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1. Introduction

Time series modelling in the social sciences often involves data that are generated in finer

time intervals than the sampling interval pertaining to the available data. In economics, for

example, macroeconomic time series represent the aggregation of a large number of decisions

made by microeconomic agents within the chosen sampling interval. Even today, however,

the issues in macroeconomics addressed using aggregate time series data almost never tie

models or conclusions to parameters governing the pre-aggregated behaviour of economic

agents. Instead, at best, agents’ preferences are modelled through a so-called representative

agent.

On the other hand, when estimating and making inferences about parameters of interest,

econometrics has tended to embody and adapt developments in the statistical analysis of

time series. Notably, its response to Box-Jenkins models, which as ‘black-box’ forecasting

models in the 1960s and 1970s outperformed structural econometric models that incorporated

restrictions based on economic theory, was to create a unit root/co-integration paradigm that

embodied the best features of both approaches. Even so, the one pervasive characteristic of

time series econometrics has been its use of linear-in-variables discrete time series models,

such as autoregressive (AR) or autoregressive moving average (ARMA) models and their

vector counterparts, as the basis of model specification.

One aim of this chapter is to draw attention to a modelling issue that still perhaps does

not take on the importance it deserves: the potential incompatibility of using such linear

time series models, if näıvely specified, in a context where the data are generated in finer time

intervals than the interval pertaining to the available data. This is because linear discrete

time models are not time-invariant, meaning that, on a strict interpretation, parameter esti-

mates are tied only to a particular sampling frequency. Such discrete time models therefore

do not readily admit an economic interpretation in the absence of a treatment of temporal

aggregation bias. One potential remedy to this problem is to formulate a structural model in

continuous time with the property that equidistant data generated from its solution satisfy

a linear discrete time model. The essence of the method relies on the derivation of a system

of stochastic difference equations that satisfy exactly a linear stochastic differential equation

system with constant coefficients. Such a discrete time model is called an exact discrete

time model and, through it, the structural AR or ARMA specification can be embodied in

statistical inference independently of the sampling interval.1

The approach based on an exact discrete time model has been historically associated

with A.R. (Rex) Bergstrom2 who, perhaps more than any other econometrician, presaged the

advent of continuous time models in econometrics and finance; see, for example, Bergstrom

(1966, 1983), although it was Peter C.B. Phillips (1972) who provided the first implemen-

tation of the methods discussed in this chapter.3 There are, however, some costs in follow-

ing this approach, notably that in multivariate models, identifying the parameters of the

1McCrorie (2009) lists a number of contributions that use an exact discrete time model.
2Rex Bergstrom spent over twenty years of his academic career at the University of Essex and had both

direct and indirect influences on the current authors. He taught both Marcus Chambers and Roderick
McCrorie at the Masters level and supervised the PhD thesis of Chambers (1990). Chambers, in turn, was
the PhD supervisor of McCrorie (1996) and Michael Thornton (2009).

3This paper was based on Phillips’s M.A. dissertation supervised by Bergstrom at the University of
Auckland in 1969. It represented the first of many contributions by Phillips on continuous time econometrics;
Yu (2014) provides a survey of this work.
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structural continuous time model on the basis of discrete time data is considerably more

challenging than identifying the parameters of an (albeit time-varying) discrete time model

using the same data (see section 2.2 below). This chapter discusses the development of, and

issues arising in, the formulation of structural continuous time models and the estimation of

their parameters using an exact discrete time model, in a way that we hope will facilitate

future applications in interdisciplinary areas.

Throughout this chapter we focus mainly on continuous time models specified as systems

of linear stochastic differential equations, although in Section 4 we also briefly discuss non-

linear systems in the macroeconomic modelling literature that have antecedents in linear-in-

variables approaches. Recent developments have enabled non-linear systems to be estimated

directly; see Wymer (1997, 2012) for details. Discussion of non-linear diffusion-type models

in finance, which appear in the survey by Aı̈t-Sahalia (2007), are outside the scope of this

chapter.4 See Aı̈t-Sahalia and Jacod (2014) for a comprehensive treatment of this topic.

The advantages of formulating econometric models in continuous time, over and above

the issue of embodying an ARMA-type specification independently of the sampling fre-

quency, were discussed by Bergstrom (1990, 1996), inter alios. Specifically, continuous time

models can take account of the interaction among variables during the observation interval;

they permit a more accurate representation of the partial adjustment processes in dynamic

disequilibrium models, as discussed in section 4.3 below; they allow a proper distinction to

be made in estimation between stock variables (measured at points in time) and flow vari-

ables (measured as integrals of a rate of flow over the observation period); and they can be

used to generate forecasts of the (unobservable) continuous time paths of the variables.

In view of the backgrounds and expertise of the authors this chapter is written from the

viewpoint of economics and, more specifically, econometrics. It therefore mostly neglects the

treatment of the estimation of continuous time models in other areas of the social sciences

and science more generally, such as engineering. Material relevant to other disciplines can be

found in other contributions to this volume. The plan of this chapter is as follows. Section 2

is broadly concerned with continuous time methods in econometrics and contains seven sub-

sections. The first lays the groundwork for subsequent sections and explains how an exact

discrete time model corresponding to a linear continuous time system can be obtained, and

provides a worked example for a second-order differential equation system. Section 2.2 deals

with the fundamental problem of identification of the parameters of a continuous time system

from discrete time data, and section 2.3 discusses how the process of temporal aggregation

can distort inferences relating to Granger causality. Section 2.4 explores various issues of

nonstationarity that are important when analysing economic and financial time series, while

section 2.5 summarises recent work that enables the information contained in observations

made at different sampling frequencies to be used in the estimation of a continuous time

system. The remaining two sub-sections deal with Gaussian estimation as well as alternative

(frequency domain) methods.

The final sections of the chapter have a more practical aim. Section 3 is devoted to

computational issues and reports the results of a small simulation exercise (the code for

4Most non-linear models are not directly amenable to the derivation of exact discrete time representations
and typically result in transition densities that have no closed-form solution. See, however, Phillips and Yu
(2009), Fergusson and Platen (2015) and Thornton and Chambers (2016), for examples where a closed form
density is apposite.
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which is contained in the appendix) while section 4 is concerned with empirical applications.

Sections 4.1 and 4.2 contain new applications to consumer prices and inflation, and to

oil prices and the macroeconomy, respectively, while section 4.3 discusses applications of

the continuous time methodology in the arena of macroeconometric modelling. Section 5

contains some concluding comments.

2. Continuous time models in econometrics

2.1. Linear continuous time systems and exact discrete time models

We will be concerned with an n × 1 vector of variables, denoted x(t), whose dynamic

evolution is determined by a stochastic differential equation system in continuous time.

Bergstrom (1983, 1984) provided a rigorous foundation for the specification of such systems

and pioneered the development of the exact discrete time approach for first- and second-

order systems, subsequently extended by Chambers (1999) to systems of order greater than

two. A higher-order system is specified as

d[Dp−1x(t)] = [Ap−1D
p−1x(t) + . . .+A1Dx(t) +A0x(t)]dt+ ζ(dt), t > 0, (1)

where Ap−1, . . . , A0 are n × n parameter matrices, D denotes the mean square differential

operator satisfying

lim
δ→0

E

∣

∣

∣

∣

xi(t+ δ)− xi(t)

δ
−Dxi(t)

∣

∣

∣

∣

2

= 0, i = 1, . . . , n,

x(0), . . . , Dp−1x(0) are a set of initial conditions,5 and ζ(dt) is an n × 1 vector of random

measures with E[ζ(dt)] = 0, E[ζ(dt)ζ(dt)′] = Σdt (Σ being an n × n symmetric positive

definite matrix), and E[ζ(∆1)ζ(∆2)
′] = 0 for any disjoint intervals, ∆1 and ∆2, on the real

line −∞ < t < ∞.6 Under these assumptions the random measure vector ζ(dt) is similar to

vector white noise and the system (1) can be regarded as a continuous time autoregressive

system of order p, which we shall denote CAR(p). The system could be extended to include

a deterministic linear trend function with the addition of a term of the form [γ0 + γ1t]dt on

the right-hand-side of (1), where γ0 and γ1 are n× 1 vectors of unknown parameters, or to

include exogenous variables, but to do so would result in additional complexity that we wish

to avoid here. The system (1) is interpreted as meaning that x(t) satisfies the stochastic

integral equation

Dp−1x(t)−Dp−1x(0) =

∫ t

0
[Ap−1D

p−1x(r) + . . .+A1Dx(r) +A0x(r)]dr +

∫ t

0
ζ(dr)

for all t > 0; see Bergstrom (1983) for further details.

5The initial conditions are usually assumed to be fixed which imparts a type of nonstationarity on an oth-
erwise stable system. This is a different type of nonstationarity to that which has dominated the econometrics
literature in recent years and which we discuss in section 2.4.

6The use of a vector of random measures to specify the disturbance vector in a continuous time model
in the econometrics literature is due to Bergstrom (1983) who built on the work of Rozanov (1967). A
common alternative is to replace ζ(dt) with Σ1/2dW (t) where dW (t) denotes the increment in a vector of
Wiener processes and Σ1/2(Σ1/2)′ = Σ. Note, though, that the latter specification imposes Gaussianity on
the system whereas the distribution of ζ(dt) is unspecified beyond its first two moments.
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The objective is to estimate the elements of the matrices Ap−1, . . . , A0 and Σ from

a sample of data observed at discrete points in time i.e. not observed continuously. The

elements of these matrices will often be known functions of an underlying vector of structural

parameters although we avoid emphasising such dependencies here for reasons of notational

simplicity.7 The exact representation approach derives the law of motion for the observations

that is consistent with their having been generated by the stochastic differential equation

system (1). The nature of the observations themselves depends on the form of variables that

comprise the vector x(t). In the most general (mixed sample) case the vector x(t) can be

partitioned into an ns × 1 subvector of stock variables (xs) and an nf × 1 subvector of flow

variables (xf ), where ns + nf = n, so that

x(t) =

(

xs(t)

xf (t)

)

.

