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Convergence analysis of Laplacian-based gradient

elasticity in an isogeometric framework

Isa Kolo, Harm Askes, René de Borst

University of Sheffield, Department of Civil and Structural Engineering, Mappin Street,

Sheffield S1 3JD, United Kingdom

Abstract

A convergence study is presented for a form of gradient elasticity where the
enrichment is through the Laplacian of the strain, so that a fourth-order par-
tial differential equation results. Isogeometric finite element analysis is used
to accommodate the higher continuity required by the inclusion of strain
gradients. A convergence analysis is carried out for the original system of
a fourth-order partial differential equation. Both global refinement, using
NURBS, and local refinement, using T-splines, have been applied. Theoret-
ical convergence rates are recovered, except for a polynomial order of two,
when the convergence rate is suboptimal, a result which also has been found
for the (fourth-order) Cahn-Hilliard equation. The convergence analyses have
been repeated for the case that an operator split is applied so that a set of
two (one-way) coupled partial differential equations results. Differences oc-
cur with the results obtained for the original fourth-order equation, which
is caused by the boundary conditions, which is the first time this effect has
been substantiated.

Keywords: Gradient elasticity, Isogeometric analysis, NURBS, T-Splines,
Convergence analysis

1. Introduction

Classical continuum mechanics assumes that the solid or the structure
under consideration is of a dimension that is significantly larger than its
underlying microstructure, so that microstructural effects can be ignored.
When the effects of microstructure become dominant – as is the case with
localised shear bands in softening geomaterials [1] – classical continuum me-
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chanics is no longer sufficient. Experiments have shown that specimens of a
material with the same geometry, but different dimensions, exhibit different
mechanical behaviour. This is called the size effect and has been recorded for
quasi-brittle materials (concrete, rock, ceramics) [2], metals [3], composites
[4] and micron-scale structures [5]. Indeed, the size effect, which has been
attributed to the existence of a material microstructure, is not captured by
classical continuum theories. Thus, enriching the classical continuum model
with an internal length scale which is related to its material microstructure,
enhances its applicability. This is the motivation behind the work of Mindlin
[6] and Eringen and Suhubi [7], although earlier work along the same lines has
been done by the Cosserat brothers [8]. A review and historical perspective
is given in [9].

In Mindlin’s theory [6], twelve independent degrees of freedom at two
scales of deformation were identified: three displacement components and
nine microdeformation components. Three possible assumptions that can
relate the microscopic deformation gradient and the macroscopic displace-
ment were outlined. The strain energy density can be expressed as a func-
tion of strains and second derivatives of macroscopic displacements thereby
obscuring the multiscale nature of the theory [6, 10, 11]. This special case
defines gradient elasticity. In statics, there are two additional parameters
with the dimension of length which could be related to the underlying ma-
terial microstructure [12, 13]. A simplification is achieved when these two
length scales are equal – an approach credited to Aifantis [14, 15]. A proper
theoretical framework was provided in [16] and [17] using the principle of
minimum potential energy and principle of virtual work respectively.

The Aifantis theory modifies the classical stress-strain relation by making
the stress also dependent on the Laplacian of the strain, thus resulting in a
fourth-order governing partial differential equation. To solve the equation,
standard C0-continuous elements cannot be used. This is because higher
order terms appear in the weak form, thus requiring the derivatives of dis-
placements to be continuous – C1-continuity requirement. In principle, the
problem can be solved by Hermitian finite elements [18, 19], mixed methods
[20], meshless methods [21], penalty methods [22, 23], Langrange multipliers
[24] and subdivision surfaces [25]. However, all these methods have their
drawbacks in terms of efficiency or implementational convenience. Thus, it
remains worthwhile to explore new methods for the implementation of gra-
dient elasticity.

An alternative approach is to use an operator split that creates two
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second-order partial differential equations. In this staggered approach [26],
the solution from the first equation (classical elasticity) serves as input for
the second equation which solves for the gradient-enriched variables. Since
this is a set of two second order partial differential equations, it can be solved
with C0-continuous elements. It is noted that the approach suggested in Ref-
erence [26] is, strictly speaking, only applicable to an infinite body where no
enforcement of boundary conditions is required [27]. Although it removes
strain singularities, Skalka et al. [28] found it incapable of predicting the
desired stress field around a crack in composite foams (cusp-like closure at
crack tip), again pointing out issues with boundary conditions i.e. difference
in boundary conditions compared with the fourth-order partial differential
equation. These differences have also been pointed out in [9, 29].

