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ABSTRACT

We examine the effects of gas expulsion on initially substructured distributions of stars. We
perform N-body simulations of the evolution of these distributions in a static background
potential to mimic the gas. We remove the static potential instantaneously to model gas
expulsion. We find that the exact dynamical state of the cluster plays a very strong role in
affecting a cluster’s survival, especially at early times: they may be entirely destroyed or
only weakly affected. We show that knowing both detailed dynamics and relative star—gas
distributions can provide a good estimate of the post-gas expulsion state of the cluster, but
even knowing these is not an absolute way of determining the survival or otherwise of the

cluster.
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1 INTRODUCTION

The vast majority of stars appears to form in environments with
densities typically much greater than the field (Lada & Lada 2003;
Bressert et al. 2010; King et al. 2012), but after a few Myr the
majority of the stars are dispersed into the field (Lada & Lada 2003).
The mechanism by which stars are dispersed is unclear, they may
form unbound, or form in bound clusters which are then unbound
by the expulsion of residual gas left-over after star formation (see
below).

Star formation does not consume all of the gas in a molecular
cloud, indeed it is estimated that at most 30 per cent of the gas is
turned into stars (Dobbs et al. 2014; Padoan et al. 2014). Observa-
tions show that by 10 Myr, and probably well before, young stars
are no longer associated with gas (Lada & Lada 2003). This gas has
presumably been heated and expelled by feedback (ionization, me-
chanical winds and supernovae). It is interesting and important to
examine how the stars respond to this gas loss and the corresponding
(very significant?) change in the local potential.

Many authors have examined the effects of gas loss on stars (see
Tutukov 1978; Hills 1980; Elmegreen 1983; Mathieu 1983; Lada,
Margulis & Dearborn 1984; Elmegreen & Clemens 1985; Pinto
1987; Verschueren & David 1989; Goodwin 1997a,b, 2009; Geyer
& Burkert 2001; Boily & Kroupa 2003a,b; Bastian & Goodwin
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2006; Goodwin & Bastian 2006; Baumgardt & Kroupa 2007;
Parmentier et al. 2008), but the majority of this work has con-
centrated on gas loss from clusters in which the stars and gas are
both dynamically relaxed and in global virial equilibrium (but see
Lada et al. 1984; Verschueren & David 1989; Goodwin 2009). If
one assumes that the gas and stars in the cluster are well mixed and
relaxed then the gas-to-star mass ratio is enough to derive the global
star formation efficiency (SFE) in the cluster. However, Verschueren
& David (1989) and Goodwin (2009) note that the exact dynamical
state of clusters at the moment of gas expulsion is also extremely
important and point-out that the SFE alone is not the most important
factor in deciding the fate of a cluster.

Recently it has become very clear that not all stars form in re-
laxed, centrally concentrated clusters, and can often form in com-
plex hierarchical/substructured distributions which follow the gas
(Whitmore et al. 1999; Johnstone et al. 2000; Kirk, Johnstone &
Tafalla 2007; Schmeja, Kumar & Ferreira 2008; Gutermuth et al.
2009; di Francesco et al. 2010; Konyves et al. 2010; Maury et al.
2011; Wright et al. 2014). It is still unclear which of clustered or
‘hierarchical’ is the main mode of star formation (or how and if they
are connected), but it is clear that hierarchical is an important mode
in many nearby low-mass star-forming regions.

In a hierarchical mode of star formation the stars and gas are not
in anything close to equilibrium. Both will be in motion relative to
one another as the stars respond only to gravity, where as the gas
can suffer additional hydrodynamical effects and feedback. This
means that the absolute and relative distributions of stars and gas
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at formation can change significantly before the gas is removed
from the system. Therefore, the effect of gas removal on the stellar
distribution depends not just on the relative masses of the stellar
and gaseous components, but also on how they have dynamically
evolved (see e.g. Kruijssen et al. 2012a).

This is the latest in a series of papers in which we have examined
the response of complex, hierarchical systems to gas expulsion (see
Smith et al. 2011, 2013a). The complexity of hierarchical distribu-
tions means that there is a very large parameter space to explore,
and a wide variety of possible outcomes. In this paper, we expand
on the work of Smith et al. (2011, 2013a).