Stock variables are assumed to be observable at equally spaced discrete points in time of

length h, resulting in the sequence

{xsth = xs(th)}Tt=0 = {xs0, xsh, . . . , xsTh},

while flow variables are observable as an integral of the underlying rate of flow over the

sampling interval of length h, yielding the sequence

{

xfth =
1

h

∫ th

th−h

xf (r)dr

}T

t=1

=

{

1

h

∫ h

0
xf (r)dr, , . . . ,

1

h

∫ Th

Th−h

xf (r)dr

}

.

Examples of stock variables in economics include the money stock, exchange rates, interest

rates and other asset prices, all of which are observable (at least in principle) at points in

time. Examples of flow variables include consumers’ expenditure, income, exports, imports,

and cumulative rainfall in Brazil, each of which is measured as the accumulation of a rate of

flow over a time interval (corresponding with the sampling interval). Although we assume

that the observations are equally spaced it is possible to extend the setup to allow for

irregularly spaced observations. This can be achieved by introducing an index i = 1, . . . , N ,

where N denotes sample size, and to denote the sampling intervals by hi = ti − ti−1. For

notational convenience, however, we shall assume that the observations are equally spaced.

Also, for the purposes of clarity, we will, for the time being, assume that x(t) = xs(t) so

that all n variables are of the stock variety. The consequences of relaxing this assumption

will be discussed in due course.

The first step in deriving an exact discrete time representation is to write the model in

a suitable state space form. In order to do this we can define the np× 1 state vector

y(t) = [x(t)′, Dx(t)′, . . . , Dp−1x(t)′]′,

which satisfies the first-order stochastic differential equation system

dy(t) = Ay(t)dt+ φ(dt), t > 0, (2)

7Such dependencies are, however, emphasised in section 2.2 where we discuss issues of identification.
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where

A =

















0 I 0 . . . 0 0

0 0 I . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 I

A0 A1 A2 . . . Ap−2 Ap−1

















, φ(dt) =

















0

0
...

0

ζ(dt)

















.

The solution to (2) is given by

y(t) = eAty(0) +

∫ t

0
eA(t−r)φ(dr), t > 0, (3)

where y(0) denotes the vector of initial conditions and the matrix exponential is defined by

its series expansion

etA = I + tA+
1

2!
(tA)2 + . . . =

∞
∑

j=0

(tA)j

j!
.

Noting that y(th) contains the observable vector x(th) the solution (3) can be manipulated

to relate y(th) to y(th − h) and thereby x(th) to x(th − h). This is achieved by re-writing

the system at the observation points as

y(th) = eAthy(0) +

∫ th−h

0
eA(th−r)φ(dr) +

∫ th

th−h

eA(th−r)φ(dr)

= eAh

[

eA(th−h)y(0) +

∫ th−h

0
eA(th−h−r)φ(dr)

]

+

∫ th

th−h

eA(th−r)φ(dr).

The term in square brackets is simply y(th − h) which results in the following first-order

stochastic difference equation for y(th):

y(th) = Fy(th− h) + ǫth, t = 1, . . . , T, (4)

where F = eAh and

ǫth =

∫ th

th−h

eA(th−r)φ(dr)

is an i.i.d. random vector with mean vector zero and covariance matrix

Σǫ =

∫ h

0
eAsΣφe

A′sds,

Σφdt being the covariance matrix of φ(dt).8

Although the system (4) implicitly embodies the dynamics of the observable vector xth =

x(th) the remaining elements of y(th) are unobservable. The Bergstrom approach derives

the exact discrete time model by eliminating the unobservable elements from this system

8In fact, Σφ is an np × np matrix of zeros except for the n × n bottom right-hand corner block which is
equal to Σ.

5



using appropriate substitutions.9 This process results in the ARMA(p, p− 1) representation

xth = F1xth−h + . . .+ Fpxth−ph + ηth, t = p, . . . , T, (5)

where ηth is an MA(p− 1) process. Note that this equation holds only for period p onwards

owing to the first available observation being x0 = x(0) (recall that we are assuming that x

comprises purely stock variables at this point). It is, however, possible to derive an additional

p − 1 equations that relate xh, . . . , xph−h to the lagged values and to x0; see, for example,

Theorem 2.2 of Bergstrom (1986) for the mixed sample case when p = 2, and Theorem 2 of

Chambers (1999) also for the mixed sample case but for p ≥ 2.

To see how this approach works in practice, consider the case where p = 2. The observ-

able vector is x(th) and the unobservable vector in this case is Dx(th), the equations for

which from (4) are

x(th) = F11x(th− h) + F12Dx(th− h) + ǫ1,th, (6)

Dx(th) = F21x(th− h) + F22Dx(th− h) + ǫ2,th, (7)

where the Fij (i, j = 1, 2) are the n × n submatrices of F and ǫth = (ǫ′1,th, ǫ
′

2,th)
′. The

objective is to eliminate Dx(th − h) from (6) using the information in (7), and for this

purpose Bergstrom (1983, Assumption 4) assumes that the matrix F12 is nonsingular. From

(6) we obtain, using this assumption,

Dx(th− h) = F−1
12 [x(th)− F11x(th− h)− ǫ1,th] , (8)

while lagging (7) by one period yields

Dx(th− h) = F21x(th− h) + F22Dx(th− 2h) + ǫ2,th−h. (9)

Substituting the right-hand-side of (8) for Dx(th − h) in (9) and the one-period lag of (8)

for Dx(th− 2h) in (9) results in

xth = F1xth−h + F2xth−2h + ηth, t = 2, . . . , T, (10)

where F1 = F11 + F12F22F
−1
12 , F2 = F12[F21 − F22F

−1
12 F11], and the disturbance vector is

given by ηth = ǫ1,th − F12F22F
−1
12 ǫ1,th−h + F12ǫ2,th−h which is clearly seen to be MA(1) due

to ǫth being an i.i.d. process.

Although the ARMA(2,1) representation in (10) holds for t = 2, . . . , T it is possible

to supplement it, for purposes of computing the unconditional likelihood function, with an

equation that relates xh to x0. In the case of the second-order system considered here the

relevant equation is given by (6) evaluated at t = 1, giving

xh = F11x0 + F12Dx(0) + ǫ10. (11)

Note that this equation also includes the unobservable component Dx(0), and there are two

main ways of treating it. The first is to make an assumption about its value, an example being

9Wymer (1972) provided the first treatment of higher-order systems in the econometrics literature using
the framework (1)–(4) but subsequently derived an approximate discrete model.
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Dx(0) = 0, which implies that, at time t = 0, the system was in equilibrium. Alternatively

the n×1 vector Dx(0) can be treated as part of the unknown parameter vector whose value is

estimated by maximisation of the likelihood function, although in this case it is not possible

to obtain a consistent estimator of its value.10

As mentioned earlier, not all variables are observed as stocks, and so the above techniques

have to be modified in the presence of flow variables or mixtures of stocks and flows. This

is particularly important in macroeconometric modelling where many variables, such as

consumers’ expenditures and national income, are measured as flows. Early contributions

dealing with the problems associated with flow variables can be found in Phillips (1974)

and Wymer (1976). In subsequent work Bergstrom (1984, Theorem 8) presented an exact

discrete time model for a first-order system while an exact discrete model for flow variables

when p = 2 was derived by Bergstrom (1983, Theorem 3) and extended to the mixed sample

case by Bergstrom (1986, Theorems 2.1 and 2.2).11 In these cases the exact discrete time

model can be shown to be an ARMA(p, p) system, the presence of flows increasing the order

of the moving average disturbance by one. These results were subsequently extended to the

general p ≥ 2 case by Chambers (1999).

A feature of the results cited above is that all require an assumption of invertibility of

certain matrices; for example, Bergstrom (1983) requires A0 to be nonsingular in addition to

F12. The nonsingularity of A0 rules out important cases such as unit roots and cointegration

(see section 2.4), but can be relaxed as follows. Our demonstration applies to the case p = 2

but can be generalised to larger values of p. Recalling the definition of the observed flow

variables, xfth, we can integrate (6) and (7) over the interval (th− h, th] to obtain

xfth = F11x
f
th−h + F12zth−h + v1,th, (12)

zth = F21x
f
th−h + F22zth−h + v2,th, (13)

where we have defined

zth =

∫ th

th−h

Dxf (r)dr = xf (th)− xf (th− h),

vth =

(

v1,th

v2,th

)

=

∫ th

th−h

∫ s

s−h

eA(s−r)φ(dr)ds.

The vector zth is unobservable and can be eliminated from the system using the same steps

that led to (10), the result being

xfth = F1x
f
th−h + F2x

f
th−2h + ηfth, t = 2, . . . , T, (14)

where F1 and F2 are defined following (10) and ηfth = v1,th−F12F22F
−1
12 v1,th−h+F12v2,th−h is

now an MA(2) process which follows by noting that vth can be written under the white noise

assumption as the sum of a pair of single intervals with respect to ζ(dr) over the intervals

(th − 2h, th − h] and (th − h, th]; details can be found in McCrorie (2000). Although the

autoregressive matrices remain the same functions of the underlying parameters as in the

10Note that this inconsistency arises owing to no new information on Dx(0) becoming available as T → ∞.
11Bergstrom (1986) also includes results for a system that contains exogenous stock and flow variables.
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case of stock variables, the presence of flows affects the serial correlation properties of the

disturbance vector, increasing the moving average order by one, a feature which needs to be

incorporated in any estimation algorithm.

