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Abstract 

 

Dynamic loadings such as earthquake loadings can generate considerable principal stress 

rotation (PSR) in the saturated soil. The PSR without changes of principal stress magnitudes 

can generate additional excess pore water pressures and plastic strains, thus accelerating 

liquefaction in undrained conditions. This paper simulates a centrifuge model test using the 

fully coupled finite element method considering the PSR. The impact of PSR under the 

earthquake loading is taken into account by using an elastoplastic soil model developed on the 

basis of a kinematic hardening soil model with the bounding surface concept. The soil model 

considers the PSR by treating the stress rate generating the PSR independently. The capability 

of this soil model is verified by comparing the numerical predictions and experimental results. 

It also indicates that the PSR impact can not be ignored in predictions of soil liquefaction. 

 

KEYWORDS: elastoplastic model; principal stress rotation; liquefaction; earthquake loading; 

non-coaxiality 

 

Introduction 

 

The soil behavior under earthquake loadings is one of major research areas in both 

numerical simulations and experimental studies. The loading conditions under earthquakes 

are quite diverse and complex, but they share a common characteristic in which the soil is 

subjected to considerable principal stress rotation (PSR). It is important to consider the PSR 

impact in many types of geotechnical engineering studies under dynamic loadings. Ishihara & 

Towhata (1983) found that the PSR can generate plastic deformations and the non-coaxiality 

even without a change of principal stress magnitudes. The PSR can also generate excess pore 

water pressures and plastic strains in undrained conditions. Similar phenomenon is also found 



by Ishihara & Yamazaki (1984), Bhatia et al. (1985), Miura et al. (1986), Gutierrez et al. 

(1991), etc. It is well established that the additional excess pore water pressure and plastic 

deformation caused by the PSR from the dynamic loading can accelerate undrained soil 

liquefaction. Ignoring the PSR impact may lead to unsafe designs. 

At present, numerous researches have been carried out to investigate the soil behavior 

under earthquake loadings. One of the most famous researches is the VELACS project 

(Verification of Liquefaction Analysis using Centrifuge Studies). It includes a variety of 

centrifuge model tests and the corresponding numerical simulations in many universities and 

research institutes (Arulanandan & Scott, 1993). However, Arulanandan et al. (1995) claims 

that the predicted results from these numerical simulations have great variations and errors 

which may result from different soil models used by different researchers. They also state that 

the predicted results are largely affected by the computer codes used and it seems that the 

program with fully coupled governing equations performs the best among all the results. 

Although several researchers have implemented their soil models into these numerical 

simulations subsequently (Andrianopoulos et al., 2010; Sadeghian & Namin, 2013; Pak et al., 

2014), there are few of them considering the PSR effect.  

This paper aims to take into account the impact of PSR on the liquefaction in numerical 

simulations of earthquake loadings by using a well established PSR model and a fully coupled 

finite element program DYSAC2 (Muraleetharan et al., 1994; 1997). This model is developed 

on the basis of a kinematic hardening model with the bounding surface and critical state 

concept. The PSR soil model considers the PSR effect by treating the stress rate generating 

the PSR independently. The model has been validated in single element studies with different 

types of sand, such as Nevada sand (Yang et al., 2014), Toyoura sand (Yang & Yu, 2013), 

Leighton Buzzard sand (Wang et al., 2016), etc. All the results demonstrate that this model 

can properly simulate the PSR effects in singe element studies. The focus of the paper is on 

the investigation of PSR impacts on boundary value problems under earthquake loadings. 

Firstly, the original base model and the modified PSR model will be introduced. Secondly, 

these two models will be tested in a single element numerical simulation, compared with 

experimental results with the PSR. Finally, they will be implemented into FEM software to 

simulate VELACS centrifuge model tests. The Model No 3 of the VELACS project is chosen 

to be simulated in this investigation and the comparison will be made between the original 

base model, the modified PSR model, and the experimental results.  

 

The Original Soil Model 

 

Model Formulations 

A well-established soil model with the bounding surface concept and kinematic 



hardening is chosen as the base model. It employs the back-stress ratio as the hardening 

parameter and the state parameter to represent influences of different confining stresses and 

void ratios on sand behaviors. It also adopts the critical state concept and the principle of 

phase transformation line. However, it does not give special consideration of the PSR effect. 