2 SIMULATIONS

Since we wish to continue the work of Smith et al. (2011, 2013a),
we use similar, simplified initial conditions for our simulations. We
perform N-body simulations using the NBoDY6 code (Aarseth 2003).

As we describe in more detail below, equal-mass stars are dis-
tributed in a fractal distribution in a smooth and static background
potential to mimic the potential of the gas in which they are embed-
ded. Given that we use a static potential for the gas, we are unable
to include active star formation in our models. However, we do not
expect this to change the key conclusions of this study. The potential
is then removed instantaneously to simulate gas expulsion.

This is clearly an extreme oversimplification in many ways. In
reality, the gas is not distributed in a smooth spherical distribution,
and both the gas and stars will move in response to changes in the
global potential. The gas will also react to hydrodynamic forces and
feedback (which is what eventually expel any remaining gas). Gas
expulsion is unlikely to be instantaneous, rather gas will be lost at
different rates in different regions, and dynamics can cause the stars
and gas to decouple without any feedback.

We take this simplified approach rather than attempt to deal with
the gas dynamics with a hydrodynamic method for two reasons.
First, the practical issue of performing large ensembles of simu-
lations — this is much quicker and easier with pure N-body sim-
ulations. Secondly, the complexity of the gas distribution would
add large numbers of (largely unknown) parameters to our possible
parameter space. We will return to discuss this issue later.

We choose equal-mass particles in order to avoid complex two-
body interactions and mass segregation (see e.g. Allison et al. 2009
for the complications a realistic mass spectrum can add to an already
complex problem). This will be addressed in more detail in a future
paper (Blaiia et al., in preparation).

2.1 Initial distributions

In all cases, we model the stellar distribution using N = 1000
particles with equal masses of 0.5 M.

Using the box fractal method described by Goodwin &
Whitworth (2004), we create 20 random realizations of fractal dis-
tributions, each with a fractal dimensions of D = 1.6, corresponding
to a highly clumpy initial distribution within a radius of 1.5 pc. We
use the same 20 stellar distributions for each background potential.

We start our simulations with two energies: initial virial ratios
of Q; = 0.5 (warm), and Q; = 0 (cold). As we will show, even
our Qi—o 5 simulations are not in equilibrium. Fractal clusters will
then attempt to relax in pursuit of equilibrium and subsequently
there are large variations in their virial ratio parameter. Thus, we
measure Q instantaneously at two important epochs: the beginning
of the simulation (Q; where ‘i’ donates ‘initial’), and the moment
when gas expulsion begins (Qf where ‘f” donates ‘final’). The cold

systems start with the stars initially at rest relative to each other,
this is unrealistic, but is the case where we expect the most rapid
collapse and erasure of substructure.

2.2 The background potential and SFE

We work with three different static background potentials: (i) a
Plummer sphere with R, = 1.0 pc and Mg = 3472 Mg,
(ii) a uniform sphere of gas with a maximum radius of R = 1.8 pc
and Mgy oc = 3455M( (equivalent to a Plummer sphere with
Ry = 00), and finally (iii) a highly concentrated Plummer sphere
with Ry = 0.2 and My,0r = 2053 M. This choice of parame-
ters ensures that we obtain a SFE = 0.2 for all three background
potentials (i.e. we always have exactly 2500 M, total mass within
1.5 pc, of which 2000 M, is gas, and 500 M, is stars).

In this work, we expel the gas instantaneously at early times
in the evolution of the cluster i.e. within a few crossing times
(1t.; & 1.4 Myr), and compare to clusters with a later gas expulsion
(~7.5t4).

2.3 Gas expulsion time

We simulate rapid gas expulsion by removing the background po-
tential instantaneously. This is the most potentially destructive gas
expulsion (see Baumgardt & Kroupa 2007).

As we wish to model the effects of early gas expulsion, we usually
remove the gas potential instantaneously within two initial crossing
times (17, =~ 1.4 Myr). During this time, the initial distributions
relax violently and 7., may no longer be a representative time-scale
(see Section 2.5)

We first summarize the results from our previous studies before
describing and explaining our new results.

