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ABSTRACT

We construct revised near-infrared absolute magnitude calibrations for 126 Galactic Wolf—
Rayet (WR) stars at known distances, based in part upon recent large-scale spectroscopic
surveys. Application to 246 WR stars located in the field permits us to map their Galactic
distribution. As anticipated, WR stars generally lie in the thin disc (~40 pc half-width at half-
maximum) between Galactocentric radii 3.5-10kpc, in accordance with other star formation
tracers. We highlight 12 WR stars located at vertical distances of >300 pc from the mid-plane.
Analysis of the radial variation in WR subtypes exposes a ubiquitously higher Nwc/Nwn ratio
than predicted by stellar evolutionary models accounting for stellar rotation. Models for non-
rotating stars or accounting for close binary evolution are more consistent with observations.
We consolidate information acquired about the known WR content of the Milky Way to build
a simple model of the complete population. We derive observable quantities over a range
of wavelengths, allowing us to estimate a total number of 1900 + 250 Galactic WR stars,
implying an average duration of ~ 0.4 Myr for the WR phase at the current Milky Way star
formation rate. Of relevance to future spectroscopic surveys, we use this model WR population
to predict follow-up spectroscopy to Kg =~ 17.5 mag will be necessary to identify 95 per cent
of Galactic WR stars. We anticipate that ESA’s Gaia mission will make few additional
WR star discoveries via low-resolution spectroscopy, though will significantly refine existing
distance determinations. Appendix A provides a complete inventory of 322 Galactic WR stars
discovered since the VIIth catalogue (313 including Annex), including a revised nomenclature
scheme.

Key words: stars: distances — stars: evolution — stars: massive —stars: Wolf-Rayet — Galaxy:
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Kendrew et al. 2012) and galactic (Hopkins, Quataert & Murray

1 INTRODUCTION 2011) scales. However, the postulated link between WR stars and

Massive stars exert a major influence on their immediate surround-
ings, and play a dominant role in the evolution of their host galaxies.
Wolf-Rayet (WR) stars represent the ultimate, short-lived (< 1Myr)
evolutionary phase of only the most massive (M; > 25 M) O stars
(see Crowther 2007). They possess dense and fast stellar winds,
giving them characteristic strong and broad emission line spectra.
Their distinctive spectral appearance befits them as effective tracers
of high-mass star formation both in the Galaxy (e.g. Kurtev et al.
2007; Davies et al. 2012a) and at extragalactic distances (Schaerer
& Vacca 1998). Through their powerful winds and likely fate as
Type Ib/c supernovae (SNe), they are important sources of nuclear
processed material to the interstellar medium (Esteban & Peim-
bert 1995; Dray et al. 2003), and are capable of influencing fur-
ther episodes of star formation on local (Shetty & Ostriker 2008;
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H-free Type Ib/c SN remains unestablished (Eldridge et al. 2013),
hence it is crucial that we better our knowledge of the uniquely
resolvable population in the Milky Way.

Strong mass-loss in WR stars proceeds to unveil successive lay-
ers of nuclear processed material, such that examples are seen with
spectra dominated by nitrogen (WN), carbon (WC), and oxygen
(WO). WC and WO stars are universally H free and He rich,
whereas the surface H mass fraction of WN stars varies from zero
to Xu =~ 50 per cent. A subset of H-rich WN stars display weak hy-
drogen emission and intrinsic hydrogen absorption lines, referred
to here as WNha stars (see Crowther & Walborn 2011). These
stars are almost uniquely found in young clusters, suggesting cur-
rent masses >65 M from cluster turn-offs and higher luminosities
than their core He-burning counterparts (Crowther et al. 1995a), and
hence are very rare. They differ from ‘classical’ He core-burning
WR stars in that they represent an extension of the upper main
sequence (MS), and are thought to be H burning. We treat these
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objects separately from other WN stars when calibrating absolute
magnitudes.

Our knowledge of the Galaxy’s WR content rests on the succes-
sive achievements of tailored imaging surveys. The use of narrow-
band selection techniques was pioneered by Massey & Conti (1983)
and Moffat & Shara (1983) to identify extragalactic WR stars, tak-
ing advantage of strong WR star emission lines at optical wave-
lengths. Shara et al. (1991, 1999) applied similar methods to push
the extent of the known Galactic population beyond 5kpc from
the Sun, and extension to near-infrared (IR) wavelengths has fa-
cilitated yet deeper investigation of the Galactic disc (Shara et al.
2009, 2012). Another distinctive feature of WR stars — the near-IR
excess caused by free—free emission in their winds — has been ex-
ploited to yield further discoveries (Homeier et al. 2003; Hadfield
et al. 2007; Mauerhan, Van Dyk & Morris 2011). These efforts,
alongside several serendipitous discoveries (e.g. Clark et al. 2005;
Mauerhan et al. 2010a), have brought the recognized Galactic WR
star population to ~635 as of 2014 March.'

Several attempts have been made to determine the total number
of WR stars in the Galaxy. Maeder & Lequeux (1982) used the
then-known 157 WR stars to arrive at a total of ~1200 by assuming
the surface density of WR stars to vary with Galactocentric radius
(Rg) in the same way as giant Hu regions, including a dearth at
Rc < 3kpe. To emphasize the need for IR investigation, Shara
et al. (1999) created a model WR star population featuring a stellar
disc of exponentially increasing density towards Rg = 0. From this
they inferred a total of 2500 Galactic WR stars, or 1500 if few WR
stars inhabit the region Rg < 3 kpe, as the decline in gas density
suggests (barring the inner 500 pc). van der Hucht (2001) arrived at
amuch higher 6500 WR stars by extrapolating the surface density of
local WR stars (7 < Rg < 12kpc) across the entire disc, neglecting
the decrease in star formation rate (SFR) interior to Rg ~ 3 kpc.
Most recently, in the light of numerous WR star discoveries in
IR surveys, Shara et al. (2009) presented an updated population
model — still featuring an exponential disc of stars — yielding a
total of 6400. The same work also suggested that observations of
WR stars as faint as K =~ 15.5 mag are necessary to achieve a
completeness of 95 per cent.

The Galaxy provides a range of environments over which to test
various predictions of massive star evolution, which has long been
expected to depend on metallicity (Z). As the winds of hot stars are
driven by the transfer of photon momentum to metal lines (see Puls,
Vink & Najarro 2008 for a recent review), and mass-loss dominates
the evolutionary fate of the most massive stars, we expect to observe
differences between the population of evolved massive stars in the
metal-rich Galactic Centre (GC) regions, and that of the metal-poor
outer Galaxy. Smith (1968) first observationally demonstrated ev-
idence for differences in WR populations between the Milky Way
and Magellanic Clouds. Crowther et al. (2002) showed that WC
subtype variations are primarily a consequence of denser stellar
winds at higher metallicity, while WN stars have long been known
to be a more heterogeneous group. Increased mass-loss is predicted
to have two main effects of WR surface properties; more efficient
removal of outer (hydrogen-rich) layers will lead to quicker pro-
gression through post-MS evolutionary phases, i.e. from WN to
WC stages, and the accelerated spin-down of a star due to loss of
angular momentum will inhibit various internal mixing processes,
with implications for the lifetimes of evolutionary phases (Maeder
& Meynet 2000). Systematic testing of such predictions requires

!http://pacrowther.staff.shef.ac.uk/WRcat/

Distribution of Galactic Wolf-Rayet stars ~ 2323

statistically significant, unbiased samples of evolved massive stars,
currently only available through IR investigation of the Galactic
disc.

Animproved set of IR tools is necessary to reveal and characterize
the full Galactic WR population, allowing accurate distances and
classifications to be obtained. In Section 2, we introduce improved
near-IR absolute magnitude—spectral type calibrations for WR stars.
In Section 3, these calibrations are applied to estimate distances to
the majority of the known WR population, from which the radial
variation of WR subtypes is obtained, allowing a comparison with
evolutionary model predictions. In Section 4, we develop a toy
model to estimate the global WR population of the Milky Way.
Finally, we make predictions about the detectability of WR stars,
which may be of interest to those planning future surveys. Our
findings are summarized in Section 5. Appendix A lists all 322
Galactic WR stars discovered since the VIIth catalogue of van der
Hucht (2001) and its Annex (van der Hucht 2006).

2 CALIBRATION OF IR ABSOLUTE
MAGNITUDES FOR WR STARS

van der Hucht (2001) reviewed and updated the v-band absolute
magnitude for Galactic WR stars. However, the accuracy and use-
fulness of this relation is limited by the relatively small number
of WR stars observable at optical wavelengths. Recent discoveries
of visibly obscured WR stars provide a much larger sample, from
which broad-band calibrations in the near-IR may be obtained. In
this section, we present a calibration of absolute magnitudes over
the wavelength range 1-8 um for each WR spectral type, extending
earlier results by Crowther et al. (2006a) via additional WR stars
located within star clusters that have been identified within the past
decade.

2.1 Calibration sample

Adopted distances and spectral types for the WR stars used for
our IR absolute magnitude calibration are shown in Tables 1-3 for
WC/WO stars, WN stars, and WR stars in binary systems with
OB companions, respectively. This sample is drawn from an up-
dated online catalogue of Galactic WR stars! and totals 126, with
91 inhabiting clusters, 26 in OB associations and nine appearing
‘isolated’. By subtype, 85 of these are nitrogen (WN) type, 40 car-
bon (WC) type, and 1 oxygen (WO) type. For OB associations that
have been historically well studied at optical wavelengths, mem-
bership is taken from Lundstrom & Stenholm (1984). For WR stars
in visually obscured clusters we generally accept the membership
conclusions of the discovering author(s), except where noted.

For most star clusters and associations considered, there is typ-
ically more than one distance measurement to be found in the lit-
erature. Where these measurements are in general agreement we
favour methods of OB-star spectrophotometry over MS fitting. A
small number of WR stars, in relative isolation, have kinematic dis-
tances derived from velocity measurements of an associated nebula;
we accept these distances but remain wary of kinematic distance
estimates in general because of their sensitivity to the assumed
Galactic rotation curve.

Where multiple consistent distance estimates are found in the
literature we take an average of the reported distances — weighted
by the square of the inverse uncertainty reported on each (e.g.
Westerlund 1 and Car OB1) — indicated by multiple references
in Tables 1-3. Cases in which inconsistent distances have been
reported in the literature are discussed further in Appendix B.
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Table 1. Apparently single dust-free WO and WC stars, and dust-producing WC stars of known distance used to calibrate near-IR absolute magnitudes by
spectral type. New nomenclature is explained in Appendix A.

Spectral type WR# Cluster Association  Distance (kpc) Ref. J H K Ref. A{<S AQS Akg Mg

w02 142 Berkeley 87 1.23 +£0.04 1 954 889 860 aaa 040 041 0.41 +0.01 —2.26 +£0.07
wcC4 144 Cyg OB2 1.40 £ 0.08 2 9.41 859 771 aa,a 051 043 0.48 £+ 0.02 —3.50£0.13
WC5 111 Sgr OB1 1.9+0.2 3,4 728 7.14 651 aa,a  0.07 0.07 0.07£0.01 —4.95+0.23
114 Ser OB1 2.05 4+ 0.09 5,6 8.98 843 7.61 a,a,a 036 034 0.35+0.02 —4.30 £0.10

wCo6 23 Car OB1 26+02 7,8 789 760 7.06 aaa 0.10 - 0.10 £+ 0.03 —5.12£0.17
#48—4 Danks 1 4.16 £ 0.60 9 13.16 11.82 10.78 a,a,a 0.84 0.65 0.75 £ 0.03 —3.06 £ 0.32

154 Cep OB1 35+ 1.0 10 9.30  9.01 829 a,a,a 019 020 0.19+0.01 —4.62 £ 0.62

wC7 14 Anon Vel a 2.0£0.1 11 749 725 661 aaa 0.12 0.07 0.11£0.01 —5.00 £0.11
68 Cir OB1 3.6+03 12 990 939 875 aaa 025 0.08 0.20+£0.02 —4.23 +£0.18

wC8 48—3  (G305.4+0.1)/Danks 1 4.16 £ 0.60 9 1075 9.57 877 a,a,a 074 059  0.67+0.03 —4.99 +0.32
48-2 Danks 2 4.16 £ 0.60 9 10.83  9.83 898 a,a,a 067 0.66 0.67+0.03 —4.78 £0.32

T7g Westerlund 1 40+0.2 13,14 11.81 1040 953 b,b,b 0.88 0.69 0.81+0.04 —4.29 £0.13

102k Quintuplet 8.00 £ 0.25 15,16 1671 1345 11.19 d,d,a 249 255 2.50 4+ 0.08 —5.83 £0.12

#124—1 Glimpse 20 445+ 0.65 17 - 1038 9.19 a,a - 1.14 1.14 £0.10 —5.20 £0.33

135 Cyg OB3 1.9+02 18 723 7.11 6.66 a,aa 0.07 0.10 0.08+0.01 —4.81 £0.23

wC9 T7p Westerlund 1 40+0.2 13,14 1012 9.09 829 b,b,b 076 0.76  0.76 £ 0.05 —5.48 £0.16
101f GC 8.00 £ 0.25 15,16 1878 1543 13.11 e,e,e 2.65 278 2.72+4+0.04 —4.12 £ 0.08

101oa GC 8.00 = 0.25 15,16 1848 1543 13.01 e,e,e 256 292 2.72 £ 0.04 —4.23 +0.08

102h Quintuplet 8.00 £ 0.25 15,16 16.62 13.51 1134 d,d,a 247 258  2.5040.08 —5.68 £0.12

WC8d 53 4.00 £ 1.00 19 875 792 684 aaa - - 029 £0.09f  —6.43 £0.55
102e Quintuplet 8.00 £ 0.25 15,16 175 13.3 104 d,d,d - - 3.1+ 057 —7.22 £0.51

102f Quintuplet 8.00 £ 0.25 15,16 - - 104 c - - 3.1+ 057 —7.22 £0.51

113 20£0.2 20 7.02 628 549 aaa - - 038 £0.01f —6.37+0.22

WC9d 65 Cir OB1 3.6+03 12 846 728 6.17 a,aa - - 091 +0.04f —7.45+0.19
TTaa Westerlund 1 4.00 £0.25 13,14 10.04 821 6.72 b,b,b - - 1.01 £0.14f  —7.30 £0.20

77b Westerlund 1 4.00 £0.25 13,14 9.69 784 641 b,b,b - - 1.01 £0.14f  —7.61 £0.20

771 Westerlund 1 4.00 £0.25 13,14 10.13 764 690 Db,b,b - - 1.01 £0.14f  —=7.124+0.22

771 Westerlund 1 4.00 £0.25 13,14  10.31 8.56 738 b,b,b - - 1.01 £ 0.147 —6.64 £ 0.20

77m Westerlund 1 4.00 £0.25 13,14 11.26  9.51 823 b,b,b - - 1.01 £0.14f  —=5.79 £0.20

77n Westerlund 1 4.00 £0.25 13,14 985 797 728 b,b,b - - 1.01 £0.14f  —6.74 £0.20

95 Trumpler 27 25405 21 829 6.67 527 aaa - - 0.66 +0.031%  —7.38 +0.44

101ea GC 8.00 £ 0.25 15,16 17.79 1346 1050 f,f,f - - 324027 —7.22+£0.22

102—-2 Quintuplet 8.00 £ 0.25 15, 16 - - 10.30 c - - 3.1+ 0.57 —7.32 £0.51

102-3 Quintuplet 8.00 £ 0.25 15,16 1549 11.71 932 d,d.d - - 3.1 +0.57 —8.30 £ 0.51
104 2.6+0.7 4 6.67 434 242 aaa - - 0.86 +0.02f —10.44 +0.64

111a SGR 1806—20 8.70 + 1.65 22 - 1376 11.60 g, ¢g - - 3.0+ 037 —6.10 £ 0.51

118—1 Quartet 63+02 17 1322 10.14 8.09 a,aa - - 1.6 + 0410 —7.51 £0.41

*Indicates updated spectral types based on an improved near-IR classification scheme.

