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When Does Output Feedback Enlarge the Capacity

of the Interference Channel?
Victor Quintero, Samir M. Perlaza, Iñaki Esnaola, Jean-Marie Gorce

Abstract—In this paper, the benefits of channel-output feed-
back in the Gaussian interference channel (G-IC) are studied
under the effect of additive Gaussian noise. Using a linear
deterministic (LD) model, the signal to noise ratios (SNRs) in
the feedback links beyond which feedback plays a significant
role in terms of increasing the individual rates or the sum-rate
are approximated. The relevance of this work lies on the fact that
it identifies the feedback SNRs for which in any G-IC one of the
following statements is true: (a) feedback does not enlarge the
capacity region; (b) feedback enlarges the capacity region and the
sum-rate is greater than the largest sum-rate without feedback;
and (c) feedback enlarges the capacity region but no significant
improvement is observed in the sum-rate.

Index Terms—Interference Channel, Noisy Channel-Output
Feedback, Capacity Region.

I. INTRODUCTION

The two-user Gaussian interference channel (G-IC) is the

simplest channel model that captures the impairments brought

by mutual interference into point-to-point communications

subject to additive Gaussian noise. The interference channel

(IC), in its most general form, was first proposed by Claude

E. Shannon in [2]. The G-IC is a particular case that has

been studied by several authors, see for instance [3]–[13] and

references therein. However, despite this active research, the

capacity region of the G-IC is characterized only in some

special cases [4]. In general, the capacity region is not known

exactly and only approximations to within a constant number

of bits per channel-use per user are known [9].

On the other hand, channel-output feedback, which consists

in letting a transmitter observe the channel-output at its

intended receiver, was one of the first models for studying

two-way point-to-point communications [14]. A G-IC with

channel-output feedback is a model in which the backward

direction (from receivers to transmitters) is exclusively used

to let the transmitters observe the channel-output at the re-

ceivers with the goal of increasing the information rate or
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the reliability in the forward direction (from transmitters to

receivers). Note that the backward direction may also be an

IC since the point-to-point feedback links might be subject to

mutual interference. There are several special cases of channel-

output feedback in the G-IC. First, the case in which the

observation of the channel-output from the intended receiver

is noiseless corresponds to perfect channel-output feedback

(POF) [15]. Second, the case in which such observation is

noisy corresponds to noisy channel-output feedback (NOF)

[16], [17]. Third, the case in which such observation is a

linear combination of the channel-outputs from both receivers

subject to additive noise corresponds to wireless channel-

output feedback (WOF) [18]. The most general formulation is

referred to as general channel-output feedback (GOF) [19]–

[22]. Other types of feedback, including a channel-output

processing, e.g., signal decoding, are known as rate-limited

feedback (RLF) [23].

This work focuses in the case of G-IC with NOF (G-IC-

NOF). One of the main motivations to focus on the G-IC-

NOF stems from the recent findings regarding the impact of

additive noise in the feedback links. In particular, in [16] and

[17], it is shown that additive noise in the feedback links

can dramatically change the number of generalized degrees

of freedom (G-DoF) of the G-IC. In particular, one of the

main benefits of feedback is that the number of G-DoF with

perfect feedback increases monotonically with the interference

to noise ratio (INR) in the very strong interference regime.

However, in the presence of additive Gaussian noise in the

feedback links, the number of G-DoF is bounded [16], [17].

A. Contributions

From the discussion above a relevant question arises: “When

does channel-output feedback enlarge the capacity region of

the G-IC?” This paper provides the answer when feedback

links are impaired by noise and free of mutual interference,

i.e., G-IC-NOF. The desired answer is of the form: “Im-

plementing channel-output feedback in transmitter-receiver i

enlarges the capacity region when the feedback SNR is greater

than SNR∗i ”, with i ∈ {1, 2} and fixed SNRs and INRs in the

forward G-IC. Note that the description of the capacity region

of the G-IC-NOF in [17] does not provide an answer to the

question posed above. An answer in the desired form requires

some calculations that, despite the conceptual simplicity of this

analysis, are long and tedious. More specifically, the value

SNR∗i is obtained by comparing the capacity region of the

linear deterministic IC (LD-IC) in [9] and the capacity region

of the LD-IC with noisy channel-output feedback (LD-IC-

NOF) in [17] to identify the feedback parameters that ensure
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strict inclusion of the former into the latter. After, using the fact

that the capacity region of the LD-IC-NOF approximates the

capacity region of the G-IC-NOF, an approximation of SNR∗i
is obtained. Solving this problem leads to a handful of equally

relevant byproducts to determine whether or not implementing

feedback in one of the transmitter-receiver pairs increases any

of the individual rates or the sum-rate. That is, answers to

the following questions: When does feedback in transmitter-

receiver i allow achieving a rate R1, such that for at least

one R2, all rate pairs (R′1, R2) achievable without feedback

satisfy R1 > R′1?; When does feedback in transmitter-receiver

i allow achieving a rate R2, such that for at least one R1,

all rate pairs (R1, R
′
2) achievable without feedback satisfy

R2 > R′2?; or When does feedback in transmitter-receiver i

allow achieving a greater sum-rate than the maximum sum-

rate achievable without feedback?, with i ∈ {1, 2} and fixed

SNRs and INRs in the forward G-IC.

The answers to the questions above provide consequential

engineering insight about the benefits of feedback in the

G-IC. For instance, all the cases in which feedback, even

perfect channel-output feedback, is useless for increasing an

individual rate or the sum-rate are identified. Similarly, this

work provides guidelines for choosing in which of the point-

to-point links feedback should be implemented for increasing

either an individual rate or the sum-rate. Interestingly, in some

cases, implementing feedback in only one of the transmitter-

receiver pairs, despite the additive noise, turns out to be as

beneficial as perfect channel-output feedback in both links.

B. Organization of the Paper

Section II introduces the G-IC and the linear deterministic

IC (LD-IC). The capacity region of the G-IC is shown to

be approximated by the capacity region of an LD-IC, with

a particular choice of parameters. Section III presents the

answers to the questions described above for the LD-IC.

Section IV presents some LD-IC examples. Section V presents

the implications of the conclusions obtained from the LD-IC

(Section III) on the G-IC. The examples in Section IV are

revisited in the context of the G-IC. The paper closes with the

conclusions in Section VII.

II. CHANNEL MODELS

A. Gaussian Interference Channels

Consider the two-user G-IC-NOF depicted in Figure 1.

Transmitter i, with i ∈ {1, 2}, communicates with re-

ceiver i subject to the interference produced by trans-

mitter j, with j ∈ {1, 2}\{i}. There are two indepen-

dent and uniformly distributed messages, Wi ∈ Wi, with

Wi = {1, 2, . . . , 2
NRi}, where N denotes the fixed block-

length in channel uses and Ri is the transmission rate in

bits per channel use. At each block, transmitter i sends the

codeword Xi = (Xi,1, Xi,2, . . . , Xi,N )
T
∈ Ci ⊆ X

N
i , where

Xi and Ci are respectively the channel-input alphabet and the

codebook of transmitter i.

