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An Analytic Novikov Conjecture for Semigroups

Paul D. Mitchener

July 7, 2017

Abstract

In this article we formulate a version of the analytic Novikov conjecture for
semigroups rather than groups, and show that the descent argument from coarse
geometry generalises effectively to this new situation.

1 Introduction

For the purposes of this article, a semigroup is a set P equipped with an asso-
ciative binary operation P × P → P , such that we have a unit element e ∈ P
where pe = ep = p for all p ∈ P , and the left cancellation property holds, that
is to say pq = pr implies q = r for all p, q, r ∈ P . Note that the left cancellation
property tells us that the unit element e is unique.

In [7], both the reduced and maximal C∗-algebras associated to a semigroup
are defined, issues associated to amenability examined, and K-theory groups
computed. The computations of K-theory groups lead to a natural question,
namely whether a version of the Baum-Connes conjecture (see for instance [1])
could be formulated for semigroups.

In this paper, we make a first step towards such a conjecture, formulating an
analytic assembly map β:KP

n (EP ) → KnC
∗

r (P ), where C∗

r (P ) is the reduced
C∗-algebra of the semigroup P , and EP is the classifying space for free P -
actions. We conjecture that this map is injective for torsion-free semigroups.

We also show that the descent argument from the coarse Baum-Connes con-
jecture, as explained for example in [12], or more generally in [11], still works in
the semigroup case. Thus the analytic Novikov conjecture holds for semigroups
where the space EP is a finite P -CW -complex, and has a compatible coarse
structure where the coarse Baum-Connes conjecture is satisfied. We conclude
the article by looking at some simple examples where the descent argument
applies.

The descent argument works in the same way as it does for groups, but to
carry it out we need to generalise parts of the general theory of equivariant
homology for group actions to the semigroup case. These generalisations are
fortunately mainly straightforward, and the details can be found in sections 4
and 5.
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The broad strategy of the proof is as follows.

• We define a notion of generalised homology theory for P -spaces, where P
is a semigroup.

• We prove that a natural transformation of generalised homology theo-
ries for P -spaces is an isomorphism for finite P -CW -complexes if it is an
isomorphism for homogeneous P -spaces.

• We show that the K-homology of homotopy fixed-point defines a gener-
alised homology theory for P -spaces, and that there is a natural transfor-
mation from P -equivariant K-homology to the K-homology of homotopy
fixed point sets. We use the above argument to prove that this natural
transformation is an isomorphism for finite P -CW -complexes.

• A commutative diagram relates the above transformation to the analytic
assembly map and the coarse Baum-Connes conjecture, which lets us de-
duce the descent result.
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2 Semigroup Actions

Let P be a semigroup. LetX be a set. A left P -action onX is a map P×X → X,
written (p, x) 7→ px, such that p(qx) = (pq)x for all p, q ∈ P and x ∈ X.

Similarly, a right P -action on X is a map X × P → X, written (x, p) 7→ xp,
such that (xp)q = x(pq) for all p, q ∈ P and x ∈ X.

For a set X equipped with a left P -action, and a subset A ⊆ X, we write

pA = {pa | a ∈ A} PA =
⋃

p∈P

pA.

Given setsX and Y with left P -actions, a map f :X → Y is called equivariant
if f(px) = pf(x) for all x ∈ X and p ∈ P . We similarly talk about equivariant
maps between sets equipped with right P -actions.

A P -space is a topological space equipped with a continuous right P -action.
Just as for groups acting on spaces, we distinguish certain types of P -spaces.
Given P -spaces X and Y , we write MapP (X,Y ) to denote the set of all contin-
uous equivariant maps from X to Y . It is a topological space, with the compact
open topology.
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Definition 2.1 Let X be a P -space. Then we call X:

• Free if for all x ∈ X, there is an open neighbourhood U ∋ x such that
Up ∩ U = ∅ for all p ∈ P\{e}, where e is the unit element of P .

• Cocompact if there is a compact subset K ⊆ X such that X = KP .

A fundamental domain in a P -space X is a subset D ⊆ X such that every
element x ∈ X can be written uniquely as x = sp, where s ∈ D and p ∈ P .

We call an equivariant continuous map f :X → Y proper if whenever Z ⊆ Y
is cocompact, the inverse image f−1[Z] ⊆ X is also cocompact.

Example 2.2 We call a subset S ⊆ P a generating set if every element of P is
a product of elements of S. The Cayley graph Cay(P; S) is an oriented labelled
graph with set of vertices P . The is an oriented edge from p to q if p = sq.
There is a right P -action on the space Cay(P; S) defined by right-multiplication
on the vertices, and extending to be linear on the edges. The P -space Cay(P; S)
is cocompact if S is finite. The P -action on the vertices is free; it is also free on
the edges if P contains no elements of order 2.

Example 2.3 The infinite join (see [8]), P ∗P ∗P ∗· · · of countably many copies
of the semigroup P is a free and weakly contractible P -space.

Let X and Y be metric spaces. Recall (see for instance [13]) that a (not
necessarily continuous) map f :X → Y is called a coarse map if:

• For all R > 0 there exists S > 0 such that if d(x, y) < R, then
d(f(x), f(y)) < S.

• Let B ⊆ Y be bounded. Then f−1[B] ⊆ X is also bounded.