2.4 Previous work

Numerical models of gas expulsion from initially virialized gas—
star Plummer spheres have shown that a small fraction of stars can
remain bound if the stars make up more than about 30 per cent of
the initial system (in this case what is often assumed to be a direct
measure of the SFE), and the majority of the stars will remain bound
if the fraction is greater than 50 per cent (see e.g. Goodwin & Bastian
2006; Baumgardt & Kroupa 2007). The speed of gas expulsion is
important with fast (instantaneous) gas expulsion being significantly
more disruptive than slow (adiabatic) gas expulsion (see Lada et al.
1984; Baumgardt & Kroupa 2007).

Our initial conditions are a highly simplified, but hopefully re-
alistic at a fundamental level, model of a fractal stellar distribution
relaxing in a global gas potential before the removal of that gas po-
tential. This is very different from the initially star—gas equilibrium
distributions assumed in most previous studies.

Because the stellar distribution is highly out-of-equilibrium and
also different from the gas potential, this means that the stellar
distribution will violently relax. The initial fractal substructures will
be erased and the stellar distribution will become smooth, whilst at
the same time relaxing to fit the underlying static (gas) potential
(see also Allison et al. 2009; Parker et al. 2014). This means that
the stellar distribution will become more concentrated relative to
the static gas potential as potential energy stored in substructure is
distributed more smoothly (see e.g. Allison et al. 2009).

Smith etal. (2011) identify an important parameter in determining
the remaining bound fraction as the local stellar fraction (LSF). The
LSF is a measure of the gas mass within the stellar half-mass radius;
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i.e. a measure of the relative importance of the gas to the stars. The
LSF is defined as
M. (r <)

LSF = : )
M*(r < rh) + Mgzls(r < rh)

where ry, is the radius that contains half of the total mass in stars.
M, and Mg, is the mass of stars and gas, respectively, measured
within ry.

The LSF is analogous to the SFE quoted in many previous papers
(although as noted by Verschueren & David (1989) and Goodwin
(2009) this should really be called the eftective SFE as its relation-
ship to the true SFE is uncertain). Smith et al. (2011) show that
the LSF will depend on the initial distribution of stars, the initial
gas-to-star mass, and the initial energy of the stellar distribution
(also see Kruijssen 2012b; Parmentier & Pfalzner 2013; Parmentier
2014).

Smith etal. (2011) find that there is a reasonably good relationship
between the final bound fraction and the LSF at the point of gas
expulsion for systems which have relaxed for more than two initial
crossing times. However, Smith et al. (2013a) show that if gas
expulsion occurs earlier, it is rather more complex than this suggests.

The longer the stars have to relax, the closer to a virialized,
smooth distribution in equilibrium with the static gas potential they
will become. Smith et al. (2013a) show two important consequences
of this relaxation processes. First, the LSF changes with time and
so the exact time of gas expulsion is very important. Secondly,
the violent relaxation of the initially clumpy stellar distributions
is stochastic and initial distributions that are initially ‘the same’
(i.e. drawn from the same generating functions) can evolve very
differently, and at any particular point in time (i.e. at gas expulsion)
can have quite different dynamics and be at different ‘stages’ in
their relaxation. If gas expulsion occurs at early times (typically
less than one crossing time, or around 1 Myr) then the LSF ceases
to be a good predictor of the final bound fraction.

Smith et al. (2013a) attempted to quantify these effects and found
that the virial ratio of the stars at the time of gas expulsion is also
very important to the final bound fraction (as suggested by Goodwin
2009). In this study, we concentrate on examining the effects of the
stellar virial ratio at the time of gas expulsion.

2.5 Motivation

In this paper, we extend the work of Smith et al. (2011, 2013a). We
have two related questions that we wish to consider.

First, to what extent is it possible to predict the final bound
fraction of the system? Secondly, is it ever practically possible
(either observationally or theoretically) to predict the final bound
fraction of a particular system?

In this paper, we concentrate mainly on the effects of the dynam-
ical state of the stars at the time of gas expulsion (as measured by
the stellar virial ratio).

We concentrate on systems which have not had many crossing
times to relax. For the systems, we simulate here the instant of gas
expulsion are typically 1-3 Myr, or less than two initial crossing
times. This means that the initial substructured distributions have
not had time to relax and are in the process of violent relaxation.
It is worth noting that this corresponds to the age of the gas-free
Orion nebula Cluster (Jeffries et al. 2011).