Although autoregressive models, in both discrete and continuous time, dominate the

time series econometrics literature, there has been considerable interest in continuous time

ARMA (CARMA) processes in the statistics literature, where the focus has been on state

space approaches rather than exact discrete time representations. Results on maximum

likelihood estimation based on an appropriate state space model are contained in Zadrozny

(1988) while a survey of recent results on CARMA processes can be found in Brockwell

(2014). It is, however, possible to derive an exact discrete time model corresponding to a

CARMA system. Chambers and Thornton (2012) extend (1) to the CARMA(p, q) system

Dpx(t) = Ap−1D
p−1x(t) + . . .+A0x(t) + u(t) + Θ1Du(t) + . . .+ΘqD

qu(t), t > 0, (15)

where u(t) is an n× 1 continuous time white noise process and A0, . . . , Ap−1 and Θ1, . . . ,Θq

are n×n matrices of coefficients.12 The interpretation of a white noise process in continuous

time can be problematic (see, for example, the discussion and results in Bergstrom, 1984)

but the interpretation of u(t) in (15) is that it satisfies E[u(t)] = 0 and, for t2 > t1, has

autocovariance properties

E

[∫ t2

t1

u(r)dr

∫ t2

t1

u(s)′ds

]

= Σ(t2 − t1) ,

E

[∫ t2

t1

u(r)dr

∫ t2

t1

u(τ + s)′ds

]

= 0, |τ | > t2 − t1,

where Σ is an n× n positive definite symmetric matrix.

The presence of the MA component in (15) means that a different state space form is

more useful in deriving the exact discrete model than the one defined in (2). Chambers

and Thornton (2012) employed the state space representation used by Zadrozny (1988) in

which the np×1 state vector is defined as w(t) = [w1(t)
′, . . . , wp(t)

′]′ and with w1(t) = x(t).

The state space form is based on the following set of p equations in the derivatives of the

components of w(t), given by

Dw1(t) = Ap−1w1(t) + w2(t) + Θp−1u(t), (16)

Dw2(t) = Ap−2w1(t) + w3(t) + Θp−2u(t), (17)

...
...

Dwp−1(t) = A1w1(t) + wp(t) + Θ1u(t), (18)

Dwp(t) = A0w1(t) + u(t), (19)

in which we define Θj = 0 for j > q. Combining the expressions for Dw1(t), . . . , Dwp(t)

above, the relevant state space form can be written

Dw(t) = Cw(t) + Θu(t), (20)

12The coefficient matrix multiplying u(t) is set to an identity in order to identify the parameters of the
model in view of u(t) having covariance matrix Σ.
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where

C =

















Ap−1 I 0 . . . 0

Ap−2 0 I . . . 0
...

...

A1 0 0 . . . I

A0 0 0 . . . 0

















, Θ =

















Θp−1

Θp−2

...

Θ1

I

















.

Utilising this state space model Chambers and Thornton (2012) show that the exact discrete

time model for a vector of stock variables is of ARMA(p, p−1) form while for a vector of flow

variables or mixed sample data it is of ARMA(p, p) form. The presence of the continuous

time MA disturbance therefore does not affect the MA order of the exact discrete time model.

This means, in effect, that there are additional parameters in the CARMA model that can

be used to pick up the dynamics in the discrete time model that are not present in a CAR

representation, a feature that has been shown to have empirical content by Chambers and

Thornton (2012).

More recently, Thornton and Chambers (2017) have shown that exact discrete time

representations corresponding to CARMA systems are not unique.13 The discrete time

representations for CAR(p) systems with mixed sample data, developed in Bergstrom (1983)

and in Chambers (1999), rely on differencing the stock variables and are of ARMA(p, p)

form. Once the stock variables are re-integrated (or ‘un-differenced’), these representations

correspond to a discrete time ARMA(p + 1, p) process. Thornton and Chambers (2017),

however, work with an augmented state space form14 that more naturally incorporates both

stock and flow variables and show that the differencing of the stock variables identifies

the representation among a wider class of ARMA(p + 1, p) processes and that the more

parsimonious ARMA(p, p) is also among this class.

2.2. Identification

To a large extent, we motivated the formulation of continuous time models as linear

stochastic differential systems because equispaced data generated by such systems satisfy

ARMA specifications that are typical in time series analysis but whose parameters, unlike

those in näıvely-specified discrete-time models, are not tied to the sampling interval. The

principal counterpoint to this advantage of estimating the parameters of structural continu-

ous time models on the basis of discrete data is that one can ‘join up the dots,’ as Robinson

(1992) described it, in an uncountably infinite number of ways. The problem is multivariate

in character and can be illustrated using the following simple example for a stock variable.15

Suppose that the n×1 finite-variance vector x(t) satisfies the stochastic differential equation

13Hence the presence of the phrase ‘an exact discrete time representation’ rather than ‘the exact discrete
time representation’ in the title of this chapter.

14The state space form in (20) is augmented by an additional nf elements in a vector y0(t) that corresponds
to the aggregated or observed flow variables.

15This identification problem is therefore different in nature and on top of the classical identification
problem which seeks to avoid observational equivalence through model and estimator choice; see, for example,
Chambers and McCrorie (2006). In open systems, namely systems involving exogenous variables, the solution
of the stochastic differential equation depends on a continuous time record of the exogenous variables and
so some sort of approximation of the time paths is necessary to achieve identification; see, in particular,
Bergstrom (1986), Hamerle, Nagl and Singer (1991), Hamerle, Singer and Nagl (1993) and McCrorie (2001)
for explicit discussion of this issue.
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system

dx(t) = A(θ)x(t)dt+ ζ(dt), t > 0, (21)

subject to the initial condition x(0) = y0, where A is an n×n matrix whose elements are now

explicitly assumed to be known functions of a p×1 vector θ of unknown parameters (p ≤ n2),

y0 is a non-random n× 1 vector, and ζ(dt) is an uncorrelated vector random measure of the

type described in section 2.1 with covariance matrix Σ(µ)dt, the elements of Σ being known

functions of a q × 1 vector µ of unknown parameters (q ≤ n(n + 1)/2). The exact discrete

time model is obtained from the solution of (21) subject to the initial condition, giving a

sequence of equispaced discrete time data x(0), x(h), . . . , x(Th) that satisfies the stochastic

difference equation system

x(th) = F (θ)x(th− h) + ǫth, t = 1, . . . , T, (22)

where F (θ) = eA(θ)h and ǫth is white noise with covariance matrix

Ωǫ(θ, µ) = E(ǫthǫ
′

th) =

∫ h

0
eA(θ)rΣ(µ)eA(θ)′rdr;

see Bergstrom (1984, Theorem 3).

In the context of (21), the identification problem relates directly to the fact that there

are, in principle, many different matrices that share the same exponential F in (22); see,

for example, Phillips (1973), Hansen and Sargent (1983) and Hamerle, Singer and Nagl

(1993). These matrices are aliases of A in the sense that, through taking the place of

A in (21), they generate the same equidistant discrete time data. The aliasing problem

of identifying structural continuous time parameters on the basis of discrete time data is

clearly more severe than simply identifying the parameters of discrete time models (but,

to reiterate, there is a trade-off in that näıvely-specified discrete-time models suffer from a

lack of time invariance). If Gaussianity is assumed, the problem in the context of (21) is

to find a necessary and sufficient condition such that the pair [A(θ),Σ(µ)] is identifiable in

[F (θ),Ωǫ(θ, µ)]. In any particular application, the forms of A and Σ are heavily governed

by the role of the parameter vectors θ and µ, although for the purpose of simplifying the

discussion that follows, the dependence of A and Σ on θ and µ will be suppressed.

McCrorie (2003) offered a framework for the identification problem by considering the

following Hamiltonian matrix M that allows the pair [A,Σ] to be treated together: if

M =

(

−A Σ

0 A′

)

,

then, as an application of Van Loan (1978, Theorem 1),

eMh =

(

F−1 F−1Ωǫ

0 F ′

)

The following theorem, which is a consequence of Theorem 2 of Culver (1966), contains the

basic result on identification in terms of when the matrix exponential mapping is bijective

in general.
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Theorem (McCrorie, 2003). For the prototypical model (21), [A,Σ] is identifiable in [F,Ωǫ]

if the eigenvalues ofM are strictly real and no Jordan block ofM belonging to any eigenvalue

appears more than once.

Note that the eigenvalues of M are simply the eigenvalues and reverse eigenvalues of A,

and so if A has no complex eigenvalues and there is no confluence in its eigenvalues, the

aliasing problem reduces essentially to a univariate problem involving the exponential func-

tion which, when viewed as real-valued, is bijective. Unfortunately, both restrictions are not

generally appropriate for economic time series: they rule out plausible cyclical behaviour

resulting from complex eigenvalues and plausible trend behavior resulting from multiple

unit roots (multiple zero eigenvalues of A). In the complex eigenvalue case, several authors

achieve identification through additional restrictions: Phillips (1973) uses Cowles Commis-

sion type restrictions (see also Blevins, 2017) and Hansen and Sargent (1983) show there

are restrictions inherent in the requirement that Ωǫ be positive semidefinite. Hansen and

Sargent (1991) use cross-equation restrictions implied by the rational expectations hypoth-

esis. Bergstrom, Nowman and Wymer (1992) and Bergstrom and Nowman (2007) use prior

bounds on the parameters as a means of achieving identification, in the way researchers do

for large-scale structural VAR models today. The results of Hansen and Sargent (1983) show

that without importing a priori restrictions beyond the problem in hand, identification can

only be local; see Appendix 1 of McCrorie (2009) for some examples. In practice, one has

jointly to solve the aliasing identification problem and the classical identification problem

of avoiding observational equivalence through model and estimator choice. In the context

given here, the general problem relates not to the matrices A and Σ but to the underlying

parameter vectors θ and µ. The incorporation of exogenous variables in open systems can be

useful (e.g. Hamerle, Singer and Nagl, 1993; Bergstrom, Nowman and Wymer, 1992), as can

the aspect that the matrices in terms of the underlying parameter vectors are often heavily

restricted. Nevertheless, finding necessary and sufficient conditions to solve the identification

problem for estimating continuous time models on the basis of discrete data remains open

even for the most basic of models.