The channel coefficient from transmitter i to receiver i is

denoted by
−→
h ii, the channel coefficient from transmitter j to

receiver i is denoted by hij ; and the channel coefficient from

Tx1

Tx2 Rx2

Rx1+W1

W2
cW2

cW1

+

+

+

−!
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Fig. 1. Gaussian interference channel with noisy channel-output feedback at
channel use n.

channel-output i to transmitter i is denoted by
←−
h ii. All channel

coefficients are assumed to be non-negative real numbers. At

a given channel use n ∈ {1, 2, . . . , N}, the channel output

at receiver i is denoted by
−→
Y i,n. During channel use n, the

input-output relation of the channel model is given by

−→
Y i,n=

−→
h iiXi,n + hijXj,n +

−→
Z i,n, (1)

where
−→
Z i,n is a real Gaussian random variable with zero mean

and unit variance that represents the noise at the input of

receiver i. Let d > 0 be the finite feedback delay measured

in channel uses. At the end of channel use n, transmitter i

observes
←−
Y i,n, which consists of a scaled and noisy version

of
−→
Y i,n−d. More specifically,

←−
Y i,n=

®←−
Z i,n for n∈ {1,2, . . . , d}
←−
h ii

−→
Y i,n−d+

←−
Z i,n, for n∈ {d+1,d+2, . . . ,N},

(2)

where
←−
Z i,n is a real Gaussian random variable with zero mean

and unit variance that represents the noise in the feedback

link of transmitter-receiver pair i. The random variables
−→
Z i,n

and
←−
Z i,n are independent and identically distributed. In the

following, without loss of generality, the feedback delay is

assumed to be one channel use, i.e., d = 1. The encoder of

transmitter i is defined by the set of deterministic functions{
f
(1)
i , f

(2)
i , . . . , f

(N)
i

}
, with f

(1)
i : Wi → Xi and for n ∈

{2, 3, . . . , N}, f
(n)
i :Wi ×Rn−1 → Xi, such that

Xi,1=f
(1)
i (Wi) , (3a)

and for n ∈ {2, 3, . . . , N},

Xi,n=f
(n)
i

Ä
Wi,
←−
Y i,1,

←−
Y i,2, . . . ,

←−
Y i,n−1

ä
. (3b)

The components of the input vector Xi are real numbers

subject to an average power constraint:

1

N

N∑

n=1

E
(
X2

i,n

)
≤ 1, (4)

where the expectation is taken over the joint distribution of

the message indices W1, W2, and the noise terms, i.e.,
−→
Z 1,

−→
Z 2,
←−
Z 1, and

←−
Z 2. The dependence of Xi,n on W1, W2, and



3

the previously observed noise realizations is due to the effect

of feedback as shown in (2) and (3).

Hence, the decoder of receiver i is defined by the determin-

istic function ψi : R
N
i →Wi. At the end of the communica-

tion, receiver i uses the vector
(−→
Y i,1,

−→
Y i,2, . . .,

−→
Y i,N

)T

to

obtain an estimate of the message index:

Ŵi=ψi

Ä−→
Y i,1,

−→
Y i,2, . . . ,

−→
Y i,N

ä
, (5)

where Ŵi is an estimate of the message index. The decod-

ing error probability in the two-user G-IC-NOF, denoted by

Pe(N), is given by

Pe(N)=max

(
Pr
Ä”W1 6=W1

ä
,Pr
Ä”W2 6=W2

ä)
. (6)

The definition of an achievable rate pair (R1, R2) ∈ R2
+

follows:

Definition 1 (Achievable Rate Pairs): A rate pair

(R1, R2) ∈ R2
+ is achievable if there exists at least one pair

of codebooks in XN
1 and in XN

2 with codewords of length

N , the corresponding encoding functions f
(1)
1 , f

(2)
1 , . . . , f

(N)
1

and f
(1)
2 , f

(2)
2 , . . . , f

(N)
2 , and the decoding functions ψ1 and

ψ2, such that the decoding error probability can be made

arbitrarily small by letting the block-length N grow to infinity.

The set of all achievable information rate pairs (R1, R2) is

known as the information capacity region. The capacity region

of a G-IC-NOF is described by six parameters:
−−→
SNRi, INRij

and
←−−
SNRi, with i ∈ {1, 2} and j ∈ {1, 2}\{i}, which are

defined as follows:

−−→
SNRi=

−→
h 2

ii, (7)

INRij=h
2
ij , and (8)

←−−
SNRi=

←−
h 2

ii

Ä−→
h 2

ii + 2
−→
h iihij + h2ij + 1

ä
. (9)

Given fixed parameters
−−→
SNR1,

−−→
SNR2, INR12, INR21,

←−−
SNR1,

and
←−−
SNR2, the capacity region of the G-IC-NOF is approxi-

mated to within a constant number of bits by Theorem 4 in

[17].

B. Linear Deterministic Interference Channels

Consider the two-user LD-IC-NOF with parameters −→n 11,
−→n 22, n12, n21, ←−n 11 and ←−n 22 depicted in Fig. 2. Parameter
−→n ii represents the number of bit-pipes between transmitter i

and receiver i; parameter nij represents the number of bit-

pipes between transmitter j and receiver i; and parameter
←−n ii represents the number of bit-pipes between receiver i and

transmitter i (feedback).

At transmitter i, the channel-input Xi,n during channel use

n, with n ∈ {1, 2, . . . , N}, is a q-dimensional binary vector

Xi,n =
Ä
X

(1)
i,n , X

(2)
i,n , . . . , X

(q)
i,n

äT

, where

q = max (−→n 11,
−→n 22, n12, n21) , (10)

and N is the block-length. At receiver i, the channel-output
−→
Y i,n during channel use n is also a q-dimensional binary

TX1

TX2 RX2

RX1

←−n 11

←−n 22

X1,1

X1,2

X1,3

X1,4

X1,5

X2,4

X2,3

X2,2

X2,1

X1,1

X1,2

X1,3

L
X2,1

X1,4

L
X2,2

X1,5

L
X2,3

X2,1

L
X1,2

X2,2

L
X1,3

X2,3

L
X1,4

X2,4

L
X1,5

X1,1

−!n 11

−!n 22

n12

n21

Signal Interference Feedback

1

11

1

2 2

2 2

3

3

3

3

4 4

4 4

5

5 5

5

Fig. 2. Two-user linear deterministic interference channel with noisy channel-
output feedback. The bit-pipe line number 1 represents the most significant
bit.

vector
−→
Y i,n =

Ä−→
Y

(1)
i,n,
−→
Y

(2)
i,n, . . . ,

−→
Y

(q)
i,n

äT

. Let S be a q × q

lower shift matrix of the form:

S =

















0 0 0 · · · 0
1 0 0 · · · 0

0 1 0 · · ·
...

...
. . .