We will refer to the virial ratios of the systems, Q = T/|Q|
where T is the kinetic energy, and €2 the potential energy. Q = 0.5
corresponds to virial equilibrium, but we note that our systems
(especially initially) are often not in any true equilibrium, even
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Figure 1. A representative example of the virial ratio variations with time
of an out-of-equilibrium distribution of stars (a fractal in this case) inside a
smooth background potential. As we study early gas expulsion, the smooth
background potential is instantaneously removed before two crossing times
occur (i.e. to the left of the vertical green dashed line).

if 0 = 0.5 (they might be formally virialized, but may not have
equilibrium spacial or velocity distributions). Nevertheless as we
shall describe below Q is a very useful measure.

2.5.1 The evolving dynamical state of the cluster

At the start of the simulation we have a very out-of-equilibrium
distribution with a Q; = 0 or 0.5. The stars will immediately start
to violently relax and erase the substructure present in the system
(see also Allison et al. 2009; Parker et al. 2014). With our initial
conditions there will always be an initial collapse of most of the
stars. Violent relaxation rapidly, but very roughly, attempts to bring
the system to arough dynamical equilibrium (both virial equilibrium
of the energies, and a smooth density field).

Therefore, the stellar component of the system rapidly changes
its density distribution, size, and the way that energy is distributed.
This means that any initial measures of size, energy etc. rapidly
change, meaning that any useful time-scale such as crossing time
also change.

We take as a measure of the state of the cluster the value of the
virial ratio, Q, at any time as well as the rate at which the virial ratio
is changing, Q.

In Fig. 1, we show the evolution of the virial ratio with time for
a typical system starting with Q; = 0.5. Even though this system
starts in ‘virial equilibrium’ it immediately increases its Q, and then
oscillates around Q = 0.5 with decreasing amplitude.

What happens is that the cluster immediately starts to violently
relax and attempts to collapse into the gas potential (thus Q rises
as potential energy is converted into kinetic energy in the initial
collapse). But the initial collapse is soon halted and the stellar
distribution expands causing Q to fall, as the stars oscillate within the
potential well of the cluster. Whilst this is happening substructure
is also being disrupted, and within a few oscillations the system
smooths out and the oscillations represent a ‘pulsation’ of a smooth
cluster as it attempts to fully virialize. Therefore, the oscillations in
QO with time provide an internal measure of the level to which the
system has relaxed.

2.5.2 Gas expulsion times

When gas expulsion occurs is (yet another) key parameter in set-
ting the final state of the system as quantified by the final bound
fraction (see Goodwin 2009; Smith et al. 2011, 2013a). In our sim-
ulations this is modelled by the time at which we remove the static
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background gas potential to represent instantaneous gas expulsion.
(Obviously this is a huge oversimplification which we return to in
the discussion.)

In Smith et al. (2013a), we showed that the value of the virial ratio
at the start of gas expulsion, Q, is important — is the system in an
expanding or contracting part of its relaxation process? However in
Smith et al. (2013a), we chose a fixed instant in time for gas expul-
sion for all fractals. As each random realization of a fractal evolves
differently, the exact virial ratio at the moment of gas expulsion was
very varied, and uncontrolled.

In order to better control the dynamical state of the cluster at the
point of gas expulsion, we artificially vary the instant at which gas
expulsion occurs (between 0-2 crossing times) so as we can choose
the virial ratio of the cluster. The upper limit for the time of gas
expulsion is marked by the green dashed vertical line in Fig. 1. For
example, in one series of ensembles we ensure that Oy = 0.5 by
forcing gas expulsion to occur whenever the virial ratio happens to
be at Q = 0.5.

Obviously real systems will not always expel gas at a pre-
determined value of Q¢ = 0.5, so we also expel the gas at other times
as Qr varies from subvirial (Qy ~ 0.2) to supervirial (Qf ~ 0.7).

2.6 The full set of initial conditions

To summarize our set of initial conditions:

We take ensembles of 10 or 20 statistically identical systems (all
parameters from the same generating functions) with N = 1000
equal-mass stars with M = 0.5 M, distributed as a D = 1.6 fractal
with radius 1.5 pc. The velocities of the stars are scaled to give
initial virial ratios for the stellar system in the background potential
of Qi =0o0r Q; =0.5.

