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ABSTRACT

Observations indicate that the central portions of the present-day prestellar core mass function
(hereafter CMF) and the stellar initial mass function (hereafter IMF) both have approximately
log-normal shapes, but that the CMF is displaced to higher mass than the IMF by a factor
F ~ 4 £ 1. This has led to suggestions that the shape of the IMF is directly inherited from the
shape of the CMF - and therefore, by implication, that there is a self-similar mapping from
the CMF on to the IMF. If we assume a self-similar mapping, it follows (i) that F = N o /7,
where 7 is the mean fraction of a core’s mass that ends up in stars and N is the mean number
of stars spawned by a single core; and (ii) that the stars spawned by a single core must have
an approximately log-normal distribution of relative masses, with universal standard deviation
0. Observations can be expected to deliver ever more accurate estimates of F, but this still
leaves a degeneracy between n and Ao, and o is also unconstrained by observation. Here
we show that these parameters can be estimated by invoking binary statistics. Specifically, if
(a) each core spawns one long-lived binary system, and (b) the probability that a star of mass
M is part of this long-lived binary is proportional to M*, current observations of the binary
frequency as a function of primary mass, b(M), and the distribution of mass ratios, p,, strongly
favour n~1.0+£0.3, No ~4.34+04, 00~0.340.03 and o ~ 0.9 £ 0.6; n > 1 just means
that, between when its mass is measured and when it finishes spawning stars, a core accretes
additional mass, for example from the filament in which it is embedded. If not all cores spawn
a long-lived binary system, db/dM; < 0, in strong disagreement with observation; conversely,
if a core typically spawns more than one long-lived binary system, then Ny and 5 have to
be increased further. The mapping from CMF to IMF is not necessarily self-similar — there
are many possible motivations for a non-self-similar mapping — but if it is not, then the shape
of the IMF cannot be inherited from the CMF. Given the limited observational constraints
currently available and the ability of a self-similar mapping to satisfy them, the possibility that
the shape of the IMF is inherited from the CMF cannot be ruled out at this juncture.

Key words: binaries: general —stars: formation — stars: luminosity function, mass function —
stars: statistics.

1 INTRODUCTION

Understanding the processes that determine the initial mass function
(IMF), and why these processes appear to vary little with environ-
ment and metallicity, is one of the main challenges in star formation
(e.g. Elmegreen, Klessen & Wilson 2008). Recent observations of
prestellar cores (i.e. the dense, gravitationally bound condensations
in molecular clouds that are presumed to be destined to form in-
dividual stars or multiple systems) suggest that such cores have a
mass function very similar in shape to the IMF, but shifted to higher
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masses by a factor of 3-5 (e.g. Motte, Andre & Neri 1998; Testi
& Sargent 1998; Johnstone et al. 2000, 2001; Motte et al. 2001;
Enoch et al. 2006, 2008; Johnstone & Bally 2006; Stanke et al.
2008; Young et al. 2006; Alves, Lombardi & Lada 2007; Nutter &
Ward-Thompson 2007; Simpson, Nutter & Ward-Thompson 2008;
Rathborne et al. 2009; Konyves et al. 2010). The inference is that, in
a statistical sense, there is a more-or-less self-similar mapping from
prestellar cores to stars, and that the shape of the IMF is therefore
simply inherited from the shape of the core mass function (CMF).
If true, this simply moves the problem to one of understanding the
processes that determine the CMF, and why the outcome of these
processes also varies little with environment and metallicity. In
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addition, we still need to understand how an individual core maps
into an individual star or multiple system, and to what extent this
process can really be viewed as statistically self-similar.

The IMF has been evaluated by Kroupa (2001) and Chabrier
(2003, 2005). Chabrier finds that the IMF is well fitted with a log-
normal function merging into a power law at high masses. Theoret-
ical models and simulations of turbulent fragmentation suggest that
the CMF may also approximate to a log-normal function merging
into a power law at high masses (Padoan & Nordlund 2002; Padoan
et al. 2007; Hennebelle & Chabrier 2008, 2009).

However, these theories do not address the origins of stellar mul-
tiplicity. It is therefore timely to formulate the mapping between
core mass and star mass using simple distribution functions, so
that the additional constraints imposed by stellar multiplicity can
be taken into account. It turns out that these additional constraints
can be accommodated quite easily, but strongly favour a mapping
in which each core typically spawns N ~ 4 stars, with quite high
efficiency, n ~ 1; the individual stars spawned by a core have a
log-normal mass distribution with standard deviation oo ~ 0.3, and
two of them end up in a long-lived binary system. The probability
that a star with mass M ends up in a long-lived binary system is
approximately proportional to M.

In the interests of simplicity, we ignore the high-mass power-law
parts of the mass functions, and concentrate on the log-normal parts,
since these are the parts that are best constrained by observation,
and they can be described with just two parameters: a logarithmic'
mean and standard deviation. Therefore, our conclusions are most
pertinent to the mass range where this log-normal form appears to be
an acceptable approximation, say 0.03-3 M. However, it should
be noted that our conclusions are not significantly changed if the
high-mass power-law tail is included; this simply makes the maths
more laborious and less precise. For a detailed discussion of the
IMF and the eight parameters that may be needed to describe it more
completely, the reader is referred to Bastian, Covey & Meyer (2010).
We limit our consideration of multiplicity statistics to (i) the binary
frequency as a function of primary mass, and (ii) the distribution
of mass ratios (for systems with Sun-like and M-dwarf primaries),
again because these appear to be the multiplicity statistics that are
most robustly constrained by observation. For the purpose of this
paper, brown dwarfs are counted as stars.