Distance references: (1) Turner et al. (2006), (2) Rygl et al. (2012), (3) Mel’Nik & Dambis (2009), (4) Tuthill et al. (2008), (5) Hillenbrand et al. (1993), (6)
Djurasevic et al. (2001), (7) Smith (2006), (8) Hur, Sung & Bessell (2012), (9) Davies et al. (2012b), (10) Cappa et al. (2010), (11) Lundstrom & Stenholm
(1984), (12) Vazquez et al. (1995), (13) Kothes & Dougherty (2007), (14) Koumpia & Bonanos (2012), (15) Reid et al. (2009), (16) Gillessen et al. (2013),
(17) Messineo et al. (2009), (18) Reid et al. (2011), (19) Martin, Cappa & Testori (2007), (20) Esteban & Rosado (1995), (21) Crowther et al. (2006a), and
(22) Bibby et al. (2008).

Photometry references: (a) 2MASS, (b) Crowther et al. (2006a), (c) Liermann, Hamann & Oskinova (2009), (d) Figer, McLean & Morris (1999), (e) Dong,
Wang & Morris (2012), (f) Eikenberry et al. (2004), and (g) Bibby et al. (2008).

Extinction: TAverage of parent cluster, TA, taken from van der Hucht (2001) and converted using Ax = 0.12A,,.

2.2 Classification of WR stars from near-infrared spectra the J band and He n1+Bry2.165 um/He 11 2.189 um in the K band.
Degeneracies in these primary line ratios between spectral types
are lifted by considering various weaker lines. For example, we
find WN7-9 types can be distinguished by considering the strength
of Sitv 1.190 pm relative to Hen 1.163 pm, while an inspection
of spectral morphology in the K band permits WN4-6 stars to be
distinguished using N v 2.100 um and N1 2.116 pm.

Spectral types of approximately 50 per cent of our calibration sam-
ple have been obtained from optical spectroscopy following Smith,
Shara & Moffat (1996) for WN subtypes and Crowther, De Marco
& Barlow (1998) for WC and WO subtypes. For the remaining
objects, we reassess published spectral types based upon their near-
IR (1-5um) spectra, using an updated version of the scheme
from Crowther et al. (2006a). Updated spectral types are shown in
Tables 1-3. Diagnostics involve emission line equivalent width
ratios drawn from adjacent ionization stages of the same atomic 2.2.2 WC diagnostics
species. Full details will be presented elsewhere, but we shall briefly

: For WC stars, ratios of Cu—1v provide the primary classification
discuss the methodology here.

diagnostics, with C1v 1.191 um/C 1 0.972 pm in the J band permit-
ting a consistent classification to optical lines. Hen 1.012 um/He1
1.083 um also prove useful for classification, although the H band
contains little diagnostic information. However, we find the very
For WN stars, ratios of He /He 1 lines provide the primary classi- strong C1v 1.736 um line to be useful for recognizing the dilu-
fication diagnostics; particularly Hen 1.012 pum/He1 1.083 um in tion effects of hot circumstellar dust (see Section 2.3.2). In the K

2.2.1 WN diagnostics
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Table 2. Apparently single WN stars (and those with an insignificant companion contribution at IR wavelengths) of known distance used to calibrate near-IR

absolute magnitudes by spectral type. New nomenclature is explained in Appendix A.

Spectal type ~ WR# Cluster Association Distance (kpc) Ref. J H Ks  Ref. A{Q Ags Ak, Mg
WN2b 2 Cas OB1 24 + 0.8 23 1004 9.78 9.45 a,a,a 0.33 052 040+0.02 —-2.86+0.72
WN3b 46 CruOB4 4.00 £ 0.85 24,25 1020 10.08 9.83 a,a,a 0.23 0.39 027 +0.01 —3.45+0.46
WN4b 1 Cas OB7 23 +£05 3 821 786 748 a,a,a 0.17 0.15 0.17£0.01 —4.49£047
6 1.80 £ 027 26 635 623 589 aaa 0.04 0.09 0.05+0.01 —544+0.33
7 55+05 27 997 9.67 927 a,a,a 0.16 0.19 0.17+£0.01 —4.60=+0.20
18 Car OB1 2.6 £ 0.2 7,8 857 821 7.68 a,a,a 025 036 0.27+£0.02 —4.67+0.17
35b Sher 1 100 = 1.4 28 1095 1035 9.76 a,a,a 0.39 046 0.41=+0.03 —5.65+0.31
WN6b *102¢ Quintuplet 8.00 £ 025 15,16 - 13.12 1153 d,d - 1.78 178 +£038 —4.77+0.44
11lc SGR 1806-20 870 £ 1.65 22 - 14.03 12.16 ff - 225 225+£0.15 —479+£044
134 Cyg OB3 1.9 £ 02 18 6.72 652 6.13 a,a,a 0.10 0.17 0.124+0.01 —5.39+£0.23
136 Cyg OB1 1.3 £02 29 6.13 590 556 a,a,a 0.09 0.10 0.09+0.01 —5.10£0.33
WN7b 77sc Westerlund 1 40 £02 13,14 1034 9.11 837 b,b,b 0.76 0.66 0.74+0.05 —5.38£0.16
111-2 Cl1813—-178 3.6 £0.7 30 9.62 8.60 794 a,a,a 0.62 0.55 0.59+0.03 —5.44+£0.42
WN3 152 Cep OB1 35+ 1.0 10 1049 10.32 10.04 a,a,a 0.26 043 0.31+0.02 —2.99 £ 0.62
WNS5 e Westerlund 1 40 £ 0.2 13,14 11.70 10.30 9.70 b,b,b 0.87 0.62 0.79+0.06 —4.10+£0.16
77q Westerlund 1 40 £02 13,14 11.92 10.84 10.26 b,b,b 0.70 0.59 0.67 £0.04 —-3.42+£0.13
77sd Westerlund 1 40 £ 0.2 13,14 1236 11.08 10.25 b,b,b 092 0.94 093 +0.04 —3.69+0.13
WN6 67 Pismis 20 Cir OB1 3.6 £ 03 12 9.28 886 845 a,a,a 031 035 0324+0.02 —4.65+£0.18
77sb Westerlund 1 40 £ 0.2 13,14 11.00 998 945 b,b,b 0.65 0.52 0.61 £0.04 —4.17£0.12
77a Westerlund 1 40 £0.2 13,14 11.72 10.67 10.00 b,b,b 0.73 0.72 0.73+£0.04 —-3.74+£0.13
77s Westerlund 1 40 £ 0.2 13,14 1077 9.72 9.20 b,b,b 0.66 0.51 0.61+0.04 —4.42+0.12
85 2.8 £ 1.1 31 - 794 748 a,a - 043 043+0.16 —5.19+0.87
*101o GC 8.00 £ 0.25 15,16 17.94 14.13 11.60 e,e,e 3.00 320 3.11 £0.04 —6.02+0.08
115 SerOBl 205 £ 0.09 56 799 742 695 aa,a 041 044 042+0.02 —5.03£0.10
WN7 75ba 41 £ 04 32 1022 929 891 a,a,a 056 039 0.51+0.04 —4.67+0.23
77r Westerlund 1 40 £0.2 13,14 11.63 1031 9.61 b,b,b 0.90 0.83 0.87 £0.04 —4.27£0.13
77j Westerlund 1 40 £02 13,14 1136 997 9.28 b,b,b 0.93 0.82 0.89+0.04 —4.62+£0.13
77d Westerlund 1 40 £ 02 13,14 11.06 9.83 9.26 b,b,b 0.80 0.65 0.74+£0.04 —4.49+£0.13
*TTsa Westerlund 1 40 £0.2 13,14 12.11 10.75 10.04 b,b,b 0.92 0.85 0.89+0.04 —3.86£0.13
78 NGC 6231 ScoOB1  1.64 £ 0.03 33 544 527 498 a,a,a 0.16 025 0.18+£0.01 —6.27 £0.05
87 Halven—Moffat 1 33 +£03 34 8.00 7.45 7.09 a,a,a 037 036 037+0.02 —5.88+0.20
*101ai GC 8.00 £ 0.25 15,16 - 1433 12.12 e,e - 284 2844007 —-523+0.10
*111-4 Cl1813—-178 3.6 £ 0.7 30 1031 927 8.66 a,a,a 0.72 0.70 0.71 £0.03 —4.84 £0.42
WN8 12e Bochum 7 42 £ 2.1 35 8.62 826 7.87 aa,a 029 040 032+£0.02 -557=£1.09
*48—17 Danks 1 4.16 £+ 0.60 9 9.81 848 7.65 a,a,a 097 1.0l 099+0.04 —6.43+£0.32
66 Cir OB1 3.6 £03 12 893 848 8.15 a,a,a 031 031 031+£0.02 —4.94+0.18
77c Westerlund 1 40 £02 13,14 1089 9.57 8.86 b,b,b 0.90 0.85 0.88+0.04 —5.03+£0.13
77h Westerlund 1 40 £02 13,14 1075 942 8.76 b,b,b 0.89 0.77 0.84 £0.04 —5.09 £0.13
89 Halven—Moffat 2 33 +£03 34 739 696 6.58 a,a,a 032 039 034+0.02 —6.36+0.20
101b GC 8.00 = 0.25 15,16 - 1353 1143 ee - 269 2.69+0.06 —577=+0.09
101nc GC 8.00 £ 0.25 15,16 17.38 14.23 1191 e,e,e 2.60 299 279+ 0.04 —540=+0.08
*101oc GC 8.00 = 0.25 15,16 18.66 14.93 12.61 e,e,e 2.89 299 294+0.04 —4.85=+0.08
*101dd GC 8.00 £ 0.25 15,16 18.96 1543 13.01 e,e,e 2.84 3.12 298 +0.04 —4.49+0.08
102a Arches 8.00 = 0.25 15,16 17.17 13.26 11.02 h,a,a 2.94 2.88 291+0.05 —6.40=+£0.10
*102ae Arches 8.00 £ 0.25 15,16 1543 12.40 10.62 1i,i,i 228 225 2274+0.02 —6.16=+0.07
*102af Arches 8.00 £ 0.25 15,16 1597 12.81 10.88 1i,i,i 242 246 244 +0.03 —6.08+0.07
*102ah Arches 8.00 £ 0.25 15,16 15.23 12.03 10.07 i,i,i 245 250 248 +0.03 —6.92+0.07
*102al Arches 8.00 £ 0.25 15,16 15.11 12.09 1024 i,i,i 2.31 234 233+0.02 —6.60=+0.07
124 335 £ 067 36 858 818 7.73 a,a,a 034 047 0394002 —-528+0.44
WN9 *48—6 (G305.4+4-0.1)/Danks 1 4.16 £ 0.60 9 1021 857 7.58 a,a,a 1.19 124 1.21+0.05 —6.73+£0.32
*48—10 Danks 1 4.16 £ 0.60 9 942 8.15 748 a,a,a 0.86 0.79 0.83+0.04 —6.45+0.32
48-9 Danks 1 4.16 £ 0.60 9 826 727 6.61 a,a,a 072 0.77 0.74£0.03 —7.22£0.32
77k Westerlund 1 40+ 02 13,14 9.08 7.72 7.19 b,b,b 0.84 0.59 0.75+0.04 —6.57£0.13
*101m GC 8.00 £ 0.25 15,16 16.58 13.53 11.32 e,e,e 2.50 2.84 2.67+0.03 —5.86=+0.08
*101e GC 8.00 £ 0.25 15,16 15.87 12.73 1041 e,e,e 2.60 299 2.794+0.04 —6.90+ 0.08
*102aa Arches 8.00 = 0.25 15,16 - - 11.18 - - 248+£0.37f —5.82+0.39
*102ad Arches 8.00 £ 0.25 15,16 15.86 12.44 1035 i,i,i 2.63 2.69 2.66+0.03 —6.83+0.08
*102ag Arches 8.00 = 0.25 15,16 15.67 1245 1046 1i,i,1i 2.48 2.55 2.52+0.03 —6.58 £0.07
*102ai Arches 8.00 £ 0.25 15,16 - 1224 1034 a,a - 241 2414019 —-6.59+0.22
*102aj Arches 8.00 = 0.25 15,16 16.55 13.56 11.79 1i,i,i 226 224 225+0.02 —4.98 +£0.07
*102bb Arches 8.00 £ 0.25 15,16 15.58 12.36 1036 i,i,i 248 2.54 2.524+0.03 —6.67+0.07
*102bc Arches 8.00 £ 0.25 15,16 - 13.14 1120 i1 - 247 247+£0.13 —-579+£0.16
102d Quintuplet 8.00 £ 0.25 15,16 15.58 12.40 1050 d,d,c 241 242 242+4+0.09 —643+0.15
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Table 2 — continued

Spectal type ~ WR# Cluster Association  Distance (kpc)  Ref. J H Ks Ref. A{<S A ,’;’S Ag s Mg,
102hb Quintuplet 8.00 £ 025 15,16 14.19 1090 9.60 d,d,c 2.18 1.61 2.01+0.09 —6.93+0.15
102i Quintuplet 8.00 £ 0.25 15,16 1477 11.67 1022 d,a,a 2.16 1.81 198+0.05 —-6.27+0.10
1025 Quintuplet 8.00 £ 025 15,16 14.66 11.77 1023 a,a,a 2.10 194 203+0.03 —6.324+0.08
105 Sgr OB1 1.9 + 0.2 3,4 7.04 625 573 a,aa 056 058 0.57+£0.02 -6.24+023
WNG6ha 20al 8.0 £ 1.0 37 9.61 884 834 a,a,a 061 0.65 0.63+0.03 —6.80=+0.38
20a2 8.0 £ 1.0 37 9.61 884 834 a,a,a 061 0.65 063+0.03 —-6.80+0.38
24 Coll 228 Car OB1 2.6 £ 02 7,8 6.10 6.01 582 a,a,a 0.14 023 0.16+0.01 —-642+0.17
25e Trumpler 16 ~ Car OB1 2.6 £02 7,8 626 597 572 a,a,a 026 031 028+0.02 —-6.63+0.17
43A1 NGC 3603 7.6 £ 04 38 857 836 778 k,k,k 038 0.77 049+0.05 -7.11+0.16
43A2 NGC 3603 7.6 £ 04 38 898 877 8.19 kkk 038 0.77 049+0.04 —-6.70+0.14
43B NGC 3603 7.6 £ 04 38 778 7770 7.08 k,k,k 034 083 047+0.03 -7.80+0.13
43Ce NGC 3603 7.6 £ 04 38 849 813 7.81 kkk 033 041 035+0.03 —-6.95+0.13
WN7ha 22 Car 2.6 £ 02 7,8 571 558 539 a,a,a 0.17 026 0.20+0.03 —-6.81+0.17
#125—3  Mercer 23 6.5 £ 0.3 39 865 784 733 11,1 064 070 0.67+0.02 —-7.40=+0.10
WN9ha 79a NGC 6231 Sco OB1 1.64 £+ 0.03 33 5.15 509 490 a,a,a 0.14 025 0.17+0.02 —-6.34+0.05
79b KQ Sco 35+ 05 40 6.76 6.62 648 a,a,a 0.16 0.19 0.17+0.01 -6.41+0.31

*Indicates updated spectral types based on an improved near-IR classification scheme.

Spectroscopic binary systems with a dominant WR component at IR wavelengths (FVR /F%S > 2/3). Binary detections: (WR 12) Fahed & Moffat (2012),
(WR 25) Gamen et al. (2006), (WR 43C) Schnurr et al. (2008), and (WR 22) Schweickhardt et al. (1999).