2.3. Granger causality

Formulating a structural model in continuous time offers a means of resolving the prob-

lem that discrete time models, whose estimated parameters are tied to the sampling fre-

quency, do not readily lend themselves to economic interpretation. A parallel problem that

has also been downplayed in the econometrics literature is the tendency for näıvely-specified

discrete time models to generate spurious Granger causality relationships when the time

intervals in which the data are generated are finer than the sampling interval.16 To define

(global) Granger non-causality between two variables x1(t) and x2(t), let Ij(t) (j = 1, 2)

denote the sigma algebra generated by xj(t) up to time t (this is interpreted as an infor-

mation set), let Ī(t) denote all other information up to time t, and let E(A|B) denote the

conditional expectation of A given B. Then x2 does not Granger cause x1 if

E(x1(t+ k)|I1(t), I2(t), Ī(t)) = E(x1(t+ k)|I1(t), Ī(t)) for all t and k > 0; (23)

see Florens and Fougère (1996) and Comte and Renault (1996). If the above condition does

16McCrorie and Chambers (2006, Section 3.1) outline and discuss the concept of Granger causality in the
context of continuous and discrete time models.
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not hold then x2 is said to Granger cause x1. A brief survey and discussion of the literature

of Granger causality in continuous time can be found in McCrorie and Chambers (2006,

Section 3).

In the context of temporal aggregation a coarsely sampled process, omitting information

useful for predicting an economic time series, will exhibit bidirectional Granger causality with

another coarsely sampled process provided that they are correlated, even if there is only

unidirectional causality in the finer time interval. Inferences made about the underlying

behaviour of economic agents from observed time series can, therefore, be distorted. For

example, Christiano and Eichenbaum (1987) find evidence for the money stock Granger-

causing output with quarterly U.S. data that seems to be overturned when moving to a

finer sampling interval. Some authors, for example Marcellino (1999) and Breitung and

Swanson (2002), have tried to approach the temporal aggregation problem through the lens

of fixed-interval time aggregation; however, this approach relies on constructing corrections

to estimates through knowing the time unit in which the data are generated. Otherwise, a

distortional effect owing to temporal aggregation will remain.17

Specifying a structural continuous time model allows a priori restrictions to be imposed

on the observed discrete data independently of the sampling interval, enabling Granger

causality relationships to be preserved, and thereby facilitates obtaining efficient estimates of

the structural parameters that are devoid of temporal aggregation bias. Such considerations

matter materially in empirical work. For example, Harvey and Stock (1989) find evidence,

using U.S. data, of the money stock not Granger-causing output on the basis of a continuous

time model but obtain a strong reversal of this conclusion when temporal aggregation is

ignored in discrete-time VARs. McCrorie and Chambers (2006) also consider the issue of

money-income causality in discrete time models where the temporal aggregation restrictions

were imposed exactly, approximately and not at all. They find that accounting for temporal

aggregation restrictions can have an important bearing on Granger causality tests, even

when the restrictions are only approximately imposed. In an application to exchange rates,

Renault, Sekkat and Szafarz (1998) used a continuous time model and the methods of this

chapter to distinguish between ‘true’ and ‘spurious’ causality, and on the basis of their data

suggested that there was a ‘discrete-time illusion’ of spurious causality observed between the

German mark and the Swiss franc at certain sampling frequencies.

The above discussion motivates formulating continuous time models as a way of coun-

tering the problem that some observed Granger-causality relationships in näıvely-specified

discrete time models are spurious. In practice, there exists a trade-off between preserving a

priori information on Granger causality relationships in estimation with solving the problem

of identifying the parameters of a structural continuous time model on the basis of discrete

time data as discussed in section 2.2. Both issues are in the background regardless of the

model formulated. For example, näıvely specifying a discrete time model on its own, com-

mon throughout econometric time series analysis, is insufficient as it gives no reference point

to assess whether the magnitude of temporal aggregation is important.

2.4. Nonstationarity

Economic time series data are inherently nonstationary, and the nonstationarity can

17Thornton and Chambers (2013) provide a recent discussion of temporal aggregation in macroeconomics
with continuous time models in view.
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manifest itself in a variety of forms. A second-order stationary time series is one for which the

mean, variance and autocovariances are time-independent. Examination of the solution to

the state space representation of the continuous time system given in (3) shows immediately

that the mean depends on time because E[y(t)] = eAty(0), assuming y(0) is fixed. This is the

form of nonstationarity referred to in the title of Bergstrom (1985). However, in recent years

nonstationarity has come to be associated with a different concept, namely that of unit roots

and stochastic trends, which are consistent with the earlier observation of Granger (1966)

concerning the shape of the spectral density function at the origin.

A discrete time process, xth (t = 1, . . . , T ), is said to have a unit root if it has the

representation

∆hxth = uth, t = 1, . . . , T, (24)

where ∆hxth = xth − xth−h and uth is a second-order stationary random process. Solving

the difference equation from an initial value x0 yields the representation for the level process

in the form

xth = x0 +
t
∑

j=1

ujh, t = 1, . . . , T, (25)

where the partial sum of the stationary process uth represents the stochastic trend. One

way of thinking about a unit root is that the process requires differencing once to become

stationary, as in (24), while the stochastic trend representation (25) leads to the levels process

being described as integrated of order one, often denoted I(1).

In continuous time the equivalent representation to (24) is

Dx(t) = u(t), t > 0, (26)

where u(t) is a second-order stationary continuous time process and x(0) will be taken to

be fixed. In this case the process x(t) requires differentiating once to become stationary and

the stochastic trend representation for the level is given by

x(t) = x(0) +

∫ t

0
u(r)dr, t > 0, (27)

assuming the integral (which represents the continuous time stochastic trend) exists. If x(t)

is observed as a discrete time process at integer values of t at intervals of length h then

integrating (26) once over the interval (th− h, th] reveals that

x(th) = x(th− h) +

∫ th

th−h

u(r)dr

and hence the discrete time process has a unit root. This is also true of an observed flow

variable obtained by a further integration of the model above.

Following Phillips (1987) a large literature has emerged on unit root processes in discrete

time and much effort has been expended in the search for tests for a unit root that have

good properties. Many economic time series have been found to display unit root-type

properties but one of the challenges facing economics in the mid-1980s was how to reconcile

economic theory with these apparent features. In particular, individual series with unit roots
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can wander freely over time, driven by the stochastic trends, whereas much of economics

implies the existence of stable relationships among variables (an example being consumers’

expenditure and income). The solution to this apparent dichotomy, proposed by Engle and

Granger (1987), was the concept of cointegration. An n× 1 vector, xth, of I(1) series is said

to be cointegrated if there exist a set of 1 ≤ r < n linear combinations of the form β′xth
that are stationary, where β is an n× r matrix of cointegrating parameters whose columns

are the r cointegrating vectors. Cointegration has subsequently become an essential concept

in the analysis of multivariate nonstationary economic time series.

In terms of continuous time processes, Phillips (1991) showed that a vector process

that is cointegrated in continuous time is also cointegrated in terms of the discrete time

observations.18 This is an important result because it implies that discrete time methods

can be used to test for cointegration even if the researcher is interested in formulating a

model in continuous time. If evidence of r cointegrating vectors is found, let m = n− r and

partition x(t) = [x1(t)
′, x2(t)

′]′, where x1(t) is r× 1 and x2t) is m× 1. Then there exists an

r×m matrix, B, of cointegrating vector such that x1(t)−Bx2(t) is a stationary continuous

time process. Note that these cointegrating relationships have been normalised on x1(t),

which is an identification condition. The continuous time model can then be represented in

terms of an error correction model (ECM) of the form

Dx(t) = −JAx(t) + u(t), t > 0, (28)

where J = [Ir, 0r×m]′, A = [Ir,−B] and u(t) is a stationary process. The ECM representation

(28) embodies two key features of the cointegrated system. The first r equations are of the

form

Dx1(t) = −[x1(t)−Bx2(t)] + u1(t), t > 0,

in which x1 is responding to the disequilibrium (or error) depicted by x1(t)−Bx2(t). Such

systems are often motivated by x1(t) = Bx2(t) representing an equilibrium or optimal level

of x1 given the level of x2. The remaining m equations in (28) are the stochastic trends

driving the system; they are given by

Dx2(t) = u2(t), t > 0,

subject to an initial value x2(0).

In continuous time cointegrated systems of the form (28) interest centres on estimation

of the matrix B. Equispaced discrete time observations generated by this system satisfy

x(th) = e−JAhx(th− h) + v(th), v(th) =

∫ th

th−h

e−JA(th−r)u(r)dr, t = 1, . . . , T.

Using the fact that AJ = Ir the infinite series representation for the matrix exponential can

be used to show that e−JAh = In − fJA where f = 1 − e−h. It then follows that x(th)

satisfies the discrete time ECM

∆hx(th) = −JAx(th− h) + w(th), w(th) = v(th) + e−hJAx(th− h), t = 1, . . . , T,

18Stock (1987) had earlier provided an example that cointegration as a property was invariant to temporal
aggregation.
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where w(th) is a stationary disturbance vector in view of Ax(th) = x1(th)−Bx2(th) being

stationary. Phillips (1991) recommended the use of spectral regression estimators that treat

the dynamics nonparametrically. Such methods exploit the stationary nature of u(t) to the

full without requiring any particular parametric form for the dynamics, and were shown to

have good finite sample properties in the simulation study of Chambers (2001). Frequency

domain methods can also be used in cointegrated systems in which the dynamics are modelled

parametrically, for example in CAR(p) models such as (1) that embed cointegration by

setting A0 = CA, where A is defined following (28) and C is an n × r matrix of rank r.