In Section 2, we present the definitions and assumptions under-
lying our model. In Section 3, we present the observational data
we will use to estimate the model parameters. In Section 4, we
describe the consequences of the model, using simple arguments;
this discussion preempts the results of the more rigorous statistical
analysis that follows. In Section 5, we describe how stellar statistics
are evaluated for a particular model using Monte Carlo integration;
and in Section 6, we define the parameter we use to measure the
quality of fit between a model and the observations. In Section 7,
we describe the Markov chain procedure for identifying the best-
fitting model parameters, and in Section 8 we present the results. In
Section 9, we discuss the results and relate them to previous work,
and in Section 10 we summarize our main conclusions.

2 THE MODEL

2.1 Assumptions

If one accepts that most stars are formed in cores (see e.g. Bressert
et al. 2010), the model has only four assumptions.

! Throughout, all logarithms are to base 10.

Assumption I. The central portions of the CMF and the IMF are
both log-normal.

Assumption II. The mapping between them is statistically self-
similar, which means that the distribution of the relative masses of
the stars spawned by a single core must also be log-normal.

Assumption III. When a core forms more than one star, two of
these stars end up in a binary system that is sufficiently long lived
to contribute to the statistics of binaries in the field. All the rest
ultimately end up as singles.

Assumption IV. The relative probability that a star with mass M
ends up in a long-lived binary system is proportional to M“.

We note that these assumptions are not made because we believe
that they are necessarily true, but because they are simple, and
because it turns out that they suffice to fit all the observational
constraints that currently appear to be robust.

In addition, we note that the long-lived binary systems that con-
tribute to the field statistics are probably not the only ones that form
in a core cluster, but simply the ones that survive its dissolution
and subsequent tidal perturbations (e.g. Kroupa 1995). There is evi-
dence (e.g. Kohler et al. 2008; Chen et al. 2013) that the multiplicity
is much higher for young stars in some star formation regions than
for older stars in the field, and also includes a significant proportion
of higher order multiples. However, by the time stars arrive in the
field, many of these systems are likely to have been destroyed, and
the wider systems will continue to suffer attrition due to stochastic
tidal perturbations.

In other words, there are two very different time-scales involved
in the mapping. The mean number of stars spawned by a core (No)
and the mean total mass of the stars spawned by a core (hence
the efficiency, 7o) are — ignoring stellar mass-loss, accretion, mass
exchange and mergers — determined by processes that terminate
once the core disperses, after at most a few mega-years. In contrast,
the binary statistics are never completely settled. They evolve most
rapidly during the birth throes of the core cluster (the No stars
formed from a single core) and during its dispersion, but they then
evolve further due to interactions with other stars in the same large-
scale cluster (here presumed to be an ensemble of stars formed from
an ensemble of cores), and they continue to evolve, after the large-
scale cluster dissolves, due to interactions with the ever changing
background gravitational field (e.g. tidal perturbations from passing
stars and molecular clouds). However, these latter perturbations are
rare, and given that the typical field star has been in the field for
many giga-years, its binary statistics should by now be well defined.
Our model does not concern itself with the details of the dynamical
evolution of the stars spawned by a single core; it simply focuses
on the properties of systems that survive to populate the field, posits
that each core typically spawns just one such system and shows
that the observed binary statistics are reproduced well if this system
tends to comprise two of the more massive stars spawned by the
core. Other binary systems, and higher multiples, are spawned by a
core, but we presume that they are disrupted on a time-scale < 1 Gyr.
One would expect the binary systems surviving in the field to be
on average more massive and closer than the ones that have been
disrupted.

2.2 Input parameters

Table 1 summarizes the six model input parameters, namely the
logarithmic mean, pc, and standard deviation, o ¢, of the CMF; the
efficiency, 1, i.e. the fraction of a core’s mass that is converted into
stars; the mean number of stars, N, spawned by a single core; the
logarithmic standard deviation, o, of the relative masses of the
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Table 1. Input parameters regulating a single Monte Carlo integration, and the ranges of values admitted
by the Markov chain. The prior for the Markov chain is that, within these ranges, all values are equally

probable. Mc is the mass of a core and {M, Zjv

are the masses of the stars formed from a single core.

Parameter Identity Minimum  Maximum
e Arithmetic mean of 10g10(MC/M®) —-0.2 +0.2
oc Standard deviation of loglo(Mc/MQ) 0.3 0.7

n Mean star formation efficiency in core = szv {M,} /Mc 0.0 2.0
No Mean number of stars formed in core 1.0 7.0
fefe) Standard deviation ofloglo(M,,/MQ) 0.0 0.5

o Dynamical biasing parameter, dIn(pys)/dIn(M) —-2.0 5.0

stars spawned by a core; and the dynamical biasing parameter, «.
There are direct observational constraints on ¢ and o ¢, but not, as
yet, on n, No, 60 and a.

