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Abstract: We introduce a new method to test efficiently for cospeciation in tritrophic systems. Our method
utilises an analogy with electrical circuit theory to reduce higher order systems into bitrophic data sets
that retain the information of the original system. We use a sophisticated permutation scheme that weights
interactions between two trophic layers based on their connection to the third layer in the system.Ourmethod
has several advantages compared to the method of Mramba et al. [Mramba, L. K., S. Barber, K. Hommola,
L. A. Dyer, J. S. Wilson, M. L. Forister and W. R. Gilks (2013): “Permutation tests for analyzing cospeciation
in multiple phylogenies: applications in tri-trophic ecology,” Stat. Appl. Genet. Mol. Biol., 12, 679–701.]. We
do not require triangular interactions to connect the three phylogenetic trees and an easily interpreted p-
value is obtained in one step. Another advantage of our method is the scope for generalisation to higher
order systems and phylogenetic networks. The performance of our method is compared to the methods of
Hommola et al. [Hommola, K., J. E. Smith, Y. Qiu andW. R. Gilks (2009): “A permutation test of host–parasite
cospeciation,” Mol. Biol. Evol., 26, 1457–1468.] and Mramba et al. [Mramba, L. K., S. Barber, K. Hommola, L.
A. Dyer, J. S. Wilson, M. L. Forister and W. R. Gilks (2013): “Permutation tests for analyzing cospeciation in
multiple phylogenies: applications in tri-trophic ecology,” Stat. Appl. Genet. Mol. Biol., 12, 679–701.] at the
bitrophic and tritrophic level, respectively. This was achieved by evaluating type I error and statistical power.
The results show that our method produces unbiased p-values and has comparable power overall at both
trophic levels. Our method was successfully applied to a dataset of leaf-mining moths, parasitoid wasps and
host plants [Lopez-Vaamonde, C., H. Godfray, S. West, C. Hansson and J. Cook (2005): “The evolution of host
use and unusual reproductive strategies in achrysocharoides parasitoidwasps,” J. Evol. Biol., 18, 1029–1041.],
at both the bitrophic and tritrophic levels.
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1 Introduction

The study of host-parasite coevolution originated with the work of Von Ihering, whowas the first to recognise
predictable associations among hosts and their parasites (Klassen, 1992). Parasites and their hosts generally
form tight ecological associations and as such it has long been assumed that the speciation of parasites is
largely dependent on the speciation of their hosts (Legendre et al., 2002). However, cospeciation is not the
only process that occurs, and thus host-parasite phylogenies are rarely exact mirror images. The parasite
may switch lineages, speciate independently, go extinct, fail to colonise all descendants of a speciating host
lineage, or fail to speciate when the host does (Page, 2003).

Figure 1 displays two simple example bitrophic systems, each consisting of Tree X, Tree Y and the
interactions between their leaf nodes. We mainly focus on parasitic interactions, however other types of
ecological interaction exist. These interactions may have arisen through symbiosis, mutualism, habitat or
feeding relationships.
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There has been extensive exploration into the bitrophic interactions observed between hosts and their
parasites, and between plants and specialised herbivorous insects (Forister and Feldman, 2011). As a result,
many statistical tests have been developed to assess cospeciation in these systems (Page, 1996; Legendre
et al., 2002; Hommola et al., 2009; Huelsenbeck et al., 2000; Mantel, 1967). However, shared evolutionary
histories have been observed across more than two trophic levels (Forister and Feldman, 2011). For example,
tritrophic interactions were observed between hosts, parasites and host plants (Micha et al., 2000; Ahmad
et al., 2004). Recently, it was discovered that tritrophic coevolution exists between flies and parasitic
nematodes on Mytaceae host plants (Nelson et al., 2014).

Mramba et al. (2013) developed the only statistical method we are aware of to test cospeciation in
tritrophic systems. However, the test of Mramba et al. (2013) requires the interactions between three phy-
logenies to form triangles to be able to compare patristic distances on the three trees. This is often not the
case in naturally occurring tritrophic systems, and thus interactions that do not form triangles are discarded
along with the information they provide. We propose an improvedmethodwhich can accommodate any type
of interaction. Many bitrophic tests (Legendre et al., 2002; Hommola et al., 2009; Mantel, 1967) and Mramba
et al.’s tritrophic test are limited to systems consisting of phylogenetic trees. Our method has the scope for
generalisation to higher order systems and more generally to phylogenetic networks.