. . .
. . . 0

0 · · · 0 1 0

















. (11)

The input-output relation during channel use n is given by

−→
Y i,n=S

q−−→n iiXi,n + S
q−nijXj,n, (12)

and the feedback signal
←−

Y i,n available at transmitter i at the

end of channel use n satisfies

←−

Y i,n=S
(max(−→n ii,nij)−

←−n ii)
+−→

Y i,n−d, (13)

where d is a finite delay, additions and multiplications are

defined over the Galois Field of two elements GF(2), and

(·)+ is the positive part operator.

Without any loss of generality, the feedback delay is

assumed to be equal to one channel use. Let Wi be the

set of message indices of transmitter i. Transmitter i sends

the message index Wi ∈ Wi by sending the codeword

Xi = (Xi,1,Xi,2, . . . ,Xi,N ), which is a binary q × N

matrix. The encoder of transmitter i can be modeled as a

set of deterministic mappings
{

f
(1)
i , f

(2)
i , . . . , f

(N)
i

}

, with

f
(1)
i : Wi → {0, 1}q and for n ∈ {2, 3, . . . , N}, f

(n)
i :

Wi × {0, 1}
q×(n−1) → {0, 1}q , such that

Xi,1=f
(1)
i

(

Wi

)

(14a)

and for n ∈ {2, 3, . . . , N},

Xi,n=f
(n)
i

(

Wi,
←−

Y i,1,
←−

Y i,2, . . . ,
←−

Y i,n−1

)

. (14b)

The decoder of receiver i is defined by the deterministic func-

tion ψi : {0, 1}
q×N →Wi. At the end of the communication,

receiver i uses the sequence
Ä−→
Y i,1,

−→
Y i,2, . . . ,

−→
Y i,N

ä
to obtain
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an estimate Ŵi of the message index Wi. The decoding error

probability in the two-user LD-IC-NOF, denoted by Pe(N),
is given by (6).

A rate pair (R1, R2) ∈ R2
+ is said to be achievable if it

satisfies Definition 1. The set of all achievable information rate

pairs (R1, R2) is known as the information capacity region and

it is characterized by Theorem 1 in [17].

C. Connections between Linear Deterministic and Gaussian

Interference Channels

The capacity region of the G-IC-NOF with parameters
−−→
SNR1,

−−→
SNR2, INR12, INR21,

←−−
SNR1 and

←−−
SNR2 can be

approximated by the capacity region of an LD-IC-NOF with

parameters −→n ii = ⌊ 12 log2(
−−→
SNRi)⌋; nij = ⌊ 12 log2(INRij)⌋;

←−n ii = ⌊
1
2 log2(

←−−
SNRi)⌋, with i ∈ {1, 2} and j ∈ {1, 2} \ {i}.

For instance, in the case without feedback, the capacity region

of any G-IC with parameters
−−→
SNR1 > 1,

−−→
SNR2 > 1,

INR12 > 1 and INR21 > 1 is within 18.6 bits per

channel use per user of the capacity of an LD-IC with

parameters −→n 11 = ⌊ 12 log2(
−−→
SNR1)⌋,

−→n 22 = ⌊ 12 log2(
−−→
SNR2)⌋,

n12 = ⌊ 12 log2(INR12)⌋, and n21 = ⌊ 12 log2(INR21)⌋ (Theo-

rem 2 in [24]). More specifically, if the capacity region of the

G-IC and the LD-IC without feedback are denoted by CG and

CLD, respectively, the following holds:

CLD⊆CG + (5, 5), and (15a)

CG ⊆CLD + (13.6, 13.6). (15b)

In a more general setting, for instance in the case with

noisy channel-output feedback, the LD-IC is known to be

a close approximation of the G-IC [17]. In Section V, this

approximation is used to simplify the identification of the cases

in which channel-output feedback, even subject to additive

noise, enlarges the capacity region of the G-IC.

III. MAIN RESULTS

A. Preliminaries

Let αi ∈ Q, with i ∈ {1, 2} and j ∈ {1, 2} \ {i} be defined

as

αi =
nij
−→n ii

. (16)

For each transmitter-receiver pair i, there exist five possible

interference regimes (IRs), as suggested in [9]: the very weak

IR (VWIR), i.e., αi 6
1
2 , the weak IR (WIR), i.e., 1

2 < αi 6
2
3 ,

the moderate IR (MIR), i.e., 2
3 < αi < 1, the strong IR (SIR),

i.e., 1 6 αi 6 2 and the very strong IR (VSIR), i.e., αi > 2.

The scenarios in which the desired signal is stronger than the

interference (αi < 1), namely the VWIR, the WIR, and the

MIR, are referred to as the low-interference regimes (LIRs).

Conversely, the scenarios in which the desired signal is weaker

than or equal to the interference (αi > 1), namely the SIR

and the VSIR, are referred to as the high-interference regimes

(HIRs).

The main results of this paper are presented using a set

of events (Boolean variables) that are determined by the

parameters −→n 11,
−→n 22, n12, and n21. Given a fixed tuple (−→n 11,

−→n 22, n12, n21), the events are defined below:

E1 : α1 < 1 ∧ α2 < 1, (17)

E2,i : αi 6
1

2
∧ 1 6 αj 6 2, (18)

E3,i : αi 6
1

2
∧ αj > 2, (19)

E4,i :
1

2
< αi 6

2

3
∧ αj > 1, (20)

E5,i :
2

3
< αi < 1 ∧ αj > 1, (21)

E6,i :
1

2
< αi 6 1 ∧ αj > 1, (22)

E7,i : αi > 1 ∧ αj 6 1, (23)

E8,i :
−→n ii > nji, (24)

E9 : −→n 11 +
−→n 22 > n12 + n21, (25)

E10,i :
−→n ii +

−→n jj > nij + 2nji, (26)

E11,i :
−→n ii +

−→n jj < nij . (27)

In the following, in the case of E8,i : −→n ii > nji, the

notation ‹E8,i indicates −→n ii < nji; the notation E8,i indicates
−→n ii 6 nji (logical complement); and the notation Ě8,i

indicates −→n ii > nji. In the case of E1 : α1 < 1 ∧ α2 < 1,

the notation ‹E1 indicates α1 > 1 ∧ α2 > 1; and the

notation E1 indicates α1 > 1 ∧ α2 > 1. In the case of

E9 : −→n 11 + −→n 22 > n12 + n21, the notation E9 indicates
−→n 11 +

−→n 22 6 n12 + n21.

Combining the events (17)-(27), five main scenarios are

identified:

S1,i: (E1 ∧ E8,i)∨(E2,i ∧ E8,i)∨(E3,i ∧ E8,i ∧ E9)

∨(E4,i ∧ E8,i ∧ E9)∨(E5,i ∧ E8,i ∧ E9) , (28)

S2,i:
Ä
E3,i ∧ ‹E8,j ∧ E9

ä
∨
Ä
E6,i ∧ ‹E8,j ∧ E9

ä
∨
Ä‹E1 ∧ ‹E8,j

ä
,

(29)

S3,i:
(
E1 ∧ E8,i

)
∨
(
E2,i ∧ E8,i

)
∨
(
E3,i ∧ Ě8,j ∧ E8,i

)

∨
(
E4,i ∧ Ě8,j ∧ E8,i

)
∨
(
E5,i ∧ Ě8,j ∧ E8,i

)

∨
(
E1 ∧ Ě8,j

)
∨ (E7,i) , (30)

S4 :E1 ∧ E8,1 ∧ E8,2 ∧ E10,1 ∧ E10,2, (31)

S5 :E1 ∧ E11,1 ∧ E11,2. (32)

For all i ∈ {1, 2}, the events S1,i, S2,i, S3,i, S4 and S5 exhibit

the properties stated by the following corollaries.