Distance references (1-22 as in Table 1): (23) Arnal et al. (1999), (24) Crowther, Smith & Hillier (1995b), (25) Tovmassian, Navarro & Cardona (1996), (26)
Howarth & Schmutz (1995), (27) Cappa et al. (1999), (28) Moffat, Shara & Potter (1991), (29) Garmany & Stencel (1992), (30) Messineo et al. (2011), (31)
Vazquez et al. (2005), (32) Cohen, Parker & Green (2005), (33) Sana et al. (2006), (34) Vazquez & Baume (2001), (35) Corti, Bosch & Niemela (2007), (36)
Marchenko, Moffat & Crowther (2010), (37) Rauw et al. (2007), (38) Melena et al. (2008), (39) Hanson et al. (2010), and (40) Bohannan & Crowther (1999).
Photometry references (a—g as in Table 1): (h) Cotera et al. (1999), (i) Espinoza, Selman & Melnick (2009), (j) Martins et al. (2008), (k) Harayama, Eisenhauer
& Martins (2008), and (1) Hanson et al. (2010).

Extinction: TAverage of parent cluster.

Table 3. WR stars in confirmed binary systems (WR-+non-WR) used for absolute magnitude—spectral type calibrations.

WR#  Spectral type  Cluster/association  Distance (kpc) ~ Ref.  JHK"® Ref.  Fluxratio  Extinction MVR
FWR/Fsys
11 WC8+07.5111 0.342 + 0.035 41 J=2.12 m 0.45 +0.32 0.00 Mj; = —4.68 £ 0.81
H=2.17 m 0.48 +0.30 0.00 My =—4.70+0.72
Ks =198 m 0.60 + 0.23 0.00 Mgy = —5.14+0.48
770 WN70+? Westerlund 1 40+£0.2 13, 14 J=10.34 b 0.59 +£0.10 2.98 £ 0.20 Mj;=—5.084+0.26
Kg =8.37 b 0.80 £0.10 0.96 £ 0.05 Mgy = —5.36+0.23
79 WC7+05-8V Sco OB1 1.64 £+ 0.03 33 J=5.96 a 0.41 £0.05 0.48 £ 0.03 Mj;=—4.624+0.14
Ks=5.39 a 0.45+0.05 0.16 £ 0.01 Mgy = —4.97+0.13
93 WC7+07-9 Pismis 24 20+£0.2 tw. Ky =5.87 a 0.73£0.72 058 £ 0.03f Mgy =-5.88+1.10
127 WN5+08.5V Vul OB2 441 +0.12 42 J=09.18 a 0.58 +£0.17 0.56 £ 0.09 Mj; = —4.00 £ 0.65
H=9.02 a 0.59 +£0.13  0.31 £ 0.05 My =—-393+0.26
Ks =8.76 a 0.67 +£0.09 0.18 £ 0.03 Mgy = —4.21 £0.16
133 WNS5+0091 NGC 6871 2.14 £ 0.07 43 J =632 a 0.22+0.05 0.55 + 0.05 Mj;=—-3.86+£0.19
Ks =6.25 a 0.23+0.05 0.18 £ 0.02 Mgy = —4.04+0.19
137 WC7+09 Cyg OB1 1.3£02 29 J=17.00 n 041 +£0.12  0.59 £ 0.07 M;=-3.194+047
Ks =643 n 0.46 +0.13  0.19 £ 0.02 Mgy, = —3.49+0.46
139 WNS5+06I11-V Cyg OB1 1.3£02 29 J=6.70 a 044 +£0.06 0.59 + 0.06 Mj;=-3.57+0.36
Ks =6.33 a 0.50 £0.07 0.19 £ 0.02 Mgy = —3.69 +0.36
141 WNS5+405I1I-V Cyg OB1 1.3£02 29 J=17.34 a 0.65+0.07 045 £+ 0.15} My =-3.214+0.34
157 WNS5+-? Markarian 50 3.46 +£0.35 44 J=28.22 a 0.47 £0.10 0.90 £ 0.15 My =—4.534+0.30
Ks=1.73 a 0.68 £0.10 0.29 £ 0.04 Mg, = —4.88£0.36

Distance references (1-40 as in Tables 1 and 2): (41) van Leeuwen (2007), (42) Turner (1980), (43) Malchenko & Tarasov (2009), (44) Baume, Vazquez &
Carraro (2004), (t.w.) this work (Appendix B).

Photometry references (a—l as in Tables 1 and 2): (m) Williams et al. (1990b), (n) Williams et al. (2001).

Spectral types: (WR 11) De Marco & Schmutz (1999), (WR 770) Crowther et al. (2006a), (WR 79) Smith, Shara & Moffat (1990), (WR 93) Lortet, Testor
& Niemela (1984), (WR 127) de La Chevrotiere, Moffat & Chené (2011), (WR 133) Underhill & Hill (1994), (WR 137) Williams et al. (2001), (WR 139)
Marchenko, Moffat & Koenigsberger (1994), (WR 141) Marchenko, Moffat & Eenens (1998), and (WR 157) Smith et al. (1996).

Extinction: A, taken from van der Hucht (2001) and converted using Ax = 0.12A,,. tAverage extinction taken from WR 136 and WR 139, also members of
Cyg OBI.
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band, the ratio of C1v 2.070-2.084 um to Cm+He12.112-2.114 um
serves as a good ionization diagnostic, but is incapable of discrimi-
nating between WC4-6 stars.

2.2.3 Accuracy of near-IR spectral types

To gain an insight into the reliability of our revised near-IR classifi-
cation scheme, we have carried out blind tests using WR stars with
optically derived spectral types, and find J- and K-band diagnostics
provide the highest level of consistency.

For WN stars, an exact 3D spectral type (Smith et al. 1996) can
be achieved from low-resolution J through K spectra, with solely
the J band proving criteria for identifying the presence of hydrogen.
We find spectra in J or K alone yield spectral types with an accuracy
of + 1, and H-band diagnostics are accurate to & 2.

For WC stars, we find that an exact spectral type can be assigned
solely from a J-band spectrum. Our K-band diagnostics are capable
of £ 1 spectral type amongst early (WC4-6) types, and exact clas-
sification for late (WC7-9). We only find it possible to distinguish
between WCE/WCL using spectra from H, L or M bands. For both
WN and WC stars, ionization types at either extreme (WN9, 3, 2;
WC9) are conspicuous in spectral appearance, and can be identified
with a higher degree of certainty, usually by inspection of the spec-
tral morphology alone. Stars are only included in our calibration
sample if we are confident within & 1 of their spectral types.

2.3 Photometry and extinction

In general we take JHKs photometry for each WR star from the Two
Micron All-Sky Survey (2MASS) point source catalogue (Skrutskie
et al. 2006), plus [3.6]-[8.0](um) photometry from the GLIMPSE
survey (Benjamin et al. 2003) for sufficiently isolated sources in the
surveyed field.

We require a minimum quality flag of C where 2MASS photom-
etry is used. Many cluster and association members are located in
fields too crowded for 2MASS to be useful. In such cases, we turn to
dedicated observations with higher spatial resolution of the stellar
groupings in question (Tables 1-3).

We have attempted to ensure consistency in the near-IR photom-
etry used. For example, observations of WR stars in the GC region
are assembled by Dong et al. (2012), consisting of Hubble Space
Telescope snapshot imaging plus multiple ground-based observa-
tions. In this case, to maintain consistency with other assembled
photometry, we construct and apply a simple algorithm to convert
the Dong et al. JHK values into the 2MASS photometric system
(following their equations 7-9). However, in general we regard the
slight differences between ground-based filter systems as insignif-
icant, as they have a much smaller effect on calculated absolute
magnitudes than that of distance uncertainties.

We calculate an extinction towards each calibration star by eval-
uating the colour excesses E;_k, and Ep_g,, utilizing intrinsic
JHKs WR colours given by Crowther et al. (2006a), updated in
Table 4. Two values of Kg¢-band extinction follow:

-1
Al =E; g, X ( A 1) (1)
§ e 14[(g
and
A -1
A = Ey g x <—” - 1) . 2)
s AKS

The second terms in equations (1) and (2) require knowledge of the
near-IR extinction law.
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Table 4. Intrinsic colours adopted for
each type of WR star, primarily from
Crowther et al. (2006a), supplemented
with unpublished stellar atmospheric
model results for additional types consid-
ered here (e.g. WO).

Spectral type  (J —Ks)o (H — Ks)o
w02 0.11 0.00
WC4-7 0.62 0.58
WC8 0.43 0.38
WC9 0.23 0.26
WN4-7b 0.37 0.27
WN2-4 —0.11 —0.03
WN5-6 0.18 0.16
WN7-9 0.13 0.11
WN5—-6ha —0.015 0.03
WN7-9ha —0.04 0.005

Due to the growing body of evidence suggesting a differ-
ence in dust properties towards the GC, we employ two differ-
ent Galactic near-IR extinction laws. For stars in the GC region
(358° < I < 2°,|b| < 1°) we use the line-derived extinction law of
Fritzetal. (2011) (A;/Akx,=3.05+0.07, Ay /Ag, = 1.74£0.03).
For all other Galactic sight lines we use the law of Stead & Hoare
(2009) (A;/Ak,=3.1£0.2, Ay /Ak,=1.7140.09) — an updated
form of that provided by Indebetouw et al. (2005). For the purpose
of calculating the absolute magnitude of each calibration star, we
take an average, A kg, from equations (1) and (2). Since extinction
in the IRAC bands is lower, we opt for a more straightforward
approach and use the relations given by Indebetouw et al. (2005),
independent of sight line.

A minority of stars in our calibration sample only have single-
band photometry available, preventing an extinction calculation by
colour excess. For these objects, we resort to one of two alternatives;
we adopt the average Ak, calculated for other O or WR stars in
the cluster/association if sufficient numbers are available, or we
take A, as listed in van der Hucht (2001) and convert this using
Ag,>~0.11Ay~0.12A, (Rieke & Lebofsky 1985). If neither is
possible we exclude the star from our sample.

2.3.1 Correction for binary companions

For cluster/OB association WR stars in spectroscopically confirmed
binary systems, we attempt to correct for the contribution of com-
panion(s) to systemic magnitudes, allowing an absolute magnitude
calculation for the WR component. Depending on the information
available about the companion star(s), we follow one of two meth-
ods to apply these corrections.

If the companion is an OB star of known spectral type, we use the
synthetic photometry of Martins & Plez (2006), or Hipparcos-based
absolute magnitudes (Wegner 2006), to correct for its contribution.
Otherwise we determine a WR/companion continuum flux ratio
by considering dilution of the WR emission lines in the bands
where line measurements are available. The single-star emission
line strengths used to determine WR/companion continuum flux
ratios are presented in Appendix C. If the companion is not an OB
star or is insufficiently bright to notably dilute WR emission lines,
it will not make a significant contribution to the combined light. 10
of the WR stars in our calibration sample, detailed in Table 3, have
been corrected by one of these methods.
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Table 5. Calibrated near-IR absolute magnitudes for Galactic WR stars. The number of objects used to arrive at each
value is indicated in adjacent parentheses. Two uncertainties are shown with each value; formal errors (parenthesized,
equation 5) do not account for the intrinsic spread in magnitude within a WR spectral type — estimated to be ~0.3 mag
— which is incorporated into the final (non-parenthesized) uncertainty.

Spectral type 1, ™) My ™ My ™)
w02 —2.15 £ (0.08)0.31 (D —2.26 + (0.08)0.31 (D) —2.26 £+ (0.07)0.31 (€))]
WC4 —2.88 £ (0.13)0.33 nH —2.92 + (0.13)0.33 (1) —3.50 £ (0.13)0.33 (@)
WC5 —3.80 £+ (0.27)0.40 2) —3.84 + (0.27)0.40 2) —4.40 + (0.25)0.39 2)
WC6 —4.03 £ (0.61)0.68 3) —4.06 + (0.62)0.69 3) —4.66 £ (0.61)0.68 3)
wC7 —4.21 £ (0.20)0.36 (@] —4.25 + (0.20)0.36 2) —4.84 £+ (0.21)0.36 ()]
WC8 —4.26 £ (0.24)0.38 (6) —4.35 + (0.22)0.37 7 —5.04 £ (0.28)0.41 (@)
WwC9 —4.42 + (0.39)0.49 (@] —4.17 + (0.32)0.44 “4) —4.57 £+ (0.38)0.48 “4)
WC8d —5.53 £ (0.25)0.39 3) —5.83 + (0.23)0.38 3) —6.57 £ (0.27)0.41 4)
WC9d —6.34 £+ 0(.25)0.39 (12) —6.63 + (0.21)0.37 (13) —17.06 £ (0.20)0.36 (14)
WN2b —2.97 £ (0.73)0.79 (D —2.89 + (0.73)0.78 (D) —2.86 £ (0.72)0.78 (€))
WN3b —3.56 £ (0.46)0.55 nH —3.48 + (0.46)0.55 (1) —3.45 £ (0.46)0.55 (@)
WN4b —4.48 + (0.23)0.38 %) —4.58 + (0.23)0.38 5) —4.85 £+ (0.23)0.38 (@)
WNS5b —4.70 £ (0.16)0.34¢ ) —4.74 + (0.16)0.34¢ 0) —5.00 £ (0.16)0.34¢ 0)
WN6b —4.93 + (0.23)0.38 2) —4.90 + (0.22)0.37 “4) —5.16 £ (0.22)0.37 “4)
WN7b —5.02 £ (0.16)0.34 2) —5.12 £+ (0.19)0.36 2) —5.38 £ (0.15)0.34 2)
WN3 —3.10 £ (0.62)0.69 (D —3.02 + (0.62)0.69 (D) —2.99 + (0.62)0.69 (€))
WN4 —3.36 £+ (0.32)0.44¢ ) —3.33 + (0.32)0.44¢ 0) —3.39 + (0.32)0.44¢ 0)
WN5 —3.63 £+ (0.16)0.34 ®) —3.66 + (0.15)0.34 “4) —3.86 £ (0.15)0.34 7
WN6 —4.47 £ (0.30)0.43 (6) —4.74 + (0.34)0.45 (@) —4.94 + (0.34)0.46 7
WN7 —5.32 £+ (0.34)0.45 9) —5.01 + (0.28)0.41 ) —5.49 + (0.30)0.42 (10)
WN8 —5.94 £ (0.19)0.35 (15) —5.78 + (0.19)0.36 (16) —5.82 £ (0.20)0.36 (16)
WNO9 —6.18 £ (0.18)0.35 (15) —6.19 + (0.16)0.34 (17) —6.32 £ (0.15)0.33 (18)
‘WN6ha —6.98 £ (0.17)0.34 ®) —6.94 + (0.19)0.36 (8) —7.00 £ (0.18)0.35 8)
WN7ha —17.33 £ (0.25)0.39 2) —7.26 + (0.27)0.40 2) —7.24 £ (0.28)0.41 2)
‘WNO9ha —6.38 £+ (0.07)0.31 2) —6.33 + (0.07)0.31 2) —6.34 £ (0.05)0.30 2)

“Average of adjacent types since no stars of this type are available for calibration.

Two systems in our calibration sample are WNha+WNha bina-
ries. There are no known ‘classical’ WR+WR binaries, highlighting
the sensitivity of post-MS evolution to initial mass. The fact that
WNha+WNha binaries are observed emphasizes their similarity to
massive O stars. We separate the light contributions of individual
stars to each system by considering mass ratios derived by spec-
troscopic monitoring of their orbits. The stars making up WR 20a
are of identical spectral type and have very similar masses (Rauw
et al. 2005), hence we assume an equal light contribution from each
star in the J, H and K bands, and alter the systemic photometry
accordingly. Similarly, WR43A in the NGC 3603 cluster is com-
prised of two stars with very high measured masses, 116 £ 31 and
89+ 16 M (¢ = 0.8 & 0.2; Schnurr et al. 2008). Using the mass—
luminosity relationship for very massive stars (M > 80 M) pro-
vided by Yusof et al. (2013), we arrive at a light ratio of 1.46 + 0.47
for this system in all bands, assuming identical spectral energy dis-
tributions (SEDs). We include the stars of WR 20a and WR 43A
under the WN6ha spectral type in Table 2.