A coarse P -space is a proper metric space X equipped with a P -action such
that for each p ∈ P , the map p:X → X is both coarse and continuous.

Note that for a generating set S, the Cayley graph Cay(P; S) is an example
of a coarse P -space.

Definition 2.4 Let P be a semigroup. We call an equivalence relation, ∼, on
P a right congruence if whenever p ∼ q and p, q, r ∈ P , we have pr ∼ qr.

Observe that if we have a right congruence, ∼, we have a right P -action on
the set of equivalence classes P/ ∼ defined by writing ([p])q = [pq], where [r] is
the equivalence class containing an element r ∈ P . The quotient P/ ∼ can be
considered a P -space with the discrete topology.

Definition 2.5 A homogeneous P -space is a P -space X such that there is an
equivariant homeomorphism X → P/ ∼ for some right congruence ∼.
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We now define a class of P -spaces of particular importance to us, called
P -CW -complexes. Firstly, write

Dn+1 = {(x0, . . . , xn) ∈ R
n+1 | x2

0 + . . .+ x2
n ≤ 1}

and
Sn = {(x0, . . . , xn) ∈ R

n+1 | x2
0 + . . .+ x2

n = 1}.

Note that Sn ⊆ Dn+1. An n-dimensional P -cell is a P -space of the form
X ×Dn, where X is a homogeneous P -space, and P acts trivially on Dn.

Given a P -space Y and P -cellX×Dn equipped with a continuous equivariant
map f :X × Sn−1 → Y , we can form a P -space

(X ×Dn) ∪X×Sn−1 Y =
(X ×Dn)∐ Y

∼

where (x, s) ∼ f(x, s) if (x, s) ∈ X × Sn−1.
We call the P -space (X × Dn) ∪X×Sn−1 Y the space obtained from Y by

attaching the P -cell X ×Dn by the map f .

Definition 2.6 A finite P -CW -complex is a P -space X together with a se-
quence of subspaces

X0 ⊆ X1 ⊆ · · · ⊆ Xn = X

such that:

• Each inclusion Xi →֒ Xi+1 is equivariant.

• The space X0 is a finite disjoint union of homogeneous P -spaces.

• The space Xk is equivariantly homeomorphic to the space obtained from
Xk−1 by attaching finitely many k-dimensional P -cells.

The above sequence X0 ⊆ X1 ⊆ · · · ⊆ Xn = X is called a CW -
decomposition of X. Assuming Xn 6= Xn−1, the number n is called the di-
mension of the cell decomposition.

Note that any finite P -CW -complex is cocompact. The following is fairly
clear.

Proposition 2.7 Let X be a finite P -CW -complex. Then X is free if and and
only if it has a CW -composition in which, for all k, every k-dimensional P -cell
takes the form P ×Dn. ✷

3 The Coarse Baum-Connes Conjecture

Let X be a proper metric space. Recall that a Hilbert space H is called an
X-module if the C∗-algebra of bounded linear operators L(H) is equipped with
a ∗-homomorphism ρ:C0(X) → L(H).

Let K(H) be the C∗-algebra of compact operators on H. Then we call an
X-module H ample if ρ[C0(X)]H = H and ρ(f) ∈ K(H) implies f = 0.
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Definition 3.1 Let H be an X-module, and let T ∈ L(H). Then:

• We call T locally compact if ρ(f)T, Tρ(f) ∈ K(H) for all f ∈ C0(X).

• We call T pseudolocal if ρ(f)T − Tρ(f) ∈ K(H) for all f ∈ C0(X).

• We define the support of T , Supp(T) ⊆ X × X, to be the set of pairs
(x, y) ∈ X × X suc that for all open sets U ∋ x and V ∋ y, we have
f ∈ C0(U) and g ∈ C0(V ) such that ρ(f)Tρ(g) 6= 0.

• We call T controlled if the support Supp(T) is contained in a neighbour-
hood of the diagonal, ∆R = {(x, y) ∈ X × X | d(x, y) < R}, for some
R > 0.

Definition 3.2 Let H be an ample X-module. Then we define D∗(X) to be
the smallest C∗-subalgebra of L(H) containing all pseudolocal and controlled
operators.

We define C∗(X) to be the smallest C∗-subalgebra of L(H) containing all
locally compact and controlled operators.

Now, C∗(X) is a C∗-ideal in D∗(X), so we have a short exact sequence

0 → C∗(X) → D∗(X) →
D∗(X)

C∗(X)
→ 0.

Further, as shown in [6, 12], the K-theory group of the quotient,

Kn

(

D∗(X)
C∗(X)

)

, is isomorphic to the K-homology group Kn−1(X), and the K-

theory group KnC
∗(X) does not depend on a particular choice of X-module.

Thus, looking at the boundary maps in the long exact sequence of K-theory
groups (see for example [14, 16]), we obtain a map

α:K∗(X) → K∗C
∗(X)

called the coarse assembly map.
The coarse Baum-Connes conjecture asserts that this map is an isomorphism

whenever the space X has bounded geometry and is uniformly contractible; we
refer the reader again to [6, 12] for details, including precisely what the terms
bounded geometry and uniformly contractible mean.