Corollary 1: For all (−→n 11,
−→n 22, n12, n21) ∈ N4, given a

fixed i ∈ {1, 2}, only one of the events S1,i, S2,i and S3,i

holds true.

Corollary 2: For all (−→n 11,
−→n 22, n12, n21) ∈ N4, when one

of the events S4 or S5 holds true, then the other necessarily

holds false.

Note that Corollary 2 does not exclude the case in which

both S4 and S5 simultaneously hold false.

Corollary 3: For all (−→n 11,
−→n 22, n12, n21) ∈ N4, when S4

holds true, then both S1,1 and S1,2 hold true; and when S5

holds true, then both S2,1 and S2,2 hold true.
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B. Rate Improvement Metrics

Given a fixed tuple (−→n 11,
−→n 22, n12, n21), let C(←−n 11,

←−n 22)
be the capacity region of an LD-IC with noisy channel-

output feedback with parameters←−n 11 and←−n 22. The maximum

improvement of the individual rates R1 and R2, denoted

by ∆1(
←−n 11,

←−n 22) and ∆2(
←−n 11,

←−n 22), due to the effect of

channel-output feedback with respect to the case without

feedback is:

∆1(
←−n 11,

←−n 22)=max
0<R2<R∗

2

{
sup

{
R1 : (R1, R2) ∈ C(

←−n 11,
←−n 22)

}

− sup
{
R
†
1 : (R†1, R2) ∈ C(0, 0)

}}
and (33)

∆2(
←−n 11,

←−n 22)=max
0<R1<R∗

1

{
sup

{
R2 : (R1, R2) ∈ C(

←−n 11,
←−n 22)

}

− sup
{
R
†
2 : (R1, R

†
2) ∈ C(0, 0)

}}
, (34)

with

R∗1=sup {r1 : (r1, r2) ∈ C(0, 0)} and (35)

R∗2=sup {r2 : (r1, r2) ∈ C(0, 0)} . (36)

Note that for a fixed i ∈ {1, 2}, ∆i(
←−n 11,

←−n 22) > 0 if and

only if it is possible to achieve a rate pair (R1, R2) ∈ R2
+

with channel-output feedback such that Ri is greater than

the maximum rate achievable by transmitter-receiver i without

feedback when the rate of transmitter-receiver pair j is fixed

at Rj . In the following, given fixed parameters←−n 11 and←−n 22,

the statement “the rate Ri is improved by using feedback” is

used to indicate that ∆i(
←−n 11,

←−n 22) > 0.

Alternatively, the maximum improvement of the sum-rate

Σ(←−n 11,
←−n 22) with respect to the case without feedback is:

Σ(←−n 11,
←−n 22)=sup

{
R1 +R2 : (R1, R2) ∈ C(

←−n 11,
←−n 22)

}

− sup
{
R
†
1 +R

†
2 : (R†1, R

†
2) ∈ C(0, 0)

}
. (37)

Note that Σ(←−n 11,
←−n 22) > 0 if and only if there exists a rate

pair with feedback whose sum is greater than the maximum

sum-rate achievable without feedback. In the following, given

fixed parameters ←−n 11 and ←−n 22, the statement “the sum-

rate is improved by using feedback” is used to imply that

Σ(←−n 11,
←−n 22) > 0.

In the following, when feedback is exclusively used by

transmitter-receiver pair i, i.e., ←−n ii > 0 and ←−n jj = 0,

then the maximum improvement of the individual rate of

transmitter-receiver k, with k ∈ {1, 2}, and the maximum

improvement of the sum-rate are denoted by ∆k(
←−n ii) and

Σ(←−n ii), respectively. Hence, this notation ∆k(
←−n ii) replaces

either ∆k(
←−n 11, 0) or ∆k(0,

←−n 22), when i = 1 or i = 2,

respectively. The same holds for the notation Σ(←−n ii) that

replaces Σ(←−n 11, 0) or Σ(0,←−n 22), when i = 1 or i = 2,

respectively.

C. Enlargement of the Capacity Region

Given fixed parameters (−→n 11,
−→n 22, n12, n21), i ∈ {1, 2},

and j ∈ {1, 2}\{i}, the capacity region of a two-user LD-IC,

when feedback is available only at transmitter-receiver pair i,

i.e., ←−n ii > 0 and ←−n jj = 0, is denoted by C (←−n ii) instead of

C (←−n 11, 0) or C (0,←−n 22), when i = 1 or i = 2, respectively.

Following this notation, Theorem 1 identifies the exact values

of ←−n ii for which the strict inclusion C (0, 0) ⊂ C (←−n ii) holds

for i ∈ {1, 2}.
Theorem 1: Let (−→n 11,

−→n 22, n12, n21) ∈ N4 be a fixed

tuple. Let also i ∈ {1, 2}, j ∈ {1, 2} \ {i} and ←−n ∗ii ∈ N be

fixed integers, with

←−n ∗ii =

®
max

Ä
nji, (

−→n ii − nij)
+
ä

if S1,i holds true
−→n jj + (−→n ii − nij)

+
if S2,i holds true .

(38)

Assume that S3,i holds true. Then, for all ←−n ii ∈ N,

C
(
0, 0
)
= C

(
←−n ii

)
. Assume that either S1,i holds true or S2,i

holds true. Then, for all ←−n ii 6
←−n ∗ii, C

(
0, 0
)
= C

(
←−n ii

)
and

for all ←−n ii >
←−n ∗ii, C

(
0, 0
)
⊂ C

(
←−n ii

)
.

Proof: The proof of Theorem 1 is presented in Appendix

A.

Theorem 1 shows that under event S3,i in (30), implement-

ing feedback in transmitter-receiver pair i, with any ←−n ii > 0
and ←−n jj = 0, does not enlarge the capacity region. Note that

when both E8,i and ‹E8,j hold false, then both S1,i and S2,i

hold false, which implies that S3,i holds true (Corollary 1).

The following remark is a consequence of this observation.

Remark 1: A necessary but not sufficient condition for

enlarging the capacity region by using feedback in transmitter-

receiver pair i is: there exists at least one transmitter able to

send more information bits to receiver i than to receiver j,

i.e., −→n ii > nji (Event E8,i) or nij >
−→n jj (Event ‹E8,j).