2.3.2 Treatment of dust-forming WC stars

The majority of WC9, and a diminishing fraction of earlier WC stars,
show evidence of periodic or persistent circumstellar dust produc-
tion (e.g. WR 140; Williams et al. 1990a). Episodes of dust for-
mation occur at perihelion passage in eccentric WC+OB systems,
whereas circular orbits allow persistent dust production, enhancing
the near-IR flux of the system dramatically. For completeness, we
perform near- to mid-IR absolute magnitude calibrations for WC8d
and WC9d spectral types based on the 18 stars at known distances.
However, we do not make any attempt to remove the light contri-

bution of potential companion stars, firstly because their Ks-band
flux is usually insignificant compared to that of the hot circumstellar
dust, and secondly because dust production seems to be inextricably
linked to the presence of these companions (Crowther 2003).

Thermal emission from hot circumstellar dust dominates the IR
colours of dusty WC systems, prohibiting extinction determination
via near-IR colour excess. For the dusty systems in our calibra-
tion sample we either adopt an average Ak, for the relevant clus-
ter/association, or its A, from van der Hucht (2001) and convert this
to the K band according to Ag, >~ 0.124,.

We make an exception of WR 137 — a member of the Cyg OB1
association comprising WC7 and O9(= 0.5) type stars — which dis-
plays periodic dust formation episodes concurrent with its 13 yr
orbit. Williams et al. (2001) present JHK photometry for this sys-
tem during a quiescent phase (1992—4), allowing us to derive a
Ks-band flux ratio (Fwr/Fsys = 0.46 & 0.13) using line strengths
measured from spectra taken during quiescence (Vacca, private
communication), and remove the O-star light. The WC7 compo-
nent is included in Table 3.

2.4 Calibration method and uncertainties

The results of our near-IR absolute magnitude calibrations are pre-
sented in Table 5, with mid-IR calibrations shown in Table 6. Figs 1
and 2 present the Kg-band absolute magnitudes for WN and WC
stars, respectively. We use a weighted mean method to arrive at an
average absolute magnitude for each WR spectral type, computed
by

=y P @)
i=1
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Table 6. Calibrated mid-IR (Spirzer IRAC filters) absolute magnitudes for Galactic WR stars. The number of objects used to arrive at each
value is indicated in adjacent parentheses. Two uncertainties are shown with each value; formal errors (parenthesized, equation 5) do not
account for the intrinsic spread in magnitude within a WR spectral type — estimated to be ~ 0.3 mag — which is incorporated into the final
(non-parenthesized) uncertainty.
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WR Mi3.6) @) M s) ) Msg) ) Mis.0) V)
Spectral type

WC5-6 —434£ (035046 (2) —475+(035046 (2) —502+(028)041 (3) —532+£(029041 (3)
WC7-9 —5964(029)0.42 (4) —627+(033)045 (4 —6.06%£(033)045 (4 —627+(034)046 (4
wCsd - - ~8.18£(0.55)0.63 (1) —847+(0.550.63 (1)
WC9d —6.88 £ (0.48)0.57 (1) —725+£(050)0.58 (1) —929+(0.16)0.34 (4 936+ (0.16034 (4
WN3b —3.594£(046)0.55 (1) —3.84%(046)0.55 (1) —411£(046)0.55 (1) —450=£(0.46)0.55 (1)
WN6-7b —551£(041)0.51  (2) —588+(0.40)0.50 (2) —6.14%£(0.38)049 (2) —6.41£(044)0.53 (2)
WN4-6 —418£(0.13)0.33 (1) —442£(0.14033 (1) —471£(0.15034 (1) —505£(0.15033 (1)
WN7-9 ~5.96£ (039049 (5) —623%(036)047 (6) —6.53+(028)041 (12) —6.79+(0.30)043 (11
WN7ha - ~774£(0.12)0.32 (1) —787+(0.12)0.32 (1) -822£(0.12)032 (1)
WNO9ha - - 679+ (031043 (1)  —690+(0.31)043 (1)
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Figure 1. Calibration of Mg for WN spectral types. Broad-line stars are on the left, weak-line (including “WN#o’ and “WN#h’ stars) in the centre, and
“WN#ha’ stars to the right. Individual single stars are represented by small (red) crosses, and stars that have been corrected for a companion(s) by (red) triangles.
Larger (blue) symbols show the weighted average for each type with a combination of statistical error (equations 5, 6 and 7) and the estimated intrinsic spread
(0.3mag) in Mg within a WR spectral type. The horizontal lines represent the previous calibrations of Crowther et al. (2006a).

using weights

pi = “

p= Z pi,

i=1
where s; is the error in absolute magnitude (M;) — invariably dom-
inated by distance uncertainty — calculated for each of the n WR
stars of that type. We calculate a formal error (o) on each calibrated
absolute magnitude value by combining two uncertainty estimates
for weighted data:

«.%N‘ p—

(7=\/012—|-0'22, (®)]
where
1
o= —, (6)
N
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This combination is chosen because 0| depends only on s; and does
not consider the spread in M;, which is taken into consideration by
0).

This weighted average approach favours objects with the most
accurately determined distances, but the formal uncertainty given
by equation (5) does not account for any intrinsic scatter in WR
star luminosities within a spectral type. Such a scatter is expected,
as a WR spectral type does not represent a perfectly uniform class
of objects, but the division of smoothly varying WR properties
at spectrally identifiable boundaries. Therefore, one expects each
subclass to encompass a range in mass, temperature and luminosity.

o \/Z,lp,(M iy

2322-2347 (2015)
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Figure 2. Calibration of Mg, for WO and WC subtypes. To the right of the
vertical dotted line are subtypes associated with circumstellar dust. WR 104
(WC9d+B) has Mg = —10.4, outside the range displayed here. Symbols
same as Fig. 1.

Table 7. Intrinsic scatter in absolute magnitude within a WR spectral type.

Cluster Stars (WR#) Mg range oy
WN7
Westerlund 1 77d, 77j, 77r, T7sa 0.76 0.33
WN8
Arches 102a, 102ae, 102af, 102ah, 102al 0.84 0.34
GC Cluster 101b, 101dd, 101nc, 101oc 1.28 0.57
WN9
Arches 102ad, 102ag, 102ai, 102aj, 102bb, 102bc 1.85 0.72

Westerlund 1, the Arches and the GC cluster individually con-
tain enough stars of a single spectral type to evaluate some basic
measures of spread, effectively eliminating the scatter introduced
by distance uncertainties when considering one type across multi-
ple clusters. In Table 7, we show the range and standard deviation
in Mg, within a WR spectral type. Ranges are typically <1, al-
though WNO stars in the Arches cluster show a larger range due to
the anomalously faint WR 102aj; we classify this star based on a
K-band spectrum published by Martins et al. (2008) and thus can
only claim a £1 accuracy on the WNO spectral type. Typical stan-
dard deviations of 0.3-0.6 mag in Mg, suggest that WR absolute
magnitudes intrinsically vary by at least £ 0.3 within a spectral
type. Following this result, we add an uncertainty of 0.3 mag in
quadrature to the result of equation (5) (see Tables 5 and 6), and
recommend the adoption of this combined uncertainty when apply-
ing these calibrated absolute magnitudes to WR stars in the field.

Throughout the rest of this paper we favour discussion and appli-
cation of the M, calibration as these results are affected by lower
(and more accurately determined) extinctions than those in J and H
bands, and are derived using the largest sample. For completeness,
in the cases of WN4 and WN5b stars (unrepresented in our calibra-
tion sample), we take average values in each band from the adjacent
ionization types.

2.5 Results of near- to mid-IR absolute magnitude calibrations

Both strong- and weak-line WN stars show a monotonic in-
crease in intrinsic near-IR brightness with ionization type. This is
largely due to cooler, late-type WN stars having smaller bolometric

corrections. WN stars displaying intrinsic absorption features (the
‘ha’ stars) are the most luminous at these wavelengths, as a conse-
quence of their high masses. Our results show good agreement with
the calibrations of Crowther et al. (2006a) for weak-line WN stars,
but suggest slightly higher IR luminosities for strong-line WN4—
7b. We note that for ionization types 6 and 7, strong- and weak-line
stars have similar Mg,. One would expect an enhanced contribu-
tion from free—free excess in the denser winds of ‘b’ stars to make
them brighter at IR wavelengths than weak-line stars. However, the
strong-line stars of these ionization types have higher effective tem-
peratures (Hamann, Grafener & Liermann 2006), so the enhanced
IR emission from free—free excess is counteracted by larger bolo-
metric corrections at these subtypes.

The lower number of WC stars available reveal a less obvious
variation in Mg, with ionization type, yet a monotonic increase
in near-IR luminosity does appear to be present for WC4-8. As
expected, dusty WC stars display a large range in Mg, due to
varying quantities of dust and the range of orbital phases sampled
amongst periodic dust-forming systems.

The limited area and resolution of the GLIMPSE survey results
in far fewer stars available for absolute magnitude calibration at
3.6-8.0 pm. Hence, in some cases spectral types showing only small
differences in Mk, are grouped together to provide more robust
estimates. For all WR types with GLIMPSE coverage, we observe
a brightening across [3.6]-[8.0], gradual in most cases except dusty
WC stars which exhibit a dramatic AM ~ 2 between [4.5] and
[5.8], owing to hot circumstellar dust emission.

2.5.1 The effects of a different Galactic Centre extinction law

The results presented in this paper are produced by applying the
line-derived Fritz et al. (2011) 1—19 um law — with A 1™,
a = 2.13 £ 0.08 over the JHKy range — to WR stars residing
in the GC (358° < [ < 2°, |b| < 1°). Alternatively, Nishiyama
et al. (2009) propose a shallower law (¢ = 2.0). It can be seen in
equations (1) and (2) that a shallower law would lead to lower de-
rived extinctions by the colour excess method. We perform a second
set of absolute magnitude calibrations using the Nishiyama et al.
law to quantify its effect on our results. The biggest change is seen
in our calibrated absolute magnitudes for late-type WN and WC
stars, as these dominate in the inner Galaxy. Compared to values
presented in Table 5, adopting the Nishiyama et al. law changes
My, My, and My, of WNO stars by —0.30, —0.31 and —0.30 mag,
respectively; WN8 stars by —0.26, —0.31, —0.32 mag, and WC9
stars by —0.27, —0.32, —0.32 mag. All differences are within our
adopted uncertainties (Table 5), and hence are not significant. How-
ever, as we proceed to obtain further results based on these values
we monitor their effects and comment where discrepancies arise.

3 THE OBSERVED GALACTIC WR STAR
DISTRIBUTION

The sample of WR stars involved in our absolute magnitude cali-
brations represents approximately 20 per cent of the current known
Galactic population. The remainder either have poorly defined spec-
tral types, uncertain binary status, or in a majority of cases do not
reside in an identified cluster or association for which a distance
measurement is available. For convenience, we shall refer to any
WR star not in our calibration sample (i.e. Tables 1-3) as a ‘field’
star.

Up until recently it was widely accepted that most stars formed
in clusters (Lada & Lada 2003), so the low frequency of WR stars
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Table 8. Calculated spatial locations of the 228 ‘field” WR stars showing no conclusive evidence for an IR-bright companion,
to which our calibrated absolute magnitudes have been assigned. Shown for each object are the adopted spectral type, 2MASS
photometry (unless stated), derived Kg-band extinction, heliocentric distance (d), Galactocentric radius (Rg) and vertical
distance from the Galactic mid-plane (z). A full version of this table is available online, and further details of stars discovered
following the VIIth catalogue (WRXXX-#) are provided in Appendix A.

WR#  Spectral type  Ref. J H Ks AKS d (kpe) Rg (kpc) z (pc)

3 WN3ha 1 10.24 10.13 10.01 0.18 £0.02 4.53+1.15 1141 £ 1.18 —308 £ 83
4 WC5 2 8.75 8.57 7.88 0.134+0.01 2.694+049 10.15+055 —121 + 25
5 WC6 2 8.63 8.34 7.65 0.16+£0.02 2.69+0.84 10.183+0.83 —82 £ 32
13 WwWC6 2 10.14 9.64 886 029+002 4424138 946+ 1.40 —40 £+ 19
15 WC6 2 7.85 7.34 6.60 028+0.02 1.57+049 8.11 +0.55 —-10+£9
16 WNS8h 2 6.97 6.71 638 024+002 277+046 7.954+0.52 —104 £+ 20
17 WC5 2 9.93 9.74 9.17 0.07+0.02 5.02+0.91 8.31 +0.95 —303 £+ 59
17—1 WN5b 3 11.73  10.38 953 085+005 543+0.86 858+0.89 —41 £+ 10
19 WC5+09 4,5 9.75 9.13 853 020+£0.02 352+064 7.93+0.69 —54 £ 13
19a WN7(h) 2 9.07 8.13 750  0.714+0.04 2414047 7.78+0.53 —23 +£ 8

Spectral types: (1) Marchenko et al. (2004), (2) van der Hucht (2001), (3) this work, (4) Crowther et al. (1998), (5) Williams,

Rauw & van der Hucht (2009), .. ..

presently in clusters arose via dynamical ejection or rapid cluster
dissolution. It is now recognized that a high fraction of star forma-
tion occurs in relatively low density regions (Bressert et al. 2010),
so the low fraction of WR stars in clusters does not require an un-
usually high rate of ejection. Smith & Tombleson (2015) compare
the association of WR stars (and luminous blue variables) in the
Milky Way and Magellanic Clouds with O stars. They find WR
stars to be less clustered than O-type stars, with WC stars in partic-
ular showing weak spatial coincidence with O stars and H-rich WN
stars.

Our WN and WC calibration samples echo this finding, with
approximately half as many WC stars residing in clusters or as-
sociations as WN stars. The typical velocity dispersion of cluster
stars is not high enough to account for the isolation of WC stars
considering their age. The relative isolation of WC stars challenges
the commonly accepted evolutionary paradigm that this phase fol-
lows the WN phase in the lives of the most massive stars. Two
alternative scenarios may explain the locations of WC stars; either
they descend from a lower initial mass regime than other WR types
(Sander, Hamann & Todt 2012), or the runaway fraction of WC and
H-free WR stars in general is higher. Further detailed modelling
of cluster collapse and the ejection of massive stars is needed to
explain these emerging statistics.

In this section, we present an analysis of the spatial distribution
of WR stars, where distances to 246 field WR stars are obtained by
application of our absolute magnitude calibrations. Runaway WR
stars are discussed further in Section 3.2.3.

3.1 Applying My calibrations

Photometry and the derived spatial information for 246 field WR
stars are given in Tables 8 and 9. For any non-dusty field WR star
with a well-defined spectral type and no evidence of a significant
binary companion — either spectroscopically or through dilution of
near-IR emission lines — we simply apply our M calibrations to
obtain a distance. For these straightforward cases, we once again
use 2MASS photometry and calculate extinctions by the method
described in Section 2.3.

Regarding rare WO stars, although only one star (WR 142, WO2)
is available for calibration, we apply the absolute magnitude of this

star to the other three field WO stars in the Galaxy, spanning WO1-4
spectral types.

We find the spectral type and binary status of many field WR
stars to be uncertain. The majority of the field sample are heav-
ily reddened stars discovered by near-IR surveys, with typically
only a K-band (and occasionally H-band) spectrum available in
the literature; inclusion of these stars in our analysis is subject
to a spectral type being attributable by our near-IR classification
scheme to the required £1. Of the field WR stars included in this
distribution analysis, we modify the previously claimed spectral
types of ~25percent of those with only IR data available, in-
dicated in Tables 8 and 9. For the remaining 75 per cent, we ei-
ther agree with previous spectral types based on near-IR spectra,
or adopt optically assigned spectral types (always assumed to be
reliable).

Further difficulty is encountered when trying to determine the
binary status of each WR star, particularly late-WC stars, as IR line
dilution could be a result of thermal emission from circumstellar
dust or the continuum of a bright companion. For WR stars of types
other than WC7-9 showing evidence of binarity, if a flux ratio of
the WR component to its companion is determinable in either J,
H or K, it is straightforward to adjust the corresponding 2MASS
photometry to that of the WR component alone. We follow one of
two procedures to obtain near-IR flux ratios for suspected binary
systems, depending on whether or not the companion responsible
for line dilution has been classified.