When considering the possibility of cospeciation in a tritrophic system, some care needs to be taken by
exactly what one mean by ‘tritrophic cospeciation’. We clarify the hypotheses being tested in Section 2.1.
To draw conclusions about where cospeciation occurs within a tritrophic system, Mramba et al.’s method
necessitates the permutation of every pairwise combination of three trees; that is, seven randomisations and,
correspondingly, seven p-values. By contrast, ourmore efficient method requires the use of one sophisticated
permutation scheme, which we describe in Section 2.3, resulting in one easily interpreted p-value.

Our method is a development of the correlation statistic proposed by Hommola et al. (2009). We propose
a test statistic to analyse higher-order systems in Section 2.2. Our statistic, based on an analogy between
phylogenetic trees and electrical circuits, applies methods from electrical circuit theory (Curtis and Morrow,
2000).Weuse thesemethods to reduce higher order systems into two vectors of “phylogenetically equivalent”
distances whose correlation can be computed. These distances are “equivalent” in our electrical analogy in
the sense that replacing all the tree branches and interactions by direct connections between tree tips would
produce an electrical circuit that behaves in the sameway as the original interacting phylogenies; Section 2.2
gives a more precise definition of this concept. These distances take into account the information contained
in the connection to the third phylogenetic tree.

Our method is distinct from event-based cophylogenetic methods. These methods aim to infer evolution-
ary events such as cospeciation, duplication, lineage-sorting and host switching, from the phylogeny of host
and parasite trees and their interaction graph. See Martínez-Aquino (2016) for a recent review.

The performance of ourmethod is compared to the approaches proposed by Hommola et al. (2009) at the
bitrophic level andMramba et al. (2013) at the tritrophic level bymeans of numerical simulations in Section 3
and illustrated in the context of a real data set in Section 4.

2 Methodology

We draw an analogy between interacting phylogenetic trees and electrical circuits. We envisage an electrical
circuit with junctions; correspondingly phylogenetic trees have branches, interactions, and nodes. We utilise
electrical circuit theory to develop a method that can be generalised to test cospeciation hypotheses in both
bitrophic and tritrophic systems.

2.1 Hypotheses

In the bitrophic case we consider two phylogenetic trees, X and Y, and the interactions between their tips. We
are interested in the following hypotheses
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Figure 1: Randomly generated systems consistent with the bitrophic hypotheses.
The dashed lines represent the interactions between the leaf nodes of the two phylogenetic trees. (A) System generated
consistent with the null hypothesis. Both trees and the interactions between them have been independently randomly
generated. (B) System generated consistent with the alternative hypothesis. The trees are identical and interactions are placed
at corresponding positions on the two trees.

H0: The interaction matrix between Trees X and Y is unrelated to any cospeciation between the two trees.
H1: The interaction matrix between Trees X and Y is related to cospeciation between the two trees.

Figure 1 displays systems generated under the extremes of the above hypotheses. The system in Figure 1A is
comprised of randomly generated trees with random interactions consistent with the null hypothesis of no
cospeciation. In contrast, the system in Figure 1B consists of identical trees with corresponding interactions,
demonstrating the extreme of perfect cospeciation.We note that trees need not be identical to reflect a history
of coevolution. Trees which are more topologically similar (congruent) than would be expected by chance
also provide evidence of cospeciation. In this work, we take the trees as given and focus on the evidence of
cospeciation which can be inferred from the interactions between the trees.

In the tritrophic case we consider three phylogenetic trees, X, Y and Z, and the interactions between
each pair of trees. We do not simply want to knowwhether cospeciation exists somewhere within a tritrophic
system. Rather, we are interested in how the cospeciation is driven. In particular, whether there is any “direct”
cospeciation between two trees, sayX andY; that is, cospeciationwhich cannot be explained by the influence
of the third tree Z. Therefore, we are interested in the following hypotheses

Figure 2: Randomly generated systems consistent with the tritrophic hypotheses.
The dashed lines represent the interactions between the leaf nodes of the three phylogenetic trees. (A) System generated
consistent with the null hypothesis. All three trees and the interactions between them have been independently randomly
generated. (B) System generated consistent with the alternative hypothesis. Two of the trees are identical with interactions
placed at corresponding positions on the two trees. The third tree is independently generated and has random interactions
with the other two trees.
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H0: The interaction matrix between Trees X and Y is unrelated to any direct cospeciation between Trees X
and Y.

H1: The interaction matrix between Trees X and Y is related to direct cospeciation between Trees X and Y.

Figure 2 displays systems generated under the extremes of the tritrophic hypotheses. The system in Figure 2A
is comprised of three randomly generated trees with random interactions between them. Clearly, there is
no cospeciation between Trees X and Y; none of the trees appear to be cospeciating on a pairwise level.
Systems where Tree Z is driving the cospeciation between Trees X and Y would also be consistent with the
null hypothesis. The system in Figure 2B consists of identical Trees X and Y with corresponding interactions.
There is no cospeciation between these trees and Tree Z, so Tree Z does not drive the cospeciation between
Trees X and Y.