These stellar distributions sit in a three different static background
potentials. A Plummer sphere with R;;; = 1 pc, a highly concentrated
Plummer sphere with R,y = 0.2 pc, and a uniform sphere. All of
them with a total mass of 2500 M within 1.5 pc that ensures an
effective SFE = 0.2.

The systems are evolved and their time-evolving virial ratios are
tracked. The instant of gas expulsion is varied in order to have
gas expulsion occur when the final stellar virial ratio has a wide
range of stellar virial ratios from subvirial (Q; ~ 0.2) to supervirial
(Qf ~ 0.7). At the moment of gas expulsion the local star fraction
(LSF) can be calculated.
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They are then evolved until the simulation reaches 15 Myr (~10.7
initial #,) at which the number of stars still bound in a remaining
cluster can be found to give the final bound fraction, fiound-

We reiterate that these are not very ‘realistic’ initial conditions,
and there is much about them that is clearly artificial. However,
even as artificially simplified as they are, they are still extremely
messy and complicated. Their use is not to model reality directly,
but rather to allow us to probe the physics behind relaxation and
recovery after gas expulsion.

3 RESULTS

The key parameter that we wish to investigate is the fraction of stars
that remain in a bound cluster after gas expulsion and the post-gas
expulsion relaxation of the system. This ‘bound fraction’ (fyoung) is
the size of the naked cluster that remains. To measure the bound
fraction we use the ‘snowballing method’. In this technique particles
that are bound to the cluster are found in an iterative procedure, that
corrects for the systemic velocity of the cluster at each iteration. (see
section 2.6 of Smith et al. 2013b for a more complete description).

3.1 Final bound fractions

In Fig. 2(a), we show the final bound fraction, fiouna, against the
local star fraction, LSF, for all the simulations we have run in this
paper.

There is a vague trend that a high-LSF results in a high-fyouna (i-€.
the bottom right corner of Fig. 2 a is empty). But there is a huge
amount of scatter in this figure, in particular around LSF of 0.2 can
result in clusters with an fiouna between zero and almost unity. For
any particular value of LSF there is a scatter of at least 0.5 in fiound.

This might suggest that there is no way of estimating the final
bound fractions of star clusters after gas expulsion. We show below
that it is possible to understand the system and fairly accurately
predict the final bound fractions if one knows both the LSF and
stellar virial ratios at the time of gas expulsion.

Because of how we have (rather artificially) chosen our gas ex-
pulsion times we can split the simulations shown in Fig. 2(a) into
groups depending on their final virial ratios. In Fig. 2(b), we only
plot the simulations with 0.22 < Q¢ < 0.24 (blue), Q¢ ~ 0.5 (green),
and 0.68 < Qr < 0.72 (red).

It is clear from Fig. 2(b) that a significant amount of the scat-
ter is due to the value of Qr at the time of gas expulsion. The
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Figure 2. (a) Crosses show fhound against LSF at the time of gas expulsion for all the simulations carried out in this study (see text for details). (b) Simulations
that are highly subvirial (Qf = 0.22-0.24; blue triangles), Or = exactly 0.5 (green squares), or highly supervirial (Qf = 0.68-0.72; red inverted triangles) at the
instant of gas expulsion
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0.22 < Qf < 0.24 simulations all have fyoua ~ 1. The Qf ~ 0.5
simulations show a rapid increase in fyouna With LSF for low-LSF,
then a very roughly linear increase. And the 0.68 < Qr < 0.72
simulations show a roughly linear increase in fyouna With increasing
LSF.

3.2 A simple physical model

In Fig. 3, we plot fiouna against LSF for bins of different Qr in-
creasing from low-Qy in the top left to high-Q; in the bottom right.
Systems with initial virial ratios of Q; = 0.5 are marked by filled
circles, those with Q; = 0 by open circles.

The black solid lines and blue dashed lines are a simple model fit
to the data which we describe in this section. Note that the colours
show the form of the gas potential which we will describe in the
next subsection. For now we will concentrate on building a simple
model to fit the fyouna against LSF trends with different Q.

We can construct a very simple analytical model that fits the
results of our simulations surprisingly well (see Boily & Kroupa
2003a for a similar, but rather more detailed derivation).