In the case of SB2 systems where both stars have been explicitly
classified, we determine flux ratios in the JHKs bands using the
absolute magnitudes of Martins & Plez (2006) (O stars) or Wegner
(2006) (B stars) along with our calibrated WR star absolute magni-
tudes. The advantage of this method is that it enables us to correct
photometry over all bands, allowing an extinction calculation by our
favoured colour excess method. This method is also applicable to
dusty WC stars, provided photometry is available from a quiescent
period.

If a (non-WC7-9) WR star shows diluted near-IR emission
lines — but the nature of the diluting source is unclear — we
estimate the flux ratio using single-star emission line strengths
(Appendix C). The dilution of optical lines can also be used, as
the uniformity of OB-star intrinsic (V — Kjy) colours (Martins &
Plez 2006) makes it straightforward to translate a V-band flux ratio
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Table 9. Calculated spatial locations of 18 binary ‘field” WR stars to which our calibrated absolute magnitudes have been assigned. Shown for each
object are the adopted spectral type(s), systemic 2MASS photometry (unless stated), calculated Kg-band (unless stated otherwise in parentheses)
WR/system flux ratio, derived Kg-band extinction, heliocentric distance (d), Galactocentric radius (Rg) and vertical distance from the Galactic
mid-plane (z).

WR# Spectral type Ref. R4 HS K ;ys FWR/pys Akg d (kpc) Rg (kpc) z (pc)
29 WN7h-+OSI 1 991 946 9.2 049£0.16 051019 9484256 1027+257 —148 £ 45
30 WC6+06-8 21006 976 921 0.75 0% 0257030 6.11+£344 829+£345  —258 + 157
30a  WO4+05-5.5 3 1025 983 956  0.13+£0.04 040+004 567+£118 817121  —117 £ 28
31 WN4+08V 2 9.17 896 869  046+£023  030+£022 334+1.12  7.63 %115 21 £ 1
352 WN6h+O8.5V 4 1047 998  9.65 0.807039 0.37+0.14 781199  9.13+2.00 12 £2
41 WC5+0B 2 1153 1098 10.12 0.937097 047+027 6.69+206 840+207 —101 + 37
42 WC7+07V 5 759 752 708 0.53£0.100) 0.14+£003 2964053  7.47 +0.58 -6£5
47 WN6+05.5 6 832 792 755  093°00(0)  037£003 212+£044  7.10£0.50 1+2
50 WC7+0B 2 975 938 88l 0.8610-1 0217037 523+£218  649£2.19 45 + 11
51 WN4-+0B? 2 1090 1033 9.89 077103 072705 370+£180  6.55+1.82 35 +£7
63 WN7+0B 2 8.60  8.07  7.64 0.891011 0434+027 3.68+123 585+ 1.26 -6+£38
86 WC7+BOII 7 744 714 667  077£026  031£002 197+047  6.05+0.53 83 £ 15
125 WCT7ed+09I1 2 9.26°  874%  825%  046+£007 0254012 545+105 656+ 1.08 120 £ 19
138 WN5+0B 2 697 680 658 061011 027010 138+026 7.76 £ 0.36 46 £ 5
143 WC4+Be 9 858 810 746  053£017  060+£006 133+030 7.8240.39 18 + 1
151 WN4+05V 2 976 936 901  073£0.10  040+£0.11 293+0.65 9.10+0.70 91 £ 16
155 WN6+O9II-Ib 2 748 734 706 070+£007  0.14+008 256+0.56  9.02+0.61 —38 £ 13
158 WN-OB? 2 864 820 78I 0.8470-%8 040+£0.03 646138 1223+ 1.40 31+£3

(1) Gamen et al. (2009), (2) van der Hucht (2001), (3) Gosset et al. (2001), (4) Gamen et al. (2014), (5) Davis, Moffat & Niemela (1981), (6) Fahed
& Moffat (2012), (7) Lépine et al. (2001), (8) Williams et al. (1992): average of quiescent photometry in 1989, and (9) Varricatt & Ashok (2006).

to the near-IR. However, the paucity of published line strengths typ-
ically results in a flux ratio only being determinable in one near-IR
band. When this is the case, we either adopt A, from the liter-
ature (indicated in Tables 8 and 9) or exclude the star from our
analysis.

To determine the nature of late-WC stars displaying diluted emis-
sion lines, we incorporate photometry from the WISE all-sky survey
(Wright et al. 2010) allowing us to construct a simplistic 1-22 um
SED. We interpret a peak energy output at 2> 5 um as evidence for
circumstellar dust emission, and stars displaying this are excluded
from our analysis as we cannot determine their distances accurately.
We identify only one line-diluted late WC, WR 42 (WC7+407V),
to be conclusively dust-free, and include this star in the binary
field sample (Table 9) with J-band photometry corrected for the
companion.

Our field WR star sample consists of 246 objects; 18 of these are
corrected for a companion by the line-dilution technique, and 3 are
corrected for a spectrally classified companion. We note that with
the currently known population standing at ~ 635, approximately
260 WR stars are unaccounted for in our calibration and field sam-
ples. Of these, the majority have uncertain spectral types, and lack
spectra of sufficient quality (or spectral range) to obtain the required
precision. Also excluded are stars with inconclusive evidence for a
companion, and subtypes for which we cannot assign reliable near-
IR absolute magnitudes (dusty WC stars, WN/C stars, WN10-11
stars).

A complete list of WR stars discovered between the Annex to the
VIIth WR catalogue (van der Hucht 2001, 2006) and 2014 March
is provided in Appendix A, which also highlights those for which
distances have been obtained from the present study, together with
an explanation of the revised nomenclature.

3.2 Spatial properties

The Galactic locations of 354 WN and non-dusty WC stars com-
prising our calibration and field samples are shown in Fig. 3. Uncer-
tainties on distance moduli of field WR stars are displayed in Fig. 4,
where it can be seen that ADM ~ 0.4 mag typically applies, and
minimum distance uncertainties are approximately 14 per cent.

3.2.1 Radial distribution

Fig. 5 shows the radial distribution of 354 WR stars in the
Milky Way. As expected, the majority of WR stars are located
at Galactocentric distances of 3.5-10 kpc, with an additional peak
at R < 500 pc owing to significant star formation within the cen-
tral molecular zone (CMZ), reminiscent of OB star-forming regions
(Bronfman et al. 2000).

Two conspicuous subpeaks, consisting mostly of WN stars, occur
at Rg ~ 4.5 and ~7.5 kpc. Both may be viewed as superpositions
on the underlying WR population, the innermost and outermost are
largely attributable to the WR content of Westerlund 1 (~20 WR)
and the nearby Cygnus star-forming region (~ 15WR, [ ~ 75°,
d = 1.3-1.9 kpc), respectively.

3.2.2 z-distribution

Fig. 6 shows that, as expected, WR stars are largely confined to the
thin disc. This strict confinement to z = O resembles a Cauchy distri-
bution. Indeed, a non-linear least-squares fit of a Lorentzian function
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Figure 3. Positions of 354 WR stars projected on the Galactic plane (top) and viewed edge-on (bottom) in Cartesian coordinates, with the GC at (0, 0, 0).
Galactic longitude increases anticlockwise about the Sun, which is represented by the standard symbol. Stars with known distances (calibration sample) are
represented by larger symbols, whereas those with photometric distances (field sample) are represented by smaller symbols. Stars located at |z| > 300kpc are
marked with black crosses. The dotted lines at Rg = 6 and 9 kpc delineate the three chosen metallicity zones. From left to right, the displayed clusters from
which > 1 WR stars are taken are: NGC 3603 [-7.07, 5.20], Danks 1 and 2 [-3.39, 5.59], Westerlund 1 [-1.40, 4.25], Halven—Moffat 1 and 2 [-0.65, 4.76],
NGC 6231 [-0.47, 6.43], GC [0.0, 0.0], Arches and Quintuplet [0.02, 0.0], C1 1813—178 [0.79, 4.49] and Quartet [2.65, 2.29].

(equation 8) matches well the distribution of vertical heights (z) of Unlike other young stellar population tracers, we find no evi-
WR stars from the Galactic plane, dence for flaring of the WR star disc with increasing Rg, although
this is likely due to the small number of WR stars identified be-

N@) =A [ i } ) yond the solar circle. Paladini, Davies & De Zotti (2004) perform a
(z—z0)2 +y2]’ Gaussian fit to the z-distribution of 456 Galactic H 11 regions interior

to the solar circle, finding ¢ ~ 52 pc (full width at half-maximum,

where y is the half-width at half-maximum (HWHM), z, is the FWHM ~ 125pc). Although not identical to the form of our fit,
location of the peak and A is an intensity. Assuming the Sun lies this distribution is broader than what we observe for WR stars. The
20 pc above the Galactic plane (Humphreys & Larsen 1995), our fit thickness of the OB star-forming disc interior to the solar circle
yields y = 39.2pc and z, = 1.9 pc (Fig. 6). is measured by Bronfman et al. (2000), who find a FWHM of
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30-50pc — slightly narrower than the WR star disc — flaring
to > 200 pc beyond Rg = 12 kpc.

3.2.3 WR stars at large distances from the Galactic disc

A small fraction of WR stars are found at high vertical distances
from the Galactic disc. Additional details of the 12 WR stars
at |z] > 300pc (Z7y) are shown in Table 10, all of which are
presumably runaways from star formation sites in the thin disc.
We include WR 124 in Table 10 since it has previously been

identified as an extreme runaway by its high peculiar radial velocity
(156 km s~'; Moffat, Lamontagne & Seggewiss 1982). Here, we
briefly discuss the possible events leading to their runaway status,
and summarize the evidence for each.

First, we address the possibility that some of these objects are
much fainter (thus less distant) WR-like central stars of planetary
nebulae (CSPN). Both WC-like ([WC], e.g. Depew et al. 2011) and
WN-like ([WN], e.g. Miszalski et al. 2012; Todt et al. 2013) CSPN
have been observed in the field, although [WC]-type are far more
common. These objects are almost identical in spectral appearance
to their high-mass analogues (Crowther, Morris & Smith 2006b),
yet are intrinsically fainter by several magnitudes.

We conduct a search for nebulosity around each |z| > 300 pc WR
star by inspection of SuperCOSMOS Ha images (Parker et al. 2005)
and any other published He imaging. Identification of a surrounding
nebula cannot alone prove any of these objects to be CSPN, as some
WR stars are seen to possess ejecta nebulae (Stock & Barlow 2010),
yet it would provide a strong indication. Nebulosity is only observed
around WR 71, which is known to be a genuinely massive, potential
WR+compact object binary system (Isserstedt, Moffat & Niemela
1983). We therefore conclude that none of these 12 high-z WR stars
are misclassified CSPN.

There are two leading mechanisms by which massive stars can
be ejected from their birthplaces; the binary SN scenario where
a massive binary system becomes unbound after an SN explosion
(Blaauw 1961), and the dynamical ejection scenario where close
encounters in a dense cluster can eject massive single or binary
stars (Poveda, Ruiz & Allen 1967).

A WR star at |z| = 700 pc (similar to the highest observed), as-
suming z = 0 at birth and a time since ejection of 5 Myr (typical
WR star age), would require an average velocity in the z-direction
of 140km s~!. In the case of dynamical interaction between mas-
sive single and binary stars, a typical ejection velocity is given by
vezj =GM,/a (M, = total mass of binary with semimajor axis a)
according to Fujii & Portegies Zwart (2011), and the ejected star
usually has the lowest mass of 3. By this reasoning, assuming a
M Z 25M@ WR progenitor limit, a My, = 50M@ (160M@) bi-
nary with a period up to 170 d (550 d) would be capable of ejecting
a WR progenitor star with at least ve; = 140km s~!. Ejection of
the binary system is also possible in such an interaction, which one
might expect thereafter to be associated with considerable hard X-
ray flux from the collision of stellar winds. In Table 10, we include
available X-ray observations for these 12 stars, showing that only
WR 3 is conspicuous, lying on the Ly /Ly, relation for spectroscopic
O-star binaries (Oskinova 2005). However, Marchenko et al. (2004)
find no evidence for short period (<2 yr) radial velocity changes,
concluding that WR 3 is likely a single star.

Alternatively, the locations of these stars may be explained by mo-
mentum gained from the SN explosion of a companion. Dray et al.
(2005) estimate that 2/3 of massive runaways are produced this way.
Isserstedt et al. (1983) show that kick velocities of ~ 150km s~!
may be imparted on a surviving star, and that this star and the re-
sulting SN remnant may remain bound if less than half the total
system mass is lost during the SN. Therefore, one would expect
a fraction of massive runaway stars to have compact companions.
Indeed, WR 148 is an SB1 (Drissen et al. 1986) and the strongest
Galactic candidate after Cyg-X3 for a WR+-compact object binary.
Low amplitude photometric and spectroscopic variations have been
observed in WR 71 and WR 124 (Isserstedt et al. 1983; Moffat et al.
1982), suggesting they may also be SB1 systems with small mass
functions. However, the absence of X-ray emission from accretion
on to a compact object remains unexplained in all three cases. We
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Table 10. Properties of 12 WR stars observed at |z| > 300 pc, plus WR 124 which is known to be an extreme

runaway.

WR#  Spectral type z (pc) Binary status Lx (ergss™')  Ho nebula?  Natal cluster
17 WC5 —303 £ 59 Single Not detected” - -

3 WN3ha —308 + 83 Single 2.5 x 10320 - -
56 WC7 —323 £ 58 Single Not detected” No -
54 WN5 —378 £ 61 Single Not detected” No -
49 WNS5(h) —386 + 63 Single Not detected” No -
75¢ WC9 406 £+ 78 Single - No -
61 WN5 —411 + 66 Single <5.0 x 1030? No G305?
71 WN6 —689 £ 139  Binary? (SB1)°  Not detected” Yes? -
93a WN3 694 + 214 Single - No GC?
123 WNS8 —711 £ 120 Single Not detected” No -
64 WwC7 775 £ 127 Single Not detected” No -
148 WNS8h 814 + 131  Binary (SB1)*  <1.6 x 1032/ - -
124 WN8h 213 =+ 39 Single <2.0 x 1072 Yes! -

4ROSAT (Pollock, Haberl & Corcoran 1995), ?Oskinova (2005), “Isserstedt et al. (1983), “Stock & Barlow
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(2010), and “Drissen et al. (1986).

note that the WR+OB binary fraction amongst this sample is very
low, and quite possibly zero.

It has been suggested that WN8-9 subtypes are more frequently
observed as WR runaways (Moffat 1989). If we consider only the
most extreme examples, i.e. |z] > 500 pc plus WR 124, it can be
seen from Table 10 that 3/6 are of the WNS8 subtype. Although
numbers are small, a preference seems to exist for WN8 runaways.
Moffat (1989) argue that a WN8 spectral appearance may arise from
mass accretion from a binary companion. Combined with the un-
usually low WR+OB binary fraction and the low-mass companion
of WR 148, this evidence favours a binary SN origin for the extreme
runaway WR population.

Two of the runaway stars listed in Table 10, WR 61 and WR 93a,
are observed at similar Galactic longitudes to the G305 complex
and GC clusters, respectively. Considering our typical distance un-
certainties (Fig. 4), ejection from these massive star-forming regions
is a possible explanation for their large distance from the Galactic
plane.

3.3 Subtype distributions across the Galactic metallicity
gradient

Here, we assess how WR subtypes vary across the Milky Way disc
and compare this to the predictions of metallicity (Z)-dependent
evolutionary models. By including WR stars in the Large and Small
Magellanic Clouds (LMC and SMC), we may probe massive star
evolution over a metallicity range Z = 0.002-0.04. A constant SFR
is implicitly assumed in all regions considered, allowing us to relate
the relative numbers of WR subtypes observed with the relative
duration of associated phases.