The coarse Baum-Connes conjecture is known to be true for a vast number
of spaces, perhaps most notably bounded geometry and uniformly contractible
spaces which can be uniformly embedded in Hilbert space (see [17]), but, as
shown in [5], is false in general.

4 Equivariant Homology

Definition 4.1 Let f, g:X → Y be equivariant maps between P -spaces. A P -
homotopy between f and g is an equivariant continuous map H:X × [0, 1] → Y
such that H(−, 0) = f and H(−, 1) = g.

We call H a proper P -homotopy if H is a proper equivariant continuous map.
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Above, the space X × [0, 1] is given the P -action defined by the formula
(x, t)p = (xp, t) where p ∈ P , x ∈ X and t ∈ [0, 1].

If a P -homotopy exists between maps f and g, we call them P -homotopic,
and write f ≃P g. The notion of being P -homotopic is an equivalence relation.
The equivalence relation of being properly P -homotopic is defined similarly.

A continuous equivariant map f :X → Y is called a P -homotopy equivalence
if there is a continuous equivariant map g:Y → X such that g ◦ f ≃P idX and
f ◦ g ≃P idY . We write X ≃P Y when a P -homotopy equivalence X → Y
exists.

Definition 4.2 A locally finite P -homology theory, hP
∗
, graded over /Z, consists

of a sequence of functors, hP
n (where n ∈ Z), from the category of P -spaces

and proper equivariant maps to the category of abelian groups satisfying the
following axioms.

• Let f, g:X → Y be equivariant continuous maps that are properly P -
homotopic. Then the maps f∗, g∗:h

P
n (X) → hP

n (Y ) induced by the functor
hP
n are equal for all n.

• Let X = A ∪ B be a P -space, where A,B ⊆ X are open, and PA ⊆ A,
PB ⊆ B. Consider the inclusions i:A∩B →֒ A, j:A∩B →֒ B, k:A →֒ X
and l:B →֒ X. Let α = (i∗,−j∗):h

P
n (A ∩ B) → hP

n (A) ⊕ hP
n (B) and

β = k∗ + l∗:h
P
n (A) ⊕ hP

n (B) → hP
n (X). Then we have natural maps

∂:hP
n (X) → hP

n−1(A ∩B) fitting into a long exact sequence

→ hP
n (A ∩B)

α
→ hP

n (A)⊕ hP
n (B)

β
→ hP

n (X)
∂
→ hP

n−1(A ∩B) → .

• hn(∅) = {0} for all n.

We calll the first of these axioms homotopy invariance. The long exact
sequence in the second axiom is called the Mayer-Vietoris sequence associated
to the decomposition X = A ∪B.

We can also talk about locally finite P -homology theories on subcategories
of the category of P -spaces and proper equivariant maps, for instance on the
category of free P -spaces.

Lemma 4.3 Let X and Y be a P -spaces, let f :X × Sn−1 → Y be a proper
equivariant continuous map, and let Z = (X ×Dn) ∪X×Sn−1 Y . Then we have
a natural long exact sequence

→ hP
n (X × Sn−1) → hP

n (X)⊕ hP
n (Y ) → hP

n (Z)
∂
→ hP

n−1(X × Sn−1) →

Further, the map ∂ arises from a Mayer-Vietoris sequence associated to a
decomposition of Z.

Proof: Let π: (X ×Dn) ∐ Y → Z be the quotient map. We can choose open
sets U ⊆ π[X ×Dn] and V ⊇ π[Y ] such that:
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• U ∪ V = Z.

• PU ⊆ U , PV ⊆ V .

• U ≃P X ×Dn ≃P X.

• V ≃P Y .

• U ∩ V ≃P X × Sn−1.

Applying the Mayer-Vietories sequence of the decomposition X = U ∪ V ,
along with homotopy invariance, we get a long exact sequence

→ hP
n (X × Sn−1) → hP

n (X)⊕ hP
n (Y ) → hP

n (Z)
∂
→ hP

n−1(X × Sn−1) →

✷

Definition 4.4 Let hP
∗
and kP

∗
be locally finite P -homology theories. A natural

transformation τ :hP
∗
→ kP

∗
is a sequence of natural transformations τ :hP

n → kPn
that preserves Mayer-Vietoris sequences.

Lemma 4.5 Let X be a P -space, and let τ :hP
∗
→ kP

∗
be a natural transforma-

tion between P -homology theories such that the maps τ :hP
n (X) → kPn (X) are

isomorphisms.
Then the maps τ :hP

n (X × Sk) → kPn (X × Sk) are all isomorphisms.

Proof: Observe
X × S0 = X1 ∐X2

where X1 and X2 are both equivariantly homeomorphic to X. Certainly X1 ∩
X2 = ∅, so hP

n (X1 ∩X2) = 0 for all n, and the Mayer-Vietoris sequence tells us
that hP

n (X ×S0) = hP
n (X)⊕ hP

n (X). Similarly, kPn (X ×S0) = kPn (X)⊕ kPn (X).
It follows immediately that the map τ :hP

n (X × S0) → kPn (X × S0) is an
isomorphism.

