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We calculate the absorption cross section for planar waves incident upon Kerr black holes, and present 
a unified picture for scalar, electromagnetic and gravitational waves. We highlight the spin-helicity effect 
that arises from a coupling between the rotation of the black hole and the helicity of a circularly-
polarized wave. For the case of on-axis incidence, we introduce an extended ‘sinc approximation’ to 
quantify the spin-helicity effect in the strong-field regime.
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1. Introduction

Black holes, once dismissed as a mathematical artifact of Ein-
stein’s theory of general relativity (GR), have come to play a central 
role in modern astronomy and theoretical physics [1,2]. In astron-
omy, black holes provide a solution: in galaxy formation scenar-
ios, in active galactic nuclei and in core-collapse supernovae, for 
instance. In theoretical physics, black holes pose a challenge: as 
spacetime curvature grows without bound in GR, the classical the-
ory breaks down. Yet, novel quantum gravity effects apparently 
remain shrouded by a horizon endowed with generic thermody-
namic properties [3].

Two recent advances in interferometry have opened new data 
channels on astrophysical black holes. In September 2015, LIGO 
detected the first gravitational-wave signal: a characteristic ‘chirp’ 
from a black hole binary merger [4]. Hundreds more chirps are 
anticipated over the next decade [5]. In April 2017, the Event Hori-
zon Telescope (EHT) [6] – a global array of radio telescopes linked 
by very long baseline interferometry – observed the supermassive 
black hole candidates Sgr. A* and M87* at a resolution three orders 
of magnitude beyond that of the Hubble telescope [7]. Ultimately, 
the EHT will seek to study the black hole shadow itself [8–10], us-
ing techniques to surpass the diffraction limit [11].

These experimental advances motivate study of the interaction 
of electromagnetic waves (EWs) and gravitational waves (GWs) 
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with black holes [12–14]. EWs and GWs propagating on curved 
spacetimes in vacuum share some traits. For example, both pos-
sess two independent (transverse) polarizations that are parallel-
transported along null geodesics in the ray-optics limit. Yet there 
are key physical differences. GWs are tenuous, in the sense that 
they are not significantly attenuated or rescattered by matter 
sources. GWs are typically long-wavelength and polarized, because 
rotating quadrupoles (for example, binary systems or asymmet-
ric neutron stars) predominantly emit circular-polarized waves at 
twice the rotational frequency [15]. For example, λ ∼ 10−3 m for 
EHT observations, whereas λ ∼ 107 m for GW150914.

In this Letter we examine the absorption of a monochromatic 
planar wave of frequency ω incident upon a Kerr black hole of 
mass M and angular momentum J in vacuum. We calculate the 
absorption cross section σabs, i.e., the cross-sectional area of the 
black hole shadow [8–10] beyond the ray-optics approximation. 
For the first time, we present unifying results for scalar (s = 0), 
electromagnetic (s = 1) and gravitational (s = 2) waves. Our results 
highlight the influence of two key phenomena: superradiance and 
the spin-helicity effect, described below.

The absorption scenario, illustrated in Fig. 1, is encapsulated 
by several dimensionless parameters: the ratio of the gravitational 
length to the (reduced) wavelength GMω/c3; the dimensionless 
black hole spin a∗ ≡ a/M where a = J c2/GM (0 ≤ a∗ < 1); the 
spin of the field s = 0, 1, 2; the angle of incidence with respect to 
the black hole axis γ ; and the helicity of the circular polarization 
±1. We adopt natural units such that G = c = 1.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. A planar wave of frequency ω = 2πc/λ incident upon a rotating black hole 
of mass M and angular momentum J at an angle γ . Inset: the locus bc(χ) of the 
black hole shadow on the wavefront.

2. Concepts

2.1. Black hole shadows

An observer studying a black hole in vacuum with a pinhole 
camera will see a dark region on the image plane defined by the 
set of null-geodesic rays entering the pinhole which, when traced 
backwards in time, pass into the black hole. The boundary of the 
shadow is determined by those rays which asymptote towards an 
(unstable) photon orbit, defining an angular radius α(χ) in terms 
of the projection angle χ . Alternatively, a shadow can be defined 
on a planar surface in terms of an impact parameter b(χ), using 
those rays orthogonal the surface, as shown in Fig. 1. Far from the 
black hole, there is an approximately linear relationship b(χ) =
r0α(χ) + O  

(
GM
c2r0

)
; the two approaches are closely related. Here 

we extend the latter approach to consider monochromatic waves 
of a finite wavelength.

