow-ups may show the 366 

variation trends of lumen remodeling, while PDiff in long-term follow-ups may be 367 

consistent to lumen remodeling results. Indeed, taking L3 as an example, in short-term 368 

(PI-2~3, PII-2~3), PD in PII increases from 1.44 to 2.93mmHg (7days-1month); 369 
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while, PDiff in PI remains about 0.55mmHg (7days-4month). This, earlier than 370 

luminal change (Fig.2), shows the potential of FL enlargement for PII. In long-term 371 

follow-ups (PI-4~7, PII-4~5), AoT-3 becomes the main FL flow entry in PI and 372 

AoT-2 is the main entry in PII. PDiff increases from negative to positive slightly 373 

below the position of AoT-3 in PI and AoT-2 in PII. Moreover, in both patients, in the 374 

final examination, the maximum PDiff occurs near L3, where WFL increases the most 375 

(among the compared four positions) and WTL in PII decreases. The abovementioned 376 

indicates: (i) in short-term follow-ups, great increase of PDiff may imply potential FL 377 

expansion; (ii) while, in long-term follow-up, the position of the first flow entry of FL 378 

is the negative-to-positive watershed of PDiff, the position of the maximum PDiff is 379 

consistent with the greatest WFL increase, and when the maximum PDiff is small 380 

(0.22mmHg in PI-7), the pressure induces slight FL expansion without restricted acts 381 

on TL, but when it is relatively large (1.39mmHg in PII-5), both FL expansion and TL 382 

collapse are found. In clinical examinations, monitoring PDiff at early-stage and 383 

identifying the position of FL entries and the position of largest PDiff may assist in 384 

wisely control of the untreated aorta segment. 385 

The WSS is related to the formation of thrombosis. Previous studies suggested that 386 

the tearing of the aortic wall and high WSS in the near region of the tears could 387 

promote initial activation of platelets as well as the formation of platelet aggregates; 388 

while, the highly vortical flow pattern in the FL corresponding with low WSS 389 

promotes platelet aggregation and deposition, so that leads to surface thrombosis [35, 390 

36]. In other words, lower WSS may induce surface thrombus and thus lead to 391 

constructive FL remodeling [37, 38]. In the long-term follow-ups (PI-4~5 and 392 

PII-4~5), complete thrombosis is found at the proximal region of dissection and 393 

partial thrombosis remains above the re-entries. The partial thrombosis in both PI and 394 

PII is aligned with the intimal flap; thus, WSS on the flap along the TL and FL sides 395 

are compared. The WSSFL is significantly lower than WSSTL throughout the cardiac 396 

cycle; the low WSSFL possibly induces surface thrombus along the flap in FL while 397 

the high WSSTL can keep the TL patent. The lowest WSSFL (<0.25Pa) occurs at the 398 

proximal region of FL (Fig.7d), implying potential thrombosis in these regions. 399 

Indeed, partial thrombosis in PI-4~5 with very low WSSFL turns to complete 400 

thrombosis in PI-6~7 (indicated by arrow inFig.7d). Moreover, in PII, the WSSFL at 401 

the tip of the flap in PII-3 is small (<0.25Pa). In its next follow-up (PII-4), growth of 402 

partial thrombosis can be found (indicated by arrow in Fig.7d). However, slightly 403 
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higher WSSFL is shown in PII-4 at the proximal tip, and in its next follow-up (PII-5), 404 

the partial thrombosis is slightly reduced (indicated by hollow arrow in Fig.7d). This 405 

indicates the surface thrombosis is possibly very sensitive to WSS, and during the 406 

long-term recovery, FL regression/growth could be repeatedly occurred at the 407 

proximal tip of the FL.  408 

The derived parameter of shear stress - RRT is related to particle residence and may 409 

reflect thrombosis establishment as well[14]. To identify the location of high RRT, 410 

Fig.8a~b draw the distribution of the normalized RRT to its maximum value in each 411 

model. It shows that high RRT corresponds to the region with highly vortical and low 412 

velocity flow. This occurs at the FL proximal tip for both the patients (PI-2~5, 413 

PII-2~5). Moreover, Fig.8ccompares the magnitude of RRT in PI-5 and PII-4, in 414 

which the follow-up periods are similar (21 and 18months for PI and PII 415 

respectively). The maximum RRT in PI-5 and PII-4 are 68.94 and 70.66Pa
-1

 416 

respectively. The similar distribution pattern and magnitude of RRT in PI and PII 417 

indicates that the values of RRT alone may not be able to predict FL remodeling. To 418 

further investigate this, the variation of the maximum RRT is studied (Fig.8d). The 419 

maximum RRTs in PI-3~7 and PII-3~5 are normalized to the correspondent first 420 

follow-up results (PI-2 and PII-2, 7days post-TEVAR). The variation patterns of this 421 

normalized maximum RRT show significant difference between PI and PII. This 422 

implicates that, post-TEVAR, variation of RRT in short- to middle-term follow-up 423 

(PI-2~5, PII-2~4) may play a key role in thrombosis establishment: an increase of 424 