These restrictions have motivated Skalka et al. [28] to propose a similar
strategy for Eringen’s model [30], i.e. a decoupling or one-way coupling for
the two second order partial differential equations. An iterative procedure
was proposed for Eringen’s model (also formulated by Askes and Gutiérrez
[31] as implicit gradient elasticity) with the length scale replaced by a param-
eter increment which is chosen to be arbitrarily small. However, the choice
of the number of iterations and the convergence criterion are tied to crack
properties; for an arbitrary geometry, the choices seem unclear and may likely
incur high computational cost. Eringen’s theory is an approximation of an
earlier nonlocal integral formulation [32, 33, 34]. However, it has been shown
that for certain loading conditions, fully nonlocal stress-strain laws used in
modelling Euler-Bernoulli elastic beams give solutions that coincide with the
standard local solution, and hence do not capture size effects [35]. This can
only be avoided either by combining local and nonlocal curvatures in the
constitutive equation or using a gradient elastic model. [36, 37].

When comparing the two solution strategies, a method which fulfils the
C1-continuity requirement is needed. Isogeometric Analysis [38] is an exten-
sion of finite element analysis where the spline-based shape functions used to
approximate the geometry are used for the analysis as well. Although coined
and standardised in [38], other works along the same lines exist [39, 40]. The
original drive behind isogeometric analysis was to integrate the design and
analysis processes, which has the additional benefit of capturing the exact
geometry, unlike standard finite element analysis. Moreover, it comes with
the advantage of ease in achieving higher degree of continuity. This is due
to the Non-Uniform Rational B-Splines (NURBS) shape functions. Isoge-
ometric analysis has been used where higher continuity is required such as

3



in solving the Cahn-Hilliard equation [41, 42, 43], gradient damage mod-
els [44] and also in the context of gradient elasticity [45, 46, 47, 17]. In
[43], the direct fourth order Cahn-Hilliard equation and a mixed formulation
with coupled equations have been studied using isogeometric analysis. The
study concluded that direct discretisations of higher order partial differential
equations are more efficient than mixed formulations but approximations of
sufficient order are required to obtain optimal convergence rates.

This work compares convergence rates for the Aifantis gradient elasticity
theory with and without operator split. The paper is organised as follows:
section 2 presents the Aifantis gradient elasticity formulation including the
operator-split. Section 3 starts with a brief description of NURBS and Bézier
extraction in isogeometric analysis [48] before discretisation of the gradient
elasticity formulation with and without operator split. In section 4, the
two discretisation approaches are compared in terms of error norms and
convergence rates. T-splines are introduced in section 5 and finally, some
more examples using gradient elasticity are presented.

2. Laplacian-based gradient elasticity formulations

2.1. Aifantis’ gradient elasticity formulation

The gradient elasticity theory of Aifantis [14, 15] is considered herein. The
theory extends the classical linear elastic constitutive relations by introducing
the Laplacian of the strain as follows:

σij = Dijkl(εkl − ℓ2εkl,mm) (1)

where σij is the stress tensor, εkl is the strain tensor, and ℓ is a length scale
parameter. Dijkl is the constitutive tensor, and for an isotropic linear elastic
material, it is given by:

Dijkl = λδijδkl + µδikδkl + µδilδkl (2)

λ and µ are Lamé constants, and δij is the Kronecker delta. The accompa-
nying equilibrium equations are:

σij,j + bi = 0 (3)

where a comma denotes partial differentiation and bi are the body forces.
Substituting the stress-strain relation, eq.(1), and assuming small displace-
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ment gradients, one obtains the following fourth-order partial differential
equation:

Dijkl(uk,jl − ℓ2uk,jlmm) + bi = 0 (4)

where uk are the displacement components.

2.2. Ru-Aifantis theorem: Operator-split

In the staggered approach of the Ru-Aifantis theorem, the fourth-order
equation in eq.(4) is split into two second order partial differential equations
[9, 49]:

Dijklu
c
k,jl + bi = 0 (5)

uk − ℓ2uk,mm = uc
k (6)

where uc
k is the displacement field that obeys the classical elasticity equation

eq.(5), hence the superscript (•)c. Eq.(5) is first solved for uc
k and the result

is used in eq.(6) to solve for uk. Thus, there is one-way coupling between
them.