Now suppose the map τ :hP
n (X ×Sk−1) → kPn (X ×Sk−1) is an isomorphism

for all n. We can write Sk = A∪B, where A ∼= Dn, B ∼= Dn and A∩B ≃ Sk−1,
so X × A ≃P B × A ≃P X. Then we have a commutative diagram of Mayer-
Vietoris sequences

h
P

n (X × S
k−1)→h

P

n (X)⊕ hn(X)→h
P

n (S
k ×X)→h

P

n−1(S
k−1 ×X)→h

P

n−1(X)⊕ h
P

n−1(X)
↓ ↓ ↓ ↓ ↓

k
P

n (X × S
k−1)→k

P

n (X)⊕ kn(X)→k
P

n (Sk ×X)→k
P

n−1(S
k−1 ×X)→k

P

n−1(X)⊕ h
P

n−1(X)

By the five lemma, we see the map τ :hP
n (X × Sk) → kPn (X × Sk) is an

isomorphism for all n. The desired result now follows by induction ✷
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Theorem 4.6 Let τ :hP
∗
→ kP

∗
be a natural transformation of P -homology the-

ories such that τ :hP
m(X) → kPm(X) is an isomorphism whenever X is a homo-

geneous P -space. Then τ :hP
m(Z) → kPm(Z) is an isomorphism whenever Z is a

finite P -CW -complex.

Proof: Let Z be a finite P -CW -complex. Then we have subsets

Z0 ⊆ Z1 ⊆ · · · ⊆ Zn = Z

where Z0 is a finite disjoint union of homogeneous P -spaces, and Zk is equiv-
ariantly homeomorphic to the space obtained from Zk−1 by attaching finitely
many k-dimensional P -cells.

Certainly, the map τ :hP
m(Z0) → kPm(Z0) is an isomorphism for all m.

Let Y be a P -space such that the map τ :hP
m(Y ) → hP

m(Y ) is an isomor-
phism for all m. Suppose we have an attaching map f :X × Sn−1 → Y , for a
homogeneous P -space X. Let Y ′ = (X ×Dn) ∪X×Sn−1 Y . Then it follows by
lemma 4.3, lemma 4.5 and the five lemma that the map τ :hP

m(Y ′) → hP
m(Y ′) is

an isomorphism for all m.
But this proves the desired result by induction. ✷

The following is proved similarly.

Theorem 4.7 Let τ :hP
∗

→ kP
∗

be a natural transformation of P -homology
theories such that τ :hP

m(P ) → kPm(P ) is an isomorphism for all m. Then
τ :hP

m(Z) → kPm(Z) is an isomorphism whenever Z is a free finite P -CW -
complex. ✷

5 Homotopy Fixed Point Sets

Let E be a P -space. Given an equivariant continuous map f :X → Y , we
have an induced map f∗:MapP (E,X) → MapP (E, Y ) defined by the formula
f∗(g)(λ) = f(g(λ)) where g ∈ MapP (E,X) and λ ∈ E.

Proposition 5.1 Let E be a finite free P -CW -complex. Let X be (non-
equivariantly) weakly contractible. Then the space MapP (E,X) is also weakly
contractible.

Proof: Let E be a 0-dimensional free P -CW -complex. Then E is a disjoint
union of finitely many, say k, copies of P . Hence

Map
P

(E,X) = Map
P

(P,X)k ∼= Xk

which is weakly contractible since X is.
More generally, if E is a free P -CW -complex, it is obtained by attaching

finitely many cells to a 0-dimensional P -CW -complex. So to prove the result,
it suffices to show, by induction, that if Y is a free P -space where MapP (Y,X)
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is weakly contractible, and E is a space obtained by attaching a free P -cell to
Y , then MapP (E,X) is weakly contractible.

Let f :P × Sn−1 → Y be a continuous equivariant map, and let E =
(P × Dn) ∪P×Sn−1 Y . It is a standard example from algebraic topology (see
for example [15]) that the inclusion Sn−1 → Dn is a cofibration. Hence, the
inclusion P × Sn−1 → P × Dn has the homotopy extension property for P -
homotopies, and so the push-out Y → E also has this property. Now, the
cofibration Y → E has cofibre

E/Y ∼=
P ×Dn

P × Sn−1
∼= P × Sn.

Hence we have a fibrationMapP (E,X) → MapP (Y,X), with fibre MapP (P×
Sn, X). Pick f0 ∈ MapP (Y,X). Then the fibre is the inverse image of f0, that
is the set of P -equivariant maps f :E → X which restrict to f0 on Y , which by
definition of E is

Map
P

(

E

Y
,X

)

∼= Map
P

(P × Sn, X).

Now, by hypothesis, the space MapP (Y,X) is weakly contractible. We know
that the space X is weakly contractible, and MapP (P × Sn, X) = Map(Sn, X),
so the homotopy groups of Map(Sn, X) are all zero, as those of the space X are
all zero. Therefore, by the long exact sequence of homotopy groups associated
to a fibration, the homotopy groups of the space MapP (E,X) are all zero, that
is to say MapP (E,X) is weakly contractible, and we are done. ✷

The following immediately follows from the above by looking at mapping
fibres.

Corollary 5.2 Let E be a finite free P -CW -complex. Let X and Y be P -
spaces, and let f :X → Y be an equivariant map that is (non-equivariantly) a
weak equivalence. Then the induced map f∗:MapP (E,X) → MapP (E, Y ) is a
weak equivalence. ✷

Definition 5.3 We define a classifying space for free P -actions, EP , to be a
free P -space that is weakly contractible.