Chambers and McCrorie (2007) show that maximisation of a frequency domain likelihood

function leads to estimates of B that are asymptotically mixed normal and to estimates of

the autoregressive parameters that govern the dynamics that are asymptotically normal. As

is the case with cointegrated systems in discrete time the estimates of B converge to the

limiting distribution at rate T while those of the autoregressive parameters converge at rate√
T . The exact discrete model corresponding to a first-order cointegrated system with mixed

sample data was derived by Chambers (2009) and such models can be estimated based on

the time domain Gaussian likelihood outlined earlier.19 The effects of sampling frequency in

the context of cointegrated continuous time CAR systems were also analysed by Chambers

(2011).

2.5. Mixed frequency data

Time series data in economics are available at a variety of frequencies. Observations

on macroeconomic aggregates, such as consumers’ expenditure, investment, and national

income, are typically available quarterly; variables such as the money supply and price indices

used to compute measures of inflation are usually observed monthly; while financial variables,

such as asset prices (interest rates, exchange rates, stock prices etc.) can be observed almost

continuously but daily closing prices are often used. The extant approach to dealing with

observations at different frequencies is to aggregate all variables to the lowest frequency,

thereby potentially throwing away information contained in the high frequency observations

that could be exploited for gains in modelling. For example, it might be possible to use high

frequency financial variables to predict fluctuations in real economic activity before the low

frequency observations are available. In recent years a number of advances in the analysis

of mixed frequency data have been made and the topic has assumed added significance

following the financial crisis of 2008.

In the context of continuous time models an often overlooked but nevertheless important

contribution that incorporates observations at different frequencies was made by Zadrozny

(1988). He considered the general problem of estimating a CARMA(p, q) system with mixed

sample data available at mixed frequencies and recommended the use of state space forms

and the Kalman filter for constructing the Gaussian likelihood function. More recently, and

in keeping with the exact discrete time modelling approach, Chambers (2016) derived the

exact discrete model corresponding to a CAR(1) system with mixed sample data observed

at mixed frequencies. Suppose, for simplicity, that there are two vectors of stock variables,

a low frequency one, x2 (n2 × 1), observed at unit intervals of time, and a high frequency

vector, x1 (n1 × 1), observed at time intervals of length 0 < h < 1 where it is convenient to

19Other time domain approaches to cointegrated models in continuous time can be found in Comte (1999)
and Corradi (1997).
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assume that k = h−1 is an integer. For example, if x2 is observed quarterly and x1 monthly

then h = 1/3 and x1 is observed k = 3 times more frequently than x2. Then, for each integer

t, the (kn1 + n2)× 1 vector

Xt = [x′1t, x
′

1,t−h, x
′

1,t−2h, . . . , x
′

1,t−(k−1)h, x
′

2t]
′, t = 1, . . . , T,

can be defined. The underlying continuous time model is assumed to be a CAR(1) system

in the n× 1 vector x(t) = [x1(t)
′, x2(t)

′]′ of the form

dx(t) = Ax(t)dt+ ζ(dt), t > 0,

where ζ(dt) is defined following (1). The objective is to use the mixed frequency data to

estimate the n × n matrix A and the n(n + 1)/2 elements of the covariance matrix, Σ, of

ζ(dt). Theorem 1 of Chambers (2016)20 shows that the discrete time observations satisfy

the exact discrete time model

x1t = B11,1x1,t−h + . . .+B11,kx1,t−1 +B12,0x2,t−1 + η1t,

x1,t−h = B11,1x1,t−2h + . . .+B11,k−1x1,t−1 +B12,1x2,t−1 + η1,t−h,

...
...

x1,t−(k−1)h = B11,1x1,t−1 +B12,k−1x2,t−1 + η1,t−(k−1)h,

x2t =

k
∑

j=1

B21,jx1,t−jh +B22x2,t−1 + η2t,

where the Bij,k matrices are of dimension ni × nj (i, j = 1, 2) and the (kn1 + n2)× 1 vector

ηt = [η′1t, η
′

1,t−h, η
′

1,t−2h, . . . , η
′

1,t−(k−1)h, η
′

2t]
′

is a vector white noise process. It is important to stress that all of the autoregressive matrices

in the mixed frequency discrete time representation are only functions of the elements of

the matrix A while the covariance matrix of ηt depends only on A and Σ. By way of

comparison a discrete time vector autoregression in the vector Xt would be significantly

over-parameterised.

Similar exact discrete time models can be derived for the cases where both the high and

low frequency observations are on flow variables and where they are mixtures of stocks and

flows. The main difference when flow variables are present is that the disturbance vector

becomes an MA(1) process but the parsimony over unrestricted VAR and VARMA systems

remains. Simulation results in Chambers (2016) for stationary and cointegrated systems

show that utilising the mixed frequency data reduces bias and mean squared error of Gaussian

estimates compared with the situation where high frequency variables are aggregated to the

low frequency. Furthermore, in an empirical application testing long run purchasing power

parity restrictions between the UK and the US, inferences are found to be unfavourable

to the restrictions when using the information in daily frequency exchange rates but the

restrictions are not rejected when the exchange rates are aggregated to weekly and monthly

frequencies. A possible explanation for this finding is that the estimates of the two key

20The model considered by Chambers (2016) also includes a vector of intercepts and deterministic trends.
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parameters of interest have large standard errors using the aggregated series but are more

precisely determined when using the high frequency data.

2.6. Gaussian estimation using an exact discrete model

The exact discrete time model in the form of (10), allied with an additional set of p− 1

conditions relating the initial observations to the initial state vector in the case of stock

variables or p such conditions in the case of flows or a mixed sample, provides a basis for

the construction of the likelihood function. It is usually assumed that the nT × 1 vector

η = (η′h, . . . , η
′

Th)
′ is Gaussian with mean vector zero and covariance matrix Ωη = E(ηη′),

which is equivalent to specifying ζ(dt) in (1) to be the increment in a Brownian motion

process. Under such an assumption the log-likelihood is of the form

logL(θ) = −nT

2
log 2π − 1

2
log |Ωη| −

1

2
η′Ω−1

η η, (29)

where θ denotes the parameter vector of interest (i.e. the elements of the autoregressive

matrices A0, . . . , Ap−1 and the covariance matrix Σ). Section 3 discusses computational

aspects associated with (29).

The asymptotic properties of estimates obtained by maximising (29) depend, of course,

on the set of assumptions made concerning the model (1). Bergstrom (1983) provided a set

of conditions that ensures that the vector, θ̂, that maximises (29) is almost surely consistent

and, furthermore, that
√
T (θ̂ − θ) is asymptotically normal and efficient in the Cramer

sense. These conditions include such things as identification of θ in a closed bounded set

Θ over which maximisation takes place; stationarity and ergodicity of x(t); and continuity

and differentiability of the autoregressive matrices and covariance matrix of (1) in cases

where the elements of these matrices may depend, possibly nonlinearly, on an underlying

parameter vector of smaller dimension. The issue of identification has an added dimension in

continuous time models owing to the phenomenon of aliasing which was discussed in section

2.2.

In finite samples the problem of estimation bias has the potential to beset all Gaus-

sian/maximum likelihood (ML) methods including those based on the exact discrete time

model. It is particularly relevant when estimating mean reversion parameters, as demon-

strated in Phillips and Yu (2005) and Yu (2012). In a sampling experiment using a common

interest rate model, Phillips and Yu (2009) showed that the estimation bias can be more

important than the bias arising from using an approximate rather than an exact solution of

the continuous time model. Wang, Phillips and Yu (2011) decompose the overall bias into

separate terms arising from estimation and from discretisation, finding that when using Eu-

ler and trapezoidal approximations to the exact discrete model, both approximate methods

dominate the exact method for empirically realistic cases. They also show that the sign of

the discretisation bias is opposite to that of the estimation bias in such cases, meaning that

the bias in the approximate methods is less than for estimation based on the exact discrete

model. In addition the asymptotic variance of the estimator based on the Euler approxi-

mation is smaller than for the ML estimator of the mean reversion parameter in the exact

discrete model, supporting a conclusion that the Euler approximation would be preferred

to ML estimation of the exact discrete model in certain circumstances, such as when mean

reversion in a univariate linear diffusion is slow.

17



It should be borne in mind that the exact discrete model is the only model that exactly

incorporates restrictions implied by economic theory and other a priori information on the

observed discrete data, and methods have been proposed to reduce finite sample estimation

bias. Phillips and Yu (2005, 2009) propose jackknife techniques and a simulation-based

indirect inference method and show they are successful in reducing finite sample bias in

univariate diffusion models. Jackknife methods can also be expected to work successfully

in higher-order and multivariate continuous time models, as indicated by the results of

Chambers (2013) for stationary autoregressions and Chambers and Kyriacou (2013) in unit

root models. The application of such techniques to more general continuous time systems is

worthy of further investigation.

2.7. Alternative approaches

Although we have emphasised the exact discrete time modelling approach to the esti-

mation of continuous time systems it is not the only suitable method. As mentioned above

Zadrozny (1988) has shown how Kalman filtering techniques can be used to compute the

Gaussian likelihood function in CARMA systems with mixed sample and mixed frequency

data that can also include exogenous variables. State space forms and the Kalman filter were

also used in a sequence of contributions by Harvey and Stock (1985, 1988, 1989) that built

on earlier work by Jones (1981) and focused on CAR systems that may contain integrated

and cointegrated variables. Singer (1995) also proposed a filtering method and used analytic

derivatives to facilitate computing the likelihood function. The evaluation of the likelihood

function using the exact discrete model approach treats the entire observation vector simul-

taneously whereas the Kalman filter is a recursive method that is usually defined stepwise

from observation to observation. However, both methods should produce the same value

for the likelihood function. Bergstrom (1985) offers some comparison between the methods,

as do Singer (2007) and Oud and Singer (2008) though for methods extended to deal with

panel data.