We note that values of 7 greater than unity are admissible because,
between the time when the mass of a core is estimated and added
to the CMF, and the time when its star formation is complete, the
core can, and almost certainly does, grow in mass, for example by
accretion along the filament in which it is embedded (e.g. Smith
et al. 2011). By the same token it is not necessary that all the
stars spawned by a core form simultaneously. Indeed, numerical
simulations suggest that some of the stars spawned by a core start
to condense out of the filamentary material accreting on to the core,
and may only reach the core as it starts to disintegrate (e.g. Bate
2012; Girichidis et al. 2012)

In addition, non-integer values of Ny are admissible. In such
cases, we adopt the simple device of dividing cores between the
integer values that bracket NVo. Thus, for example, Vo = 2.2 means
that 80 per cent of cores have A/ = 2 and 20 per cent have N/ = 3.

Apart from this device, we do not allow any variance in the input
parameters, because to do so introduces extra input parameters, but
does not significantly improve, or even alter, the fits obtained.

2.3 Output parameters

Given the four assumptions listed above, and values for the six input
parameters, we can predict the IMF (which, being log-normal, is
characterized by a logarithmic mean, ytg, and a logarithmic standard
deviation, o's), the binary frequency as a function of primary mass,
b(M,), and the distributions of mass ratio for systems with Sun-like
and M-dwarf primaries, p,(M). Our objective is to use observations
of these output parameters [us, o's, b(M;), p,(M,)] to constrain the
model input parameters (iic, oc, 1, No, 00, @).

3 OBSERVATIONAL DATA

Table 2 summarizes the expectation values, Vy, uncertainties, Uy,
and weights, Wy, according to the different observational param-
eters, X, that the model seeks to predict. The weights determine
the influence that different observed quantities exert on the overall
quality of fit of a model (see Section 6), and by design they add up
to unity.

For the mean and standard deviation of the IMF, ug and o,
we use values informed by Chabrier (2005), and since these two

Table 2. Output parameters characterizing the observed IMF and binary statistics (two left-hand columns), and parameters regulating the quality
of the fit of a model to the observations (three right-hand columns). Column 1 gives the name of the parameter in the model, and Column 2 its
identity. Column 3 gives the observed value (V) of this parameter, and Column 4 its uncertainty (U). Column 5 gives the weight (W) according to
fitting the observed value. Ms is the mass of a star from the whole ensemble of stars formed in a single Monte Carlo integration. The sources for

the observational data are given in Section 3.

Parameter  Identity Observed Value  Uncertainty Weight
s Mean of loglo(Ms/MQ) Vug = —0.70 Uug =0.10 Wy =1/4
os Standard deviation of log,o(Ms/M¢) Vog = 0.55 Usg = 0.05 Wos = 1/4
by Multiplicity frequency in (0.05, 0.10) Mo Vi, =0.20 Up, =0.15 Wy, =1/16
by Multiplicity frequency in (0.05, 0.17) My Vi, =0.26 Up, =0.10 Wy, =1/16
b3 Multiplicity frequency in (0.15, 0.60) M Vi, = 0.34 Upy; = 0.04 Wy, = 1/16
by Multiplicity frequency in (0.8, 1.2) Mo Vi, =0.45 Up, =0.03 Wy, =1/16
bs Multiplicity frequency in (3, 50) Mo Vis = 0.70 Ups = 0.10 Wps =
be Multiplicity frequency in (20, 70) Mo Vs = 0.85 Ups = 0.10 Wpe =
P3¢ Fraction of systems from primary-mass bin 3 in mass-ratio bin £ (¢ = 1to5) Vpy =0.20 Up,, =005 W, =1/40
Vpy, = 0.20 Up;, =005 Wy, =1/40
Vpss = 0.20 Ups3 =005 Wy, =1/40
Vpyy =0.20 Ups s =005 Wy, =1/40
Vpys = 0.20 Upys =005 Wy, =1/40
D4, ¢ Fraction of systems from primary-mass bin 4 in mass-ratio bin £ (£ = 1to5) Vpy, = 0.10 Up,, =003 Wy, =1/40
Vp,, =0.25 Up,, =005 Wy, =1/40
Vpys =021 Up,; =005 Wy, =1/40
Vpys =0.19 Upyy =004 Wy, =1/40
Vpys =0.25 Upys =005 Wy, =1/40
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quantities appear to be quite well constrained by observation, we
give them both a high weight, W,, = W, = 1/4.

For the binary frequencies we consider six primary-mass bins.
Bin m = 1 (the lowest mass bin) represents the results of Close
et al. (2003), bin 2 those of Basri & Reiners (2006), bin 3 those
of Janson et al. (2012), bin 4 those of Raghavan et al. (2010), bin
5 those of Preibisch et al. (1999) and bin 6 those of Mason et al.
(1998). For evaluating the quality of the fit, we give the first four
bins equal weights, W, = 1/16, i = 1to4, so that their combined
weight is 1/4. The last two bins are given zero weight, because
the stars in these bins are not strictly field stars.” Therefore, these
two bins should not influence the choice of the best-fitting model.
They are included because — notwithstanding — the predictions of
the best-fitting model agree with them well (see Fig. 3).