2.2 Correlation statistic based on resolved distances

The methods of Hommola et al. (2009) and Mramba et al. (2013) calculate the patristic distance on each tree
between eachpair of interactions. Patristic distances describe the amount of genetic change that has occurred
in a tree and are calculated by adding together the branch lengths that connect two leaf nodes of a phyloge-
netic tree (Fourment and Gibbs, 2006). Branch lengths represent an amount of evolutionary divergence and
are typically a measure of distance between sequences, or obtained from a model of substitution of residues
over the course of evolution (Durbin, 1998). In a bitrophic system the calculation of patristic distances is
trivial. However, in a tritrophic system, there is no simple way to correlate patristic distances across all three
trees. Patristic distances on the three trees can only be compared by finding pairs of interaction triangles in
the system. Another situation inwhich patristic distances are difficult to calculate iswhen the system involves
a phylogenetic network, as there may be more than one path between two leaf nodes.

To overcome these problems we consider electrical networks as an analogy for the network of phyloge-
netic trees. We apply the so-called forward problem in electrical networks, described below, to the system of
phylogenetic trees to obtain phylogenetically equivalent distances between a set of carefully placed nodes.
Nodes are defined to be points where two or more elements meet. In a circuit the elements are wires and
in the case of a phylogenetic tree, the elements are the branches and interactions. The key analogy is that
phylogenetic distance, as represented by length of branches, corresponds to electrical resistance, which is
proportional to the length of a conducting wire. Electrical conductance is then the inverse of resistance and
hence corresponds to evolutionary “similarity”.

Suppose we have an electrical circuit where the conductance and topology of the connections is known,
as displayed in Figure 3A. Suppose we take a subset of nodes, nodes 1–4 in Figure 3A, and define these
nodes to be external; all other nodes are internal. If we impose a voltage on the external nodes, we can
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Figure 3: Schematic diagram of the forward problem in electrical networks.
(A) Example electrical circuit with nodes displayed as black circles that are connected by wires. (B) Black box containing the
circuit in (A) with four nodes exposed, the wiring of the circuit inside the black box is unknown.
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calculate the resulting current at these nodes. We now suppose that the circuit, excluding the external nodes
is inside a black box, as displayed in Figure 3B. We no longer know how the internal nodes inside the box
are connected, or the conductance on the original connections; we only have the conductances on direct
connections between the external nodes. The forward problem assumes that we know how the circuit is
connected, and the conductance on each connection. The conductance on the direct connections between the
external nodes is then calculated using this information. The inverse problem is to obtain the full circuit from
the circuit in the black box where only conductances on direct connections between the external nodes are
known. The conductances of each connection in the full circuit is calculated frommeasurements of voltages
and currents at the external nodes in the black box circuit (Curtis and Morrow, 2000).

We use the forward problem in electrical networks to calculate the conductance on direct connections
between each pair of interactions between Tree X and Tree Y. In the tritrophic case these conductances
will take into account how Tree X and Tree Y are connected to Tree Z. These conductances can then be
used to calculate distances. In the bitrophic case, for each pair of interactions we will have a distance that
corresponds to Tree X, and a distance that corresponds to Tree Y. In the tritrophic case these distances will
take into account the connections between Trees X and Y with Tree Z. For a cospeciated system we expect
there to be a correlation between the distance on Tree X and the distance on Tree Y associated with each pair
of interactions.

To obtain direct connections between the interactions for Tree X and Tree Y, we need an external node at
each end of every interaction.We introduce two artificial nodes on each interaction, dividing the interactions
into three connections as displayed in Figure 4A. The artificial nodes are the external nodes and every other
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Figure 4: External node placement in (A) bitrophic and (B) tritrophic systems.
External nodes are represented by black dots. Each node in the system has been numbered. The Trees X, Y and Z correspond to
Trees X, Y and Z as described in the tritrophic hypothesis.
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node in the system is internal. In a tritrophic system the artificial external nodes are introduced on the
interactions between Trees X and Y, as shown in Figure 4B.

Our test statistic is derived by treating the phylogenetic distances on the branches and interactions of the
phylogenetic trees as electrical resistance, converting these into conductances and calculating a response
matrix for the system. The conductance between nodes i and j is calculated as

γi,j =
1
di,j

, (1)

where di,j is the phylogenetic distance between nodes i and j and γi,j = 0 if nodes i and j are not directly con-
nected by a single branch. The interactions between the phylogenetic trees do not typically have distances,
therefore we assign each of the three connections that make up an interaction a constant distance, ϵ. In our
analysiswe chose ϵ such that thebranches of thephylogenetic trees and the interactions areweighted equally.
However, it may be of interest to give the branches more or less weight than the interactions. Alternatively,
the interactions may be given different weights based on how strong the association is between the species
in nature. The interactions can also be weighted differently to represent how likely they are to exist.