The main advantage of these approaches is that it is not necessary to derive the full

exact discrete time model, merely the first-order difference equation satisfied by the state

vector that includes unobservable components as well as the observed variables. Another

advantage of this approach is that the Kalman filter produces optimal estimates of the unob-

servable components of the state vector which may be of interest in certain applications. A

disadvantage is that it is less readily comparable to alternative discrete time models, a short-

coming that is clearly not shared by the exact discrete time representation. Furthermore,

Bergstrom (1985) provided some arguments as to why the exact discrete time approach has

computational advantages over the Kalman filter approach, although no formal testing of

these claims appears to have been conducted and will, no doubt, depend on a whole variety

of factors.21

Alternative frequency domain methods can also be used to estimate stationary CARMA

systems. The spectral density matrix of the continuous time process x(t) in (15) is given by

F (λ) =
1

2π
A(−iλ)−1Θ(−iλ)ΣΘ(iλ)′[A(iλ)′]−1, −∞ < λ < ∞, (30)

21Such factors include, but are not restricted to: the order of the continuous time system; the dimension
of the vector x(t); the sample size; the way in which the likelihoods are programmed; and, the optimisation
algorithm used.
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where i2 = −1,

A(z) = zpIn −Ap−1z
p−1 − . . .−A1z −A0,

Θ(z) = In +Θ1z + . . .+Θq−1z
q−1 +Θqz

q.

Assuming that x(t) is comprised of stock variables the spectral density matrix of the dis-

cretely observed vector xth is given by

F d(λ) =
1

h

∞
∑

j=−∞

F

(

λ+ 2πj

h

)

, −π < λ ≤ π,

the so-called folding formula. Robinson (1993) provides formulae that enable F d(λ) to be

computed exactly so that a frequency domain version of the Gaussian likelihood function (or

Whittle likelihood) can be constructed. Flow variables are also easily handled within this

framework, as are mixed samples. Suppose x(t) = [xs(t)′, xf (t)′]′ and we partition F (λ) as

F (λ) =

(

F ss(λ) F sf (λ)

F fs(λ) F ff (λ)

)

.

Then the spectral density matrix of the continuous time process

X(t) =







xs(t)

1

h

∫ t

t−h

xf (r)dr







is given by Robinson (1993) as

FX(λ) =









F ss(λ)
1− e−ihλ

ihλ
F sf (λ)

eihλ − 1

ihλ
F fs(λ)

4 sin2 hλ/2

h2λ2
F ff (λ)









, −∞ < λ < ∞.

The terms multiplying components of the spectral density matrix involving flow variables

arise through the frequency response function of the integral determining the observed pro-

cess (and the squared frequency response function for F ff (λ)). The spectral density of the

process observed at discrete points in time i.e. for X(th) (t = 1, 2, . . .) is then subject to the

folding formula yielding

F d
X(λ) =

1

h

∞
∑

j=−∞

FX

(

λ+ 2πj

h

)

, −π < λ ≤ π.

Fourier methods for the estimation of even more general continuous time systems were earlier

proposed by Robinson (1976).

3. Computational issues

Except in the simplest cases, estimates of the parameters of continuous time models
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do not have closed form solutions and typically require optimisation using programmable

statistical software such as R, Matlab or Gauss. Fortunately, the growth in computing power

has expanded the scope and the dimension of feasible models, provided the sparse nature of

many of the matrices involved in computing the likelihood and the possibility of in-sample

convergence is exploited.

Firstly, the translation of an autoregressive model in continuous time to a discrete time

model free of dependence on any sampling frequency involves the calculation of a matrix

exponential, as in equation (3), and functions thereof. Owing to results by Van Loan (1978),

the functions of the exponential can be computed as products of submatrices of a single,

larger dimensional matrix exponential. Chambers (1999), McCrorie (2000) and Thornton

and Chambers (2016) provide expressions pertaining to the exact discrete time model, while

Harvey and Stock (1985) and Zadrozny (1988) provide similar expressions for application of

the Kalman filter.

Moler and Van Loan (1978), in a celebrated article in the numerical analysis literature,22

showed that computation of the matrix exponential is a notoriously ill-conditioned problem,

to the extent that of nineteen methods considered, only three or four were potentially suit-

able in general, including a scaling and squaring method that employs Padé approximation

to the scalar exponential (see Higham, 2009). Jewitt and McCrorie (2005) discuss the com-

putational issues behind computing matrix exponentials and their functions with continuous

time econometrics in view. Standard methods are not always robust. For example, taking

the partial sums of the Taylor series following equation (3) can be ill-conditioned because

round-off error can propagate in computing higher and higher powers in a way that even-

tually dominates analytical convergence. A popular alternative is to exploit an eigenvalue

decomposition when A is diagonalisable i.e. when A is similar to a diagonal matrix Λ con-

taining the eigenvalues of A. If A = QΛQ−1 then eA = QeΛQ−1, where eΛ is, conveniently,

a diagonal matrix whose elements are exponentials of the corresponding elements of Λ. The

method relies, however, on an a priori assumption that the matrix A is diagonalisable,

which is inconsistent with the property of cointegration that economic data plausibly sat-

isfy. It is also possible that Q itself is ill-conditioned; see, for example, Higham and Al-Mohy

(2010, Section 4). The main recommendation of Jewitt and McCrorie (2005) is that, for the

type of matrices liable to be seen in econometric modelling, the problem is not likely to be

ill-conditioned should any of the three standard methods discussed therein, including the

scaling and squaring method also recommended by Zadrozny (1988), be used and supported

by calculations made to at least standard IEEE double precision.

Hereafter, computation of the likelihood using the exact discrete representation diverges

from calculation using the Kalman filter. The Kalman filter may be applied to equation (4)

in association with an observation equation that synthesises the observed series, xth, from

the state vector, y(th). Well known methods have been developed to cope with irregularly

spaced date and with observation noise; see, for example, Harvey (1989). The likelihood is

often evaluated using the T prediction error vectors for the observed series, which, being

optimal linear predictions, are uncorrelated. Such routines have the advantage/incur the

expense, depending on requirements, of estimating the full state vector at the observation

time points.

22This paper was reprinted twenty-five years later with an update as Moler and Van Loan (2003).
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The evaluation of the likelihood in equation (29), in contrast, does not attempt an

optimal prediction of xth but rather models the time dependence between the ηth vectors

parametrically. The computation of (29) is potentially troublesome as it involves the cal-

culation of the determinant and inverse of the nT × nT covariance matrix Ωη. However,

the MA nature of ηth ensures that Ωη is a sparse block-Toeplitz matrix with no more than

n(2p − 1) non-zero elements in any row or column in the case of stocks and no more than

n(2p+1) non-zero elements in any row or column when flows are present. This sparsity can

be exploited for computational advantages including speed and accuracy. Let M denote the

nT × nT lower triangular Cholesky matrix with typical elements mij satisfying MM ′ = Ωη

and let ξ = M−1η with typical element ξi. Then η′Ω−1
η η = ξ′ξ and |Ωη| = |MM ′| = |M |2 so

that the log-likelihood can be written

logL(θ) = −nT

2
log 2π − 1

2
log |M |2 − 1

2
ξ′ξ

= −nT

2
log 2π −

nT
∑

i=1

logmii −
1

2

nT
∑

i=1

ξ2i , (31)

which follows because |M | =
∏nT

i=1mii. Bergstrom (1983) showed that the elements of ξ can

be computed recursively from the system Mξ = η while Bergstrom (1990, chapter 7) showed

that the elements of M converge rapidly to fixed limits as computations proceed within the

matrix, resulting in savings in computational storage requirements.

One of the important features of a continuous time model is that the form of an exact

discrete time representation is invariant to the sampling frequency of the observations. We

are able to illustrate this aspect in the context of a small simulation exercise using a simple

first-order stochastic differential equation in a scalar random variable x(t), given by

dx(t) = ax(t)dt+ ζ(dt), t > 0, (32)

where we take x(0) = 0 for convenience and E[ζ(dt)2] = σ2dt. Assuming x(t) to be a stock

variable, suppose that the sequence x0, xh, x2h, . . . , xTh is observed, where h denotes the

sampling interval and T is the number of discrete time observations. Then the exact discrete

time model satisfied by the sequence of observations is a discrete time AR(1), regardless of

the sampling interval; it is given by

xth = fhxth−h + ηth, t = 1, . . . , N, (33)

where fh = eah and ηth is white noise with variance σ2
η = σ2(e2ah − 1)/(2a). Acknowledging

that xth is subject to temporal aggregation means that we focus on estimating a and σ2

regardless of the sampling interval. However, ignoring this feature means that fh would

be estimated directly and estimates would suggest differing degrees of serial correlation

depending on the value of h. Associated patterns of variation would also be observed in

estimates of σ2
η owing to its dependence on h.

In order to assess these features we consider values of h ∈ {1/12, 1/6, 1/4, 1/3, 1/2, 1}
and a ∈ {−2,−1,−0.5,−0.1} with σ2 = 1. A total of 100,000 replications of each parameter

combination were conducted, and we set the data span equal to N = Th = 100; this is

the number of observations when h = 1. As the sampling interval falls the number of
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observations, T = N/h, rises, to a maximum of 1200 when h = 1/12. The data are generated

at this highest frequency (h = 1/12) and then the lower frequency observations are selected,

so that, for example, the observations for h = 1/6 correspond to every second observation in

the h = 1/12 sequence, while those for h = 1 correspond to every twelfth observation. The

maximum likelihood estimator of a can be shown to be equal to

âML =
1

h
log f̂h,

where f̂h denotes the ordinary least squares (OLS) estimator of fh in the autoregression (33).