For the distribution of mass ratios, ¢, we consider only primary-
mass bins m = 3 and 4, since these are the ones with relatively ro-
bust mass-ratio statistics (Raghavan et al. 2010; Reggiani & Meyer
2011; Janson et al. 2012). In both primary-mass bins, the distribu-
tion of mass ratios appears to be flat (Reggiani & Meyer 2011).
We follow convention by allocating the mass ratios to five equal
bins, £ = 1to5, so that bin £ accommodates values in the range
0.2(¢ — 1) < ¢ <0.2¢. For primary-mass bin 3, Janson et al. (2012)
conclude that, when allowance is made for selection effects, the
distribution of mass ratios is flat, and therefore we simply set all
the expectation values to V,,, = 0.20, and all the uncertainties to
U,,, = 0.05. For primary-mass bin 4, we adopt expectation values
and Poisson uncertainties from Raghavan et al. (2010). For all 10
primary-mass/mass-ratio bins, we allocate W, , = 1/40, so that
their combined weight is 1/4.

D, €

4 SIMPLE INFERENCES

In Section 8, we present the results of a Markov chain Monte Carlo
analysis. Here we present simple arguments to preempt the main
results of that analysis.

4.1 The shift between the IMF and the CMF

The mean mass of the stars that form from a given core is related to
the mass of the core by the efficiency, n (the fraction of the core’s
mass that ends up in stars), divided by the number of stars formed
from the core No. Hence, the factor by which the peak of the CMF
exceeds the peak of the IMF is given by

F = 10kcns) — 'Aé . (1)

n

If we adopt us = —0.6 = 0.05 (from Chabrier 2003) and puc =
0.0 £ 0.1 (from, e.g., Enoch et al. 2006, 2008; Young et al. 2006;
Konyves et al. 2010), we have F >~ 4 £ 1, whence

4.2 Raising the degeneracy between N and 7

The degeneracy between N and 7 can be raised by considering the
binary statistics. Two essential features of the binary statistics in the
field are that — very roughly — the number of single-star systems is
comparable with, but somewhat larger than, the number of binary

2 The last two bins concern binaries with relatively high-mass short-lived
primaries in the Orion nebula cluster (Preibisch et al. 1999) and a mixture
of systems in clusters, associations and the field (Mason et al. 1998).

systems, and the binary frequency is an increasing function of pri-
mary mass (db/dM; > 0). The influence of these constraints can
be understood with the following Gedankenexperiment. Suppose
(purely for the sake of argument, and averaged over all masses) that
60 per cent of systems are single and 40 per cent are binary. This
can be achieved in two ways.

(i) No = 1.4. In this case, 60 per cent of cores have N =1
and spawn singles, whilst 40 per cent of cores have N' =2 and
spawn binaries. This gives 0.26 < n < 0.44. However, it means
that the components of binary systems are on average less massive
than single stars, and therefore the binary fraction is a decreasing
function of primary mass, which is the opposite of what is observed.

(ii) Mo = 3.5. In this case, each core spawns a binary system,
but 50 per cent have A = 3 so they spawn one extra single star,
and the remaining 50 per cent have N = 4 and therefore spawn
two extra single stars. This gives 0.7 < n < 1. Moreover, provided
o > 0, the components of binary systems are now, on average, more
massive than the single stars, and consequently the binary fraction
is an increasing function of primary mass, as observed.

There is therefore a strong preference for the larger value of No,
to ensure that db/dM, > 0.

4.3 Standard deviation of the relative masses of the stars
spawned by a single core

Since the mapping of the CMF on to the IMF involves the convolu-
tion of a log-normal CMF with a log-normal distribution of relative
stellar masses, the logarithmic standard deviation of the IMF, o, is
obtained by adding the logarithmic standard deviation of the CMF,
o¢, and the logarithmic standard deviation of the relative stellar
masses, 0, in quadrature,

052 = (ré + (73,. (3)

A corollary of equation (3) is that — for a self-similar mapping — the
logarithmic standard deviation of the IMF cannot be smaller than
the logarithmic standard deviation of the CMF,

oy > OC . 4

In interpreting this inequality, one must recognize that the log-
normal CMF we are discussing here is one that represents a very
large region embracing a representative ensemble of star formation
regions; the log-normal CMFs inferred for individual star formation
regions can — and apparently do — have a range of means and
logarithmic standard deviations, but together they cannot have a
logarithmic standard deviation greater than that of the IMF and still
admit a self-similar mapping. Since observations suggest o¢ ~ o's,
this in turn implies that oo cannot be very large.

4.4 Mass ratios

Observations (Raghavan et al. 2010; Reggiani & Meyer 2011;
Janson et al. 2012) suggest that the distributions of mass ratio for
binary systems having Sun-like and M-dwarf primaries are both
flat. In our model, this means first that o cannot be very small?
otherwise the range of stellar masses formed in a single core would
be too narrow to produce low-¢ systems; and secondly that & cannot

31t turns out that finding a value of oo that is both small enough to sat-
isfy equation (3) and large enough to deliver low-¢q binaries is the hardest
constraint for the model to satisfy.
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be too large, otherwise the low-mass stars would have little chance
of pairing up with the high-mass ones to produce low-g systems.

5 MONTE CARLO INTEGRATION

For a single model (i.e. a fixed combination of the input parameters,
e, oc, 1, No, 00, a), we evaluate the stellar statistics as follows.