This model will be briefly introduced, and more details about this model can be found in 

Manzari & Dafalias (1997) and Dafalias & Manzari (2004). It should be noted that this study 

is focused on the impact of PSR, and the simplified version of the above mentioned models is 

employed to better present the PSR impact. For example, the fabric impact in Dafalias & 

Manzari (2004) is not considered, which can improve simulations otherwise. 

 The yield function of the model is defined as: 

f =  [(s - pĮ) : (s - pĮ)]1/2 - ඥʹȀ͵ pm = 0          (1) 

where s is the deviatoric stress tensor. p and Į are the confining pressure and back-stress ratio 

tensor, respectively. Į represents the center of yield surface in the stress ratio space while m is 

the radius of yield surface. m is assumed to be a small constant, indicating no isotropic 

hardening. The normal to the yield surface is defined as: 

l = ப௙பો = n - 
ଵଷ (n:r) I;   n = 

 હඥଶȀଷ  ௠           (2)ିܚ

where I is the isotropic tensor and n represents the normal to the yield surface on the 

deviatoric plane. r represents the stress ratio, and is equal to s / p. The elastic deviatoric strain 

rate ede and volumetric strain rate e
vd  are defined as: 

Gdd e 2/= se                 (3) 

 Kdpd e
v /                 (4) 

where G and K are the elastic shear module and bulk module, respectively, which are 

expressed as: 

2/12
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where G0 is a constant, pat is the atmospheric pressure, e is the void ratio, and v is the 

Poisson’s ratio. The plastic strain rate pdİ is defined as: 

Rİ Ld p =                 (7) 
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where L represents the loading index, and R is the normal to the potential surface, indicating 

the direction of the plastic strain rate. Kp is the plastic modulus, and D is the dilatancy ratio 

and they are defined as: 
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where b and d are the distances between the current back-stress ratio tensor and bounding and 

dilatancy back-stress ratio tensors, respectively. h0, ch and Ad are the model parameters. Įin is 

the initial value of Į at the start of a new loading process and is updated when the 

denominator becomes negative. In some extreme cases, for example, when the void ratio is 

very large, Kp can become negative. In that case, care should be exercised to prevent Kp from 

becoming zero. 

 

Calibration and Model Simulations of Laboratory Experiments 

The sand used in Model No 3 test of VELACS is Nevada sand which has a specific 

gravity of 2.67. Its maximum and minimum void ratios are 0.887 and 0.511, respectively. All 

the model parameters in both the original model and the modified model are calibrated by a 

series of triaxial, torsional and rotational tests for Nevada sand from Chen & Kutter (2009). 

While the triaxial tests do not have the PSR, the latter two tests have the PSR. The stress paths 

of the torsional and rotational tests are illustrated in Figure 1. The set of model parameters 

listed in Table 1 are used for both the single element and finite element simulations. The 

critical state parameters e0, Ȝc,  and M are determined from the quantities at the end of 

triaxial tests. c is determined by comparing the critical state stress ratios at triaxial 

compression and triaxial extension. m for the yield surface is assumed to be M/100. 

Parameters nb and nd are determined by using the approach in Li & Dafalias (2000). The 

parameters h0, ch and A0 can be found by trial and error in curve fitting.  

Some typical results are shown in Figures 2 to 5. Figure 2 shows the predicted results of 

the drained triaxial tests, and they generally fit the test results very well. Figures 3 and 4 show 

the predictions of torsional shear tests under different initial conditions. In Figure 3, it can be 

seen that the effective confining pressure p’ is reduced to about 75 kPa, at which the q-p’ 

stress path shows the butterfly shape and p’ stops reducing, and the final p’ is much larger 

than the test result. Meanwhile, as the shear stress continues changing, no dramatic shear 

strain is observed, which is significantly different from the lab results. Figure 4 shows similar 

predictions to those in Figure 3. Figure 5 shows the predictions of the rotational test. Its 

simulation is similar to that in the torsional test, and there is a limited reduction of effective 

confining pressure and small strains, indicating no occurrence of liquefaction.  

 Predictions of these tests indicate that the original model is able to predict sand responses 

without the PSR, but is not capable of considering the PSR impact on liquefaction. This is 

because the model is not able to simulate the considerable volumetric reduction from the PSR. 