As described above and in previous papers, the initial fractal
stellar distribution will attempt to relax and virialize within the gas
potential. What are important for the impact of gas expulsion are
two quantities at the time of gas expulsion: the virial ratio QO of the
stars relative to the gas and the LSF. The LSF measures the relative
masses of the gas and the stars within the stellar half-mass radius
(see above). Therefore, the total mass (stars plus gas) M,y in the
region in which the stars are present is Mo, ~ M, /LSE.

The relevance of the Virial ratio 2455

One quantity of interest is the kinetic energy T, of the stars, set
by their velocity dispersion o . If we assume a Maxwellian velocity
distribution, the kinetic energy is given by

3

T*.l = EM*a27

where a is the scalefactor of the Maxwellian velocity distribu-
tion. a is related to the velocity dispersion as a®> = o2 /(37 — 8).
Therefore,

3k

T*.l — 7

where k = /(37 + 8). After gas expulsion the stars have not had
time to change their kinetic energy (since the gas is expelled instan-
taneously) and so we can assume T, = T, ;.

The potential energy of the stars before gas expulsion can be
approximated by
Q.1 ~ —M, GMlOl’

T'h

@

M,o2, 3

)

where G is Newton’s gravitational constant, while the potential
energy after the gas is lost is only due to the potential made by the
stars alone
GM,
Th

Q2 ~ —M, o)

= LSFQ, .

Now we calculate the escape velocity of the system after the gas
is gone as

Let us denote quantities just before the gas expulsion with index 2
. . . Vesc ™ _79*,2- (6)
1 and just after the gas expulsion with 2. M,
10 T o7z T T T T T T T T
& //// o O -7 =
° 3? o o7 o
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Figure 3. The fyouna—LSF trend for different virial ratios. Colours represent the shape of the background gas, a Plummer sphere (blue) and a uniform sphere
(red), filled circles are simulations with Q; = 0.5 and open circles are distributions with Q; = 0.0. The black solid lines and blue dashed lines are the fits from

the model described in Section 3.2.
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If we now replace Q2.., by LSF times Q,.; = —T.;/Qr we have
LSF
Vese = V3K ?0*. @)
£

A reasonably first guess of fiouna Would be the fraction of
stars with velocities below the escape velocity. If we assume a
Maxwellian velocity distribution, then fioung 1S given by its cumula-
tive probability distribution with the form:

F(<X) = erf ix \/zx X—z (8
< _er(ﬁ)— - GXP(—z),

where X = veg/a. Since a? = ko? then X = vey//k0, and
finally:

3 LSF 6 LSF 3LSF?
S = erf (\/ zgf) - \/ Yo (G ) ©

In Fig. 3, we show fiouna against LSF for various values of Qr. The
solid black line is the fit from above which has no free parameters.
This simple model describes the data points of our simulations very
well, especially if we look at high-LSF and low-Qy values, i.e. when
we do not lose many unbound stars (upper panels).

When we have high-Qr values as in the lower panels of Fig. 3
the simple model (solid black line) tends to overestimate the final
bound fraction. We can apply a simple correction. Following the
first estimate of foouna @ fraction of stars is lost very rapidly after
gas expulsion, and so the escape velocity falls by a further factor
+/ foound 1N equation (7). We then have to solve equations (7) and (8)
iteratively which gives the blue dashed lines in Fig. 3. In most cases,
the true values of fyouna are enclosed between the solid black and
blue dashed lines suggesting that reality is somewhere in between.

‘We have constructed a simple analytic approximation with no free
parameters that estimates the final bound fraction from the values of
the stellar virial ratio and LSF at the moment of gas expulsion. Given
the simplifying assumptions we have made it is very gratifying that
this seems to explain the results so well.

3.3 The effect of the gas potential

In Fig. 3, points are coloured according to the form of the gas
potential: blue is a Plummer potential, and red a uniform sphere.
There appears to be a very strong dependency on the form of the
gas potential. In Fig. 3, systems with concentrated gas potentials
(Rp1 = 1 pc) shown by the blue markers are concentrated to the left
of each panel with low-LSF and low-fyoung. Systems with extended
gas potentials (R, = 00) shown by the red markers are towards the
right with higher LSF and fiouna-

Taken at face value this suggests that the form of the gas potential
is crucial in determining the fate of a system. However, this is not the
case. Rather it is due to a link between the form of the gas potential
and the possible values of the LSF. The LSF measures the relative
masses of gas and stars within the half-mass radius of the stars. Gas
outside this radius is not taken into account. Even though the total
mass in gas in the whole star-forming region stays constant, the LSF
fluctuates as the half-mass radius of the stars fluctuates (this is the
motivation for the introduction of the LSF by Smith et al. 2011).