Clearly this is only feasible if f̂h > 0, and it is only for smaller values of fh and T that it

becomes a problem. In fact, the only cases where f̂h < 0 were for a = −1 and a = −2 when

T = 100, where the proportions of replications affected were 0.00016 and 0.091, respectively.

In these cases the estimates were removed and the summary statistics were computed with

the remainder of the replications. In view of the results of Wang, Phillips and Yu (2011) we

also compute an estimate of a based on the Euler approximation given by

(xth − xth−h) = ahxth−h + uth,

where uth is a serially uncorrelated random disturbance with variance σ2h. We denote the

estimate of a obtained using this approximation by âE .

The results appear in Table 1 in which, for each value of a, the mean values and standard

errors (across the replications) of âML and âE are reported, as well as the means and standard

errors of f̂h. In the latter case we also report the actual values of fh. It can be seen clearly

from Table 1 that the estimates of a using âML, although slightly biased as expected, are

all stable across the range of values of h, and although âE has smaller bias than âML when

a = −0.1 its performance in terms of bias deteriorates as a becomes more negative. This

is in accordance with the results of Wang, Phillips and Yu (2011). It can also be seen

that âE has a smaller standard error than âML in all cases. The estimates of the discrete

time autoregressive parameter fh using f̂h can be seen to depend clearly on the value of

h. Although f̂h is a reasonably good estimator of fh the implications for the dependence

properties of the variable x depend very much on the sampling interval chosen; the same is

not true when the temporal aggregation is taken into account.

4. Empirical applications

There have been many applications of the methods of this chapter, most notably in

the area of macroeconomic modelling to which, because it drove much of the early work,

we devote section 4.3 below. Representative papers include, in the areas of asset alloca-

tion, Campbell, Chacko, Rodriguez and Viceira (2004); consumers’ demand, Bergstrom and

Chambers (1990) and Chambers (1992); uncovered interest parity, Diez de Los Rios and

Sentana (2006); exchange rates, Renault, Sekkat and Szafarz (1998); short-term interest

rate models, Nowman (1997), Yu and Phillips (2001), Phillips and Yu (2011); and empiri-

cal finance in general, Thornton and Chambers (2016). It is quite clear that, perhaps now

more than ever, economic activity occurs continuously around the clock and yet, such is the

undertaking required to measure this activity, published statistics cannot hope to provide
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real time information. Here we introduce two applications within macroeconomics which

are illustrative of the use of an exact discrete representation to resolve this tension. One

involves a univariate time series, namely consumer price inflation in the United Kingdom,

while the other explores the important relationship between gross domestic product (GDP)

in the United States of America and crude oil prices. As mentioned in section 2, the impact

of time aggregation is to induce serial correlation in the disturbances, ηt, and so the ability

of a continuous time specification to explain the observed serial correlation adequately is an

important test of its suitability. In order to address this issue Bergstrom (1990, chapter 7)

proposed a portmanteau-type test statistic based on the n × 1 vectors of standard normal

variates ξth (t = 1, . . . , T ). Bergstrom’s statistic is defined by

Sl =
1

n(T − l)

l
∑

r=1

(

T
∑

t=l+1

ξ′thξth−rh

)2

,

which has an approximate chi-squared distribution with l degrees of freedom (the number of

lags used) under the null hypothesis that the model is correctly specified. For robustness we

also report the Schwartz Bayesian model selection criterion (SBC) for each model. Each of

these models is deliberately narrow in their focus. Modern economies are, of course, large,

complex and inter-connected systems and so we finish with an overview of some of the large

scale macroeconomic modelling carried out in continuous time.

4.1 Consumer prices and inflation

In a continuous time setting price inflation can be defined as the instantaneous rate of

change of the price level i.e. π(t) = D log p(t). Consider the continuous time ARMA(2, 1)

model for log p(t) given by

D2 log p(t) = γ0 +A1D log p(t) +A0 log p(t) + u(t) + θDu(t), t > 0, (34)

where γ0, A1, A0 and θ are scalars, and u(t) is a mean zero uncorrelated process with variance

σ2
u. Under the condition that A0 = 0 i.e. that log p(t) has a zero root in continuous time

(and a unit root in discrete time), the implied law of motion for inflation becomes

Dπ(t) = γ0 +A1π(t) + u(t) + θDu(t), t > 0. (35)

Hence π(t) satisfies a continuous time ARMA(1, 1) process which corresponds to a continuous

time ARIMA(2, 1, 1) process for log p(t).

Estimates of (34) with A0 = 0 were obtained using monthly data for the UK consumer

price index over the period January 1996 to March 2014, a total of 219 observations. The

results are given in Table 2. The estimates of the parameters in the CARMA(2, 0) are well

determined and there is no evidence of misspecification, at least as measured by Bergstrom’s

S4 statistic. However, addition of the MA(1) component results in a statistically significant

increase in the value of the maximised log-likelihood function – the likelihood ratio statistic

for testing the null hypothesis that θ = 0 is equal to 6.4634 with a marginal probability of

0.0110. The p-value of the S4 statistic is far from significant, suggesting that the inclusion of

the statistically significant MA(1) component yields an improved fit; this is also the inference

drawn from a comparison of the SBC values for the two models.
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4.2. Oil prices and the macroeconomy

Next, we explore the relationship between US output, as measured by real GDP in

tens of billions of chained 2009 dollars, and the oil price, as measured by the price of West

Texas Intermediate in dollars per barrel. The data are quarterly ranging from 1986 to 2013

quarter 3 from the Federal Reserve Bank of St Louis. In common with most authors who

have examined these series, for example Hamilton (1996), we find that both processes show

strong evidence of unit root behaviour, with augmented Dickey Fuller test statistics of −0.609

and −0.318 for GDP and the oil price respectively, but find no evidence of a cointegrating

relationship. Non-stationary but non-cointegrated data are consistent with the specification

in equation (15) with A0 = 0. We define the 2× 1 vector x(t) = [GDP (t), Oil(t)]′.

We consider two candidate models nested within a continuous time ARMA(2 ,1) model,

the continuous time ARIMA(1,1,0) which has A0 = 0, p = 2 and q = 0 and the continuous

time CARIMA(1, 1, 1), which has q = 1. The exact discrete representation of both models

is an ARIMA(1, 1, 1),

∆hxth = f0 + F1∆xth−h + ηth, t = 3, . . . , T, (36)

where ∆hxth = xth − xth−h as in (24), with the CARIMA(1, 1, 1) offering more flexibility in

modelling the autocovariance structure of the discrete time disturbance ηth.

Results for the two models are presented in Table 3. The CARIMA(1, 1, 1) is preferred

by the SBC and the likelihood ratio test fails to reject the CARIMA(1, 1, 1) in favour of the

CARIMA(1, 1, 0), with a test statistic of 24.566. The moving average coefficients in the first

column of Θ are significant, reflecting the impact of lagged shocks to GDP on both GDP and

oil prices. Both models have values for the Bergstrom S1 and S4 statistic in the acceptable

region.

The literature has focussed on the question of whether changes in the oil price lead to

changes in GDP, reflected in the top right element of the matrix A1. It is noticeable that in

the CARIMA(1, 1, 0), neither of the coefficients on the rate of change of GDP or on the oil

price is significant in the equation determining the other variable. When a moving average

error is introduced to capture more complicated dynamics, however, the t-ratio on the top

right element of A1 is −2.36, indicating that growth in oil prices slows GDP, while that on

the bottom left is 1.975, suggesting that growth in GDP accelerates oil price growth.

As a by-product of the estimation, to aid comparison with other models, the intercept

vector, f0, and autoregressive matrix, F1 of the exact discrete time representation are also

reported. These reinforce the point that the CARIMA(1, 1, 1) model predicts a stronger

reaction from one series to lagged changes in the other.

4.3. Macroeconometric modelling

While many of the applications of continuous time models and methods occur today in

the area of empirical finance, much of the literature’s early development was driven through

the desire to make advances in the area of large-scale macroeconometric modelling. This

was in no small part due to Rex Bergstrom who, in collaboration with a student, Clifford

Wymer, produced in Bergstrom and Wymer (1976) the first continuous time macroecono-

metric model, the formulation and estimation of which represents one of the landmarks in
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the development of modern econometrics. The economy-wide model, which comprised thir-

teen equations (ten structural equations and three identities) in thirty-five key parameters,

served as a prototype for later developments in macroeconomic modelling and the modelling

of financial and commodity markets. It had innovative features beyond simply being formu-

lated in continuous time: it was formulated as a dynamic disequilibrium model23 involving

a system of partial adjustment equations in the form of continuous time error-correction

equations, where each causally dependent variable continually adjusts in response to the

deviation from its partial equilibrium level; it embodied the intensive use of economic the-

ory and other a priori information to support a parsimonious representation in the model

parameters; and its design facilitated an analysis of its steady state and stability properties

using methods developed earlier by Bergstrom (1967).24

An earlier comprehensive survey of continuous time macroeconomic modelling can be

found in Bergstrom (1996), which includes the various stages of the Italian continuous time

model of Gandolfo and Padoan (1984, 1990),25 the economy-wide models contained in the

volume edited by Gandolfo (1993) and, not least, the model by Bergstrom, Nowman and

Wymer (1992) which signified the next stage of development. This model was the first to

incorporate the exact methods that are the focus of this chapter; it used more realistic,

second-order partial adjustment equations using the method for higher-order systems pio-

neered by Bergstrom (1983) and described in section 2.1 above; and, unlike the Bergstrom

and Wymer (1976) model, incorporated exogenous variables. Estimating this model, which

comprised fourteen equations with sixty-three parameters and eleven exogenous variables,

required around a day’s computing time on a CRAY X-MP/48 supercomputer, which at the

time represented the cutting edge of computer technology. The Italian model was further

developed into a system including non-linear equations by Gandolfo, Padoan, De Arcange-

lis and Wymer (1996), although estimation was facilitated through a linear approximation

about sample means; see Wymer (1993) for details of the underlying estimation method.