We proceed by dividing the Galaxy into three broad zones of
supersolar (Rg < 6kpc), solar (6 < Rg < 9kpc), and subsolar
(R > 9kpc) metallicity. Based on the H 1-region metallicity anal-
ysis of Balser et al. (2011), we assign approximate oxygen abun-
dances (log[O/H] + 12) of 8.85, 8.7 and 8.55 (£ 0.1 dex) to
each zone, respectively; each value is arrived at by inspection of
their fig. 8 and a derived (azimuthally averaged) log [O/H] gradient
of —0.05 & 0.02 dex kpc~'. According to our distribution analysis
of 354 WR stars, we find 187, 132 and 35 to inhabit the superso-
lar, solar, and subsolar metallicity zones, respectively. Additionally,
there are 148 known WR stars in the LMC (Breysacher, Azzopardi
& Testor 1999; Neugent, Massey & Morell 2012, and references

therein; Massey et al. 2014) for which the oxygen abundance is
(log[O/H] + 12) = 8.38 (Rolleston, Trundle & Dufton 2002), and
12 WR stars in the SMC (Massey & Duffy 2001; Massey, Olsen &
Parker 2003) for which (log [O/H] + 12) = 8.13 (Rolleston et al.
2003).

As recently highlighted by Groh et al. (2014), there is not a
straightforward correspondence between spectroscopic and evolu-
tionary phases in massive stars, particularly post-MS. Spectroscop-
ically, any WN showing surface hydrogen (WN#h or (h)) or with
ionization type > 7 is identified as late-type (WNL), while H-free
WN of ionization type < 6 or those displaying broad emission lines
(WN#b) are early type (WNE). We follow these definitions here,
noting that the lack of near-IR hydrogen diagnostics is unlikely to
significantly affect our measured Nwng/Nwni, as Galactic WN < 7
stars are generally H-free (Hamann et al. 2006), so division by ion-
ization type alone is sufficient. This assumption is less applicable
in the lower metallicity regions of the outer Galaxy, however, low
extinction in these directions means optical (hydrogen) diagnostics
are commonly available. We include the WNha stars as WNL when
evaluating subtype number ratios; their definition as such has mini-
mal effect as only 18/235 WN considered belong to this class. The
division in WC stars is more straightforward, with WC4-6 defined
as early (WCE) and WC7-9 as late type (WCL). In Table 11, we
show the subtype breakdown of WR stars observed in each Galactic
metallicity region.

In stellar models, stars have historically been matched with the
aforementioned spectroscopic WR types using basic surface abun-
dance and effective temperature (7.) criteria. For example, Meynet
& Maeder (2005) employ g > 10* K and Xy < 0.4 as the definition
of a WR star in their models, while Eldridge, Izzard & Tout (2008)
add a further constraint of log(L/Le) > 4.9. This Tt boundary
is too low, since even the coolest WR stars (WN8-9) are found to
have log(Tr) >~ 4.6 (Hamann et al. 2006). A surface temperature of
10* K is more typical of late-B/early-A supergiants (Przybilla et al.
2006). Also, recent spectroscopic analysis of WC stars by Sander
et al. (2012) indicate that some WC9 stars are very close to this
lower luminosity limit. The transition between eWNE and eWNL
phases (where ‘e’ denotes the definition in evolutionary models)
is regarded to occur when Xy < 1073, and the eWC phase begins
when carbon dominates nitrogen by mass (Meynet & Maeder 2005).
By computing model spectra from evolutionary models, Groh et al.
(2014) have shown that spectroscopic WNE and WNL lifetimes
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Table 11. Observed WR number ratios in the Galaxy, LMC and SMC. Galactic WC stars counted here show no
evidence of circumstellar dust, results incorporating an estimated 28 per cent of neglected (dusty) WC stars are
parenthesized. The four WO stars are counted as WCE. An indication of uncertainty is given assuming +/N errors

on each count.

Region Nwr Nwc Nwn Nwc/NwN NewNe/NewNL  NewcE + wo)/NwcL
(log[O/H] + 12) (Nwca) (Nowce + wed) /Nwn)
Inner Galaxy 187 63 124 0.51 +0.08 0.23 +0.05 0.05 +0.03
(8.85+0.1) (~22) (0.69)
Mid-Galaxy 132 46 86 0.53 £0.10 0.79 £ 0.17 1.0 £0.28
(8.7+0.1) (~16) (0.73)
Outer Galaxy 35 10 25 0.40 +£0.16 1.27 £0.58 1.5+ 0.97
(8.55+0.1) (~4) (0.57)
LMC 148 26 122 0.21 +£0.05 1.93 £0.37 26/0
(8.38 £ 0.05)
SMC (8.13 £ 0.05) 12 1 11 0.10 + 0.09 11/0 1/0
T
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Figure 7. Number ratio of WC/WN stars in the LMC and SMC (triangles), and across three Milky Way regions (upsidedown triangles) where results omitting
dusty WC stars (as in Table 11) are plotted as larger open symbols and smaller filled symbols represent the case where 28 per cent of all WC stars possess
hot circumstellar dust (Section 4.3.2). The solid (green) line shows the predictions of Meynet & Maeder (2005) for rotating single stars. Long-dashed (red)
line shows the predictions of Eldridge et al. (2008) for a population of massive binaries. All other lines (blue) represent non-rotating single-star evolutionary
predictions of Eldridge & Vink (2006) for four different M —Z dependences. Errors on the number ratios shown are estimated assuming /N counting errors
in Nwc and Nwn. An uncertainty of 0.1 dex is assigned to each Galactic O/H value.

can differ radically from eWNE and eWNL lifetimes, as a star
may have a WNE spectrum while retaining some surface hydrogen,
hence this is a poor indicator. The problem is not so severe regarding
the transition from WN to WC stars, as the change in surface carbon
abundance is a rapid process, meaning the eWC phase corresponds
well to the spectroscopic WC phase.

3.3.1 Incompleteness of the sample

Before comparing observed numbers with evolutionary model pre-
dictions, it is necessary to comment on two selection effects — one
in our distribution analysis and one inherent to WR star surveys —
that affect the star counts we present.

First, as we cannot assume reliable near-IR absolute magnitudes
for dusty WC stars they have been excluded from our distribution
analysis. Thus, in Table 11 we count only those WC stars showing
no evidence for circumstellar dust. However, by inspection of a lo-
cal volume-limited (<3 kpc) sample of WR stars (see Section 4.3.2
for full details), we estimate that 27(=4 9) per cent of WC stars show
evidence of circumstellar dust. To account for the effect of these
neglected stars, we plot in Fig. 7 a set of enhanced WC/WN number
ratios along with the values shown in Table 11. As this informa-
tion is only available in the solar neighbourhood, we are forced to
assume an unvarying fraction of dust-forming WC stars across the
whole Galaxy. Late-type WC stars are known to dominate at higher
metallicity, and it is predominantly these that are seen forming dust,
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hence we expect this fraction in reality to be higher towards the GC.
The slight downturn in Nywc/Nwn at Rg < 6 kpc could be due to a
higher number of late-WC stars omitted from our analysis in this
region.

Secondly, the two most widely employed WR star survey tech-
niques are both least effective at identifying weak-lined WNE stars.
Narrow-band IR imaging surveys are biased against WNEs due to
low photometric excesses from their weak emission lines. The IR
excess emission from free—free scattering — exploited by broad-
band selection techniques — is also weaker in WNE stars as their
wind densities are lower than other WR subtypes. For these reasons,
and considering their modest IR luminosities, we expect WNE stars
to be slightly underrepresented in our total sample, especially be-
yond the solar neighbourhood. Therefore, future observations will
likely refine the numbers presented here by marginally decreasing
NWC/NWN and increasing NWNE/NWNL-

3.3.2 Comparison to evolutionary predictions

In Fig. 7, we plot observed Nywc/Nwn in different regions of the
Galaxy, and the Magellanic Clouds, alongside the predictions of
various evolutionary models for massive stars. Rotating single-
star models are taken from Meynet & Maeder (2005), non-rotating
single-star models with various M(Z) dependences are taken from
Eldridge & Vink (2006), and finally predictions for a population
of non-rotating massive binaries exhibiting metallicity dependent
mass-loss are taken from Eldridge et al. (2008) (BPASS).

All models predict an increasing number of WC compared to
WN stars with metallicity, due to increasingly rapid exposure of
nuclear burning products caused by stronger stellar winds in more
metal-rich environments. Our analysis shows only a modest vari-
ation of Nwc/Nwn (0.4-0.55) across the Galactic disc, whereas
the ratio drops considerably to 0.2-0.1 at LMC and SMC metal-
licities. At all metallicities the observed Nwc/Nwn lies between
the predictions from a population of binary stars (Eldridge et al.
2008) and single non-rotating stars. The addition of an estimated
28 per cent of neglected (dusty) WC stars at Galactic metallicities
does not significantly alter this. However, the predictions of evolu-
tionary models including rotation lie ubiquitously lower than our
observations at Galactic metallicities. Fast rotation has the effect
of lengthening WR lifetimes, manifest predominantly in the eWNL
phase, thus reducing Nwc/Nwn (Meynet & Maeder 2005). How-
ever, it is not expected that all massive stars are formed rotating
as quickly (v/*'=300 km s~!) as those generated in these models
(Penny & Gies 2009).

Fig. 8 shows the number ratio of early- to late-WN stars in each
Galactic metallicity zone, as well as in the LMC and SMC. An
increase in the proportion of WNE can be seen with decreasing
metallicity, and no WNL stars are known in the SMC. Contrary to
this, the rotating models of Meynet & Maeder (2005) produce a
shorter relative eWNE phase at lower metallicity, due to less effi-
cient removal of the H-rich stellar envelope during prior evolution-
ary phases. Furthermore, rotationally induced mixing allows stars
to become WR earlier in their evolution and experience an extended
eWNL phase. The extreme sensitivity of the eWNE/eWNL transi-
tion to the chosen hydrogen surface abundance criterion clearly has
a major influence on predictions (Groh et al. 2014). Therefore, we
interpret the disparity shown in Fig. 8 largely as a symptom of these
definitions rather than a serious conflict with evolutionary theory.

2 http://www.bpass.org.uk/

Distribution of Galactic Wolf-Rayet stars 2337
D ¥ :
1.00 ¢ 7 3
z
=z
3
z 0.10¢
Pz
rotating
0.01L — — — - non—rot |
80 82 84 86 88 9.0 9.2

log[O/H]+12

Figure 8. Number ratio of WNE/WNL stars across three metallicity zones
in the Milky Way, LMC and SMC. The red lines show eWNE/eWNL predic-
tions from rotating (solid) and non-rotating (dashed) evolutionary models
(Meynet & Maeder 2005).

Our results show that the WN phase of WR stars at subsolar
metallicities is almost entirely spent with a WNE spectral appear-
ance, whereas the WNL spectral type endures longer on average at
supersolar metallicities.

4 MODELLING THE TOTAL WR STAR
POPULATION OF THE MILKY WAY

With knowledge of how WR subtypes vary with Galactocentric
radius, and the intrinsic near-IR brightness of each subtype, we are
in a position to model the observational properties of the whole
Galactic WR population. To this end, we develop a 3D, azimuthally
symmetric ‘toy’ model of the WR population — described in the
following section — that is scalable to different total numbers of WR
stars. For varying numbers of WR stars, we apply a simple Galactic
dust distribution to redden the population, and derive magnitude
distributions in various bands for comparison with the observed
population, allowing us to estimate the total number of Galactic
WR stars.

4.1 Populating the model

We do not attempt to incorporate complex structural features such
as spiral arms or the Galactic bar into this model WR population, as
our aim is to derive basic observational characteristics of the whole
population, smoothing over any local enhancements. We therefore
distribute model WR stars in an azimuthally symmetric disc, with
the same thickness as the observed population. We generate the
z-coordinate of each star so they are Cauchy distributed, by com-
puting

1
Zi = ytan (7‘[)’()1 — E) s (9)

where 7y, is a randomly generated number between 0 and 1 and y
is the observed HWHM (39.2 pc, Section 3.2.2). The z-distribution
is truncated at z = £ 1kpc in accordance with the most extreme
runaway stars observed.

We construct a model WR disc composed of 24 annuli of 0.5 kpc
in width spanning radii Rg = 3-15 kpc. Rather than using our ob-
served radial distribution of WR stars to dictate the relative number
in each annulus, we utilize a normalized version of the radial H -
region distribution presented by Paladini et al. (2004), since we
consider Hu regions to be a more complete tracer of hot young
stars over a larger Galactic extent. Within each annulus, the model
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Figure 9. Anexample model WR population mimicking that of the Galaxy,
containing 1050 stars at Rg = 3-15kpc and 250 at Rg < 3 kpc, shown in
Cartesian coordinates. The location of the Sun is indicated by the standard
symbol at (0, 8 kpc) in the top panel.
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stars are randomly placed between the lower and upper radii at
a random angle (#) between 0 and 27t around the model disc. In
these coordinates, the Sun is located at z = 20pc, & = 0°, and
Rg = 8000 pc.

Interior to Rg = 3 kpc, where star formation is suppressed (aside
from the CMZ) we include a fixed number of WR stars in every
model. Dong et al. (2012) report on a Pac survey covering the
central ~0°6 (~80pc) of the Galaxy, including the three mas-
sive clusters (Arches, Quintuplet and GC). Within this region they
identify as many emission line sources (evolved massive star candi-
dates) outside of these clusters as within them; given that ~ 80 WR
stars are known to reside in these clusters, we estimate 160 WR stars
present in the Dong et al. survey area. The CMZ is approximately 3°
(400 pc) across, and the density of gas in this extreme environment
is strongly centrally peaked, so that approximately 40 per cent of
the CMZ gas lies within the Dong et al. survey area (Ferriere 2008).
Assuming the non-cluster population of WR stars roughly follows
the amount of molecular gas, this would imply a further ~ 100 WR
stars in the CMZ. The inner Galaxy (Rg < 3 kpc) contains little star
formation outside the CMZ, we therefore populate this area in our
models with 250 WR stars, following a Gaussian distribution cen-
tred on Rg = 0 with 0 = 200 pc. An example model is displayed
in Fig. 9.

The number of WR stars in each radial bin of our model popu-
lation is divided into four components representing WNE, WNL,
WCE and WCL. The relative numbers of each WR type match
those observed (Table 11), varying from the model GC where late
types dominate to Rg = 15 kpc where early types are in the major-
ity. We assign absolute magnitudes of M, = —4.31, —6.01, —4.45
and —4.89 to WNE, WNL, WCE, and WCL types, respectively,
based on averaging our calibration results (Section 2.5). We do not
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Figure 10. Mid-plane number density of molecular H, (solid) and atomic
H (dashed) gas, used to govern our model dust distribution, as a function of
Galactocentric radius (equations 11 and 12, respectively).

include WO or WN/C stars as they constitute a negligible fraction
of the population.

4.2 A dust model for the Milky Way

We include two dust components in our model WR star disc; one
associated with molecular (H,) gas, the other with atomic H gas.
We apply the same dust-to-gas mass ratio for each component. This
assumption follows Bohlin, Savage & Drake (1978) who derive a
total neutral hydrogen to colour excess ratio, implying the each
atom of H is responsible for a set amount of extinction, whether
in molecular or atomic form. Both dust components are included
as 2D functions in Rg and z, motivated by the spatial distribution
measured for their respective gas species. These gas measurements
are taken from Nakanishi & Sofue (2006) and Nakanishi & Sofue
(2003) for molecular (traced using CO) and atomic gas, respectively.

Functions describing each dust component have the form
D,,(Rc) x Dy(Rg, z), where D,,(Rg) describes the dependence of
mid-plane density on Galactocentric radius and D, (Rg, z) describes
how the density drops with vertical distance from the mid-plane.

Both dust components are included with a vertical dependence
of the form Dj,(Rg, z) = sechz(c), where

¢(Rg, 7) = log(1 + v/2)——— (10)
212(Rg)

and z; »(Rg) is the height at which the density falls to half of the mid-
plane value, which increases linearly with Galactocentric radius for
both gas species. For molecular gas, z;,2(0) = 25 pc increasing to
90 pc at Rg = 10kpc (Nakanishi & Sofue 2006). For atomic gas,
212(0) = 100 pc increasing to 500 pc at Rg = 15kpc (Nakanishi
& Sofue 2003).