Especially at a large stress ratio close to the phase transformation line, the model usually 

gives very small volumetric reduction or even volumetric expansion above the phase 

transformation line. As a result, it constrains the reduction of effective confining pressure near 

the phase transformation line under the PSR. Yang & Yu (2013) gives detailed discussions on 

this deficiency. To better simulate the responses under the PSR, a new model needs to be 

developed based on the original model, in order to properly take into account the PSR impact. 

 

The PSR Modified Soil Model 

 

Detailed description of the modified model can be found in Yang & Yu (2013), and a 

brief introduction is given here. In the modified model, the plastic strain rate is split into the 

monotonic strain rate p
mdİ and the PSR induced strain rate p

rdİ , where the subscript m and r 

represent monotonic and PSR loading hereinafter, respectively. It should be noted that the 

‘monotonic’ is used to be distinguished from the PSR stress rate, and does not represent real 

monotonic loading. The evolution of hardening parameter is not affected by this separate 

treatment. Therefore, the plastic strain rate can be expressed as: 
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It is assumed that Kpm = Kp and Rm = R (equation 9 & 10) because the original model is for 

the non-PSR loading. The direction of PSR strain rate Rr can be expressed as: 
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where nr is the direction of deviatoric plastic strain rate and can be approximated as n for 

simplicity. Dr is the dilatancy ratio for the PSR loading rate, it can be derived from the 

postulate of the PSR dilatancy ratio of Gutierrez et al (1991) on the basis of work and energy 

dissipation. In this model, it can be expressed as: 

Dr = Ar (1- Į/Įb
ș) Į                                                     (15) 

where Ar is a constant for the impact of PSR on the dilatancy. Į/Įb
ș can be approximated as 

the cosine of the angle between the principal stress and plastic strain rate. Compared with 

equation (15), equation (11) for the flow rule in the original model can predict dilatancy at a 

large stress ratio, such as when the stress ratio is above the phase transformation line, because 

it can not distinguish the PSR stress rate from the total stress rate. Equation (15) indicates that 

the PSR at a relatively high stress ratio can still generate substantial volumetric reduction, 

such as near the phase transformation line. The plastic modulus Kpr for PSR loading rate is 

defined as: 
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where h0r and ȟr are new model parameters associated with the PSR. In order to make Kpr 

more sensitive to the stress ratio, ȟr is usually larger than unity. 

To complete the model, the definition of PSR loading rate dır is required. To determine 

dır in general stress space, it is first considered in the space with only x and y directions 

denoted as Į. The physical meaning of dır compared with dı is illustrated in Figure 6, in 

which dı is split into dır and dım. dım is along the direction of the current stress vector, and 

dır can be obtained from dı –dım. Their relationship can be expressed as ıNı dd Į
r

Į
r = , and 

can be written in matrix form as: 
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where 22 4/)( xyyxJt   . Similarly, in the   space (y, z) and   space (z, x), they 

can be defined as ıı dd ȕ
r
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r N=  and ıı dd Ȗ

r
Ȗ
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r
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r
ıd and 

r
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letting   rxrxrx ddd  ,   ryryry ddd   and   rzrzrz ddd  , rdı  in the general 

stress space can be obtained as: 

ıı dd rr N=                   (18) 

With the formulations derived above, the elastoplastic stiffness can be obtained. The total 

stress rate-strain rate relationship can be defined as: 
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where E is the elastic stiffness tensor. Nr is the tensor which plays the role of projecting the 

total stress rate onto the PSR direction, and it has the following characteristics. 

rr
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From mathematical manipulations and equation (21), the relationship between the stress and 

strain rates can be expressed as: 

İEı dd ep=                   (22) 
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The above formulations show that the stiffness tensor is independent of stress increments, and 

the stress and strain increments have a linear relationship, which indicates the easy numerical 

implementations. In these equations, if Kpr is set to be Kp and Rr to be R, they will be 

downgraded to the formulations in the classical plasticity. Three new model parameters 

related to the PSR are incorporated into the modified PSR model. They are h0r and ȟr for the 

plastic modulus, and Ar for the flow rule. All of them are independent of the monotonic 

loading, and can be easily calibrated through the pure rotational loading paths. 