Alternatively, under events S1,i in (28) and S2,i in (29),

the capacity region can be enlarged when ←−n ii >
←−n ∗ii. It is

important to highlight that in the cases in which feedback

enlarges the capacity region of the two-user LD-IC-NOF, that

is, in events S1,1, S2,1, S1,2 or S2,2, for all i ∈ {1, 2} and

j ∈ {1, 2} \ {i}, the following always holds true:

←−n ∗ii > (−→n ii − nij)
+. (39)

Essentially, the inequality in (39) unveils a necessary but

not sufficient condition to enlarge the capacity region using

channel-output feedback. This condition is that for at least

one i ∈ {1, 2}, with j ∈ {1, 2} \ {i}, transmitter i decodes

a subset of the information bits sent by transmitter j at each

channel use.

Another interesting observation is that the threshold ←−n ∗ii
beyond which feedback is useful is different under event S1,i

in (28) and event S2,i in (29). In general when S1,i holds true,

the enlargement of the capacity region is due to the fact that

feedback allows using interference as side information [25].

Alternatively, when S2,i in (29) holds true, the enlargement

of the capacity region occurs as a consequence of the fact

that some of the bits that cannot be transmitted directly from

transmitter j to receiver j, can arrive to receiver j via an

alternative path: transmitter j - receiver i - transmitter i -

receiver j. Both scenarios, interference as side information

and alternative path, are extensively discussed in [15], [16],

and [17].
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D. Improvement of the Individual Rate Ri by Using Feedback

in Link i

Given fixed parameters (−→n 11,
−→n 22, n12, n21), and i ∈

{1, 2}, implementing channel-output feedback in transmitter-

receiver pair i increases the individual rate Ri, i.e.,

∆i(
←−n ii) > 0 for some values of ←−n ii. Theorem 2 identifies

the exact values of ←−n ii for which ∆i(
←−n ii) > 0.

Theorem 2: Let (−→n 11,
−→n 22, n12, n21) ∈ N4 be a fixed

tuple. Let also i ∈ {1, 2}, j ∈ {1, 2} \ {i} and ←−n †ii ∈ N be

fixed integers, with

←−n †ii = max
Ä
nji, (

−→n ii − nij)
+
ä
. (40)

Assume that either S2,i holds true or S3,i holds true. Then,

for all ←−n ii ∈ N, ∆i(
←−n ii) = 0. Assume that S1,i holds true.

Then, when ←−n ii 6
←−n †ii, it holds that ∆i(

←−n ii) = 0; and when
←−n ii >

←−n †ii, it holds that ∆i(
←−n ii) > 0.

Proof: The proof of Theorem 2 is presented in Appendix

B.

Theorem 2 highlights that under events S2,i in (29)

and S3,i in (30), the individual rate Ri cannot be im-

proved by using feedback in transmitter-receiver pair i, i.e.,

∆i(
←−n ii) = 0. Alternatively, under event S1,i in (28), the

individual rate Ri can be improved, i.e., ∆i

(
←−n ii

)
> 0,

whenever ←−n ii > max
Ä
nji, (

−→n ii − nij)
+
ä

. Hence, given the

definition of S1,i, the following remark is relevant.

Remark 2: A necessary but not sufficient condition for

∆i

(
←−n ii

)
> 0 is: the number of bit-pipes from transmitter

i to receiver i is greater than the number of bit-pipes from

transmitter i to receiver j, i.e., −→n ii > nji (Event E8,i)

E. Improvement of the Individual Rate Rj by Using Feedback

in Link i

Given fixed parameters (−→n 11,
−→n 22, n12, n21), i ∈ {1, 2},

and j ∈ {1, 2}\{i}, implementing channel-output feedback in

transmitter-receiver pair i increases the individual rate Rj , i.e.,

∆j(
←−n ii) > 0 for some values of ←−n ii. Theorem 3 identifies

the exact values of ←−n ii for which ∆j(
←−n ii) > 0.

Theorem 3: Let (−→n 11,
−→n 22, n12, n21) ∈ N4 be a fixed

tuple. Let also i ∈ {1, 2}, j ∈ {1, 2} \ {i} and ←−n ∗ii ∈ N

given in (38), be fixed integers. Assume that S3,i holds true.

Then, for all ←−n ii ∈ N, ∆j(
←−n ii) = 0. Assume that either

S1,i holds true or S2,i holds true. Then, when ←−n ii 6
←−n ∗ii, it

holds that ∆j(
←−n ii) = 0; and when ←−n ii >

←−n ∗ii, it holds that

∆j(
←−n ii) > 0.

Proof: The proof of Theorem 3 follows along the same

lines of the proof of Theorem 2 in Appendix B.

Theorem 3 shows that under event S3,i in (30), imple-

menting feedback in transmitter-receiver pair i does not bring

any improvement on the rate Rj . This is in line with the

results of Theorem 1. In contrast, under events S1,i in (28)

and S2,i in (29), the individual rate Rj can be improved, i.e.,

∆j(
←−n ii) > 0 for all←−n ii >

←−n ∗ii. From the definition of events

S1,i and S2,i, the following remark holds:

Remark 3: A necessary but not sufficient condition for

∆j

(
←−n ii

)
> 0 is: there exists at least one transmitter able

to send more information bits to receiver i than to receiver j,

i.e., −→n ii > nji (Event E8,i) or nij >
−→n jj (Event ‹E8,j).

It is important to highlight that under event S1,i, the

threshold on ←−n ii for increasing the individual rate Ri, i.e.,
←−n †ii, and Rj , i.e., ←−n ∗ii, are identical, see Theorem 2 and

Theorem 3. This implies that in this case, the use of feedback

in transmitter-receiver pair i, with ←−n ii > ←−n †ii = ←−n ∗ii,
benefits both transmitter-receiver pairs, i.e., ∆i(

←−n ii) > 0
and ∆j(

←−n ii) > 0. Under event S2,i, using feedback in

transmitter-receiver pair i, with ←−n ii > ←−n ∗ii, exclusively

benefits transmitter-receiver pair j, i.e., ∆i(
←−n ii) = 0 and

∆j(
←−n ii) > 0.

F. Improvement of the Sum-Rate

Given fixed parameters (−→n 11,
−→n 22, n12, n21), and

i ∈ {1, 2}, implementing channel-output feedback in

transmitter-receiver pair i increases the sum-rate, i.e.,

Σ(←−n ii) > 0 for some values of ←−n ii. Theorem 4 identifies

the exact values of ←−n ii for which Σ(←−n ii) > 0.

Theorem 4: Let (−→n 11,
−→n 22, n12, n21) ∈ N4 be a fixed

tuple. Let also i ∈ {1, 2}, j ∈ {1, 2} \ {i} and ←−n +
ii ∈ N be

fixed integers, with

←−n +
ii =

®
max

Ä
nji, (

−→n ii − nij)
+
ä

if S4 holds true
−→n jj + (−→n ii − nij)

+
if S5 holds true .

(41)

Assume that S4 holds false and S5 holds false. Then,

Σ(←−n ii) = 0 for all←−n ii ∈ N. Assume that S4 holds true or S5

holds true. Then, when←−n ii 6
←−n +

ii , it holds that Σ(←−n ii) = 0;

and when ←−n ii >
←−n +

ii , it holds that Σ(←−n ii) > 0.