RRT after TEVAR and maintaining the relative normalized maximum RRT value to 425 

be above 1.0 (Fig.8d) may lead to positive FL remodeling. 426 

Common morphological predictors for re-intervention or surgery after TEVAR 427 

include aortic diameter >55mm and growth rate >10mm/year [39]. Hemodynamic 428 

condition of the dissected aorta plays an important role in driving TL and FL 429 

remodeling. In other words, hemodynamic parameters may have the potential to 430 

predict the dissection development earlier than morphological change. However, 431 

hemodynamic markers that can possibly predict FL development post-TEVAR have 432 

not been proposed yet, which would require long-term multiple follow-up analyses. 433 

The current study investigated the correlation of hemodynamic parameters to the 434 

development of post-TEVAR dissection. It preliminarily proposed the parameters that 435 

are potential to differentiate the enlarged and stable FL in an early stage post-TEVAR.  436 

Although this study was based on a limited number of patient cases and thus no 437 
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clinical conclusion can be drawn at this stage, it is the basis to future studies on a 438 

larger amount of patient cases and would contribute to the research regarding early 439 

decision-making on re-intervention or surgery for AoD after TEVAR.   440 

 441 

LIMITATIONS 442 

This study, based on long-term multiple follow-up data of two patients, preliminarily 443 

shows the relationship of the variations between hemodynamic parameters and 444 

luminal remodeling. However, critical values of these parameters should be better 445 

determined by involving a greater number of patient cases. Besides, more detailed 446 

mechanical analysis should involve the fluid-structure interaction analysis, which 447 

does not only provide the stress information in the aortic wall but also offer more 448 

accurate results on the WSS. However, due to the complex geometry and the lack of 449 

the actual material properties, the existed fluid-structure interaction studies on AoD 450 

often generate the aortic/dissection wall with arbitrary thickness and assume the 451 

mechanical properties of the aortic and dissection wall similar to the properties of 452 

aortic aneurysms. More accurate simulations are highly dependent on accurate model 453 

establishment and material property measurements, which are currently carried on in 454 

our laboratory. 455 
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FIGURE LEGENDS 

Fig.1 (a)~(d) display the reconstructed models of AoD (D-days, M-months); (e) is a 

sonogram of Doppler ultrasound velocimetry, the upper edge of which is 

shown in green; (f) shows an axial slice of CTA scan at initial presentation of 

PI, in which the segmented lumen boundary is shown in yellow. 

Fig.2 The luminal remodeling. (a) displays the measured axial positions (L1-4) and 

the regions to calculate luminal volume (VTL, VTL -Part and VFL); (b)~(e) show 

the variation of luminal volume, aortic diameter, width of TL and FL 

respectively. 

Fig.3 Flow patterns of AoD. (a)~(b) display the flow streamlines at systolic peak; (c) 

shows the streamlines at the proximal region of FL in the final model of PII. 

Fig.4 Flow exchange between the true and false lumen. (a) displays the variation of 

the mass flow rate towards the FL via the primary entry, AoT-2 and AoT-3 over 

a cardiac cycle at initial presentation; (b) and(c) respectively show the mass 

flow rate variation at AoT-2 and AoT-3 during the longitudinal follow-ups. 

Fig.5 Pressure distribution along the dissected aorta. (a) and (b) display the PDsys 

distribution in PI and PII respectively; (c) shows the PDsys in a normal aorta; 

(d) displays the variation of the maximum PDsys during the follow-up; (e) 

shows the Psys at a slice crossing the FL in the final two examinations of PI 

and in the final examination of PII; and (f) shows the region with Psys

09.15mmHg (in red). 

Fig.6 Pressure difference between FL and TL for PI (a)~(d) and PII (e)~(f). 

Fig.7 WSS distribution along the flap. (a) and (b) display the WSS distribution at 

systolic peak on the flap of TL and FL side respectively; (c) and (d) show the 

WSS distribution on the flap of FL side during the long-term follow-ups in 

different WSS ranges. 

Fig.8 RRT distribution and variation. (a) and (b) show the normalized RRT to its 

maximum value post-TEVAR in PI and PII respectively; (c) shows the RRT 

distribution at PI-5 and PII-4, where the follow-up periods in PI and PII are 

similar; and (d) displays the variation of the normalized maximum RRT to its 

value in the first follow-up (PI-2 for PI and PII-2 for PII). 

 

 



Figure 1

Click here to download high resolution image



Figure 2

Click here to download high resolution image



Figure 3

Click here to download high resolution image



Figure 4

Click here to download high resolution image



Figure 5

Click here to download high resolution image



Figure 6

Click here to download high resolution image



Figure 7

Click here to download high resolution image



Figure 8

Click here to download high resolution image



  

Supplementary data

Click here to download Supplementary data: Supplement-revision.docx



  

Supplementary Video 1

Click here to download Supplementary data: SupplementaryVideoS1.gif



  

Supplementary Video 2

Click here to download Supplementary data: SupplementaryVideoS2.gif



  

Supplementary Video 3

Click here to download Supplementary data: SupplementaryVideoS3.gif



  

Supplementary Video 4

Click here to download Supplementary data: SupplementaryVideoS4.gif



  

Supplementary Video 5

Click here to download Supplementary data: SupplementaryVideoS5.gif



  

Supplementary Video 6

Click here to download Supplementary data: SupplementaryVideoS6.gif