Given an interacting system of phylogenetic trees consisting of m nodes in total, we employ electrical
circuit theory via the construction of an m × m Kirchhoff matrix, K, which has the following interpretation.
If u is defined to be a vector of voltages applied to each node of the network, then ϕ = Ku is the resulting
vector of current flowing through the network at each node. If a voltage of one unit is applied to node j and
a voltage of zero is applied to every other node, then Ki,j is the current in the network at each node i. Thus
column j of K gives the values of the currents in the network at nodes i = 1, . . .,m. The Kirchhoff matrix is
a Laplacian matrix, assembled using the conductances between nodes connected by a single branch. The
(i, j)th element of K is

ki,j =

{
−γi,j if i �= j∑

j �=i γi,j if i = j.
(2)

Rearranging theKirchhoffmatrix in terms of the internal and external nodes of the system,where the external
nodes are the nodes on the interactions and all of the tree nodes are internal, partitions the matrix as

K =

( E I
E A B
I BT D

)
,

where E and I correspond to the external and internal nodes, respectively.
A response matrix is simply a Kirchhoff matrix calculated for an equivalent system without internal

nodes, and only direct connections between the external nodes. Therefore the response matrix contains the
negative conductance on each pairwise connection between the external nodes. The response matrix, Λγ, is
obtained by calculating the Schur complement in K of the square submatrix D, corresponding to the internal
nodes of the network:

Λγ = A − BD−1BT .

The distances between the external nodes in the collapsed system are obtained by reversing Equations (1)
and (2). We define D* to be the resulting distance matrix, with (i, j)th element given by:

d*i,j =

{
− 1

(Λγ)i,j if i �= j
0 if i = j

where (Λγ)i,j is the (i, j)th element of Λγ.
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Figure 5: Connections contained in D* for the systems displayed in Figure 4.
The external nodes are represented by black dots and numbered consistently with Figure 4. The internal nodes have been
integrated out by the response matrix calculations.

The distance matrix can be partitioned in terms of the external nodes corresponding to Tree X; EX, and
the external nodes corresponding to Tree Y; EY, as follows:

D* =

( EX EY
EX DX DXY
EY DT

XY DY

)
,

whereDX andDY are submatrices containing thedistances between eachpair of external nodes corresponding
to Tree X and Tree Y, respectively. DXY is a submatrix containing the distances between Tree X and Tree Y. In
the tritrophic case, these distances will also take into account the connection with Tree Z; in higher-order
systems, the distances in DXY will take into account the connections with and between all trees other than
X and Y. Figure 5 displays the connections corresponding to the distances contained in D* for the systems in
Figure 4.

Our statistic is obtained by calculating the Spearman’s correlation coefficient, robs, between the upper
triangle of DX and DY. We use a rank correlation because the response matrix calculations produce large
distances when there are extreme interactions between the trees.

We propose a permutation approach to determine whether the value of robs is statistically significant.
A p-value, p, is obtained for robs by simulating N systems under H0 as described in Section 2.3, then
calculating

p =
1
N

N∑
i=1

I(ri ≥ robs),

where ri is the test statistic calculated for the i-th randomisation and I(ri ≥ robs) is an indicator function
taking the value 1 if ri is greater than or equal to robs and 0 otherwise. If p ≤ α we reject H0 at the 100α%
significance level.

2.3 Permutations

To determine whether a value of robs is statistically significant, we require a permutation scheme that
simulates compatible systems under our null hypotheses.

In a bitrophic system the connections between the external nodes are sampled with equal probability.
Permutations of the connection between the external nodes that result in overlapping interactions are
rejected. This is equivalent to simply randomising the existing connections between the external nodes.
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Randomising in this way preserves the many to one nature of the interactions, however not all of the
interactions between the two trees are possible due to the placement of the external nodes on the interactions.
That is, nodes on the trees without interactions are essentially removed.

The response matrix for the system of phylogenetic trees is simply a Kirchhoff matrix calculated
only for the external nodes of the phylogenetically equivalent system with the internal nodes integrated
out. Therefore the response matrix infers a connection between each pair of external nodes with dif-
ferent conductivities based on the original connections between the trees. The conductance (analogous
to evolutionary similarity) on these connections are used as weights to sample the connections be-
tween the external nodes that connect Trees X and Y. Connections consistent with H0 have a greater
probability of being sampled. To obtain these weights we recalculate the response matrix for the sys-
tem with the middle connections between the external nodes removed. To randomise the tritrophic
system consistent with the null hypothesis, we sample connections between the external nodes with
probability proportional to their conductance in the recalculated response matrix. Note that as we do
not alter the internal nodes of the trees during randomisation, our test is possibly sensitive to their
shape.