Proof: The proof of Theorem 4 is presented in Appendix

C.

Theorem 4 introduces a necessary but not sufficient condition

for improving the sum-rate by implementing feedback in

transmitter-receiver pair i.

Remark 4: A necessary but not sufficient condition for

observing Σ(←−n ii) > 0 is to satisfy one of the following

conditions: (a) both transmitter-receiver pairs are in LIR

(Event E1); or (b) both transmitter-receiver pairs are in HIR

(Event E1).

Finally, it follows from Corollary 3 that when S4 or S5

holds true, with i ∈ {1, 2} and ←−n ii >
←−n +

ii , in addition to

Σ(←−n ii) > 0, it also holds that ∆1(
←−n ii) > 0 and ∆2(

←−n ii) >
0.

IV. EXAMPLES

Example 1: Consider an LD-IC-NOF with parameters
−→n 11 = 7, −→n 22 = 7, n12 = 3, and n21 = 5.

In Example 1, both S1,1 and S1,2 hold true. Hence, from

Theorem 1, when ←−n 11 > 5 or ←−n 22 > 3, there always exists

an enlargement of the capacity region. More specifically, it

follows from Theorem 2 and Theorem 3 that using feedback

in transmitter-receiver pair 1, with←−n 11 > 5 or using feedback

in transmitter-receiver pair 2, with ←−n 22 > 3, both individual

rates can be simultaneously improved, i.e., ∆1(
←−n ii) > 0

and ∆2(
←−n ii) > 0 with i = 1 or i = 2, respectively.

Alternatively, note that S4 holds true. Hence, it follows from
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Fig. 3. Capacity regions C(0, 0) (thick red line) and C(6, 0) (thin blue line),
with −→n 11 = 7, −→n 22 = 7, n12 = 3, n21 = 5.

Theorem 4 that using feedback in transmitter-receiver pair 1,

with ←−n 11 > 5 or using feedback in transmitter-receiver pair

2, with ←−n 22 > 3, improves the sum-rate, i.e., Σ(←−n ii) > 0
with i = 1 or i = 2 respectively. These conclusions are

observed in Figure 3, for the case ←−n 11 = 6 and ←−n 22 = 0,

where the capacity regions C(0, 0) (thick red line) and C(6, 0)
(thin blue line) are plotted. Note that, when ←−n 11 = 6, there

always exist a rate pair (R′1, R
′
2) ∈ C (0, 0) and a rate pair

(R1, R2) ∈ C(6, 0) \ C(0, 0) such that R′1 < R1 and R′2 = R2

(Theorem 2). Simultaneously, there always exist a rate pair

(R′1, R
′
2) ∈ C (0, 0) and a rate pair (R1, R2) ∈ C(6, 0)\C(0, 0)

such that R′2 < R2 and R′1 = R1 (Theorem 3). Finally, note

that for all rate pairs (R′1, R
′
2) ∈ C (0, 0) there always exists a

rate pair (R1, R2) ∈ C(6, 0), for which R1 + R2 > R′1 + R′2
(Theorem 4).

Example 2: Consider an LD-IC-NOF with parameters
−→n 11 = 7, −→n 22 = 8, n12 = 6, and n21 = 5.

In Example 2, the events S1,1 and S1,2 hold true; and the

events S4 and S5 hold false. Hence, it follows from Theorem

4 that using feedback in either transmitter-receiver pair does

not improve the sum-rate, i.e., for all i ∈ {1, 2} and for all
←−n ii > 0, Σ(←−n ii) = 0. These conclusions are observed in

Figure 4, for the case ←−n 11 = 0 and ←−n 22 = 7, where the

capacity regions C(0, 0) (thick red line) and C(0, 7) (thin blue

line) are plotted. From Example 2, it becomes evident that

when S1,1 and S1,2 hold true, S4 and S5 do not necessarily

hold true. That is, the improvements on the individual rates,

despite that they can be observed simultaneously, are not

enough to improve the sum-rate beyond what is already

achievable without feedback.

Example 3: Consider an LD-IC-NOF with parameters
−→n 11 = 5, −→n 22 = 1, n12 = 3, and n21 = 4.

In Example 3, both S2,1 in (29) and S3,2 in (30) hold true.

Hence, it follows from Theorem 1 that the capacity region can

be enlarged by using feedback in transmitter-receiver pair 1
when←−n 11 > 3, whereas using feedback in transmitter-receiver

pair 2 does not enlarge the capacity region. More specifically,

it follows from Theorem 2 and Theorem 3 that using feedback

in transmitter-receiver pair 1 does not improve the individual

Fig. 4. Capacity regions C(0, 0) (thick red line) and C(0, 7) (thin blue line),
with −→n 11 = 7, −→n 22 = 8, n12 = 6, n21 = 5.

rate R1 but R2, i.e., ∆1(
←−n 11) = 0 and ∆2(

←−n 11) > 0.

Note also that S4 and S5 hold false. Hence, it follows from

Theorem 4 that using feedback in either transmitter-receiver

pair does not improve the sum-rate, i.e., Σ(←−n 11) = 0 and

Σ(←−n 22) = 0. These conclusions are observed in Figure 5, for

the case ←−n 11 = 4 and ←−n 22 = 0, where the capacity regions

C(0, 0) (thick red line) and C(4, 0) (thin blue line) are plotted.

V. IMPLICATIONS ON THE GAUSSIAN INTERFERENCE

CHANNEL

Given a fixed tuple
Ä−−→
SNR1,

−−→
SNR2, INR12, INR21

ä
, let

R(
←−−
SNR1,

←−−
SNR2) be the achievable region of the G-IC-NOF

described by Theorem 2 in [17] with parameters
←−−
SNR1 and

←−−
SNR2; let R(

←−−
SNR1,

←−−
SNR2) be the converse region of the

G-IC-NOF described by Theorem 3 in [17] with parameters
←−−
SNR1 and

←−−
SNR2; and let also C(

←−−
SNR1,

←−−
SNR2) be the capacity

region of the G-IC-NOF with parameters
←−−
SNR1 and

←−−
SNR2.

These regions satisfy the following inclusions:

R(
←−−
SNR1,

←−−
SNR2) ⊆ C(

←−−
SNR1,

←−−
SNR2) ⊆ R(

←−−
SNR1,

←−−
SNR2).

(42)

A. Improvement Metrics

In order to quantify the benefits of channel-output feed-

back in enlarging the achievable region R(
←−−
SNR1,

←−−
SNR2) or

the converse region R(
←−−
SNR1,

←−−
SNR2), consider the following

improvement metrics, which are similar to those defined in

Sec. III-B for the LD-IC-NOF. The improvement metrics on

the individual rates are defined as

∆A
1 (
←−−
SNR1,

←−−
SNR2) =

max
0<R2<R∗

2

{
sup

{
R1 : (R1, R2) ∈ R(

←−−
SNR1,

←−−
SNR2)

}

− sup
{
R
†
1 : (R†1, R2) ∈ R(0, 0)

}}
, (43)
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Fig. 5. Capacity regions C(0, 0) (thick red line) and C(4, 0) (thin blue line),
with −→n 11 = 5, −→n 22 = 1, n12 = 3, n21 = 4.