The above equations indicate that the PSR stress rate can generate considerable 

volumetric reduction. The modified PSR model is used to simulate the above mentioned tests, 

shown in Figures 3-5. These figures show that the modified model can reduce the effective 

confining pressure further than the original model. In addition, its reduction in the last few 

cycles is accompanied with drastic increase of strain, indicating the occurrence of liquefaction. 

The simulations with the modified model are in better agreement with the test results than the 

original model. It should be noted that, in these torsional and rotational shear tests and 

simulations, the effective confining pressure can not reach zero due to the existence of shear 

stress. The liquefaction manifests itself by the dramatic increase of shear strains. 

 

Finite Element Analysis 

 

Problem definition 

The centrifuge test of Model No.3 in VELACS project is selected to assess the ability of 

the modified model. This is a water saturated layer of sand deposited in a laminar box of the 

depth of 220 mm, shown in Figure 8. The model is divided horizontally into two sand layers 

which have the relative density of 40% and 70%, respectively. The laminar box is subjected to 

the base motion illustrated in Figure 9. The base shaking in the vertical direction is negligible 

and the base shaking in the horizontal direction is the major shaking. The accelerations along 

the height of the soil sample are measured with 7 accelerometers. 10 pore water pressure 

transducers are used to measure the pore water pressures. The lateral deformations and 

settlements are measured by 6 displacement LVDT transducers. In total, 23 transducers are 

used, shown in Figure 7. 

To simulate the centrifuge test, the two dimensional finite element computer code 

DYSAC2 with the fully coupled analysis is used. This program adopts the finite element 



solution of the dynamic governing equations for a saturated porous media and a three 

parameter time integration scheme called the Hilber-Hughes-Taylor Į method. A 

predictor/multi-corrector algorithm is also used to provide the quadratic accuracy. The details 

of this method are given in Muraleetharan et al. (1994; 1997). The problem is simulated in the 

model scale with the gravitational acceleration of 50 g. The whole box is divided into 162 

elements, shown in Figure 9. No horizontal water flow is allowed on the side boundaries, and 

no vertical water flow is allowed on the base, which is also fixed to the ground. The nodes 

with the symbol ‘x’ in Figure 9 are tied together, which results in the same displacement 

among them. This is to account for the boundary conditions of the laminar box, which are 

rigid. Besides, the nodes in the adjacent rows on the left-hand and right-hand sides of the box 

are tied up with one another to give the transition between the soil elements and the rigid 

sides in the laminar box. The permeability coefficient of Nevada sand is 4.6E10-5 from the 

study by Arulmoli et al (1992). All the quantities including the pore water pressure, stress, 

strain and the displacement are recorded for 30 seconds, because the liquefaction spreads over 

the majority of the model after 30 seconds.  

 

Predicted results and comparison with the experimental data 

 Figure 10 shows the pore water pressure of typical locations P1, P3 and P7 in the loose 

sand, and those at typical locations P2, P6 and P10 in the dense sand. In the loose sand, the 

predicted water pressure from the modified model reaches nearly the same peak value at the 

same time as the experimental data, and liquefaction is reached. However, the results from the 

original model significantly underestimate the pore water pressures and do not reach the 

liquefaction. For example, in location P1, the peak pore water pressure from the original 

model is 29 kPa, which is 16 kPa lower than the experimental value. Generally, the results 

from the modified model agree better with the experimental data and reach the liquefaction, 

although they slightly overestimate the pore water pressure in the early stage. In the dense 

sand, while the modified model slightly overestimates the pore water pressure during the full 

stage, the original model overestimates the pore water pressure during the early stage and still 

underestimates the pore water pressure during the later stage, and do not bring the soil to 

liquefaction. Figure 11 shows the stress path of p’-q at a typical location P10, predicted by 

using the original and modified models. It shows the decrease of the effective confining stress 

and the butterfly shape in the final stages. While the modified model brings p’ to zero, the 

original model only brings p’ to the lowest value of 5 kPa. It is obvious that the modified 

model brings the sand to liquefaction, and the original model doesn’t. Figure 12 shows the 

path of shear stress and normal stress difference at a typical location P10 to illustrate the PSR. 

Although the stress path is random, it clearly indicates the continuous PSR, and the difference 

of predictions between the original and the modified model comes from the continuous PSR 



impact.  