To represent the mid-plane density of molecular gas, we construct
the following function:

Re
Dmol R — Nmol h2
w (Ra) = NoTsech™{ 206 be

_ _ 2
(Rg 4300pc)}[ -, (11

texp { 2(2500 pc)?

which is shown in Fig. 10. The scaling values in equation (11) and
N =10cm=> are chosen to reproduce the maps of Nakanishi &
Sofue (2006).
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To represent the mid-plane density of atomic gas, we employ a
summation of two step functions:

13
1+ exp(—Rgpeoey
13

- —(Rg—13200pc
1+ exp(—fog20rd)

Ds;om(RG) — N(()ltom 1+

[em™] (12)

as shown in Fig. 10. Once again, we choose the scaling values and
Nim=0.08cm™> to reproduce the maps of Nakanishi & Sofue
(2003).

Finally, we integrate the total dust function

D(Rg, 2) = (D)} x D) + (D™ x Dj°™), (13)

along the line of sight from the Sun to each model WR star to provide
a total amount of obscuring dust. Hence, we obtain an extinction to
each model star, assuming A g is proportional to the amount of dust
along the line of sight, normalized to give Ax,=2.42 mag towards
the GC (Rg = 0, z = 0; Fritz et al. 2011).

4.3 Quantifying the total population

By combining our model WR star population (Section 4.1) with
the dust function described in the previous section, we are able to
generate a global magnitude distribution for a WR population con-
taining any number of stars. The total WR star population follows an
assessment of which predicted magnitude distribution most closely
reproduces that observed.

Before deducing this number, it is worth reconsidering what the
WR stars in our model represent. As their absolute magnitudes are
based on our calibrated values for WR stars (Section 2), they repre-
sent what we will refer to as “WR-dominated’ systems, i.e. where
any companion star(s) do not affect the systemic magnitude by
more than 0.4 mag (typical error on our absolute magnitude calibra-
tions), i.e. (my X —m}") > 0.4, corresponding to a WR/system flux
ratio of FY'R/Fg" > 0.7. Also, these model stars do not represent
WO, WN/C or dust-producing WC stars. Therefore, to achieve a
like-for-like comparison to observations, we initially only consider
observed ‘WR-dominated” systems, and in Section 4.3.2 estimate
the contribution of neglected WR types.

4.3.1 Comparison to a magnitude-limited sample

For comparison to our model Kg-band magnitude distributions, we
assemble a magnitude-limited sample of real WR-dominated sys-
tems. We note that < 5 percent of WR stars discovered since the
year 2011 are brighter than Ky = 8 mag (Mauerhan et al. 2011;
Shara et al. 2012; Smith et al. 2012; Chené et al. 2013). Therefore,
we adopt this as the current completeness limit.

Fig. 11 presents predicted magnitude distributions for WR popu-
lations containing 850, 1050 and 1250 stars between Rg = 3—15 kpc
plus 250 central stars (Rg < 3kpc). Also shown is the number of
observed WR-dominated systems with systemic Kg < 8mag. In
spite of providing too few systems with 7.5 < Kg < 8.0, the best
agreement is found with the 1050 + 250 WR star model. We take
forward 1300 &£ 200 as the number of Galactic WR-dominated sys-
tems, where the uncertainty is based on the comparison shown in
Fig. 11.

As commented on previously (Section 2.5.1), assuming a shal-
lower extinction law along lines of sight towards the GC has the
effect of brightening our calibrated M ; ¢, values for late-type WN
and WC stars by up to 0.3 mag. Upon altering the magnitudes of the
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Figure 11. The cumulative number of observed WR-dominated systems
(black solid line) in bins of 0.5 K5 mag, compared with that of three different
model WR populations.

late-type WR stars in our model population by this amount, we find
more consistency with magnitude distributions drawn from models
containing ~150 fewer WR stars. Hence, the effect of a shallower
GC extinction law is within the uncertainties.

4.3.2 Fractions of dusty and companion-dominated WR systems in
a volume-limited sample

Each point in our model WR star population represents a stellar
system where a WR star is the dominant or sole near-IR source.
To gain an insight into how many dusty and companion-dominated
WR systems are overlooked by these models — and hence our ini-
tially deduced population of 1300 — we construct a volume limited
sample of nearby WR systems. In Appendix D, we list all known
WR stars within 3kpc of the Sun, where distances are taken from
this work where possible (non-dusty WR stars), or by implement-
ing M,-subtype calibrations of van der Hucht (2001). A v-band
approach can be used to determine distances to dusty WC stars as
hot dust emission does not contribute to the continuum flux at these
wavelengths. We inspect the near-IR properties of these nearby WR
stars, categorizing each as either WR-dominated (FR R/ F¢* > 0.7),
having a significant companion (Fy R/ F¢" <0.7), or dusty WC.

Of the 72 WR stars in this volume-limited sample, 41 are WC
type of which 11 show evidence of circumstellar dust, indicating
that 15 £ 5percent of WR stars and 27 £ 9 per cent of WC stars
display circumstellar dust. A companion star dominates the near-
IR continuum in 11 of the remaining 61 non-dusty WR systems
(18 £ 6percent). Uncertainties on these fractions are calculated
assuming a /N uncertainty on each number count.

Therefore, we may assume our previously derived population
of 1300 represents only 82 percent of the non-dusty population,
as ~18 per cent (300) will have an IR bright companion. Further-
more, this non-dusty population of 1600 (= 1300 + 300) represents
only 85 percent of the total population, as a further ~15 per cent
(300) will be dusty WC stars.> Hence we estimate the total number
of Galactic WR stars at 1900 £ 250.

3 On the basis of no Galactocentric radial dependence on the fraction of
dust-producing WC stars.
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4.4 Expectations from star formation arguments

By combining the measured Milky Way SFR with an initial mass
function (IMF), itis possible to derive the average lifetime of the WR
phase (twgr) necessary to sustain a population of ~1900 WR stars.
Taking the Milky Way SFR to be 1.9 Mg, yr~! (Chomiuk & Povich
2011), adopting a three-part Kroupa IMF (Kroupa & Weidner 2003),
and assuming only stars with an initial mass > 25 M experience a
WR phase, our derived population can be reproduced with Twr =~
0.4 Myr.

This result is broadly consistent with rotating (non-rotating)
Geneva models at solar metallicity (Georgy et al. 2012), which
display Twg = 0.45Myr (0.006 Myr) at M; = 32 M, increasing
with mass to 0.9 Myr (0.4 Myr) at M; = 120M¢. WR lifetimes
as a result of binary evolution at solar metallicity (Eldridge et al.
2008) are predicted to span Twg = 0.5Myr at M; = 30Mg to
1.0Myr at 120M), slightly above that implied by our estimated
population, although binary evolution favours lower WR progenitor
masses so that our model population may not correspond to all WR
stars formed via this channel. Previously claimed population sizes
of > 6000 (van der Hucht 2001; Shara et al. 2009) are difficult to
reconcile with the measured Galactic SFR and a progenitor mass
limit M > 25M(, as WR lifetimes in excess of 1 Myr would be
required.

The CMZ accounts for an estimated ~4-5 per cent of Galactic
star formation (Longmore et al. 2013), yet we estimate that it con-
tains ~250 (13 per cent) of the Galactic WR star population. The
discrepancy between these fractions would suggest either we have
underestimated WR numbers in the Galactic disc, or this CMZ SFR
is insensitive to the most recent episodes of massive star formation.

4.5 Implications for future spectroscopic surveys

Near-IR surveys, both broad and narrow band, continue to add to
our knowledge of the obscured Galactic WR population. A question
of fundamental importance to spectroscopic follow-up campaigns,
is how deep do spectroscopic surveys need to go? Fig. 12 shows
multiband magnitude distributions derived from our favoured model
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Figure 12. Histogram of multiband observables derived from our favoured
model Galactic WR star population, averaged over 10 model repetitions,
including 2MASS JHKg and the G band of Gaia. Two Kg-band dis-
tributions are plotted, the thin (red) line represents a model population
where 28 per cent of WC stars are dust forming (WC8d/9d, Mg = — 6.95,
Table 5). The thick (red, green, blue and black) lines all represent populations
consisting of WN and non-dusty WC stars.

WR star population. We estimate that to achieve 95 per cent com-
pleteness, spectra of candidate WR stars need to be taken to a depth
of Ks ~ 17.5 mag (17.4 [17.6] in models [not] including dusty WC
stars), H >~ 23.3 or J =~ 34.3 — deeper by ~2 mag in K than the
95 per cent limit estimated by Shara et al. (2009).

The ESA Gaia mission will perform precision astrometry for a
billion stars down to visual magnitudes of 20, and acquire low-
resolution spectra of objects brighter that magnitude 16. To inves-
tigate the potential of Gaia in the search for and characterization
of WR stars, we derive the observed G-band distribution of our
favoured model population (Fig. 12). To do this, we implement
magnitude transformations provided by Jordi et al. (2010), M,, for
WR stars from van der Hucht (2001), and (b — v),, colours from Mor-
ris et al. (1993). We predict that approximately 600 (~ 1/3 of total)
WR stars will appear within Gaia’s 6 < G < 20 observing range,
with ~ 250 brighter than the magnitude limit for spectroscopy. With
the known population currently totalling ~ 635, Gaia is unlikely to
discover significant WR populations via spectroscopy, but the ma-
jority of those known will have distances measured to a significantly
higher level of accuracy than is currently possible.

5 CONCLUSIONS

We have presented near-IR absolute magnitude—spectral type cal-
ibrations for WN, WC and WO type WR stars, based on 126 ex-
amples with known distances (mostly by cluster or OB association
membership). Applying these calibrations to the rapidly growing
known Galactic population, we derive distances to a further 246
WR stars and present a 3D map of their locations. We note that ap-
proximately half as many WC stars are available for calibration as
cluster/association members than WN, consistent with the findings
of Smith & Tombleson (2015) than WC stars are generally more
isolated. This challenges the idea that WC stars descend directly
from WN, which in turn descend from the most massive O stars.
‘We have shown the heights of WR stars from the Galactic mid-plane
to be Cauchy distributed with HWHM = 39.2 pc, where 12 stars
reside at |z| > 300pc. The low binary fraction and a preference
for WNS subtypes in this small sample of runaway stars indicates a
binary SN origin for the most extreme examples.

Exploiting the variation of metallicity across the Galactic disc,
we have compared subtype number ratios measured in the inner
Galaxy, solar neighbourhood, and outer Galaxy to the predictions
of various metallicity-dependent evolutionary models. We measure
Nwc/Nwn to be significantly higher than predicted by evolutionary
models including fast rotation (Meynet & Maeder 2005), suggest-
ing that lengthened WNL and shortened WC phases resulting from
stellar rotation are not widely observed at (Z 2 Zg). Similarly,
a shortened eWNE phase in such models — particularly at lower
metallicity — is not manifest in our observations, as we observe
approximately equal numbers of WNE and WNL stars in regions
of Z < Zg. Single-star models without rotation (Eldridge & Vink
2006) and models that account for the various effects of binary
interaction (Eldridge et al. 2008) reproduce our measurements of
Nwc/Nwn more appropriately. Hence, to a first approximation a
population consisting of non-rotating single stars and interacting
binaries would be consistent with the Nyc/Nwn we observe. How-
ever, we caution that all comparisons of this nature are subject to
how the physics contained in stellar models is expected to translate
into observable properties, which currently rests on estimations of
surface abundances and temperatures that may not be appropriate
(Groh et al. 2014), particularly for the transition between eWNE
and eWNL subtypes.

Downl oaded W%A§s4ﬂ/7éc%§gf‘g‘f.2§lfyc(t%Qllrér)as/ article-abstract/ 447/ 3/ 2322/ 985818/ Spati al - di stri buti on-of - Gal acti c- Wl f- Rayet-stars

by University of Sheffield user
on 17 Cctober 2017



Consolidating information gained about the spatial distribution,
subtype variation, and intrinsic IR brightness of WR stars, we have
created a scalable toy model of the Galactic WR population. By
applying a 3D dust distribution to this model — spatially congruous
with the gas content of the Galaxy — we derive observable properties
for populations of various sizes at multiple wavelengths. Compari-
son of these model-derived observables to the observed population
of non-dusty, WR-dominated (my® —m?" > 0.4) systems to a com-
pleteness limit of m%" < 8 indicates a total of =~ 1300 in the Galaxy.
Using a volume-limited sample (d < 3 kpc), we estimate that such
systems represent ~ 69 per cent of the whole WR population, hence
we claim a Galactic WR population totalling 1900 £ 250.

We deduce that an average WR phase duration of 0.4 Myr is nec-
essary to sustain our estimated population, assuming a Kroupa IMF
and a constant Milky Way SFR of 1.9 M, yr~". This is compatible
with WR phase durations in rotating evolutionary models at solar
metallicity (Georgy et al. 2012).

Looking to the future, we have used our favoured model WR pop-
ulation to estimate a required depth of Kg < 17.5 for spectroscopic
surveys to achieve 95 per cent completeness in Galactic WR stars.
We have also predicted that the ESA Gaia mission will not deliver a
significant number of WR star discoveries via low-resolution spec-
troscopy, but should provide improved distance measurements for
the majority of the currently recognized population.
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APPENDIX A: RECENTLY DISCOVERED WR
STARS

In Table A1 we provide identifications and coordinates of all 322
WR stars discovered between publication of the Annex (van der
Hucht 2006) to the VIIth catalogue of WR stars (van der Hucht
2001) and 2014 March. Table A1 includes revised distances for stars
for which high-quality near-IR photometry and a well-determined
spectral type (£ 1) are available.

Following a request to the IAU Working Group for Massive
Stars, a panel comprising P. A. Crowther, W.-R. Hamann, I. D.
Howarth, K. A. van der Hucht, and G. Rauw came up with a set
of proposals that was approved by the Working Group in 2012
December. Consequently, a revised nomenclature scheme has been
introduced for Galactic WR stars as follows.

(i) All WR identifications up to the VIIth Catalogue (van der
Hucht 2001) and Annex (van der Hucht 2006) remain unchanged
since many are in widespread usage in the literature (e.g. WR 20
and WR 20a).

(ii) All subsequent discoveries are switched from alphabetical
(WRXXa, b) to numerical (WRXX-1, —2) identification, sorted by

Table A1. WR stars discovered since the van der Hucht (2006) updated catalogue (up to 2014 March).
Distances are indicated for the stars that feature in this study.

WR Alias RA Dec. Sp. type Distance
(hh:mm:ss) (£dd:mm:ss)  Ref. (kpc)
17—-1 SMGO09 668_4 10:16:26.226 ~ —57:28:05.70 1 WNS5b 54+09
20-2 WR 20aa, SS215 10:23:23.49 —58:00:20.80 19  O2If/WN6 -
20—-1 MDMI11 1 10:23:28.80 —57:46:29.4 5 WN7-8 -
20-3 WR 20c 10:25:02.60 —57:21:47.30 19 02 If/WN6 -
42—1  WR42e, SB0O4 #954 11:14:45.50 —61:15:00.1 21  O2 If/WN6 -
43-2 MTT 58 11:15:07.60 —61:16:54.8 22 O2 If/WN6 -
43—-1 SMGO09 740_21 11:16:03.536 —61:26:58.34 1 WN4b 69+12
44—1 SMGO09 740_16 11:19:42.96 —61:27:12.40 1 WCE -
45—1 HDMO07 1 11:42:37.66 —62:41:19.30 2 WNO9-10h -
45-2 SMGO09 768_6 11:46:06.66 —62:47:12.70 1 WNS5 -

(0) This work, (1) Shara et al. (2009), (2) Hadfield et al. (2007), (3) Mauerhan, van Dyk & Morris
(2009), (4) Kurtev et al. (2007), (5) Mauerhan et al. (2011), (6) Davies et al. (2012b), (7) Roman-Lopes
(2011b), (8) Roman-Lopes (2011a), (9) Wachter et al. (2010), (10) Shara et al. (2012), (11) Mauerhan
etal. (2010a), (12) Mauerhan et al. (2010c), (13) Mauerhan et al. (2010b), (14) Liermann et al. (2009),
(15) Messineo et al. (2009), (16) Gvaramadze et al. (2010), (17) Hanson et al. (2010), (18) Littlefield
et al. (2012), (19) Roman-Lopes et al. (2011), (20) Motch et al. (2010), (21) Roman-Lopes (2012),
(22) Roman-Lopes (2013), (23) Chené et al. (2013), (24) Rahman, Moon, Matzner (2011),
(25) Anderson et al. (2011), (26) Marston et al. (2013), (27) Kanarek et al. (2014), (28) Davies
et al. (2012a), (29) de La Fuente et al. (2013), (30) Borissova et al. (2012), (31) Mikles et al. (2006),
(32) Hyodo et al. (2008), (33) Faherty et al. (2014), (34) Smith et al. (2012), (35) Corradi et al. (2010),

(36) Gvaramadze et al. (2009), and (37) Burgemeister et al. (2013).
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Figure B1. Hertzsprung-Russell diagram showing positions of the eight
brightest (V band; Massey et al. 2001) O stars in the Pismis 24 open cluster
(triangles). Stars are individually dereddened and shown at a distance mod-
ulus of 11.5, with Z = 0.02 isochrones (Lejeune & Schaerer 2001) for ages
(from left to right) 6.00, 6.09, 6.19, 6.30, 6.40, 6.50, 6.59, 6.69, 6.80, and
6.90 Myr (left to right, solid lines).

year/month of discovery, in RA order if multiple discoveries arise
from a single source. By way of example, three WR stars have been
discovered since 2006 between the RA’s of WR 20 and WR 21. The
first, discovered by Mauerhan et al. (2011), is assigned WR 20—1,
while two further discoveries from Roman-Lopes, Barba, & Morrell
(2011) are assigned WR 20—2 and —3 (RA ordered).