Two considerations must be taken into account when sampling the connections. Firstly, the connections
must be sampled such that many to one interactions between two external nodes are avoided; this would
correspond to a system where there are interactions between the interactions. Secondly, permutations
involving overlapping interactions are rejected, as in the bitrophic case.

3 Results

The performance of our method, at the bitrophic and tritrophic level, is analysed by investigating Type I error
and assessing statistical power (see below). We compared the performance of our method to those proposed
by Hommola et al. (2009) and Mramba et al. (2013) at the relevant trophic level. In every simulation we set
ϵ = 0.5, the average branch length of the simulated trees.

3.1 Type I error

Type I error arises as a result of incorrectly rejecting the null hypothesis when it is true. The probability of
this is called the significance level, α, of the test. Type I error is estimated by simulating data under the null
hypothesis. The rate of rejection of the null hypothesis for data simulated under it should be equal to α.
We expect the p-values of data generated under H0 to be uniformly distributed if the statistic is reliable.
Therefore we expect a plot of the empirical cumulative distribution function (CDF) to be a straight diagonal
line.

For both the bitrophic and tritrophic hypothesis, this corresponds to independently generating random
phylogenetic trees with randomly assigned interactions (see Section 2.1 for the bitrophic hypothesis). The
trees were generated using the rtree function of the R (R Core Team, 2013) package ape (Paradis et al., 2004).
In the bitrophic case we used the same parameter combinations as Hommola et al. (2009) and Legendre et al.
(2002):
– 10 tips on Tree X, 10 tips on Tree Y and 10, 15, 20, and 25 interactions;
– 10 tips on Tree X, 15 tips on Tree Y and 10, 15, 20, and 25 interactions.

For each parameter combination, 1000 systems were generated. We calculated p-values with N = 10,000
randomisations for each system using our method and the correlation method proposed by Hommola et al.
(2009). The results for the first parameter combination, with 10 and 15 interactions, are displayed in Figure 6.
The remaining plots for the first parameter combination are in the SupplementaryMaterial (Figure S1), results
for the second parameter combination are not shown.
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Figure 6: Empirical cumulative distribution functions for our p-values and Hommola et al. (2009).
Each plot corresponds to simulations with 10 tips on each tree. The first column corresponds to 10 interactions simulated and
the second column corresponds to 15 interactions simulated. The top row contains the p-values for our method, and the bottom
row contains the p-values for the method of Hommola et al. (2009).

For the tritrophic case we used the same parameter combinations as Mramba et al. (2013), with and
without triangular interaction constraints:
– 10 tips on Tree X, 10 tips on Tree Y, 10 tips on Tree Z and 10, 15, 20, and 25 interactions between each pair

of trees;
– 10 tips on Tree X, 10 tips on Tree Y, 15 tips on Tree Z and 10, 15, 20, and 25 interactions between each pair

of trees.

For each parameter combination, 1000 systems were generated. We calculated p-values with N = 1000
randomisations for each system using our method and the method of Mramba et al. (2013). The results of
our method, for the first parameter combination, with triangular interactions, are displayed in Figure 7, the
results for the secondparameter combination,with triangular interactions, are in the SupplementaryMaterial
(Figure S2).

The empirical CDF for ourp-values lies close to thedesireddiagonal line for all parameter combinations in
the bitrophic and tritrophic cases. The same is true of themethods ofHommola et al. (2009) andMramba et al.
(2013). However, when applied to datasets where there are no constraints on the interactions, Mramba et al.
(2013) p-values are biased for systems where there are fewer interactions. For the parameter combinations
with 10 interactions, 95% and 97% of the simulated systems could not be used to calculate p-values as their
interactions did not form triangles, as required by that method. In the case of the parameter combinations
with 15 interactions, 43% and 65% of the systems could not be used.
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Figure 7: Empirical cumulative distribution functions for our tritrophic p-values.
Each plot corresponds to simulations with 10 tips on each tree. Each plot represents a different number of interactions
simulated. From top left to bottom right, 10, 15, 20 and 25 interactions.