3. Isogeometric finite element discretisation

In traditional finite element analysis, Lagrange polynomials serve as the
basis or shape functions. Isogeometric analysis replaces these Lagrange poly-
nomials with splines which are also used in generating the geometry. This
implies that both geometry and finite element analysis are based on spline
functions and hence the name isogeometric analysis. NURBS or Non-Uniform
Rational B-splines is the most widely used spline technology and this influ-
enced its choice as a starting point in the seminal work where isogeometric
analysis was proposed [38].

3.1. NURBS shape functions

A NURBS curve, T(ξ), is defined by a set of control points P =
{Pa}

n
a=1 ∈ R

d, a knot vector with increasing parametric coordinate values
Ξ = {ξ1, ξ2, . . . , ξn+p+1} , and a set of rational basis functions R = {Rn

a,p}
n
a=1

with p being the polynomial degree, and n the number of basis functions:
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T(ξ) =
n

∑

a=1

PaRa,p(ξ) (7)

The individual coordinates of the knot vector are called knots which are
analogous to nodes in standard finite elements and the interval between knots
is a knot span. Unlike nodes, knots are usually not interpolatory. If the first
and last knots are repeated p+1 times, the knots become interpolatory, and
the knot vector is said to be open. The basis functions of a NURBS curve
are expressed as:

Ra,p(ξ) =
waBa,p(ξ)

W(ξ)
(8)

where Ba,p is the B-spline basis function, wa is the corresponding weight and
W is the weight function given by:

W(ξ) =
n

∑

b=1

wbBb,p(ξ) (9)

The B-spline basis is defined for p = 0, as:

Ba,0(ξ) =

{

1, ξa ≤ ξ ≤ ξa+1

0, otherwise
(10)

and by the Cox-de Boor recursion formula for p > 0:

Ba,p(ξ) =
ξ − ξa

ξa+p − ξa
Ba,p−1(ξ) +

ξa+p+1 − ξ

ξa+p+1 − ξa+1
Ba+1,p−1(ξ) (11)

A NURBS geometry in R
d is obtained from projective transformations of

B-splines in R
d+1 through the weights. A NURBS curve (univariate) can be

extended to a surface (bivariate) through a tensor product of the bases [38]:

N
p,q
a,b (ξ, η) =

Ba,p(ξ)Ab,q(η)wa,b
∑nB

c=1

∑nA

d=1Bc,p(ξ)Ad,q(η)wc,d

(12)

where N
p,q
a,b is the two-dimensional NURBS basis function; η, Ab,q, and q

are the knot vector, B-spline basis and the polynomial degree in the second
spatial dimension respectively. The number of basis functions in the ξ and η

directions are nB and nA respectively. Thus a NURBS surface, S, is defined
by replacing Ra,p in eq.(7) by N

p,q
a,b :
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S(ξ, η) =
nA
∑

a=1

nB
∑

b=1

Pa,bN
p,q
a,b (ξ, η) (13)

A subdomain with uniform elements and material models is termed a
patch. A knot vector divides a patch into elements, and hence, insertion of
knots is analogous to h-refinement in standard finite elements. A knot could
be inserted multiple times – knot multiplicity (k) is the number of times a
certain knot is inserted. The continuity between elements is of order Cp−k or
Cp−1 when there are no repeated knots.

3.2. Isogeometric analysis via Bézier extraction

Through multiple knot insertion in a procedure referred to as Bézier de-
composition, a NURBS mesh can be decomposed into C0-continuous Bézier
elements (Figure 1), thereby providing an element structure that can be eas-
ily incorporated in existing finite element codes. This is achieved through a
linear operator C such that:

N(ξ) = CB(ξ) (14)

where N contains the NURBS basis functions, B contains the Bézier basis
functions, and C is termed the Bézier extraction operator. For each nonzero
knot span, the NURBS curve is decomposed into C0-continuous Bézier ele-
ments [48]. It follows from eq.(13) that to represent any field variable using
NURBS, the control point is replaced with any variable of interest:

X(ξ, η) =

nA
∑

a=1

nB
∑

b=1

xa,bN
p,q
a,b (ξ, η) (15)

where X is the variable of interest (e.g. displacement) and x is the value (dis-
placement) at the control point. With this, both the geometry and solution
of desired variables (analysis) use the same basis or shape functions.