 The settlements of typical locations L5 in the loose sand and L6 in the dense sand are 

shown in Figures 13, respectively. The results from the two models again show significant 

difference. Although the settlements all increase after the start of the shaking, the settlements 

from the original model only reaches the maximum value of 2.8 mm and 4 mm in 30 seconds 

at locations L5 and L6, respectively, far from the experimental results due to its failure in the 

prediction of liquefaction. On the other hand, the modified model brings the maximum 

settlements to 85 mm and 125 mm, respectively, which is reasonably closer to the 

experimental results.  

 

Conclusion 

 

This paper presents application of a soil PSR model in the study of PSR impact on 

undrained soil behavior. The PSR model is developed on a base model with the bounding 

surface concept and soil critical state concept, and the PSR induced stress rate is treated 

separately using an independent hardening and flow rule. The PSR model and the original 

model are first used to study soil behavior in single element laboratory tests involving the 

PSR. It shows that the predictions by the PSR model can bring the soil to liquefaction, and 

agree better with the experimental results than the original model. It indicates the importance 

to independently consider the PSR in soil models. The PSR model and the original model are 

also used to simulate a centrifugal test of sand under earthquake loading, which leads to 

significant PSR. The original soil model fails to bring soil to liquefaction, and predicts very 

limited settlements which are much smaller than the experimental results. On the other hand, 

the PSR model brings soil to liquefaction, and its predictions are in reasonable agreement 

with experimental results. It further indicates the importance to give special treatment of PSR 

in soil models in boundary value problems involving the PSR. 

 

Acknowledgements 

 

This research is supported by National Natural Science Foundation of China (NSFC 

Contract No. 11172312/A020311) and the International Doctoral Innovation Centre (IDIC) 

scholarship scheme. These supports are appreciated. We also greatly acknowledge the support 

from Ningbo Education Bureau, Ningbo Science and Technology Bureau, China’s MoST and 

the University of Nottingham. The work is also partially supported by EPSRC grant no 

EP/L015463/1. 

 

References  



 

Andrianopoulos, K.I., Papadimitriou, A.G., Bouckovalas, G.D. (2010), Bounding surface 

plasticity model for the seismic liquefaction analysis of geostructures, Soil Dynamics 

and Earthquake Engineering 30, 895-911. 

Arulanandan, K. & Scott, F.R. (1993), Verification of numerical procedures for the analysis 

of soil Liquefaction problems, Conference on the Verification of Numerical Procedures 

for the Analysis of Soil Liquifaction Problems. California, USA. 

Arulanandan, K., Manzari, M., Zeng, X., Fagan, M., Scott, R.F & Tan, T.S. (1995), 

significance of the VELACS project to the solution of boundary value problems in 

geotechnical engineering, Proc. Third International Conference on Recent Advances in 

Geotechnical Earthquake Engineering and Soil Dynamics, Volume II, St. Louis, 

Missouri, 825-832. 

Arulmoli, K., Muraleetharan, K.K., Hosain, M.M, Fruth, L.S. (1992), VELACS laboratory 

testing program, soil data report, Report to the National Science Foundation, Washington, 

D.C. by the Earth Technology Corporation, Irvine, Calif. 

Arulanandan, K. & Sybico, J. (1992), Post-liquefaction settlement of sands, Proceedings of 

Wroth Memorial Symposium. 

Bhatia, S.K., Schwab, J. & Ishibashi, I. (1985), Cyclic simple shear, torsional shear and 

triaxial—A comparative study, Proc. Advanced in the Art of Testing Soils Under Cyclic 

Conditions, ASCE, New York, 232-254. 

Chen, Y.R. & Kutter, B.L. (2009), Contraction, dilation, and failure of sand in triaxial, 

torsional, and rotational shear tests, Journal of engineering mechanics, 135(10), 

1155-1165. 

Dafalias, Y.F. & Manzari, M.T. (2004), Simple plasticity sand model accounting for fabric 

change effects, Journal of Engineering Mechanics, ASCE, 130(6), 622-634. 

Gutierrez, M., Ishihara, K. & Towhata, I. (1991), Flow theory for sand during rotation of 

principal stress direction, 31(4), 121-132. 

Ishihara, K. & Towhata, I. (1983), Sand response to cyclic rotation of principal stress 

directions as induced by wave loads, Soils and Foundations, 23(4), 11-26. 