In the geometrical-optics limit (λ → 0), an observer at radial 
coordinate r0 sees a shadow of angular radius α where [16]

sin2 α = 27

4

(ρ − 1)

ρ3
, ρ ≡ r0c2

GM
. (1)

For Sgr A*, α ≈ 25 μarcsec, with r0 ≈ 8.3 kpc and M ≈ 4.1 ×
106 M� [17]. In Kerr spacetime, α is a function of angle χ rel-
ative to the (projected) spin axis.

Here we seek to study Kerr shadows beyond the geometrical-
optics regime. We shall focus on the difference between σabs(ω), 
the absorption cross section at fixed frequency ω, and the σgeo, the 
geometric cross section defined by

σgeo = 1
2

2π∫
0

b2
c (χ)dχ. (2)

2.2. Superradiance and spin-helicity

Superradiance is a radiation-enhancement mechanism by which 
a black hole may shed mass and angular momentum and yet still 
increase its horizon area, and thus its entropy [18]. As a conse-
quence, σabs may become negative at low frequencies, through 
stimulated emission. The effect is strongly enhanced by spin s.

The spin-helicity effect is a coupling between a rotating source, 
such as a Kerr black hole, and the helicity of a polarized wave of 
finite wavelength λ [19]. A rotating spacetime distinguishes and 
separates waves of opposite helicity [20–22]. In the weak-field, 
rays are deflected through an angle ζ�E , with �E ≡ 4GM
c2b

the Ein-
stein angle and ζ = 1 + . . . an asymptotic series in which the spin-

helicity effect is anticipated at O  
(

Jλ
Mcb2

)
[19]. In the strong-field, 

we anticipate that waves with a counter-rotating circular polariza-
tion are preferentially absorbed (σ−

abs > σ+
abs).

3. Method

3.1. Waves on the Kerr spacetime

The Kerr spacetime is described in Boyer–Lindquist coordinates 
{t, r, θ, φ} by the line element

ds2 = − 1

�
(� − 2Mr)dt2 − 4Mar sin2 θ

�
dtdφ + �

�
dr2

+ �dθ2 + (r2 + a2)2 sin2 θ − �a2 sin4 θ

�
dφ2, (3)

where � ≡ r2 + a2 cos2 θ , and � ≡ r2 − 2Mr + a2. We focus on 
the a2 < M2 case of a rotating BH with two distinct horizons: an 
internal (Cauchy) horizon located at r− = M − √

M2 − a2 and an 
external (event) horizon at r+ = M + √

M2 − a2.
In the vicinity of a Kerr black hole, perturbing fields are de-

scribed by a single master equation, first obtained by Teukolsky 
[23] using the Newman–Penrose formalism. In vacuum the master 
equation takes the form[

(r2 + a2)2

�
− a2 sin2 θ

]
∂2ψ

∂t2
+ 4Mar

�

∂2ψ

∂t∂φ

+
[

a2

�
− 1

sin2 θ

]
∂2ψ

∂φ2
− �−s ∂

∂r

(
�s+1 ∂φ

∂r

)

− 1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ (s2 cot2 θ − s)ψ

− 2s

[
a(r − M)

�
+ i cos θ

sin2 θ

]
∂ψ

∂φ

− 2s

[
M(r2 − a2)

�
− r − ia cos θ

]
∂ψ

∂t
= 0, (4)

where s is the spin-weight of the field. We use s = −s through-
out, where s = 0, 1, 2 for scalar, electromagnetic and gravitational 
fields, respectively. One can separate variables in Eq. (4) using the 
standard ansatz

ψslmω(t, r, θ, φ) = Rslmω(r)Sslmω(θ)e−i(ωt−mφ), (5)

to obtain angular and radial equations,

1

sin θ

d

dθ

(
sin θ

dSslmω

dθ

)
+ Uslmω(θ)Sslmω = 0, (6)

�−s d

dr

(
�s+1 dRslmω

dr

)
+ Vslmω(r)Rslmω = 0, (7)

where

Uslmω ≡ λslmω + 2amω − 2aωs cos θ − (m + a cos θ)2

sin2 θ
+ s,

Vslmω ≡ 1

�

[
K 2 − 2(r − M)K

]
− λslmω + 4iωsr, (8)

and K ≡ (r2 + a2)ω − am. The angular functions Sslmω(θ) are 
known as spin-weighted spheroidal harmonics, and have as limit-
ing cases the spheroidal harmonics (s = 0) and the spin-weighted 
spherical harmonics (aω = 0).