3.2 Bitrophic power simulations

Statistical power is the probability that the null hypothesis is correctly rejected when it is false. Statistical
power has been assessed for our method as well as the correlation statistic proposed by Hommola et al.
(2009) for the bitrophic case. We followed the simulation approaches adapted by Hommola et al. (2009) and
Legendre et al. (2002) to generate data consistent withH1. Noise is gradually added using the following three
methods, and the proportion of correct rejections of the null hypothesis calculated in each case. In every
simulation approach 1000 systemswere generated. We calculated p-values withN = 10,000 randomisations
for each system.

3.2.1 Simulation method 1: replacing interactions

For each simulation, Tree X and Tree Y were assigned the same randomly generated phylogenetic tree with
interactions initially assigned at corresponding positions on the tree. The interactions connect each leaf node
on Tree X with the same leaf node on the identical Tree Y, such that they exhibit perfect cospeciation. A per-
centage, 10%–50%, of these interactions are then replaced with random, non-corresponding, interactions.
We used the following parameter combinations:
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– 10 tips on Tree X, 10 tips on Tree Y, 10 corresponding interactions, replacing 1, 2, 3, 4, and 5 random
interactions

– 20 tips on Tree X, 20 tips on Tree Y, 20 corresponding interactions, replacing 2, 4, 6, 8, and 10 random
interactions

3.2.2 Simulation method 2: adding interactions

As for simulation method 1, Tree X and Tree Y were assigned the same phylogenetic tree and interactions
assigned at corresponding positions on the tree. A number of random interactions were then added. This
simulation approach was performed for the same parameter combinations as for simulation method 1.

3.2.3 Simulation method 3: randomise clade branch lengths

We now consider the branch lengths of the phylogenies as well as the interactions. A random base tree
was generated and the branch lengths randomised to produce Tree X and Tree Y. The branch lengths were
randomised by randomly sampling new branch lengths from the standard uniform distribution. The clades
were chosen for randomisation based on their distance from the root node; the clades furthest from the root
nodes were randomised first.
– 10 tips on Tree X, 10 tips on Tree Y, and branch lengths randomised in 1, 2, 3, 4, and 5 clades.
– 20 tips on Tree X, 20 tips on Tree Y, and branch lengths randomised in 2, 3, 4, 5 and 6 clades.

For each simulation approach, we calculated the rejection rate of the null hypothesis at the α = 0.05 and
α = 0.01 significance levels. The rejection rate is calculated as the proportion of times that we reject the null
hypothesis. Selected rejection rate plots are displayed in Figure 8. Rejection rate plots for simulation method
3 are in the Supplementary Material (Figure S3). The rejection rates increase as the systems become more
cospeciated. For each of the simulation approaches, rejection rates are higher for systems with 20 tips than
systems with 10 tip trees. It is also clear that the rejection rates are higher for simulation method 2 than
the other simulation approaches. For each simulation method and tree size considered, our rejection rate is
comparable to that of Hommola et al. (2009). We obtain similar results at the α = 0.01 significance level.

3.3 Tritrophic power simulations

Statistical power has been assessed for our method at the tritrophic level and we have also compared our
method to the permutation test proposed by Mramba et al. (2013). We followed the simulation approaches
adapted by Mramba et al. (2013), and repeated these without forcing the interactions to form triangles
between the three trees. In every simulation approach 100 systems were generated. We calculated p-values
with N = 10,000 randomisations for each system.

3.3.1 Simulation method 1: replacing interactions

Trees X and Y were assigned the same randomly generated phylogenetic tree. To avoid computational issues
with Mramba et al. (2013) method independent N(0, 0.012) noise was added to the branch lengths, as
described in Mramba et al. (2013). Interactions were initially assigned at corresponding positions between
the trees, such that Tree X and Tree Y exhibit perfect cospeciation. Tree Z is unrelated to Trees X and Y, and is
therefore independently generatedwith randomly assigned interactions between itself andTreesX andY. The
interactions between each pair of trees are then replaced with random interactions. We used the following
parameter combinations:
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Figure 8: Rejection rates for the p-values generated using our method and the method of Hommola et al. (2009) at the
α = 0.05 significance level, under different simulation approaches.
Black dots are the rates obtained using our method and triangles are the rates calculated for Hommola et al. (2009) p-values.
The points are offset on the horizontal axis to prevent overlapping. Each column corresponds to a different simulation
approach. The first column corresponds to simulation method 1 and the second column corresponds to simulation method 2.
The top row contains the 10 tip simulations for each approach. The bottom row contains the 20 tip simulations for each
approach.

– 10 tips on Trees X, Y and Z, 10 interactions between each pair of trees, and 1, 2, . . ., 10 interactions
replaced between each pair of trees.

– 20 tips on Trees X, Y and Z, 20 interactions between each pair of trees, and 2, 4, . . ., 20 interactions
replaced between each pair of trees.