It is important to note that, notwithstanding Bézier extraction being local
to the element, the Cp−k-continuity of NURBS is maintained within a single
patch. However, when more than one patch is used to represent the geometry,
special techniques need to be adopted to raise the C0-continuity that exists
between patches [45].
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Figure 1: Bézier decomposition and extraction for a quadratic NURBS curve
with knot vector Ξ = {0, 0, 0, 1, 2, 2, 2}. The interior knot divides the curve
into two elements. A knot of value {1} is inserted so that the multiplicity
of the interior knot equals the polynomial degree, 2. Each element is then
decomposed into equivalent Bézier curves which are C0-continuous between
elements. Through the Bézier extraction operator, the Bézier finite elements
ensue and are used directly in analysis.

3.3. Spatial discretisation

3.3.1. Direct discretisation

The fourth-order equation – eq.(4) – can be written in Voigt matrix no-
tation as follows:

LTDL(u− ℓ2∇2u) + b = 0 (16)

where ∇2 ≡ ∇T · ∇ is the Laplacian operator with ∇ = [ ∂
∂x
, ∂
∂y
, ∂
∂z
]T , and L

is the differential operator:

L =





∂
∂x

0 0 ∂
∂y

∂
∂z

0

0 ∂
∂y

0 ∂
∂x

0 ∂
∂z

0 0 ∂
∂z

0 ∂
∂x

∂
∂y





T

(17)

Eq.(16) is obtained directly by substituting the matrix-vector form of eq.(1),

σσσ = D(εεε− ℓ2∇2εεε) (18)

and the kinematic relation for small displacement gradients

εεε = Lu (19)

into the equilibrium equation in Voigt notation:
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LTσσσ + b = 0 (20)

We recall that, unlike finite elements where variables are computed at
the nodes, variables are computed at the control points in isogeometric anal-
ysis. Thus, the displacements u = [ux, uy, uz]

T are related to the discrete
displacements a = [a1x, a1y, a1z, a2x, a2y, a2z, . . .]

T in the control points via:

u = Nua (21)

where Nu is the matrix which contains the NURBS shape functions:

Nu =





N1 0 0 N2 0 0 · · · Nns 0 0
0 N1 0 0 N2 0 · · · 0 Nns 0
0 0 N1 0 0 N2 · · · 0 0 Nns



 (22)

and ns is the number of shape functions at each control point. The number
of rows corresponds to the number of degrees of freedom per control point.

To discretise eq.(16), we premultiply it by a test function ũ and integrate
over the domain Ω:

∫

Ω

ũT
[

LTDL(u− ℓ2∇2u) + b
]

dΩ = 0 (23)

The first term is integrated by parts and the use of Green’s theorem yields
[21]:

∫

Ω

ε̃TDεdΩ +
3

∑

i=1

∫

Ω

ℓ2
∂ε̃T

∂xi

D
∂ε

∂xi

dΩ =

∫

Ω

ũTbdΩ +

∫

Γn

ũT tdΓ +
3

∑

i=1

∮

Γ

ℓ2(n · ∇ũ)TD
∂ε

∂xi

dΓ

(24)

where t represents the prescribed tractions on the Neumann part of the
boundary Γn and n is the normal vector to the boundary, cf. [24]. Next, the
derivatives of ε are assumed to vanish on the boundary. Hence, the last term
in eq.(24) vanishes.

In a Bubnov-Galerkin sense, the test and trial functions are discretised
in the same space, so that

ũ = Nuã (25)
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Substituting eq.(25) into eq. (24), and requiring the result to hold for all
admissible ã, the following ensues:

[K1 +K2]a = f ext (26)

where K1 is the standard stiffness matrix expressed as:

K1 =

∫

Ω

BTDBdΩ (27)

and B = LNu. The higher order derivatives of the shape functions are as-
sembled in K2 and are given by:

K2 =
3

∑

i=1

∫

Ω

ℓ2
∂BT

∂xi

D
∂B

∂xi

dΩ (28)

The external force vector f ext reads:

f ext =

∫

Ω

Nu
TbdΩ +

∫

Γn

Nu
T tdΓ (29)

As evident from eq.(26), C1-continuous shape functions are required since
second spatial derivatives have to be computed. This is provided automati-
cally by the NURBS shape functions which are used in isogeometric analysis.
The finite element implementation via Bézier extraction is achieved using the
Jive open source C++ library [50].

3.3.2. Operator split: One-way coupling

An alternative approach is to split the fourth-order partial differential
equation into a sequence of two second-order partial differential equations.
In matrix-vector format, this is expressed as:

LTDLuc + b = 0 (30)

u− ℓ2∇2u = uc (31)

cf. eqs. (5) and (6). After resolution of eq.(30), eq.(31) can be solved for the
non-local displacements u.