Proposition 5.4 A classifying space EPalways exists. If we can choose EP to
be a finite free P -CW -complex, then is is unique up P -homotopy equivalence.

Proof: By example 2.3, a free and weakly contractible P -space EP exists.
Suppose that we can choose EP to be a finite free P -CW -complex. Let X be

another free and weakly contractible P -CW -complex. Then by proposition 5.1,
the spaces MapP (EP,X) and MapP (X,EP ) are weakly contractible. In partic-
ular, they are non-empty, so we have continuous equivariant maps f :EP → X
and g:X → EP .

Similarly, the spaces MapP (EP,EP ) and MapP (X,X) are weakly con-
tractible, so the sets π0 MapP (EP,EP ) and π0 MapP (X,X) are trivial. Since
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g◦f, idEP ∈ MapP (EP,EP ), they must be P -homotopic. Similarly, f ◦g, idP ∈
MapP (X,X) are P -homotopic. In other words, the composites g ◦ f and f ◦ g
are both P -homotopic to identity maps, and we are done. ✷

Note that if G is a group with torsion, then the classifying space BG is
never a finite CW -complex, and so the universal cover EG is never a finite G-
CW -complex. The same is true in the semigroup world, since if a semigroup
has torsion, it contains a finite subgroup, which of course is a subgroup with
torsion.

Definition 5.5 Let X be a P -space. We define the homotopy fixed point set of
X to be the space XhP = MapP (EP,X).

By the above, if EP is a finite free P -CW -complex, then up to homotopy, the
space XhP does not depend on which version of the space EP we have chosen.
Further, by proposition 5.1 and corollary 5.2, if X is weakly contractible, then
so is XhP , and if f :X → Y is a weak equivalence, then so is f∗:X

hP → Y hP .
Now, let X be a cocompact coarse P -space. Then the C∗-algebra C0(X)

is equipped with a left P -action defined by writing (pf)(x) = f(xp) for all
f ∈ C0(X), p ∈ P and x ∈ X.

Let H be a Hilbert space equipped with a left P -action by isometries. Let
vp:H → H be the isometry associated to the element p ∈ P . Then the C∗-
algebra L(H) comes equipped with a left P -action by homomorphisms defined
by writing

pT = vpTv
∗

p p ∈ P, T ∈ L(H).

We call H an equivariant X-module if it comes equipped an equivariant
∗-homomorphism ρ:C0(X) → L(H).

Now, observe in the case of an ample equivariant X-module that the
semigroup P acts on the C∗-algebras C∗(X) and D∗(X) on the left by ∗-
homomorphisms. We can therefore form homotopy fixed point sets C∗(X)hP

and D∗(X)hP . If EP is a finite P -CW -complex, then the space EP is cocom-
pact, and these sets are C∗-algebras, with addition, multiplication and involu-
tion defined pointwise, and the norm defined by taking the supremum

‖f‖ = sup{‖f(x)‖ | x ∈ EP}

for g ∈ C∗(X)hP or g ∈ D∗(X)hP . Further, C∗(X)hP is a C∗-ideal in D∗(X)hP ,
so we can form the quotient D∗(X)hP /C∗(X)hP .

Let us write

KhP
n (X) = Kn+1

(

D∗(X)hP

C∗(X)hP

)

.

By the open mapping theorem, the quotient map D∗(X) → D∗(X)/C∗(X)
has a continuous section (though not one that is a ∗-homomorphism). This
implies that we have a natural isomorphism

KhP
n (X) ∼= Kn+1

(

D∗(X)

C∗(X)

)hP

.
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Proposition 5.6 The sequence of functors KhP
∗

is a locally finite P -homology
theory.

Proof: Let U(X) be the stable unitary group of the C∗-algebraD∗(X)/C∗(X).
Then the groups Kn−1(X) and KhP

n−1(X) are the homotopy groups of U(X) and
U(X)hP respectively.

By proper homotopy-invariance of K-homology, the inclusions i0, i1:X →
X × [0, 1] defined by the formulae i0(x) = (x, 0) and i1(x) = (x, 1) respectively,
induce weak equivalences U(X) → U(X × [0, 1]). By corollary 5.2, these maps
both induce weak equivalences U(X)hG → U(X×[0, 1])hG, and so isomorphisms
KhP

n (X) → KhP
n (X × [0, 1]). Proper P -homotopy-invariance of the functors

KhP
n now follows.
Let X = A ∪ B be a P -space, where A,B ⊆ X are open, and PA ⊆ A,

PB ⊆ B. Then by looking at Mayer-Vietoris sequences in K-homology, we
have a weak fibration sequence

U(A ∩B) → U(A) ∨ U(B) → U(X)

and so, by corollary 5.2, a weak fibration sequence

U(A ∩B)hP → U(A)hP ∨ U(B)hP → U(X)hP .

The existence of Mayer-Vietoris sequences for the sequence of functors KhP
∗

now also follows. ✷

6 Semigroup C
∗-algebras and assembly

Let P be a semigroup. Let l2(P ) be the Hilbert space with an orthonormal
basis indexed by P , that is to say we have an orthonormal basis {ep | p ∈ P}.