3.3.2 Simulation method 2: adding interactions

Again, Trees X and Y have the same phylogenetic tree with interactions assigned at corresponding positions.
Tree Z is independently generated with random interactions between itself and Trees X and Y. In this
approach, interactions were randomly added between each pair of trees. The same parameter combinations
were used as in the previous simulation approach.

Our method can only be compared to Mramba et al. (2013) when the interactions between the three trees
are forced to form triangles. The above simulation approaches are performed with and without triangular
interaction constraints. Selected plots of the rejection rates are displayed in Figures 9 and 10.
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Figure 9: Rejection rates for p-values generated using our method and the method of Mramba et al. (2013) at the α = 0.05
significance level, under the simulation approach where triangular interactions are replaced between three 10 tip trees.
The interactions between the three trees are forced to form triangles. The horizontal axis corresponds to the number of
interactions replaced between each pair of trees. Black dots are the rates obtained using our method, labelled “Circuit”, and
the other lines correspond to the rates calculated for the different p-values obtained under Mramba et al. (2013) method; Pλ,
Pxy.z, Pxz.y and Pyz.x. (A) Only X randomized; (B) Only Z randomized; (C) X and Y randomized; and (D) X, Y and Z randomized.

The method of Mramba et al. (2013) requires the permutation of every combination of trees, and four
different p-values to make conclusions about cospeciation in a tritrophic system. A simple interpretation
guide for the relationship between the possible permutations and the p-values is given in Table 1. Figure 9
displays the rejection rates for our p-values and Mramba et al.’s method four different p-values for the
simulation approach where we replace triangles of interactions with random triangles of interactions.
The rejection rates are calculated at the α = 0.05 significance level. Each plot corresponds to a different
randomisation inMrambaet al.’smethod. Thepower curve for ourmethod is repeated in eachplot. Figure 9A–
D correspond to the cases where only Tree X is randomised, only Tree Z is randomised, both Trees X and Y
are randomised, and all three trees are randomised, respectively.

By construction, Tree Z is not involved in the cospeciation between Trees X and Y, thus permuting Tree Z
reveals no effect of cospeciation. This can be seen in Figure 9B where, as expected, the rejection rates for
Mramba et al.’s method are all very low. From Table 1, a significant value of Pxy.z when Trees X and Y are
involved in the randomisation indicates that there is cospeciation between Trees X and Y. This can clearly
be seen in Figure 9A, C and D where the statistic corresponding to Pxy.z is the most powerful. The statistics
corresponding to Pxz.y and Pyz.x are less powerful because Trees X and Y are not cospeciating with Tree Z,
and randomising Tree X tells us nothing about the cospeciation between Trees Y and Z. Our statistic has less
power than Pxy.z under randomisations involving Tree X, most clearly where only Tree X is randomised.
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Figure 10: Rejection rates for p-values generated using our method and the method of Mramba et al. (2013) at the α = 0.05
significance level, under different simulation approaches.
Each column corresponds to a different simulation approach; replacing and adding interactions between the three trees,
respectively. The horizontal axis corresponds to the number of interactions replaced or added between each pair of trees.
In each simulation the interactions are not forced to form triangles. The rows correspond to the tree sizes. The first row
contains the 10 tip simulations for each approach. The second row contains the 20 tip simulations for each approach. Each plot
corresponds to the case where only Tree X is randomised for Mramba et al. (2013) method. Black dots are the rates obtained
using our method, labelled “Circuit”, and the other lines correspond to the rates calculated for the different p-values obtained
under Mramba et al. (2013) method; Pλ, Pxy.z, Pxz.y and Pyz.x.

Table 1: Basic interpretation of the interaction between the possible permutations of the tritrophic system and the p-values of
the method of Mramba et al. (2013).

Permutation Pλ significant Pxy.z significant Pxz.y significant Pyz.x significant

X X involved in cospeciation X and Y cospeciate X and Z cospeciate –
Y Y involved in cospeciation X and Y cospeciate – Y and Z cospeciate
Z Z involved in cospeciation – X and Z cospeciate Y and Z cospeciate
XY Cospeciation occurs somewhere in the system
XZ
YZ
XYZ

However, in natural systems there is no restriction that the interactions form triangles between the three
phylogenetic trees. Figure 10 displays the rejection rates, calculated at the α = 0.05 significance level, for our
method andMramba et al. (2013) for simulations with interactions that are not constrained to form triangles.



C. Nooney et al.: Analysing cospeciation in tritrophic ecology | 363

We show only one of Mramba et al. (2013) randomisations, the case where only Tree X is randomised; other
plots display very similar results. Clearly our statistic is more powerful than the method of Mramba et al.
(2013). Similar results were obtained at the α = 0.01 significance level.