132 L.C.S. Leite et al. / Physics Letters B 774 (2017) 130–134
Fig. 2. The absorption cross section σabs for massless bosonic fields incident on a rapidly–rotating Kerr BH (a = 0.99M , γ = 0). For circularly-polarized fields (s > 0), the 
co-rotating (ω > 0) and counter-rotating (ω < 0) helicities are absorbed differently, due a coupling between the field helicity and the BH rotation.
We seek solutions of Eq. (7) that are purely ingoing at the event 
horizon, satisfying the following boundary conditions:

Rslmω ∼
{
Tslmωe−ı(ω−m�h)r��−s, r → r+,

Islmωr−1e−ıωr� + Rslmωr−(2s+1)eıωr� , r → +∞,

(9)

where �h ≡ a
2Mr+ is the angular frequency of the black hole hori-

zon. Here r� is the tortoise coordinate r� ≡ ∫
dr (r2+a2)

�
such that 

r� → +∞ when r → +∞ and r� → −∞ when r → r+ .

3.2. The absorption cross section

For an asymptotic incident plane wave traveling in the direc-
tion n̂ = sinγ x̂ + cosγ ẑ the absorption cross section σabs is given 
by [24]

σabs = 4π2

ω2

+∞∑
l=|s|

+l∑
m=−l

∣∣Sslmω(γ )
∣∣2

�slmω. (10)

The transmission factor �slmω is the ratio of the energy passing 
into to the hole to that encroaching from infinity, dEhole

dE in
[18]. It 

takes the same sign as ω(ω − m�h), so it is negative for low-
frequency co-rotating modes. Using energy balance, dEhole = dE in −
dEout, one obtains [24]

�0lmω = 1 −
∣∣∣∣R0lmω

I0lmω

∣∣∣∣
2

, (11a)

�−1lmω = 1 − B2
lmω

16ω4

∣∣∣∣R−1lmω

I−1lmω

∣∣∣∣
2

, (11b)

�−2lmω = 1 − Re2(C) + 144M2ω2

256ω8

∣∣∣∣R−2lmω

I−2lmω

∣∣∣∣
2

, (11c)

for the scalar (s = 0), electromagnetic (s = −1), and gravita-
tional (s = −2) cases, respectively. Here B2

lmω ≡ λ2
−1lmω + 4amω −

4a2ω2, Re2(C) = [(λ−2lmω + 2)2 + 4amω − 4(aω)2](λ2
−2lmω +

36amω − 36a2ω2) + (2λ−2lmω + 3)(96a2ω2 − 48amω) − 144a2ω2, 
and Islmω , Rslmω are the coefficients appearing in the ingoing so-
lutions of Eq. (9).
3.3. Numerical method

In order to determine the absorption cross section via Eq. (10)
we first computed the spin-weighted spheroidal harmonics Sslmω

and the transmission factors �slmω by solving Eqs. (6) and (7) with 
numerical methods.

We obtained the spin-weighted spheroidal harmonics Sslmω

and its corresponding eigenvalues λslmω using the spectral eigen-
value method as described in Ref. [13,25]. We have tested the angu-
lar eigenvalues λslmω obtained via the spectral eigenvalue method 
against the low-aω formula provided in Ref. [26], obtaining a sat-
isfying concordance.

The transmission factors were obtained as follows: in the scalar 
case (s = 0), we rewrote the radial equation into a Schrödinger-
like form and numerically integrated it using the scheme de-
tailed in Ref. [14]; in the electromagnetic (s = −1) and gravita-
tional (s = −2) cases, we rewrote the radial Teukolsky equation us-
ing the Detweiler [27] and Sasaki–Nakamura [28] transformations, 
respectively. We numerically integrated the Detweiler and Sasaki–
Nakamura equations from r = rh to r = r∞ , where rh ∼ 1.001r+
and r∞ ∼ 103r+ are within the near-horizon and the far-field 
regimes, respectively. At r = r∞ , we extract the values of the ingo-
ing and outgoing coefficients via (9) and compute the transmission 
factors via (11). To assure the reliability of our results, we have 
checked them using independent codes [13].

4. Results

4.1. Absorption cross sections

Fig. 2 shows the absorption cross section σabs for planar waves 
in all massless bosonic fields (s = 0, 1 and 2) impinging upon a 
rapidly-rotating Kerr BH (a∗ = 0.99) parallel to the rotation axis 
(γ = 0). At long wavelengths, the incident wave stimulates su-
perradiant emission from the black hole [29], with transmission 
turning negative for modes satisfying ω(ω − m�h) < 0. For on-
axis incidence γ = 0, only the m = −s modes contribute to the 
mode sum (10). Thus, σabs is negative for polarized fields (s > 0), 
but not for the scalar field (s = 0). The superradiant effect occurs 
principally in the l = m = −s mode, and is much stronger for grav-
itational waves than for electromagnetic waves.