First, a core mass, Mc, is obtained by generating a Gaussian
random deviate, G, on (—o0, +00), and setting

Mc = 10499 Mg . ®)

Next, if Mo is a non-integer, a value for V' is obtained by generating
a linear random deviate, £, on (0, 1), and putting

{ INT(No), when £ > N — INT(NG);

(6)
when £ < No — INT(Np).

INT(Np) + 1,

Otherwise A" = Np. Then the masses of the N stars spawned by
this core can be obtained by generating Gaussian random deviates,
G, on (—00, +00), and computing

Mcn
N

If N > 2, the integrated probability of each possible pairing of these
stars (star n with star n’) is computed,

Mg = 10990 . @)

-
v=n VvV =n

P {My M}
Paw = o - ®
{my w3}
v=1l  v=v+1

Finally, a linear random variate, £, on (0, 1) is generated, and the
pairing whose integrated probability is just above L is selected.

This is repeated until a total of 107 stars have been created.
Then the mean and standard deviation of the IMF, ug and o, are
computed (using the logarithms of the stellar masses). For each star
that falls in one of the mass bins defined in Table 2, we note whether
itis the primary in a binary system, the secondary in a binary system
or a single star; and, if it is a primary, we also note which mass-ratio
bin the binary falls in. If mass bin m contains P,, primaries and S,,
singles, the corresponding binary frequency” is

Py

bm = 5 o
Py, +Sn

9
If mass-ratio bin ¢ of mass bin m contains C,,, systems, the corre-
sponding mass-ratio probability is

Cm £
I)Iil '

Pm.e = (10)

The model can then be compared with the observational data.

4 We refer the reader to Reipurth & Zinnecker (1993) for a discussion of
different measures of multiplicity and their various merits. The one defined
in equation (9) is in effect the multiplicity frequency, but we refer to it as
the binary frequency because we are only considering binaries. As pointed
out by Hubber & Whitworth (2005), the multiplicity frequency has the nice
property that it is insensitive to whether a binary system is actually a higher
order multiple. We note parenthetically that there are in general other stars
in each mass bin that are secondaries, but these do not explicitly affect the
calculation of the b,,.

6 QUALITY OF FIT

For each model (i.e. each Monte Carlo integration with a given set
of input parameters, uc, oc, 1, No, 0o, @), the quality of fit, Q,
is given by a sum of terms,

Wx (X — Vx)?
AQX:—AJL—TJL, (11)

Ux

representing how well the model prediction for output parameter
X (E/“LS’ os, bm [form = ls 2, 3,4]717»;16 [form = 3,4;Z =
1,2,3,4,5]) matches with the observational constraints (see Ta-
ble 2). The overall quality of fit for a given model is then

QAuc, oc, 77,/\/’0,00,01) =

//.5 (N/S /l.s ) _ Wrrs (US - Vas )2
U? U2
os

st

= W, (b — Vi, )
-3 et

m=1 bm

m=4 =5 2
m, V
_ Z { { Pm/{(p = Pm,/{.) }} ) (12)
m=3 =1 Pm ¢

The first two terms on the right-hand side of equation (12) measure
the ability of the model to reproduce the observed IMF (with an
overall weighting of 50 per cent); the third term (involving a single
summation) measures its ability to reproduce the observed binary
frequency as a function of primary mass (with an overall weighting
of 25 per cent); and the fourth term (involving a double summa-
tion) measures its ability to reproduce the distributions of mass ratio
for systems having Sun-like and M-dwarf primaries (with an over-
all weighting of 25 per cent). A notionally perfect fit corresponds
to @ =0, and | Q| can be interpreted as the number of standard
deviations by which the model departs from a perfect fit.

7 MARKOV CHAIN

7.1 Range of pc and o¢

Herschel has allowed much more robust evaluations of the CMF.
For example, Konyves et al. (2010) obtain (uc, oc) = (—0.22,
0.42) and (—0.05, 0.30) in — respectively — the entire Aquila field
and the main Aquila subfield. Previously, Enoch et al. (2006) have
estimated (uc, oc) = (—0.05 £ 0.25, 0.50 4+ 0.10) in Perseus,
Young et al. (2006) have estimated (uc, o¢c) = 0.3 £ 0.7, 0.5 £
0.4) in Ophiuchus and Enoch et al. (2008) have estimated (uc,
oc) = 0.00 £ 0.04, 0.30 £ 0.03) for an ensemble of cores from
Perseus, Serpens and Ophiuchus.

However, all these evaluations are convolved with a number of
uncertainties. In particular, the use of grey-body fits to estimate
mean dust temperatures, the mass opacity coefficients needed to
convert fluxes into masses and the distances assumed for the star-
formation regions all introduce uncertainty into the derived masses,
and hence into the pc-values. oc-values may be somewhat less
susceptible to these factors, but are affected by the fact that the
cores on the low-mass side of the log-normal tend to be close to
the completeness limit. Furthermore, we are here concerned with
the values of pc and o for the totality of all star-forming cores,
rather than those for a single region.

To keep the problem tractable, we restrict the Markov chain to
values of pc in the range —0.2 < puc < +0.2. We discuss the
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consequences of taking pc-values outside this range, in Section 8.
For o we restrict the Markov chain to values of o¢ in the range
0.3 < o¢ < 0.7. This choice is informed by the range of obser-
vationally inferred values, and by the fact that o ¢ cannot exceed o's.