Given p ∈ P , we have an isometry vp: l
2(P ) → l2(P ) defined by the formula

vp(eq) = epq. Note that for this to be an isometry, we need the left-cancellation
property. The semigroup P acts on the space l2(P ) by the formula pw = vp(w)
where p ∈ P and w ∈ L2(P ).

The following definition comes from [7].

Definition 6.1 The reduced semigroup C∗-algebra, C∗

r (P ), is the smallest C∗-
subalgebra of the space of bounded linear operators L(l2(P )) that contains the
set of isometries {vp | p ∈ P}.

Note that reduced group C∗-algebras are an obvious special case.
More generally, let H be a Hilbert space equipped with a right P -action by

isometries. Let vp:H → H be the isometry associated to the element p ∈ P .
Then C∗

r (P ) is isomorphic to the smallest C∗-subalgebra of L(H) containing
the set of isometries {vp | p ∈ P}.

As noted in the previous section, the C∗-algebra L(H) has a left P -action
defined by writing pT = vpTv

∗

p p ∈ P, T ∈ L(H).
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Let X be a free cocompact P -space. Then we can write X = U1 ∪ · · · ∪ Un,
where each Ui is an open P -space that is equivariantly homeomorphic to P ×Wi

for some space Wi with trivial P -action.
Now, let H be an equivariant X-module, meaning H is a Hilbert space with

a P -action and an equivariant ∗-homomorphism ρ:C0(X) → L(H). Then on
each set Ei, H restricts to an equivariant Ui-module through composing the
∗-homomorphism ρ with the inclusion C0(Ui) →֒ C0(X).

Definition 6.2 We call an equivariant X-module H P -adequate if X is a finite
union of open P -spaces U , where:

• Each U is an open P -space that is equivariantly homeomorphic to P ×W
for some space W with trivial P -action.

• The restriction of H is U is equivariantly isomorphic to a U -module of
the form l2(P ) ⊗ H ′

W , where H ′

W is an ample W -module. Here the ∗-
homomorphism C0(U) → L(l2(P )⊗H ′

W ) is the composite

C0(U) → C0(P ×W ) → L(l2(P )⊗H ′

W )

defined in the obvious way.

Definition 6.3 Let H be a P -adequate X-module. We define D∗

P (X) to be the
smallest C∗-subalgebra of L(H) containing all pseudolocal, controlled operators
that are fixed under the action of P . We define C∗

P (X) to be the smallest C∗-
subalgebra of L(H) containing all locally compact, controlled operators that are
fixed under the action of P .

Theorem 6.4 Let P be a semigroup. Let X be a cocompact free coarse P -space.
Then the C∗-algebras C∗

r (P ) and C∗

P (X) are Morita equivalent.

Proof: Let H be a P -adequate equivariant X-module. Decompose X into a
finite union of n open P -sets, U , as in definition 6.2. Let T :H → H be P -fixed,
locally compact and controlled.

Then, by definition of locally compact, and the P -action, when restricted to
U , T can be considered to be a P ×P matrix of compact operators. Overall, T
is an n×n matric (Tij) whjere each Tij is a P ×P matrix of compact operators.
Since T is translation-invariant under P , so is each Tij .

Since T is also controlled, we see that T ∈ C∗

r (Γ)⊗K. More generally, taking
limits, if T ∈ C∗

P (X), then T ∈ C∗

r (Γ)⊗K.
Conversely, any operator of the form vP ⊗ k, where p ∈ P and k is compact,

is both controlled and locally compact. Any element Mn(C
∗

r (Γ)⊗K) is a limit
of sums of such operators, and so

Mn(C
∗

r (Γ)⊗K) ⊆ C∗

P (X).

The desired result now follows. ✷
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The above argument was essentially made for groups in lemma 5.14 of [12].
Although the cited argument was problematic, it works here as we have re-
stricted ourselves to free actions.

Now, let X be any P -space. Then we have a short exact sequence

0 → C∗

P (X) → D∗

P (X) →
D∗

P (X)

C∗

P (X)
→ 0.

By the above, when X is cocompact, we can identify the K-theory groups
K∗(C

∗

P (X)) and K∗C
∗

r (P ). Thus, looking at the boundary maps in the long
exact sequence of K-theory groups (see for example [14, 16]), we obtain a map

β:K∗+1

(

D∗

P (X)

C∗

P (X)

)

→ K∗C
∗

r (P )

called the analytic assembly map.
This assembly map is a generalisation of the corresponding map for groups;

see for example [12].

Definition 6.5 Let X be a coarse P -space. Then we define the P -equivariant
K-homology groups of X by writing

KP
n (X) = Kn+1

(

D∗

P (X)

C∗

P (X)

)

.

Definition 6.6 We say a torsion-free semigroup P satisfies the analytic Novikov
conjecture if we have a cocompact classifying space EP such that the map

β:KP
n (EP ) → KnC

∗

r (P )

is injective.

We restrict our attention to torsion-free semigroups, since, in the case of
groups, the map β is not in general injective for groups with torsion, though it
is conjectured to be rationally injective. However, all of our arguments here are
for torsion-free semigroups.

Further, the equivariant K-homology groups KP
n (EP ) are not necessarily

easy to compute. The issue is that, unlike the group case, even if X is a free
P -space, we do not have the formula KP

n (X) ∼= Kn(X/P ), which holds in the
classical case. We go into further detail on this issue in the final section when
we look at examples.