In abound, fractal distribution the stars can do nothing except col-
lapse to a denser (and smoother) configuration. Much of the initial
potential energy in a fractal distribution is localized in substructure
and is redistributed during violent relaxation. The potential energy,
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Figure 4. The variation of the LSF of the clusters due to the change in the
concentration of the background gas. Top panel: the average of the LSF of
the simulations against the inverse of their scalelengths. A black solid line
connects simulations with the same initial virial ratio as labelled. Bottom
panel: the half-mass radius is only weakly dependent on the gas scalelength.
The average is shown by the horizontal dashed line. The brown dashed line
in the upper panel is the recalculated LSF using a fixed half-mass radius
with the average value.

Q, of a system is

Q~—A , (10)

where M is the mass of the system and R some characteristic radius
(and G the gravitational constant). A is a measure of the mass
distribution of the system. For a Plummer sphere, if R is the Plummer
radius then A ~ 0.3. But for a D = 1.6 fractal, when R is the initial
size of the system, A ~ 1.5. Therefore, the violent relaxation of a
fractal causes a significant decrease in the size of the system (see
Allison et al. 2009 for details).

Exactly how such a system will contract depends on the ex-
act details of the initial fractal distribution, the initial virial ratio
(Q; = 0 systems will contract more than Q; = 0.5 systems) and how
relaxed the system has become. However, we find it does not depend
on the shape of the background gas potential, as shown in Fig. 4.
In the upper panel, symbols with error bars are the average LSF of
simulations at the moment of gas expulsion. We include data points
for (from left to right) R,y = oo (uniform gas), R, = 1 pc and also
Rp1 = 0.2 pc (a very concentrated gas distribution). On the x-axis, we
plot 1/R;; in order to place all simulations on the same plot. There
are two curves for the two different initial virial ratios (Q; = 0.0
and 0.5). There is a clear trend for the LSF to be lower as the gas
becomes increasingly concentrated. To understand this, we must
bear in mind that the LSF is a function of the total gas mass within
the half-mass radius of the stars. Therefore, a change in LSF could
arise from either a change in the amount of gas surrounding the
stars, and/or a change in the half-mass radius of the stars as the gas
scalelength is varied. We find that the half-mass radius is only a very
weak function of the gas scalelength as shown in the lower panel
of Fig. 4. Here, symbols with error bars are the average half-mass
radius Ry, of the stars. This weak dependency demonstrates that the
strong dependency of the LSF on gas scalelength arises mainly for
the following reason — by making the gas more concentrated, more
gas is being placed about the stars, and the LSF is lowered.
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To confirm that the small variation in R, with gas scalelength
does not play a strong role, we calculate the average Ry, for each
set (see horizontal dashed lines in the bottom panel of Fig. 4). Now
we fix Ry, to have the average value (i.e. a constant value for all gas
scalelengths) and recalculate the LSF values at their new half-mass
radius. The results are indicated by the brown dashed lines in the
upper panel. The trend of LSF with gas scalelength is very similar,
even when the stellar half-mass radius is fixed to be constant. This
confirms that the strong dependency of the LSF on gas scalelength
arises almost entirely for the following reason. Increasing the gas
concentration places more gas about the stars, and does not change
the stellar distribution significantly.

4 DISCUSSION AND CONCLUSIONS

Initially clumpy and irregular distributions of stars cannot be in
dynamical equilibrium. As a result, they undergo violent relaxation
with initially significant changes in their virial ratio as they expand
and collapse, attempting to approach equilibrium. This occurs even
when the clusters are initially ‘virialized’ (i.e. Q; = 0.5). These
deviations are largest for very young star clusters, and decrease
as the cluster settles down, as substructure is erased. As a result,
the effects of gas expulsion at early times, before the system has
relaxed, depend strongly on the instantaneous value of the virial
ratio as well as the LSF (relative distribution of stars in the gas
potential).