To discretise eq.(30), we first premultiply it by the test function ũc and
integrate by parts to obtain the weak form:
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∫

Ω

(Lũc)TDLucdΩ =

∫

Ω

(ũc)TbdΩ +

∫

Γn

(ũc)T tdΓ (32)

where t are the prescribed tractions on the Neumann part of the boundary
Γn. The test function and trial functions are discretised as in the previous
section using NURBS shape functions:

ũc = Nuã
c (33)

uc = Nua
c (34)

where ãc and ac are the displacements at the control points. For eq.(32) to
hold for any ãc, we derive:

∫

Ω

BTDBdΩ ac = f ext (35)

with f ext the external force. K1 and B represent the standard stiffness and
strain-displacement matrices, respectively, defined in the previous section.

Eq.(31) can also be expressed in terms of strains pre-multiplied by DL.
This renders a stress form of the equation [29]:

σσσ − ℓ2∇2σσσ = DLuc (36)

With the use of a test function σ̃̃σ̃σ, one obtains the weak form:

∫

Ω

[

σ̃Tσ + ℓ2
3

∑

i=1

∫

Ω

∂σ̃T

∂xi

∂σ

∂xi

]

dΩ−

∮

Γ

σ̃T ℓ2(n · ∇σ)dΓ =

∫

Ω

σ̃TDLucdΩ

(37)

where n is the normal vector to the boundary Γ. Assuming natural boundary
conditions (n · ∇σ = 0 ) implies that the boundary integral term vanishes.
When the usual essential boundary condition is applied, i.e. σ = σc, we have
σ̃ = 000, and again, the boundary integral term vanishes.

Discretisation is achieved using the shape functions for the stresses:

σ = Nσs (38)

σ̃ = Nσs̃ (39)
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where s, s̃ are control point variables. For three spatial dimensions, Nσ is a
6-row matrix which is an extension of the 3-row matrix Nu:

Nσ =

















N1 0 0 0 0 0 N2 0 0 0 0 0 · · ·
0 N1 0 0 0 0 0 N2 0 0 0 0 · · ·
0 0 N1 0 0 0 0 0 N2 0 0 0 · · ·
0 0 0 N1 0 0 0 0 0 N2 0 0 · · ·
0 0 0 0 N1 0 0 0 0 0 N2 0 · · ·
0 0 0 0 0 N1 0 0 0 0 0 N2 · · ·

















(40)

Eq.(37) is therefore discretised as [49]:

∫

Ω

[

Nσ
TNσ + ℓ2

3
∑

i=1

∫

Ω

∂Nσ
T

∂xi

∂Nσ

∂xi

]

dΩ s =

∫

Ω

Nσ
TDBdΩ ac (41)

This discretisation is also implemented via Bézier extraction using the
Jive C++ library. Nσ and Nu could in principle be chosen independently but
the requirement in this case is only C0-continuity for the shape functions.
This is one attractive attribute of the Ru-Aifantis theorem which propelled
its application to remove singularities in crack problems [49].

It is important to note that the second reaction-diffusion equation is
associated with nonlocal or gradient-enriched strains and thus, the related
gradient-enriched stresses are not necessarily in equilibrium [29, 9]. This was
also pointed out by [27] where it was argued that the operator split is only
valid where the body under consideration is infinite, eliminating the need to
enforce any boundary conditions.

4. Errors and Convergence rates

To determine the convergence rate, the L2 norm of the stress error is
considered:

‖e‖L2
=

[
∫

Ω

(σ − σ̂)T (σ − σ̂)

]
1
2

dΩ (42)

where σ is the exact solution and σ̂ is the approximated solution. For 2D
classical elasticity, the theoretical convergence rate for the stress based on
the total number of the degrees of freedom (nDOF ) is O(nDOF− p

2 ); based

12



on a defined mesh-parameter (h), it is O(hp) for a polynomial order of p.
Prior to gradient elasticity, the convergence rates for classical elasticity are
briefly presented.

A plane-strain, thick hollow cylinder subjected to external pressure is
considered [19, 45]. Only a quarter of the cylinder is analysed due to symme-
try (shaded region in Figure 2). The problem is illustrated in Figure 2 where
ri = 0.05 m is the inner radius, ro = 0.5 m is the outer radius and P = 1.0
MPa is the applied external pressure. Young’s modulus, E = 8100 MPa and
Poisson’s ratio, ν = 0.35.