To calculate their p-values, the method of Mramba et al. (2013) must discard any interactions that do not
form triangles. On average at least 60% of the interactions were discarded in every simulation approach; in
most of these simulations over 80% of the interactions were discarded on average. Mramba et al. (2013) p-
values cannot be calculated unless there are at least three triangles. Any p-values that cannot be calculated
are not included in the calculation of the rejection rate. Therefore many of the rejection rates calculated for
the method of Mramba et al. (2013) are calculated based on only a fraction of the systems simulated. If none
of the p-values can be calculated then the rejection rate is zero.

4 Application to real data

We applied our method to a tritrophic dataset consisting of host plants, leaf-mining moths and parasitoid
wasps (Lopez-Vaamonde et al., 2005). The statistic does not depend on the centre of the interactions between
Trees X and Y. It only depends on the pieces of the interactions that are connected to Trees X and Y. We
set the value of ϵ to be the average of all the branch distances on the tree it is connected to. We used
the reconstructed phylogenetic trees calculated by Mramba et al. (2013). The three phylogenies and their
interactions are displayed in Figure 11; there are 16 extant taxa in the host plant phylogeny, 28 for the moths,
and 15 for thewasps. These phylogenies have 29moth-host plant interactions, 37moth-wasp interactions, and
24 host plant-wasp interactions, forming a total of 32 triangular interactions. The interactions do not all form
the triangles that are necessary for Mramba et al. (2013) method; in fact 12 interactions had to be discarded.

Lopez-Vaamonde et al. (2005) found no evidence that the host plant, leaf-mining moth or parasitoid
wasp exhibit cospeciation at a pairwise level. By contrast, Mramba et al. (2013) found mixed evidence for
cospeciation but conclude that the parasitoid wasp has been central in the cospeciation of the tritrophic
system. p-Values for Mramba et al. (2013) method are given in the Supplementary Material (Table S1). Our
results coincide with those of Mramba et al. (2013). We obtain a p-value of 0.441, indicating that there is
evidence that any cospeciation between the moth and host plant is due to the parasitoid wasp driving the
cospeciation in the tritrophic system.

Figure 11: Tritrophic system consisting of host plants (H), leaf-mining moths (M) and parasitoid wasps (W) (Lopez-Vaamonde
et al., 2005).
The phylogenetic trees were reconstructed by Mramba et al. (2013). Branch lengths have not been used to plot the trees. Plots
of the phylogenetic trees using the branch lengths are given in the Supplementary Material (Figure S4). The dashed lines
display the interactions between the leaf nodes of the three trees.
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5 Discussion

We have introduced a method that efficiently tests cospeciation hypotheses in interacting phylogenetic
systems. This method conditions on the phylogenetic trees andmeasures the evidence of cospeciation which
is encoded in the interactions between the trees. Our method is effective at the bitrophic level. We observe
unbiased p-values when assessing type I error has similar power to that of Hommola et al. (2009).

We use one sophisticated permutation scheme based on weighted interactions to test our hypothesis.
This is an improvement on the multiple permutation scheme required by the tritrophic method proposed
by Mramba et al. (2013), which requires the interactions to form sets of triangles, we do not require specific
interaction patterns to be formed between the three phylogenies to calculate our statistic or to perform the
randomisations. As a result no information is discarded with our method, and we obtain unbiased p-values.
Discarding interactions results in biased p-values for the method of Mramba et al. (2013).

Statistical power for each method was evaluated by simulating data under the alternative hypothesis.
Our method out performed Mramba et al. (2013) in all cases where the interactions were not constrained to
form triangles, even when noise was introduced to the data.

We successfully applied our method to a tritrophic dataset of host plants, leaf-mining moths and
parasitoid wasps. Our conclusions support those of Mramba et al. (2013).

Due to the calculation of the direct distances between the external nodes, our method is not restricted
to phylogenetic trees; it can still be applied when the system involves phylogenetic networks. It is also easily
generalised to higher order systems. In each case, the added complexity of the system is resolved by the
reduction to the phylogenetically equivalent set of distances in the responsematrix; this will work regardless
of how large a set of internal nodes is being reduced. A larger set of internal nodes could accommodate more
trophic levels or more general phylogenetic networks in place of trees.

Existing methods use a binary system to determine whether or not an association exists between two
species. Our method allows the interactions to be weighted according to the user’s criteria. For example,
there may a degree of uncertainty surrounding the likelihood of an association existing.

Our method has been implemented using R (R Core Team, 2013) and the source code is available from:
http://www.maths.leeds.ac.uk/~stuart/research
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