At later stages (>2 crossing times), it is known that the LSF
becomes the key predictor of cluster survival from gas expulsion,
with second-order modifications due to the cluster’s dynamical state
(Smith et al. 2013a). However, at these early stages when oscilla-
tions in the virial ratio are so large, we have shown that the dynam-
ical state of the cluster may actually be equally influential (if not
more influential) than the LSF.

A primary goal of studying the response of young, embedded star
clusters to gas expulsion is to predict how well a cluster survives
gas expulsion, based on its pre-gas expulsion properties. This study
reveals that both the LSF, and the dynamical state can be important
parameters dictating cluster survival to gas expulsion. Fortunately
in our numerical studies, we can ascertain the exact value of the
LSF and virial state. However, observationally, it may be incredibly
challenging to measure either of these properties accurately. It is
not inconceivable that the LSF might be calculated approximately
by deprojection, although it would need to be a cluster caught
very close to the instant of gas expulsion, or the LSF may later
change. However, measuring the virial ratio of a real cluster is a
huge challenge.

To worsen matters, our study reveals that in certain circumstances,
even with a knowledge of both the LSF and virial ratio, the cluster
survival maybe poorly constrained. For example, take a cluster with
alow virial ratio (e.g. Or = 0.34 at gas expulsion; upper-left panel of
Fig. 3). If the cluster has an LSF~0.2 (a reasonable physical value),
the foouna—LSF trend rises very steeply. Such a cluster is equally
likely to be near destroyed (have ~90 per cent of its stars unbound),
as only weakly affected (losing ~30per cent of its bound stars).
Thus, it is possible that, even if the virial ratio were measured, the
result could place the cluster in a region of parameter space where
the cluster survival could be anything from weak mass-loss to near
total destruction.

Comparing the panels of Fig. 3, we can see that clusters with
LSF~0.2-0.4 are the most sensitive to their dynamical state. In com-
parison clusters with high-LSF vary their resulting bound fractions
very little, even for large changes in dynamical state. If LSF~0.2 is
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atypical value, then these results suggest that clusters which are ob-
served post-gas expulsion, must have been subvirial to avoid losing
a large fraction of their stellar mass during the process.

Clearly our models are extremely simple conceptually. They lack
a large number of physical processes that are also highly impor-
tant in young star clusters. For example, our cluster stars have no
initial mass function, we start our simulations with no binaries, we
do not consider stellar evolution, and our treatment of the gas is
highly simplified. Nevertheless, the use of such simple idealized
models has enabled us to clearly determine the significant role of
clumpy substructure and the dynamical state of the clusters on clus-
ter survival following gas expulsion, through the use of controlled
numerical experiments. This approach has revealed just how sen-
sitive star clusters are to their dynamical state when gas expulsion
occurs. We therefore suggest that real star clusters will be very
sensitive, perhaps as sensitive as our model star clusters, to their
dynamical state when the gas is expelled at early times.

Our key results may be summarized in the following.

(1) For early gas expulsion (before 2 crossing times), we find the
dynamical state of our model star clusters, measured at the time of
gas expulsion, plays a key role in influencing cluster survival fol-
lowing gas expulsion. Star clusters may be highly super or subvirial
in these early phases.

(i) We show how the founa—LSF trend can be well approximated
with a very simple analytical model. The model matches the sim-
ulations best when the dynamical state is not extreme (i.e. highly
super or subvirial).

(iii) Clusters which have LSFs in the range 0.2-0.4 (physically
reasonable values) are most sensitive to the virial ratio at the instant
of gas expulsion.

(iv) Clusters with low virial ratio have a very steep rise in the
Jfoouna—LSF trend. For such a cluster with an LSF~0.2, it is therefore
not possible to predict if the cluster will be heavily destroyed or
only mildly affected — even knowing both the LSF and the virial
ratio.

This study highlights the difficulties faced in trying to determine the
survival rate(s) of real star clusters due to gas expulsion. At early
times, the dynamical state of a cluster may be far from dynamical
equilibrium, and this can significantly affect the clusters survival to
gas expulsion. Thus, a best estimate of a cluster’s survival is found
measuring both the LSF and virial ratio. Accurately measuring these
two parameters for a real cluster represents a huge observational
challenge, in particular the dynamical state. Furthermore, some
clusters may be situated in regions of parameter space where their
survival to gas expulsion remains highly uncertain, even knowing
both the LSF and virial ratio.
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