Figure 2: Geometry and boundary conditions for a thick-walled cylinder sub-
jected to an external pressure, P

4.1. Classical elasticity

In this case where the length scale ℓ = 0, it suffices to restrict the x-
displacement [ux(0,y)=0] at the left end and the y-displacement [uy(x, 0)=0]
at the bottom to achieve symmetry. Six meshes with 2k × 2k elements, k =
2 − 7 have been considered. Three polynomial orders of the NURBS shape
functions have been investigated: p = 2, 3, 4. The exact solution (plane-strain)
is [51]:
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ur = −(1 + ν)
Prr2o

E(r2o − r2i )

{

1− 2ν +
r2i
r2

}

σrr =
Pr2o

r2o − r2i

(

r2i
r2

− 1

)

σθθ =
Pr2o

r2o − r2i

(

r2i
r2

+ 1

)

(43)

The results are presented in Figure 3 where hmax is the maximum diagonal
between two opposite knot locations in the physical space. It is apparent
from the computed convergence rates, denoted by m, that the theoretical
predictions are obtained. For example, the values of m ≈ −1.5 = −p

2
and

m ≈ 3 = p are obtained in the case of cubic NURBS (p = 3) considering
total degrees of freedom (nDOF ) and mesh parameter (hmax) respectively.

While the fourth order (direct) equation for the cylinder has an exact
solution [19], for the set of second order equations, the solution can only be
approximated [49]. This has been achieved using Richardson extrapolation
[52], which involves using the solution of three (uniformly refined) meshes to
approximate the exact solution. For a quadrilateral, it is required that each
successive mesh doubles the number of elements in each direction, see Figure
4. Indeed the solution is approximated at points present in all three meshes
(red boxes in Figure 4) as:

fexact(i, j) =
1

3
f∆x(i, j)− 2f∆x

2
(i, j) +

8

3
f∆x

4
(i, j) (44)

Since Richardson extrapolation is mesh-based, variables are involved at
vertex points rather than at integration points. A suitable error estimation
technique is provided by the L2-relative norm of the stress [49]:

‖e‖L2−relative =

√

√

√

√

√

√

√

nDOF
∑

i=1

(σe
i − σc

i )
2

nDOF
∑

i=1

(σe
i )

2

(45)

where σe is the exact solution, σc is the numerical solution and nDOF is
the total number of stress components. Note that for the set of second-order
equations, this is the total degrees of freedom in the discretisation of the
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(a)

(b)

Figure 3: L2 norm of the stress error against: (a) maximum mesh parameter;
(b) total number of degrees of freedom for quadratic (p = 2), cubic (p = 3)
and quartic NURBS (p = 4). Convergence rate is the slope (m).
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Figure 4: Richardson extrapolation. Three meshes: (a) f∆x, (b) f∆x

2
, (c)f∆x

4

are used to approximate the solution of a second order partial differential
equation. The approximation points of interest (red boxes) must be present
in all meshes.

second partial differential equation. The results based on Richardson extrap-
olation for classical elasticity are shown in Figure 5. The three finest meshes
are used in approximating the solution. Again, from the slopes which repre-
sent the convergence rates, the theoretical values are retrieved fairly well. It
is observed that use of the exact solution leads to slightly better results.

4.2. Gradient elasticity

The length scale parameter is taken as ℓ = 0.01 m. Additional boundary
conditions must be imposed at the left and at the bottom [19]: ∂uy

∂x
= 0 at the

left boundary and ∂ux

∂y
= 0 at the bottom boundary. ∂uy

∂x
= 0 is imposed by

using the set of points immediately next to the boundary: uy(2, j) = uy(1, j)
[45]. Similarly, ∂ux

∂y
= 0 is imposed by enforcing ux(i, 2) = ux(i, 1). When

the operator split is used, the first equation maintains the same boundary
conditions as described for classical elasticity. In the second equation, which
solves for the stresses that include the gradient effect, the additional fourth-
order boundary condition is imposed as τxy = 0 on the left and bottom
boundaries while a Neumann boundary condition is maintained elsewhere,
i.e. n · ∇σ = 0 where σ = [σxx, σyy, τxy]

T .
The exact solution for the fourth-order partial differential equation is

given in [19] while the solution for the case with operator split (staggered ap-
proach) is approximated using Richardson extrapolation. The results based
on error estimates discussed in the previous section are shown in Figure 6.
The relative L2-error norm of the stresses is used for the staggered approach
while the L2-error norm is used for the fourth-order partial differential equa-
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(a)

(b)

Figure 5: L2-relative norm of the stress error against: (a) mesh parameter;
(b) total number of degrees of freedom for quadratic (p = 2), cubic (p = 3)
and quartic NURBS (p = 4). The slope (m) represents the convergence rate.
Richardson extrapolation is used to approximate the exact solution.
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tion (direct discretisation). The results suggest that Richardson extrapolation
may not be fully appropriate for obtaining a reference solution.