∆A
2 (
←−−
SNR1,

←−−
SNR2) =

max
0<R1<R∗

1

{
sup

{
R2 : (R1, R2) ∈ R(

←−−
SNR1,

←−−
SNR2)

}

− sup
{
R
†
2 : (R1, R

†
2) ∈ R(0, 0)

}}
, (44)

∆C
1 (
←−−
SNR1,

←−−
SNR2) =

max
0<R2<R

†

2

{
sup

{
R1 : (R1, R2) ∈ R(

←−−
SNR1,

←−−
SNR2)

}

− sup
{
R
†
1 : (R†1, R2) ∈ R(0, 0)

}}
, and (45)

∆C
2 (
←−−
SNR1,

←−−
SNR2) =

max
0<R1<R

†

1

{
sup

{
R2 : (R1, R2) ∈ R(

←−−
SNR1,

←−−
SNR2)

}

− sup
{
R
†
2 : (R1, R

†
2) ∈ R(0, 0)

}}
, (46)

with

R∗1=sup {r1 : (r1, r2) ∈ R(0, 0)} , (47)

R∗2=sup {r2 : (r1, r2) ∈ R(0, 0)} , (48)

R
†
1=sup

{
r1 : (r1, r2) ∈ R(0, 0)

}
, and (49)

R
†
2=sup

{
r2 : (r1, r2) ∈ R(0, 0)

}
. (50)

Alternatively, the maximum improvements of the sum-rate

ΣA(
←−−
SNR1,

←−−
SNR2) and ΣC(

←−−
SNR1,

←−−
SNR2) with respect to the

case without feedback are:

ΣA(
←−−
SNR1,

←−−
SNR2) =

sup
{
R1 +R2 : (R1, R2) ∈ R(

←−−
SNR1,

←−−
SNR2)

}

− sup
{
R
†
1 +R

†
2 : (R†1, R

†
2) ∈ R(0, 0)

}
, and (51)

ΣC(
←−−
SNR1,

←−−
SNR2) =

sup
{
R1 +R2 : (R1, R2) ∈ R(

←−−
SNR1,

←−−
SNR2)

}

− sup
{
R
†
1 +R

†
2 : (R†1, R

†
2) ∈ R(0, 0)

}
. (52)

B. Approximate Thresholds on the Feedback SNRs

In Section II-C, the connections between the LD-

IC-NOF and the G-IC-NOF were discussed. Using

these connections, a G-IC with fixed parametersÄ−−→
SNR1,

−−→
SNR2, INR12, INR21

ä
is approximated by

an LD-IC with parameters −→n 11 = ⌊ 12 log2(
−−→
SNR1)⌋,

−→n 22 = ⌊ 12 log2(
−−→
SNR2)⌋, n12 = ⌊ 12 log2(INR12)⌋, and

n21 = ⌊ 12 log2(INR21)⌋. From this observation, the results

from Theorem 1 - Theorem 4 can be used to determine

the feedback SNR thresholds beyond which either an

individual rate or the sum-rate is improved in the original

G-IC-NOF. The procedure consists on using the equalities
←−n ii = ⌊

1
2 log2

Ä←−−
SNRi

ä
⌋, with i ∈ {1, 2}. Hence, the

corresponding thresholds in the G-IC can be approximated

by:

←−−
SNR∗i =22

←−n ∗
ii , (53a)

←−−
SNR†i =22

←−n
†

ii , and (53b)
←−−
SNR+

i =22
←−n

+

ii . (53c)

When the corresponding LD-IC-NOF is such that its capacity

region can be improved when ←−n ii >
←−n ∗ii (Theorem 1), for

a given i ∈ {1, 2}, it is expected that either the achievability

or converse regions of the original G-IC-NOF become larger

when
←−−
SNRi >

←−−
SNR∗i . Similarly, when the corresponding LD-

IC-NOF is such that ∆i(
←−n ii) > 0 or ∆i(

←−n jj) > 0, it is

expected to observe an improvement on the individual rate

Ri by either using feedback in transmitter-receiver pair i,

with
←−−
SNRi >

←−−
SNR†i or by using feedback in transmitter-

receiver pair j, with
←−−
SNRj >

←−−
SNR∗j . In the case of the

sum-rate, when the corresponding LD-IC-NOF is such that

Σ(←−n ii) > 0 using feedback in transmitter-receiver pair i,

with ←−n ii >
←−n +

ii , (Theorem 4), it is expected to observe an

improvement on the sum-rate by using feedback in transmitter-

receiver pair i, with
←−−
SNRi >

←−−
SNR+

i . Finally, when no

improvement in a given metric is observed in the LD-IC-

NOF, i.e., ∆1(
←−n 11) = 0, ∆1(

←−n 22) = 0, ∆2(
←−n 11) = 0,

∆2(
←−n 22) = 0, Σ(←−n 11) = 0, or Σ(←−n 22) = 0, only a negli-

gible improvement (if any) is observed in the corresponding

metric of the G-IC-NOF. For instance, when ∆1(
←−n 11) = 0,

it is expected that ∆C
1 (
←−−
SNR1, 0) < ǫ and ∆A

1 (
←−−
SNR1, 0) < ǫ,

with ǫ > 0. Similarly, when ∆2(
←−n 11) = 0, it is expected

that ∆C
2 (
←−−
SNR1, 0) < ǫ and ∆A

2 (
←−−
SNR1, 0) < ǫ. Finally, when

Σ(←−n 11) = 0, it is expected that ΣC(
←−−
SNR1, 0) < ǫ and

ΣA(
←−−
SNR1, 0) < ǫ.

C. Examples

The following examples highlight the relevance of the

approximations in (53).

Example 4: Consider a G-IC with parameters
−−→
SNR1 = 44dB,

−−→
SNR2 = 44dB, INR12 = 20dB, and

INR21 = 33dB.

The linear deterministic approximation to the G-IC in

Example 4 is the one presented in Example 1. Hence,
←−n ∗11 = ←−n †11 = ←−n +

11 = 5 and ←−n ∗22 = ←−n †22 = ←−n +
22 = 3.
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Fig. 6. Improvement metrics ∆A

i
, ∆C

i
, ΣA, and ΣC as functions of

←−−
SNR1 and

←−−
SNR2, with i ∈ {1, 2}, for Example 4.

This implies that
←−−
SNR∗

1 =
←−−
SNR†

1 =
←−−
SNR+

1 = 30dB and
←−−
SNR∗

2 =
←−−
SNR†

2 =
←−−
SNR+

2 = 18dB.