Ishihara, K. & Yamazaki, A. (1984), Analysis of wave-induced liquefaction in seabed 

deposits of sand, Soils and Foundations, 24(3), 85-100. 

Miura, K., Miura, S. & Toki, S. (1986), Deformation behavior of anisotropic dense sand 

under principal stress axes rotation, Soils and Foundations, 26(1), 36 –52. 

Manzari, M.T. & Dafalias, Y.F. (1997), A critical state two-surface plasticity model for sands, 

Geotechnique, 47(2), 255-272. 

Muraleetharan, K.K., Mish, K.D. & Arulanandan, K. (1994), A fully coupled non-linear 

dynamic analysis procedure and its verification using centrifuge test results, International 



Journal for Numerical and Analytical Methods in Geomechanics, 18, 305-325. 

Muraleetharan, K.K., Mish, K.D., Yogachandran, C. & Arulanandan, K. (1997), User’s 

Manual for DYSAC2 (Version 7.0): Dynamic Soil Analysis Code for 2-Dimensional 

Problems, Technical Report, School of Civil Engineering and Environmental Science, 

University of Oklahoma, Norman, Oklahoma. 

Pak, A., Seyfi, S. & Ghassemi, A. (2014), Numerical investigation into the effects of 

geometrical and loading parameters on lateral spreading behavior of liquefied layer, Acta 

Geotechnica 9, 1059-1071. 

Papadimitriou, A. G. & Bouckovalas, G. D. (2002), Plasticity model for sand under small and 

large cyclic strains: a multiaxial formulation, Soil Dynamics and Earthquake Engineering, 

22, 191-204 

Sadeghian, S. & Namin, L. N. (2013), Using state parameter to improve numerical prediction 

of a generalized plasticity constitutive model, Computers & Geosciences, 51, 255-268. 

Yang, Y. & Wang, Z. (2014), A soil model considering principal stress rotations, Proceedings 

of the European Conference on Numerical Methods in Geotechnical Engineering, Delft, 

1319-1324.  

Yang, Y. & Yu, H.S. (2013), A kinematic hardening soil model considering the principal 

stress rotation, International Journal for Numerical and Analytical Methods in 

Geomechanics, 37, 2106-2134. 

Yang, Y. & Yu, H.S. (2016), Effects of principal stress rotation on the wave–seabed 

interactions, Acta Geotechnica, available online 

 

Table and Figure Captions 

 

Table 1: Model parameters of Nevada sand used in the single element and finite element 

simulations 

Figure 1: Stress paths of torsional shear tests (left) and rotational shear tests (right) (a) and 

stress conditions (b) (Chen & Kutter, 2009) 

Figure 2: Test results and model predictions of (a) stress strain behaviors and (b) volumetric 

strain responses for the monotonic loadings. (N70D501: Dr=74%, p=50kPa; N70D1001: 

Dr=72%, p=100kPa; N70D100C: Dr=85%, p=100kPa; N70D2501: Dr=75%, p=250kPa 

(Chen & Kutter, 2009)) 

Figure 3: Test results and model predictions of (a) q-p’ stress paths and (b) stress strain 

behaviors for the torsional shear tests NK138U51 (Chen & Kutter, 2009) (Dr=71%, cell 

pressure=400kPa, K=1.38) 

Figure 4: Test results and model predictions of (a) q-p’ stress paths and (b) stress strain 

behaviors for the torsional shear tests NK73CU6 (Chen & Kutter, 2009) 



Figure 5: Test results and model predictions of the rotational shear tests (Chen & Kutter, 2009) 

(Dr=68%, cell pressure=213kPa, K=0.73) 

Figure 6: Schematic illustration of the total, monotonic, and PSR stress increments in the 

space of ((ıx-ıy)/2,ıxy) 

Figure 7: The configuration and the location of measuring instruments for the centrifuge 

model test 

Figure 8: Base motion of acceleration (a) Horizontal (b) Vertical 

Figure 9: Elements and boundary conditions of the finite element model 

Figure 10: Comparison of time history of excess pore water pressure between the predicted 

results and the experimental results 

Figure 11: Predicted stress paths to illustrate liquefaction in location P10 

Figure 12: Predicted stress path to illustrate the PSR in location P10 

Figure 13. Comparison of time history of settlement between the predicted and experimental 

results 

 

 