On the other hand, the solutions for the direct case show the same con-
vergence rate as with classical elasticity. It is noted that emphasis has been
placed on the lower error regions in estimating the convergence rate. Another
point of interest is the comparison of the convergence rates for the direct and
the staggered approaches. The classical elasticity solution applies in this case
to the first step of the staggered approach. Results are presented in Figure 7
using the L2-norm of displacement error. The theoretical convergence rate for
displacement is O(hp+1) or based on the degrees of freedom, O(nDOF− p+1

2 ),
where p is the polynomial order [53]. Results in Figure 7 show a close match
with theoretical prediction especially for p = 3 and p = 4. Gradient elas-
ticity (Direct) has a suboptimal convergence rate (m) for p = 2 but when
p = 4, m for the gradient case surpasses that of classical elasticity (Stag-
gered). This indicates that, for both cases, the theoretical prediction holds.
The suboptimal convergence rate observed for the direct discretisation is in
accordance with the explanation given by Kästner et al. [43]. Considering a
linear fourth-order partial differential equation for an infinitely continuous
reference solution (r = ∞), the convergence rate is given by:

‖u− û‖H0≡L2 ≤ C0h
min{p+1,2(p−1)}‖u‖Hr (46)

where u is the exact displacement, û is the numerical solution and p is the
polynomial order. Optimal convergence rate is thus the minimum of {p +
1, 2(p − 1)} which is 2(p − 1) = 2 for a polynomial order of two. This is in
line with the result depicted in Figure 7(a).

5. Gradient elasticity with T-Splines

5.1. T-splines and T-mesh

The T-spline technology is based on the notion of a T-mesh [54, 55] which
is composed of quadrilateral-shaped elements [55, 56] in two-dimensions (Fig-
ure 8). Each element in the T-mesh has one or more edges split by T-
junctions. T-junctions are analogous to hanging nodes in finite elements
where an internal node has less than four linked neighbours. Each T-vertex
is associated with a control point and control weight. Valid knot intervals are
defined which ensure that opposite sides of an element in the T-mesh have
knot intervals summing to the same value (i.e. a1 + a2 = b in Figure 8).
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(a)

(b)

Figure 6: Error in the stress against: (a) mesh parameter; (b) total number of
degrees of freedom for quadratic (p = 2), cubic (p = 3) and quartic NURBS
(p = 4). The slope (m) represents the convergence rate. While the exact
solution of the fourth order partial differential equation (Direct) is based
on the exact solution, the solution for the approach with the operator split
(Staggered) is based on Richardson extrapolation.19



(a)

(b)

Figure 7: L2 norm of the displacement error against: (a) maximum mesh
parameter; (b) total number of degrees of freedom for quadratic (p = 2),
cubic (p = 3) and quartic NURBS (p = 4). The slope (m) is the convergence
rate.
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Figure 8: Illustration of T-mesh and local knot intervals, p=3

To define the T-spline basis function, local knot interval vectors are used.
Unlike NURBS, T-splines are not based on a global tensor product. Each
vertex has its local interval vector which is a sequence of knot intervals,
∆Ξ = {∆ξ1,∆ξ2, . . . ,∆ξp+1} such that ∆ξi = ξi+1 − ξi [55], where p is the
polynomial degree (p+1 = 4). A set of local knot intervals for each vertex A

is constructed by moving in each topological direction from the vertex until
p−1 = 2 vertices or perpendicular edges are intersected. In the case where a
T-mesh boundary is crossed before p− 1 = 2 knot intervals are intersected,
the local knot interval is set to zero. This makes the T-mesh boundary to
have open knot vectors.