7.2 Range of 7 and Ny

We restrict the Markov chain to values of 7 in the range 0 < n <
2, and values of No in the range 1 < Ny < 7. Evidently, if a core
accretes very rapidly on the way to forming stars, higher 1 values are
possible, but this turns out to be unlikely. The arguments presented
in Section 4.2 suggest that higher values of N are inadmissible —
unless each core spawns more than one long-lived binary, and the
efficiency is increased still further (see Section 4.1).

7.3 Range of 0 and «

We restrict the Markov chain to values of o in the range 0 < oo
< 0.5, on the grounds that oo has to be smaller than o, and is
probably also smaller than o c.

We restrict the Markov chain to values of « in the range —2 <
o < 5. This choice is informed by numerical work on the disso-
Iution of small-N clusters (e.g. van Albada 1968a,b; McDonald &
Clarke 1993; Sterzik & Durisen 1998; Hubber & Whitworth 2005,
and references therein), which suggests that, if the dissolution of
a core cluster involves pure gravitational interaction between the
stars, a single long-lived binary is the most likely outcome and it
usually comprises the two most massive stars, which implies o >
1. Conversely, if there is dissipation — for example, because the stars
are attended by massive discs (McDonald & Clarke 1995) — other
pairings become more likely, which implies a smaller « value. Flat
mass-ratio distributions translate into a preference for small «.

7.4 Markov chain

The ranges detailed above define the input parameter space, and
our prior is that all values in these ranges are equally probable. The
Markov chain then starts at an arbitrary point in this space, and
makes a biased random walk around the space. The components of
a step are generated from Gaussian distributions. A step is always
taken if AQ = Ongw — Qorp > 0 (i.e. if it results in an improve-
ment to the fit). If AQ < 0, the code generates a linear random
deviate, £, on (0, 1), and only takes the step if AQ > In(L) (i.e.
steps that produce a deterioration in the fit are less likely to be taken
the larger the deterioration). The size of a step is scaled so that
roughly half of all putative steps are not taken.

8 RESULTS

From the Markov chain, there is a single well-defined Q peak in the
parameter space explored, and the best fit is obtained with

pe = —0.03 £ 0.10, (13)
oc = 0.47 + 0.04, (14)
n =101 4 0.27, 15)
No = 4.34 £ 043, (16)
00 = 0.30 £ 0.03, 17

o =087 £ 0.64, (18)

Q= -033, (19)

i.e. 0.330 overall difference between the model and the observa-
tions.

The parameters of the CMF (uc, o¢) are compatible with those
obtained from observation, although pc has a rather large uncer-
tainty, and we return to this point below.

The efficiency (1) is much higher than the values normally esti-
mated (e.g. Alves et al. 2007). n is also only just compatible at the
high end of the range calculated theoretically by Matzner & McKee
(2000), but in their model these high values arise in cores that are
intrinsically flattened (so that outflows can escape without sweep-
ing up much core mass), rather than as a consequence of forming
many stars. High notional efficiencies may be an indication that
cores grow in mass whilst they collapse and fragment to form stars
(e.g. Smith et al. 2011).

The mean number of stars formed from a single core (Np) is
also higher than the values normally invoked. Mathematically this
follows from the large n (see equation 1), but physically it also
derives — inevitably, in a self-similar mapping — from the need to
form binaries with a frequency that increases with primary mass
(see discussion in Section 4.2).

The spread of stellar masses from a single core cluster (6o =
0.29 £ 0.07) is such that if the stars are paired randomly, between
33 and 56 per cent of the resulting systems have mass ratio below
0.5. Thus, in order to produce a flat distribution of mass ratios, the
dynamical biasing parameter should not be too large, and this is
what the model infers (@ = 0.6 & 1.0).

In Fig. 1, we plot those values of Q generated along the Markov
chain that exceed —1 (i.e. those models that deliver output parame-
ters that are collectively within 1o of the observations), against the
different model input parameters. These plots show that the best-
fitting model input parameters are all well defined, apart from ic.
Fortunately, uc is already quite well constrained by observation,
and likely to become better constrained in the future. If ©c were
increased, the efficiency, n, would have to be reduced proportion-
ately (or each core would have to produce more than one long-lived
binary) — and vice versa.

Fig. 2 illustrates how Q varies on planes through the best-fitting
solution, i.e. if just two of the model input parameters are varied.
These plots are generated with a regular two-dimensional grid of
models, and 107 stars per model. On each row, the ordinate is the
same for all five plots, and the abscissa cycles through the remaining
five input parameters. From the plots in the first row, we see that
ic is weakly constrained, and also, from the second plot along this
row, that if uc is increased, n must be reduced proportionately. In
all other cases, a horizontal scan of the plots in a row reveals that
the parameter concerned (the ordinate) is very well, and uniquely,
constrained by the observations.

Fig. 3 presents the binary frequency as a function of primary mass,
for the best-fitting model, generated using 107 stars, along with the
observational data used to constrain the model. We reiterate that we
do not use the two higher mass points, but only the four lower mass
points. Notwithstanding, the model fits all six points well.