7 Descent

The descent argument, outlined in this section, tells us that the coarse Baum-
Connes conjecture, along with certain mild extra conditions, implies the analytic
Novikov conjecture.
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Lemma 7.1 We have a natural transformation θ∗:K
P
n (X) → KhP

n (X) that is
an isomorphism whenever X is a finite free P -CW -complex.

Proof: Let U(X) and UP (X) be the stable unitary groups of the C∗-algebras
D∗(X)/C∗(X) and D∗

P (X)/C∗

P (X) respectively. Since the space EP is weakly
contractible, we have a natural weak equivalence

j:UP (X) ≃ Map(EP,UP (X))
= Map(EP,MapP (P,UP (X)))
= MapP (EP,Map(P,UP (X)))
= Map(P,UP (X))hG

.

Let i:D∗

P (X)/C∗

P (X) → D∗(X)/C∗(X) be defined by the inclusions
C∗

P (X) →֒ C∗(X) and D∗

P (X) →֒ D∗(X). Then we have a natural map
k:Map(P,UP (X)) → U(X) defined by writing k(f) = i∗f(e), where e is the
identity element of the semigroup P .

Taking homotopy fixed point sets, we obtain a natural map
k′:Map(P,UP (X))hP → U(X)hP . Composing with the map j, we have
a natural map

θ = k′ ◦ j:UP (X) → U(X)hP

and so a natural induced map θ∗:K
P
n (X) → KhP

n (X).
Let c:P → + be the constant map onto the one point space. Then the

composition c∗◦i∗ = i∗◦c∗:UP (P ) → U(+) is certainly a homotopy-equivalence,
and the map k:Map(P,UP (+)) → U(P ) is a homeomorphism, and so a weak
equivalence. By corollary 5.2, the map k′ is also a weak equivalence.

Thus the map θ is a weak equivalence in this case, making the induced map
θ∗:K

P
n (P ) → KhP

n (P ) an isomorphism.
By theorem 4.7, the map θ∗:K

P
n (X) → KhP

n (X) is therefore an isomorphism
whenever X is a finite free P -CW -complex. ✷

Now, let X be a cocompact coarse P -space.
Now, we can define a map η∗:Kn(D

∗

P (X)) → Kn(D
∗(X)hP ) in much the

same way as the map θ∗ in the above lemma, and so, whenever X is a cocompact
coarse P -space, we have a commutative diagram

Kn(D
∗

P (X))
vP→ KP

n (X)
β
→ KnC

∗

r (P )
↓ ↓

Kn(D
∗(X)hP )

vhP→ KhP
n (X)

where β is the analytic assembly map.

Theorem 7.2 Let X be a free coarse P -space that is a free finite P -CW -
complex as a topological space. Suppose the coarse Baum-Connes conjecture
holds for X. Then the analytic assembly map β is split-injective for P .

Proof: The coarse Baum-Connes conjecture for X implies that KnD
∗(X) = 0

for all n. Hence, by proposition 5.1, Kn(D
∗(X)hP ) = 0 for all n.
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Now, by the previous lemma, the map θ∗:K
P
n (X) → KhP

n (X) in the above
commutative diagram is an isomorphism.

It follows that the map vp is zero, so the map β is split-injective as required.
✷

Corollary 7.3 Let P be a semigroup with a classifying space EP that is a
coarse P -space and a finite P -CW -complex. Suppose the coarse Baum-Connes
conjecture holds for the space EP .

Then the analytic Novikov conjecture holds for the semigroup P . ✷

8 Ore Semigroups

Definition 8.1 A semigroup P is a left Ore semigroup if:

• For all p, q, r ∈ P , if pq = pr, or qp = rp, then q = r.

• For all p, q ∈ P , we have pP ∩ qP 6= ∅.

It is shown in [2] that a semigroup P can be embedded into a group G such
that G = P−1P = {q−1p |p, q ∈ P} if and only if P is a left Ore semigroup.

One of the main results of [4] is a computation of theK-theory of the reduced
C∗-algebra of an Ore semigroup. It is more precise than corollary 7.3, but covers
what appears to be a smaller class of semigroups. To state it, we need some
more terminology.

Definition 8.2 Let P be a semigroup. A right ideal of P is a subset X ⊆ P
such that for all x ∈ X and p ∈ P , we have xp ∈ X.

Let us write

pX = {px | x ∈ X} p−1X = {q ∈ P | pq ∈ X}.

Let J be the smallest family of right ideals of P such that:

• ∅, P ∈ J .

• If X ∈ J and p ∈ P , then pX, p−1X ∈ J .

• If X,Y ∈ J , then X ∩ Y ∈ J .

The following comes from [7].

Definition 8.3 We call elements of J the constructible right ideals of P . We
say that the constructible right ideals of P are independent if for all right ideals
X1, . . . , Xn ∈ J , if the union

X =

n
⋃

j=1

Xj

is a right ideal, then X = Xj for some j.
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We refer to [7] for examples and further analysis. Now, let P be an Ore
semigroup, and let G = P−1P . For a right ideal X, form the group

GX = {g ∈ G | gX = X}.