From the local knot interval vectors, a local knot vector is defined as
ΞA = {Ξi

A}
d
i=1 and Ξi

A = {ξi1, ξ
i
2, . . . , ξ

i
p+2} where ξi1 = 0, ξi2 = ∆ξi1 and for

n ≥ 3, ξin = ∆ξin−1 + ∆ξin−2 + . . . + ∆ξi1. Each T-spline basis function is

defined over a local basis function domain Ω̂A ∈ R
d by the local knot vector:

Ω̂A =

d
⊗

i=1

Ω̂i
A (47)

where Ω̂i
A =

[

0,∆ξip+1 + . . . +∆ξi2 +∆ξi1
]

⊂ R for polynomial degree (p). A
coordinate system called the basis coordinate system is defined for each local
basis function: ξA = (ξ1A, ξ

2
A) = (ξA, ηA). With this localisation, the basis

function of a T-spline is defined over each local basis function domain in the
same way as NURBS, by employing Cox-de-Boor recursion formula. Also,
Bézier extraction is extensible to T-splines [56].
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Figure 9: T-Spline representation of quarter cylinder.

5.2. Thick hollow cylinder subjected to external pressure

The problem of a thick hollow cylinder subjected to external pressure is
revisited. The T-spline geometry generated using the Rhino T-Spline plug-
in [57] is presented in Figure 9. Both classical and gradient elasticity are
considered. For the additional boundary condition required in gradient elas-
ticity, the immediate vertex after the boundary is used as with NURBS. Two
finer meshes have been generated to qualitatively show the errors in the dis-
placement, see Figure 10. Evidently, the convergence rate is similar to that
obtained with NURBS. A representative plot of σxx is presented in Figure
11 for the direct and the staggered approach.

5.3. L-shaped panel subjected to traction

An L-shaped panel subjected to traction is considered next, Figure 12.
The length and traction are a = 30 m and t = 1 MPa respectively. Essential
boundary conditions are imposed as displacements on the top (uy = 0) and
right edge (ux = 0). As in the previous problem, E = 8100 MPa, ν = 0.35
and ℓ = 0.01 m. The T-mesh with local refinement is depicted in Figure
12(b). This illustrates the flexibility of T-splines, and the ensuing lower com-
putational cost.
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(a)

(b)

Figure 10: L2 norm of the displacement error against: (a) maximum mesh
parameter; (b) total number of degrees of freedom for cubic NURBS and
T-Splines.
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(a)

(b)

Figure 11: σxx-components of stress [MPa]: (a) direct discretisation; (b) stag-
gered approach.
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(a)

(b)

Figure 12: L-shaped panel: (a) Geometry and boundary conditions; (b) T-
mesh.
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(a) (b)

(c) (d)

(e) (f)

Figure 13: Stresses [MPa] in L-shaped panel using the Staggered – (·)S and
Direct – (·)D approaches: (a) σD

xx; (b) σ
S
xx; (c) σ

D
yy; (d) σ

S
yy; (e) σ

D
xy; (f) σ

S
xy

.
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The three stress components using direct discretisation and using the
operator split are shown in Figure 13. There is only a slight variation in the
stress distribution between the two discretisation schemes. The difference is
minimal due to absence of any boundary condition required in the second
step of the operator-split approach. This is in line with the argument that
the latter works best when there is no need to impose boundary conditions
[27], i.e. n · ∇σ = 0 everywhere.

The effect of varying the length scale parameter (ℓ) on σxy is shown in
Figure 14. For lower values of ℓ, the region of high stress is obviously more
localised. Results are presented for both discretisation schemes. It is noted
that even when ℓ = 0, the stress contours are not exactly identical. This could
be attributed to the difference in discretised variable – while displacement is
discretised in the direct approach, the stress is discretised in the staggered
approach.

6. Conclusion

This study presents a convergence analysis of the Laplacian-based gra-
dient elasticity theory. Both direct discretisation of the fourth-order partial
differential equation and an operator split approach have been considered.
The analyses have been carried out in an isogeometric framework for global
refinement using NURBS shape functions, and for local refinement using
T-splines. These shape functions naturally provide the smoothness required
for the direct discretisation of the fourth-order partial differential equation.
Direct discretisation shows better convergence rates for polynomial orders
greater than two and follows theoretical predictions. For a polynomial order
equal to two, recent results for the (fourth-order) Cahn-Hilliard equation are
confirmed, i.e. that the convergence rate is suboptimal [43]. Results from the
numerical examples support the argument that, strictly speaking, the opera-
tor split approach only applies to an infinite body where boundary conditions
do not need to be imposed.
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[42] J. Liu, L. Dedè, J. A. Evans, M. J. Borden, T. J. Hughes, Isogeometric
analysis of the advective Cahn–Hilliard equation: Spinodal decomposi-
tion under shear flow, Journal of Computational Physics 242 (2013)
321–350.
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