Fig. 4 presents the mass-ratio distributions for binaries having
primaries in mass bins 3 and 4. We see that there is acceptable
agreement. The largest divergence occurs in the extreme bins. This
is not surprising, given that, in the model, the components of a
binary system are drawn from a log-normal distribution of masses
with a power-law weighting.
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Figure 1. The Q-values for all models along the Markov chain that have Q > —1, plotted against ¢, oc, 1, No, 00 and a.

9 DISCUSSION

9.1 Critique of the model

The critical assumption of the model is that each core spawns,
on average, exactly one long-lived binary system, i.e. one binary
system that survives to populate the field. If this assumption were
relaxed, in the sense that a core might spawn more than one long-
lived binary system (say, on average, B binary systems), then 1 and
No would have to be increased (in proportion to B). Conversely, if
not all cores were to spawn a binary system, n and No would have
to be reduced, but it would then become impossible to reproduce the
variation of binary frequency with primary mass, h(M) —unless one
were to introduce an additional parameter to allow the efficiency
to be much higher for cores that spawn binaries than for those that
do not.

If the observed estimate for the overall binary frequency of low-
mass field stars [i.e. binaries with primaries in the range (0.02,
2.0) M ] were to increase, this would reduce No, and consequently
1. For example, if the observed overall binary frequency of low-mass
field stars were increased to 0.5, the model would require No ~ 3
and n ~ 0.8 £ 0.2.

It is difficult to see how the various standard deviations could
change much, unless o is very different from the Chabrier (2005)
value. If o were larger, o¢ and o could also be larger, and vice
versa.

If the distribution of mass ratios were skewed in favour of systems
with comparable mass, i.e. dp,/dg > 0, then oo would need to be
reduced, and/or « increased (more dynamical biasing).

9.2 Previous theoretical work

Some of the consequences of a self-similar mapping are explored
by Clarke (1996), but with different distribution functions and less
emphasis on observational constraints.

Swift & Williams (2008) develop a similar model to ours, but one
which includes a power-law extension to the CMF at high masses,
based on the analysis of Padoan & Nordlund (2002), and which
invokes somewhat different model parameters. They explore the
consequences of varying the prescriptions for generating multiple
systems, and for subfragmentation of a core, but their work differs
from ours in that they do not explore in depth the question of
multiplicity and its variation with primary mass, and they do not

draw any firm conclusions on the efficiency, or on the number of
stars spawned by a single core.

Goodwin et al. (2008) explore the consequences of multiplicity
for the mapping from the CMF into the IMF, and in particular the
effect of multiplicity on the extremes of the IMF. Their preferred
model presumes that all cores spawn multiple systems, with the
number of stars in a system increasing very slightly with the mass of
the progenitor core (the model is therefore not strictly self-similar),
and it has quite a low efficiency, no = 0.27. They do not explore the
issue of how such systems might subsequently evolve to produce
singles, so they cannot exploit the observed variation of binary
fraction with primary mass.

Goodwin & Kouwenhoven (2009) demonstrate that the mapping
from a log-normal CMF into an approximately log-normal system
mass function (SMF) and from the SMF into an approximately
log-normal IMF admits a wide range of prescriptions for (i) how
the efficiency varies with the core mass (7(Mc)), (ii) whether the
probability that a core spawns a single or a binary depends on its
mass [effectively N (Mc)] (iii) and the distribution of mass ratios in
such binaries. This concurs with our conclusion (see Section 9.3)
that, whilst there are many theoretical arguments for allowing the
input parameters of the mapping to depend on the core mass (thereby
rendering the mapping non-self-similar), the effect on the IMF is
so subtle that these dependences cannot usefully be constrained by
the existing observations.

9.3 Additional model parameters

We have considered the following refinements to the model. How-
ever, none of them is justified, since none of them, either individ-
ually or in combination, produces a significant improvement to the
fit; in respect of items (ii), (iii) and (iv), Goodwin & Kouwenhoven
(2009) reached essentially the same conclusion, but on the basis of
a very different model and less restrictive observational constraints.
Necessarily, all these refinements would corrupt the self-similarity
of the mapping.

(1) We have explored models in which the lifetime of a prestellar
core (i.e. the time during which a prestellar core is detected as such)
depends on its mass according to tc o« MZ'. Negative values of
X skew the IMF towards high masses because low-mass cores are
over-represented in the CMF. Conversely, positive values of x, skew
the model IMF towards low masses, because high-mass cores are
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Figure 2. Iso-Q plots on principal planes through the best-fitting model. In each row the ordinate (vertical axis) is the same model input parameter, from top
to bottom in the order ¢, o ¢, 1, No, 0o and . Along each row, the abscissa (horizontal axis) cycles through the remaining model input parameters, in the
same order. By scanning along a row, one can see both which parameters are tightly constrained by the model and which parameters are correlated. The false
colour encodes the value of Q (see the bar on right of plot), and the contours correspond to Q + 1, 2, 3, 4, 5.
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Figure 3. The boxes represent the observational estimates of multiplicity
frequency in different primary-mass intervals, as detailed in the text, and
summarized in Table 2. The error bars represent the observational uncer-
tainties. The dashed line shows the multiplicity frequency as a function of
primary mass for the best-fitting model. The unruly points at large M are
due to small-number statistics.
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Figure 4. The distribution of mass ratios for binaries having primaries
in mass bins 3 and 4. The plotted symbols with error bars represent the
observationally inferred expectation values and uncertainties: orange plus
signs for mass bin 3, and blue crosses for mass bin 4. The histograms
represent the model results: orange solid line for mass bin 3, and dotted blue
line for mass bin 4.

over-represented in the CMF. There is no consensus on this. Hatchell
& Fuller (2008) have argued that more massive cores evolve faster
than less massive ones, and are therefore under-represented in the
CMF; this might be taken into the reckoning with x, = — 0.25. Con-
versely, Clark, Klessen & Bonnell (2007) have argued that massive
cores being more diffuse have longer lifetimes, and are therefore
over-represented in the CMF; on the basis of a simple free-fall ar-
gument, and Larson’s scaling relations, this might be taken into the
reckoning with y, = +0.25.