The absorption cross section for the co- and counter-rotating 
helicities are quite distinct, with the latter (ω < 0) more strongly 
absorbed than the former (ω > 0). This is a clear manifestation of 
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Table 1
The impact parameter bc , orbital frequency �c and Lyapunov exponent �c for cir-
cular polar null geodesics, to 4 decimal places. See Eq. (13).

a∗ 0 0.5 0.8 0.99 1

bc/M
√

27 5.1205 4.9849 4.8383 4.8284
�c M 1√

27
0.1958 0.2019 0.2089 0.2094

�c M 1√
27

0.1884 0.1788 0.1633 0.1620

the spin-helicity effect for electromagnetic and gravitational waves. 
In the limit M|ω| → ∞, the difference falls off at O (M|ω|)−1 and 
σabs approaches the geodesic capture cross section σgeo. We now 
attempt to quantify this effect.

4.2. High frequency model

Fig. 2 exhibits regular oscillations in σabs(ω) arising from suc-
cessive l modes in Eq. (10). For scalar fields it was previously 
shown [30,14] that such oscillations are linked to the Regge pole 
spectrum of the black hole, whose asymptotic properties are set by 
the angular frequency �c and Lyapunov exponent �c of the circu-
lar photon orbits of the spacetime. At high frequencies for γ = 0, 
we find that σabs is well described by the sinc approximation [31,
30,14],

σabs ≈ σsinc ≡ Cs + εAs sin (Bs/ε) , (12)

where ε ≡ (M|ω|)−1 and {As, Bs, Cs} are spin-dependent terms to 
be described more fully below.

A sinc approximation of this form was first developed by 
Sanchez [31] in 1977, for scalar fields on the Schwarzschild space-
time. For the Kerr spacetime with a scalar field incident along the 
axis (γ = 0), it was shown in Ref. [14] (based on the method of 
Ref. [30]) that Eq. (12) that remains valid with

A0 = −4π�ce−π�c/�c

�2
c

, B0 = 2π

M�c
, (13)

and C0 = σgeo = πb2
c . Sample values for bc , �c and �c are given 

in Table 1. The method for obtaining these values is covered in 
Ref. [14].

For s > 0, we now propose an extended model to include terms 
at O (ε):

As>0 = A0, (14a)

Bs>0 = B0

[
1 + ε

(
b̄s ± s a∗�bs

)
+ O (ε2)

]
, (14b)

Cs>0 = C0

[
1 + ε

(
c̄s ± s a∗�cs

) + O (ε2)
]
. (14c)

The coefficients �bs and �cs encapsulate the effect of the spin-
helicity interaction, with + in Eq. (14) for the co-rotating helicity, 
and − for the counter-rotating helicity. To find the coefficients 
we fitted the model to our numerical data σabs across the do-
main M|ω| ∈ [2.5, 4] for 0 ≤ a∗ ≤ 0.99. Fig. 3 shows that the model 
(12)–(14) fits the data well across the domain in ω.

We may draw several inferences from the best-fit parameter 
values shown in Fig. 3(c). First, that �b1 = �b2 and �c1 = �c2
to within the fitting error. This implies that the spin-helicity ef-
fect for gravitational waves is twice as large as for electromagnetic 
waves, as expected. Second, that Cs�bs < 0, so counter-rotating 
helicities are preferentially absorbed. Third, that �cs → �bs as 
a∗ → 0, which was not anticipated a priori. Fourth, that B0�bssa∗ , 
the spin-helicity part of the phase term in the sinc approximation 
(12), varies monotonically from 0 in the Schwarzschild case up to 
approximately sπ in the extremal limit (a → M). Evidence of this 
phase shift can be seen in Fig. 3(a).
Fig. 3. (a) Fitting the sinc approximation model (12)–(14) to numerical data for 
a∗ ∈ {0, 0.5, 0.8, 0.99} across the domain M|ω| ∈ [2.5, 4]. (b) The residuals of the 
fit, |σabs − σsinc|/π M2. (c) The best-fit values for the parameters {c̄s, ̄bs, �cs, �bs}
in Eq. (14).

5. Final remarks

We have calculated the absorption cross section for scalar, elec-
tromagnetic, and gravitational massless plane waves impinging 
upon a Kerr BH along its rotation axis. For the first time, we have 
presented a unified picture of the absorption spectrum for all the 
bosonic fields. We showed that superradiance leads to stimulated 
emission, rather than absorption, at low frequencies for co-rotating 
circular polarizations; and that counter-rotating polarizations are 
more heavily absorbed in general. We have proposed and tested 
an extended version of the sinc approximation, to encapsulate the 
spin-helicity effect at short wavelengths, where its effect falls off 
with λ/M .

An open question is whether the spin-helicity effect shown 
here can be quantitatively described using spinoptics [20–22]. That 
is, can a modified geometric-optics approximation, incorporating 
next-to-leading order helicity-dependent corrections in the eikonal 
equations, successfully reproduce the 1/M|ω| terms in Eqs. (14)? 
Future work in this direction could prove illuminating.
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