(iii) Multiple WR stars identified within a single source are in-
dicated with CAPITAL letters (e.g. WR 43a, b, ¢ replaced with
WR 43A, B, C).

(iv) The current Galactic WR census is maintained at
http://pacrowther.staff.shef.ac.uk/WRcat/

APPENDIX B: WR STARS AND CLUSTERS
WITH DISTANCE AMBIGUITY

B0.1 Pismis 24 and WR 93

The open cluster Pismis 24 (Pi24) contains the WC7+O binary
system WR 93, and has conflicting distance measurements in the
literature, i.e. 2.56 = 0.10kpc (Massey, DeGioia-Eastwood &
Waterhouse 2001) and 1.7 + 0.2kpc (Fang et al. 2012). In Fig. B1,
we plot Lejeune & Schaerer (2001) isochrones along with the posi-
tions of the eight brightest O stars in Pi24. We take photometry and
spectral types for these O stars from Massey et al. (2001) except for
Pi 24-1, which has since been resolved into two components, Pi 24—
1 north-east (NE) and Pi 24—1 south-west (SW; Maiz Apelldniz et al.
2007), with an optical/near ultraviolet Am ~ 0.1. We adjust the
Massey et al. photometry for Pi 24—1 to account for its binary nature,
and adopt spectral types of O3.51f* and O4III(f+) for Pi24-1 NE

and Pi 24—1 SW, respectively (Maiz Apelldniz et al. 2007). To cal-
culate an extinction to each of the eight O stars, we evaluate the
E(B — V) colour excess assuming Martins & Plez (2006) intrinsic
colours and an Ry = 3.1 extinction law. Finally, by taking O-star
temperatures and bolometric corrections from Martins, Schaerer
& Hillier (2005), we see that best agreement with the isochrones
is found at a distance modulus of 11.5 £ 0.2, corresponding to
d=2.00"017 kpc.

B0.2 Westerlund 2

The distance to the young massive open cluster Westerlund 2 — prob-
able host of the O3If*/WN6+031f*/WN6 binary WR 20a (Rauw,
Sana & Nazé 2011) and WR 20b (WN6ha) — remains controversial.
The literature values range from 2.5 to 8 kpc, bringing the member-
ship of the very luminous WR 20a into doubt. Rauw et al. (2007)
used the light curve of WR 20a and the knowledge that both stars
are of identical spectral type to derive a distance of 8.0 = 1.0kpc
for this binary system. These authors also derive a distance to the
Westerlund 2 cluster of 8.0 = 1.4 kpc from spectro-photometry of
cluster O stars and use this agreement as evidence for membership
of WR 20a. However, these distances are derived on the assumption
ofan Ry = 3.1 extinction law, yielding an average Ay = 4.68 for the
cluster. Carraro et al. (2012) have claimed an anomalous extinction
law along this line of sight with an average Ry = 3.8 £ 0.2. These
authors use the spectra of Rauw et al. to obtain Ay = 7.1 £ 1.2,
corresponding to a much smaller distance of 3.02 £ 0.52kpc. The
membership of WR 20a as two ~ 80 My stars is unfeasible at such
a small distance.

WR20b shows no evidence of binarity in the spectroscopic
and photometric monitoring of Rauw et al. (2007). The as-
sumed intrinsic near-IR colour of WN6ha stars (Table 4) provides
Ak, =0.751+0.05 (Ay ~ 6.8), favouring the higher extinction and
lower distance estimate for Westerlund 2. Until the issue of the form
of the extinction law to Westerlund 2 is settled, we consider neither
WR 20a or WR 20b as members of the cluster. We include the stars
of WR 20a in our calibration at the binary orbit-derived distance of
8.0kpc.

B0.3 The Galactic Centre

The Arches and Quintuplet clusters are found at 11.6 and
13.1 arcmin from Sgr A*, respectively, which is itself surrounded
by a cluster of massive stars. The distance to the GC (R, ), and these
three clusters by association, has been the subject of considerable
study. The first direct parallax measurement of a GC object — the
star-forming region Sgr B2 — was presented by Reid et al. (2009)
giving a distance of 7.9 £ 0.8 kpc; from kinematic arguments Sgr
B2 is estimated to be 0.13 kpc nearer than the GC. The most recent
determinations of R, are summarized by Gillessen et al. (2013), and
are converging on 8 kpc. Acknowledging the spread in measure-
ments that still remains, we assume a distance of 8.0 £ 0.25kpc
for these three clusters.

B0.4 The G305 complex

There are nine currently identified WR stars located within the
boundary of the giant H 1 region G305.4+0.1, of which only four
reside in the two central clusters Danks 1and?2 (see fig. 16 of Mauer-
han et al. 2011; Davies et al. 2012b). This is rather surprising, as
one may expect to find these stars — as highly evolved descendants
of massive progenitors — at the centre of these star clusters due to
relaxation of their orbits. However, in the dense environment of a
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cluster a massive star is more likely to encounter other massive stars Table C1 - continued
or binaries, resulting in possible ejection. The apparent concentra-
tion of these five non-cluster WR stars in G305 around the younger Spectral Star Equivalent  Ref.  Average
Danks 1 cluster (Davies et al. 2012b) supports a dynamical ejection type (WR#)  width (A) (&)
scenarto. ) WN7 55 296 b 291
Located only ~2.3 arcmin from the Danks 1 cluster, WR 48 — 4 3 309 b
is the faintest WR star located within G305. Mauerhan et al. (2011) 84 267 b
note that by assuming a WC7 spectral type and applying the Ks-band WN6 115 170 d 170
absolute magnitude-subtype calibrations of Crowther et al. (2006a), WN4-5 83 95 b 114
this star appears to be twice as distant as the two central clusters 54 106 b
yet is reddened by a similar amount. As there is little evidence — 61 142 b
other than the high IR-derived distance to WR48 — 4 — to suggest WN7b TTsc 930 f 930
these nine WR stars are unassociated with G305, we include them WN>5-6b 17150 Sg; z 712
in the calibration sample at the distance derived for the two central WNdb ] 452 .
clusters. wCs 57 221 b 412
60 353 b
APPENDIX C: SINGLE WR STAR EMISSION 118—4 537 g
LINE STRENGTHS 119-2 600 g
. 135 344 e
In Table C1, we present average strengths for the most promi- wC7 6 271 b 207
nent lines in the spectra of each WR spectral type, gathered from 64 171 b
90 301 b
Table C1. Emission line strengths (equivalent widths, A) in 124-3 215 g
(apparently) single WR stars. WC6 5 276 e 232
107a 200 b
Spectral Star Equivalent Ref.  Average 154 220 e
type (WR#)  width (A) A) WC4-5 52 149 b 169
111 189 e
Heu 1.012 um He -1 2.164 um
WN7 55 109.5 a,b 89 WNS8-9 16 75 d 73
82 75.9 b 105 63 d
84 134.6 b 116 106 e
120 70.8 c,d 130 46 e
WN6 115 126 c,d 119 WN7 55 33 b 43
85 112 a 120 52 d
WN4-5 83 192.4 b 221 WN6 24 34 d 35
54 236.2 b 115 36 d
61 243.8 b WN4-5 129 50 h 53
149 234 a 149 55 h
129 200 a WN7b 77sc 85 f
WN4b 1 377 e 412 WNG6b 75 74 b
18 447 a WN4b 1 54 e
WNS5-6b 75 327 b 375 Hemn 2.189 pm
110 423 a,d WN7 120 39 d 35
WN7b TTsc 280 f 55 31 b
WC8 135 93 e 93 WN6 115 58 d 42
57 121.7 b 24 25 d
60 111.1 b WN4-5 129 110 h 105
118—4 80 g 149 99 h
119-2 93 g Civ 2.071-2.084 um
53 61.7 a WC8 48-2 581 b 466
WwC7 56 143.8 b 147 77g 430 f
64 145.8 b 118—4 303 g
90 162 b 119-2 433 g
124-3 138 g 135 583 e
WC6 154 205 e 179 WC7 67—-2 783 i 937
107a 182 b 90 825 b
23 151 a 124-3 1202 g
WC4-5 111 218 e 225 WwC6 5 1339 e 1530
17 263 a 48—4 1862 b
52 234 b 154 1388 e
150 186 a WC4-5 52 1169 b 1391
Her 1.083 um 111 1613 e
WN8 116 480 e 308 Cmr 2.104—-2.115 pm
130 200 e WC8 48—-2 220 b 209
16 245 d 77g 198 f
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Table C1 - continued

Spectral ~ Star Equivalent ref  Average

type (WR#)  width (A) A)
118—4 173 g
119-2 260 g
135 192 e
wC7 672 234 i 293
90 224 b
124-3 422 g
WC6 5 228 e 301
48—4 385 b
154 289 e
WC4-5 52 277 b 290
111 302 e

(a) Conti, Massey & Vreux (1990), (b) P. A.
Crowther (private communication), (¢) Howarth &
Schmutz (1992), (d) Crowther & Smith (1996), (e)
W. D. Vacca (private communication), (f) Crowther
et al. (2006a), (g) Mauerhan et al. (2011), (h) Figer,
McLean & Najarro (1997), and (i) Roman-Lopes
(2011a).

published spectra of single WR stars. We use these values to cal-
culate J and Ks-band continuum flux ratios in cases where WR
emission lines are diluted by an unknown companion. An uncer-
tainty of 0.1dex is assumed on each averaged equivalent width,
in accordance with the majority of studies from which individual
measurements are taken.

APPENDIX D: A VOLUME-LIMITED SAMPLE
OF WR STARS

We present a volume-limited (d < 3kpc) sample of Galactic WR
stars in Table D1, in which distances are either from this work, or
are derived by adopting M, (by subtype) and A, from van der Hucht
(2001).

Table D1. Closest (d < 3kpc) WR stars listed in ascending heliocentric
distance. In the fourth column we class each system as WR-dominated
(m\;g’R — mslgs > 0.4; WR), companion dominated (C), or dust producing (D).
References are given for spectral types of stars not appearing in Tables 1-3

or 8 (online).

WR# Spectral type Distance (kpc) Class
11 WC8+4-07.5111 0.34 4+ 0.08 C
147 WN8(h)+OB 0.73 £0.12 WR
94 WN5 0.78 £0.12 WR
90 WC7 1.15+0.19 WR
136 WN6b(h) 1.3+£02 WR
137 WC7+09 1.3+£0.2 D
139 WN5+06I1I-V 1.34+02 C
141 WNS5+0511-V 1.3+£0.2 C
143 WC4+-Be 1.334+0.33 C
138 WN5+0B 1.38 £0.26 C
144 WwcC4 1.40 4 0.08 WR
52 wcC4 1.54 +£0.23 WR
110 WNS5b 1.55+£0.24 WR
9 WC5+07* 1.57 £0.58* C
15 WwCo6 1.57 £ 0.49 WR
81 wC9 1.64 +£0.34 WR

Table D1 — continued

WR# Spectral type Distance (kpc) Class
78 WN7 1.64 + 0.03 WR
79 WC7+05-8V 1.64 & 0.03 C

79a WN9ha 1.64 + 0.03 WR
140 WCT7pd+O5fclll-I! 1.67 & 0.032 D

142—1 WN6 1.70 + 0.34 WR
6 WN4b 1.80 4 0.27 WR
121 WC9d* 1.8 £ 0.4* D

142a wC7 1.83 +0.31 WR
105 WN9 19402 WR
111 WC5 19402 WR
134 WNG6b 19402 WR
135 wC8 19402 WR
86 WC7+BOIII 1.97 £ 0.47 WR
113 WC8d+08-9* 20£02 D

14 wC7 2.0+0.1 WR
93 WC7+07-9 20402 WR
114 WC5 2.05 £ 0.09 WR
115 WN6 2.05 £ 0.09 WR
70 WC9vd+BOI* 2.1+0.4* D

47 WN6+05.5 2.13 4 0.44 WR
133 WN54091 2.14 £ 0.07 C

70-5 WC9 2.17 £ 0.45 WR
48 WC64-06-7V3... <2.3* C

+09.5/B0lab*

1 WN4b 23405 WR
103 WC9d* 23405 D

59 WC9d* 2340.5* D

2 WN2b+B* 24408 WR
106 WC9d* 24 40.6* D

19a WN7 2.41 4047 WR
101 w8 2.46 +0.43 WR
40 WN8h 248 4+ 0.41 WR
95 WC9d* 25405 D

60 wC8 2.55+0.45 WR
155 WN6+0911-Ib 2.56 + 0.56 WR
117-1 WN7 2.59 £ 0.50 WR
18 WN4b 26402 WR
22 WN7ha-+O9III-V 2.6+0.2 WR
23 WC6 26402 WR
24 WN6ha 2.6+0.2 WR
25 02.51f*/WN6>+0B 26402 C

104 WC9d+B0.5V* 26407 D

88 WC9 2.67 4 0.54 WR
4 WC5 2.69 +0.49 WR
5 WC6 2.69 & 0.84 WR
72—1 WC9 2.73 4+ 0.56 WR
16 WN8h 2.77 £ 0.46 WR
85 WN6 28+ 1.1 WR
111-3 wWC8 2.80 & 0.49 WR
69 WC9d+OB* 2.8 +£0.6* D

75b WC9 2.82 4 0.58 WR
1248 WN6 2.84 4 0.56 WR
113—1 WN7 2.88 & 0.56 WR
151 WN4+05V 2.93 4 0.65 WR
42 WC7+07V 2.96 +0.53 C

57 wWC8 2.97 4+ 0.52 WR
75a WC9 2.98 £ 0.60 WR

* van der Hucht (2001),

(1) Fahed et al. (2011),

(2) Monnier et al. (2011),

(3) Hill, Moffat & St-Louis (2002),
(4) Chené et al. (2014), and

(5) Crowther & Walborn (2011).
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online
version of this article:

Table 8. Calculated spatial locations of the 228 ‘field” WR stars
showing no conclusive evidence for an IR-bright companion, to
which our calibrated absolute magnitudes have been assigned.
Table A1. WR stars discovered since the van der Hucht (2006)
updated catalogue (up to 2014 March).
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(http://mnras.oxfordjournals.org/lookup/suppl/doi: 10.1093/mnras/
stu2525/-/DC1).

Please note: Oxford University Press is not responsible for the
content or functionality of any supporting materials supplied by
the authors. Any queries (other than missing material) should be
directed to the corresponding author for the paper.
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