(i) We have explored models in which the efficiency of star
formation in a prestellar core depends on its mass according to
no o¢ M{". This is equivalent to including feedback from massive
stars. Star formation is promoted by feedback from massive stars
if x, is positive, and suppressed if x, is negative. However, it is
not known what the sense of feedback from massive stars is, on the
scale of a single core.

(iii) We have explored models in which the number of stars
formed from a prestellar core depends on its mass according to
No o« MV . Negative values of xn (a) skew the IMF towards
high masses, and (b) increase the multiplicity frequency of high-
mass stars and reduce the multiplicity frequency of low-mass stars.
Positive values of y s have the opposite effects. It is difficult to
believe that N does not increase with core mass (positive xar).
However, this would completely undermine the original argument
for a self-similar mapping between CMF and IMF, namely that
the high-mass slopes of the CMF and IMF appear to be indistin-
guishable. Moreover, in practice, the observational constraints can
more easily accommodate the effects of negative x,r. Either way,
non-zero xar-values are not actually needed to fit the observational
constraints we have invoked.

(iv) We have explored models in which the logarithmic range of
stellar masses formed from a prestellar core depends on its mass
according to oo o« M. It is probably the case that only positive
values of x, could be justified (i.e. higher mass cores spawning a
greater logarithmic spread of stellar masses), but this is not needed
to fit the observational constraints. Moreover, it suppresses the high-
mass end of the IMF, which — in this purely log-normal model — is
already too low.

(v) We have explored the possibility that there is some vari-
ance in, for example, N, so that when N = 3 (say) not all cores
spawn exactly three stars. However, first this introduces an addi-
tional model parameter, which should be avoided if possible, and
secondly it makes no significant difference to the results, unless the
variance is extremely large, so we do not include it in the basic
model.

We reiterate that we are not arguing that these additional effects
do not occur in nature. We are simply pointing out (a) that they
are not justified by the currently available observational constraints,
that is, one can obtain a good fit to the observations without them;
and (b) that they would corrupt a self-similar mapping.

10 CONCLUSIONS

We have developed a simple model to describe the mapping of the
CMF on to the IMF.

(i) The model has four assumptions: the central portions of the
CMF and IMF are both log-normal; the mapping from the CMF on
to the IMF is self-similar; if a core forms more than one star, two
of the stars end up in a long-lived binary; and the probability of a
star of mass M being in this binary is proportional to M“.

(i1) The model has six input parameters: jc and o ¢ are the loga-
rithmic mean and standard deviation of the log-normal CMF; 7 is
the efficiency (i.e. the fraction of a core’s mass that ends up in new
stars); No is the mean number of stars spawned by a single core; oo
is the standard deviation of the log-normal distribution of relative
stellar masses spawned by a single core; and « is the dynamical
biasing parameter.

(iii) This model is able to fit the observed IMF, the ob-
served binary frequency as a function of primary mass
and the observed distributions of mass ratio for bina-
ries having Sun-like and M-dwarf primaries. The best
fit requires uc = —0.03 £0.10, oc =047 +£0.04, n =1.01 £
0.27, No =434+0.43, 00 =030+0.03 and « = 087 +
0.64 . It fits the observations to within 0.250.

We have not demonstrated, nor do we advocate, that the mapping
is necessarily self-similar, but only that, if one assumes
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self-similarity, there is a simple mapping that fits the observational
constraints well and therefore — on the basis of Occam’s razor —
should be given consideration.

Moreover, if the mapping is not (at least, approximately) self-
similar, then the notion that the shape of the IMF is inherited from
the CMF must be abandoned.

Either way, there is a question to be answered beyond understand-
ing the origin of the CMF: either why is the mapping self-similar
or why does the mapping, despite not being self-similar, produce
an IMF with the same shape as the CMF?

The self-similar model suggests that the efficiency of star forma-
tion within a prestellar core is significantly higher (no ~ 1.0 £ 0.3)
than has previously been proposed (e.g. no ~ 0.3; Alves et al. 2007).
It also suggests that most stars, including singles, are born in small
groups of approximately four. This contrasts with the conclusion of
Lada (2006) that most stars, being single, are born in isolation. In-
terestingly, Nakamura, Takakuwa & Kawabe (2012) have recently
reported evidence that prestellar cores are more fragmented than
had previously been thought. If cores spawn many stars, we may
see multiple outflows from some cores (e.g. Wu, Takakuwa & Lim
2009), but these outflows do not have to disperse a large fraction of
the core’s initial mass, and can simply punch holes in the residual
envelope.
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