Wymer (1993, 1997, 2012) has developed a direct, full-information maximum likelihood ap-

proach to the estimation of such non-linear systems although, given the development of

this literature, the properties of this estimator must currently be inferred from those of the

estimator based on a linear approximation about sample means. Starting values for the

procedure are readily obtained from applying the method of maximum likelihood to this

linear approximation.

The theoretical basis for what could be seen as a third-stage continuous time model

was provided by Bergstrom (1997), where unobservable stochastic trends are incorporated

within the system of stochastic differential equations to take advantage of insights gained

from the development of unit root econometrics that occurred in the discrete-time literature.

The project was finally brought to fruition in a book by Bergstrom and Nowman (2007) that

was published after Bergstrom’s death in 2005. The model comprised a system of eighteen

mixed first- and second-order non-linear differential equations with sixty-three structural

parameters, thirty-three long-run parameters, twenty-seven speed-of-adjustment parameters

and three drift parameters. Its linearisation about sample means results in precisely the

23See Hillinger (1996) for a discussion of the history and conceptual foundations of such models in macroe-
conometric modelling and Wymer (1996) for a similar discussion that focuses on continuous time.

24See Gandolfo (1981) for a textbook treatment.
25At the time of writing (July 2017), Pier Carlo Padoan is Italy’s Minister of Economy and Finance, a

position he has held since February 2014.
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model considered by Bergstrom (1997). The parameter estimates and speed of adjustment

parameters were all plausible and the model was seen, through an examination of its steady-

state and stability properties, to generate plausible long-run behaviour. Its post-sample

forecasting performance also compared favourably with a second-order VAR model with

exogenous variables. The book provided a retrospect of what Rex Bergstrom achieved over

a lifetime of research in the area of continuous time econometrics; a brief survey of this

contribution with an emphasis on macroeconomic modelling is provided by Nowman (2009).

5. Concluding comments

This chapter has aimed to provide a survey of methods of continuous time modelling

based on an exact discrete time representation. Such an approach is synonymous with the

name of Rex Bergstrom whose pioneering contributions were instrumental in attracting the

current authors to the field. Our survey has attempted to highlight the techniques involved

with the derivation of an exact discrete time representation of an underlying continuous time

model, providing specific details for a second-order linear system of stochastic differential

equations. Issues of parameter identification, causality, nonstationarity, and mixed frequency

data have also been addressed, all of which are important to consider in applications in

economics and other disciplines. Although our focus has been on Gaussian estimation of

the exact discrete time model we have also discussed alternative time domain (state space)

and frequency domain approaches. Computational issues have also been explored, where

here the focus is on the exploitation of sparse matrices and the computation of the matrix

exponential. Two new empirical applications have been included along with a discussion of

applications in the field of macroeconometric modelling. While our focus is, of necessity,

oriented towards economics and econometrics, we hope that the material contained in this

chapter will be of interest in the social and behavioural sciences more widely.
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Appendix

The Gauss code below was used in the simulation exercise. Note that n is used in the
code as the data span and t is the sample size, whereas in the text in section 3 it is T and
N , respectively, that are used for these quantities.

/* Simulation of continuous time AR(1) process at different frequencies */

new;

a=-1.0; /* Continuous time AR parameter */

hv=1|1/2|1/3|1/4|1/6|1/12; /* Discrete time sampling intervals */

n=100; /* Data span */

x0=0; /* Initial value */

nreps=100000; /* Number of replications */

s2=1; /* Continuous time innovation variance */

rndseed 6665; /* seed for random numbers */

rhv=rows(hv);

tv=n./hv;

maxt=maxc(tv);

hmin=minc(hv);

hrel=hv/hmin;

eahm=exp(a*hmin);

e2ahm=exp(2*a*hmin);

eahv=exp(a*hv);

s2m=s2*(e2ahm-1)/(2*a);

sm=sqrt(s2m);

cta=zeros(nreps,rhv); /* nreps times number of h values */

dta=cta; eta=cta; nogood=0;

for i (1,nreps,1);

u=sm*rndn(maxt,1);

xm=datagen(u); /* maxt times 1 */

for hi (1,rhv,1);

h=hv[hi,1];

t=tv[hi,1];

xh=reshape(xm,tv[hi,1],hrel[hi,1]);

x=xh[.,hrel[hi,1]];

bhat=x[2:t,1]/x[1:t-1,1];

if bhat le 0; ahat=0; nogood=nogood+1;

else; ahat=ln(bhat)/h;

endif;

ehat=(x[2:t,1]-x[1:t-1,1])/(h*x[1:t-1,1]);

cta[i,hi]=ahat;

dta[i,hi]=bhat;

eta[i,hi]=ehat;

endfor;

endfor;

stop;

proc datagen(e);

local x;

x = recserar(e, x0, eahm);

retp( x );

endp;
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Table 1. Simulation results: means and standard errors of estimators

h âML âE f̂h fh âML âE f̂h fh

a = −0.1 a = −0.5

1 −0.1213 −0.1127 0.8873 0.9048 −0.5292 −0.4050 0.5950 0.6065
(0.0591) (0.0504) (0.0504) (0.1452) (0.0814) (0.0814)

1/2 −0.1206 −0.1163 0.9418 0.9512 −0.5235 −0.4578 0.7711 0.7788
(0.0567) (0.0524) (0.0262) (0.1217) (0.0909) (0.0460)

1/3 −0.1203 −0.1174 0.9609 0.9672 −0.5219 −0.4772 0.8409 0.8465
(0.0559) (0.0530) (0.0177) (0.1153) (0.0957) (0.0319)

1/4 −0.1202 −0.1181 0.9705 0.9753 −0.5214 −0.4875 0.8781 0.8825
(0.0555) (0.0534) (0.0133) (0.1125) (0.0979) (0.0245)

1/6 −0.1201 −0.1186 0.9802 0.9835 −0.5207 −0.4979 0.9170 0.9200
(0.0551) (0.0537) (0.0090) (0.1097) (0.1000) (0.0167)

1/12 −0.1200 −0.1193 0.9901 0.9917 −0.5203 −0.5088 0.9576 0.9592
(0.0548) (0.0541) (0.0045) (0.1072) (0.1024) (0.0085)

a = −1.0 a = −2.0

1 −1.0581 −0.6388 0.3612 0.3679 −2.1249 −0.8667 0.1333 0.1353
(0.3030) (0.0934) (0.0934) (0.8435) (0.0988) (0.0988)

1/2 −1.0291 −0.7989 0.6006 0.6065 −2.0554 −1.2716 0.3642 0.3679
(0.1951) (0.1140) (0.0570) (0.3853) (0.1318) (0.0659)

1/3 −1.0247 −0.8644 0.7119 0.7165 −2.0343 −1.4698 0.5101 0.5134
(0.1746) (0.1225) (0.0408) (0.2986) (0.1488) (0.0496)

1/4 −1.0234 −0.9003 0.7749 0.7788 −2.0291 −1.5861 0.6035 0.6065
(0.1662) (0.1275) (0.0319) (0.2682) (0.1597) (0.0399)

1/6 −1.0217 −0.9377 0.8437 0.8465 −2.0244 −1.7148 0.7142 0.7165
(0.1583) (0.1327) (0.0221) (0.2420) (0.1716) (0.0286)

1/12 −1.0208 −0.9777 0.9185 0.9200 −2.0219 −1.8590 0.8451 0.8465
(0.1513) (0.1386) (0.0115) (0.2205) (0.1858) (0.0155)
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Table 2. Estimates for Inflation

CARMA(2, 0) CARMA(2, 1)

γ0 0.0261 0.0013
(0.0038) (0.0006)

A1 −14.8432 −0.7362
(0.0046) (0.3425)

θ 0.0000 −1.9916
(0.9772)

σu 0.0562 0.0020
(0.0027) (0.0010)

logL 909.8639 913.0956

SBC −1803.5607 −1804.6349

S4 0.4427 0.9942

Standard errors in parentheses; entries

for S4 are p-values.
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Table 3. Estimates of CARIMA models for GDP and oil prices

CARIMA(1, 1, 0) CARIMA(1, 1, 1)

a0 A1 a0 A1 Θ

Continuous time model parameters

GDP 3.9720 −0.4966 −0.3474 4.1819 −0.5107 −0.4729 −0.3648 −0.9745
(4.3642) (0.2368) (0.4838) (4.3192) (0.1890) (0.2004) (0.1829) (1.2448)

Oil price 2.8840 −0.2382 −1.2451 −5.5287 1.0499 −2.4061 0.3253 −0.7239
(1.7099) (0.6098) (0.6241) (1.7247) (0.5317) (0.6380) (0.1594) (0.7642)

logL −737.8751 −725.5962

SBC 1518.1359 1512.4163

S1 0.4328 0.6619

S4 0.1875 0.1945

f0 F1 f0 F1

Exact discrete time model parameters

GDP 3.1898 0.6033 −0.2960 2.8670 0.6797 −0.5649

Oil price 1.1864 −0.0784 0.3289 −0.7302 0.2376 −0.1179

Standard errors in parentheses; entries for S1 and S4 are p-values.
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