Let EX be the orthogonal projection from the Hilbert space l2(P ) to
the Hilbert space l2(E). Let D∞

r (P ) be the smallest C∗-subalgebra of the
space of bounded linear operators L(l2(P )) that contains the set of projections
{Ep−1X | p ∈ P,X ∈ J \{∅}}.

For an index set I, let us write c0(I) = ⊕i∈IC. Let χ ⊆ J \{∅} be
a set containing precisely one representative for each set in the collection
G\(P−1(J \{∅}).

Theorem 7.3 of [4] states the following.

Theorem 8.4 Let P be a left Ore semigroup whose constructible right ideals
are independent. Suppose that the group G = P−1P satisfies the Baum-Connes
conjecture with coefficients in the G-C∗-algebras c0(P

−1(J\{∅})) and D∞

r (P ).
Then the groups Kn(C

∗

r (P )) and ⊕X∈χKn(C
∗

r (GX)) are isomorphic. ✷

See [1] for more details on the Baum-Connes conjecture.

9 Examples

We conclude this article by looking at some simple examples where corollary
7.3 applies. We can use Yu’s theorem from [17] that the coarse Baum-Connes
conjecture holds for any bounded geometry coarse space which can be uniformly
embedded in Hilbert space. Of course, Yu’s theorem is a heavy piece of machin-
ery for this example; the author’s proof of the coarse Baum-Connes conjecture
for coarse CW -complexes in [9, 10] also suffices.

The explicit examples all satisfy the conditions of theorem 8.4, so the result
applies to them. In particular, by split-injectivity, we know that the K-theory
group KP

∗
(EP ) embeds as a subgroup of the K-theory group K∗(C

∗

rP ), which
the techniques from [4] can be used to compute.

The semigroup N

The semigroup N acts freely on R
+ by writing (n, x) 7→ n + x, where n ∈ N,

and x ∈ R
+. With the coarse structure defined by the metric, the space R

+ is
certainly uniformly embeddable in Hilbert space, so the coarse Baum-Connes
conjecture holds.

Now, R
+ is a finite free N-CW -complex, with a single 0-cell, N, and 1-

cell N × [0, 1], with attaching map f :N × {0, 1} → N defined by the formula
f(n, k) = n+ k.

Now R+ is weakly contractible, so we can take EN = R+, and, by corollary
7.3, the analytic Novikov conjecture holds for N.
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Similarly, let N× be the group of non-zero natural numbers with group oper-
ation defined by multiplication. Then EN = [1,∞), with free N-action defined
by writing (n, x) 7→ nx. As above, the analytic Novikov conjecture holds for
N

×.
Actually, the first example shows us why we do not have KP

∗
(EP ) ∼=

K∗(EP/P ) in general. To see this, observe, first of all, that the C∗-algebra
C∗

r (N) is simply the Toeplitz algebra. It is well-known from any course in K-
theory (see for example [14, 16]) that we therefore have K1C

∗

r (N) = 0. It follows
from the analytic Novikov conjecture for N that KN

1 (EN) = 0.
On the other hand, R+/N = S1, and K1(S

1) = Z, so KN
∗
(R+) 6∼= K∗(R

+/N).

Free semigroups

The free semigroup on n generators, Vn, is the set of words in an alphabet with
n letters, say e1, . . . , en. Let S = {e1, . . . , en}. Then Vn certainly acts freely on
the Cayley graph Cay(Vn; S), which is weakly contractible.

So we can take EVn = Cay(Vn; S). The space EVn is a finite Vn-CW -
complex, with a single 0-cell, the set of vertices, and 1-cells P × {e1} ×
[0, 1], . . . , P × {en} × [0, 1]. The attaching map f :P × {ei} × {0, 1} → P is
defined by writing f(p, ei, 0) = p and f(p, ei, 1) = pei.

The space EVn is certainly uniformly embeddable in an infinite-dimensional
Hilbert space, so by corollary 7.3, the analytic Novikov conjecture holds for the
free semigroup Vn.

Products

Let P and Q be semigroups such that EP and EQ are finite free P - and Q-
CW -complexes respectively, and EP and EQ have compatible coarse structures
where P and Q act respectively by coarse continuous maps. Suppose EP and
EQ are uniformly embeddable in Hilbert spaces HP and HQ respectively.

Then we can take E(P × Q) = EP × EQ. The space EP × EQ is a free
finite P ×Q-CW -complex, which is a coarse P ×Q-space uniformly embeddable
in HP ×HQ. Thus the analytic Novikov conjecture holds for P ×Q.

In particular, by the above, the analytic Novikov conjecture holds for the
semigroup N

m × (N×)n for all m and n.

The ax+ b semigroup over N

The ax+ b semigroup over N is defined in [3] as the set

PN =

{(

1 k
0 n

)

| n ∈ N
×, k ∈ N

}

with group operation defined by matrix multiplication.
The group PN acts freely and cocompactly on the space [0,∞) × [1,∞) by

the formula
(

1 k
0 n

)(

x
y

)

=

(

x+ ky
ny

)

.
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As above, the space [0,∞) × [1,∞) has the structure of a finite PN-CW -
complex. As a coarse space, it is uniformly embeddable in Hilbert space. So
the analytic Novikov conjecture holds for PN.
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