Figure 6 shows that significant improvements on the metrics

∆A
i (
←−−
SNR1,

←−−
SNR2), ∆C

i (
←−−
SNR1,

←−−
SNR2), ΣA(

←−−
SNR1,

←−−
SNR2)

and ΣC(
←−−
SNR1,

←−−
SNR2) are obtained when the feedback SNRs

are beyond the corresponding thresholds. More importantly,

negligible effects are observed when
←−−
SNR1 <

←−−
SNR∗

1 and
←−−
SNR2 <

←−−
SNR∗

2.

Example 5: Consider a G-IC with parameters
−−→
SNR1 = 33dB,

−−→
SNR2 = 9dB, INR12 = 20dB, and
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INR21 = 27dB.

The linear deterministic approximation to the G-IC in Example

5 is the one presented in Example 3. Hence, ←−n ∗
11 = 3, which

implies that
←−−

SNR∗
1 = 18dB. It follows from the LD-IC

that using feedback in transmitter-receiver pair 1 exclusively

increases the individual rate R2. This is observed in Figure

7c. Note that the improvement in the individual rate R2 for

all
←−−

SNR1 <
←−−

SNR∗
1 is negligible. Significant improvement is

observed only beyond the threshold
←−−

SNR∗
1.

Note also that using feedback in either transmitter-

receiver pair does not improve the rate R1 in the LD-

IC-NOF, i.e., ∆1(
←−n 11) = ∆1(

←−n 22) = 0. This is

also verified in the G-IC-NOF by Figure 7a, Figure 7b,

and Figure 7d, where ∆A
1

Ä
−100dB,

←−−

SNR2

ä
< 0.15 and

∆C
1

Ä
−100dB,

←−−

SNR2

ä
< 0.1.

Finally, note that using feedback in either transmitter-

receiver pair does not increase the sum-rate in the

LD-IC-NOF, i.e., Σ(←−n 11) = Σ(←−n 22) = 0. This

is also verified in the G-IC-NOF by Figure 7e and

Figure 7f, where ΣA
Ä
←−−

SNR1,−100dB
ä

< 0.15,

ΣC
Ä
←−−

SNR1,−100dB
ä
< 0.05, ΣA

Ä
−100dB,

←−−

SNR2

ä
< 0.15,

and ΣC
Ä
−100dB,

←−−

SNR2

ä
< 0.05.
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VII. CONCLUSIONS

In this paper, for any 4-tuple (−→n 11,
−→n 22, n12, n21) ∈ N4,

the exact values of the feedback parameters ←−n 11 and ←−n 22

of the two-user LD-IC-NOF beyond which the capacity re-

gion enlarges are characterized. That is, the exact values

of ←−n 11 (resp. ←−n 22) for which C(0, 0) ⊂ C(←−n 11, 0)
(
resp.

C(0, 0) ⊂ C(0,←−n 22)
)

holds with strict inclusion. The SNRs in

the feedback links beyond which feedback plays a significant

role in terms of increasing the individual rates or the sum-

rate in the G-IC are also identified. The relevance of this

work lies on the fact that it allows identifying a number

of scenarios in any G-IC for which one of the following

statements is true: (a) feedback does not enlarge the capacity

region; (b) feedback enlarges the capacity region and the sum-

rate is greater than the largest sum-rate without feedback; and

(c) feedback enlarges the capacity region but no significant

improvement is observed in the sum-rate.

APPENDIX A

PROOF OF THEOREM 1: ENLARGEMENT OF THE CAPACITY

REGION BY USING FEEDBACK IN ONE

TRANSMITTER-RECEIVER PAIR

The proof of Theorem 1 is obtained by comparing

C(←−n 11, 0)
(
resp. C(0,←−n 22)

)
and C(0, 0), with fixed param-

eters −→n 11, −→n 22, n12, and n21. More specifically, for each

tuple
(−→n 11, −→n 22, n12, n21

)
, the exact value ←−n ∗

11 (resp ←−n ∗
22)

for which any ←−n 11 > ←−n ∗
11 (resp ←−n 22 > ←−n ∗

22) ensures

C(0, 0) ⊂ C(←−n 11, 0) (resp. C(0, 0) ⊂ C(0,←−n 22)) is calculated.

This procedure is tedious and repetitive, and thus, in this

appendix only one combination of interference regimes is

studied, namely, VWIR - VWIR.

Proof:

Consider that both transmitter-receiver pairs are in VWIR,

that is,

α1 =
n12
−→n 11

6
1

2
and α2 =

n21
−→n 22

6
1

2
. (54)

When the conditions in (54) are fulfilled, it follows from

Theorem 1 in [17] that C(0, 0) is the set of non-negative rate

pairs (R1, R2) ∈ R2
+ that satisfy:

R16
−→n 11 , θ1, (55a)

R26
−→n 22 , θ2, (55b)

R1 +R26min
(
max (−→n 22, n12) +

−→n 11 − n12,

max (−→n 11, n21) +
−→n 22 − n21

)
, θ3, (55c)

R1 +R26max (−→n 11 − n12, n21) + max (−→n 22 − n21, n12)

,θ4, (55d)

2R1 +R26max (−→n 11, n21) +
−→n 11 − n12

+max (−→n 22 − n21, n12) , θ5, (55e)

R1 + 2R26max (−→n 22, n12) +
−→n 22 − n21

+max (n21,
−→n 11 − n12) , θ6. (55f)

Note that for all (−→n 11,
−→n 22, n12, n21,

←−n 22) ∈ N
5

and ←−n 11 > max (−→n 11, n12), it follows that

C(←−n 11,
←−n 22) = C(max(−→n 11, n12),

←−n 22). Hence, in the

following, the analysis is restricted to the following condition:

←−n 11 6 max (−→n 11, n12) . (56)

Under conditions (54) and (56), it follows from Theorem 1
in [17] that C(←−n 11, 0) is the set of rate pairs (R1, R2) ∈ R2

+

that satisfy:

R16
−→n 11, (57a)

R26
−→n 22, (57b)

R1 +R26min
(
max (−→n 22, n12) +

−→n 11 − n12,

max (−→n 11, n21) +
−→n 22 − n21

)
, (57c)

R1 +R26max (−→n 11 − n12, n21,
←−n 11)

+max (−→n 22 − n21, n12) , θ7, (57d)

2R1 +R26max (−→n 11, n21) +
−→n 11 − n12

+max (−→n 22 − n21, n12) , (57e)

R1 + 2R26max (−→n 22, n12) +
−→n 22 − n21

+max (−→n 11 − n12, n21,
←−n 11) , θ8. (57f)

When comparing C(0, 0) and C(←−n 11, 0), note that (55a), (55b),

(55c), and (55e) are equivalent to (57a), (57b), (57c), and

(57e), respectively. That being the case, the region C(←−n 11, 0)
is greater than the region C(0, 0) if at least one of the following

conditions holds true:

min(θ3, θ4, θ1 + θ2, θ5, θ6) < θ7 < min(θ3, θ1 + θ2, θ5, θ8),
(58a)
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Fig. 7. Improvement metrics ∆A
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, ∆C
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, ΣA, and ΣC as functions of

←−−
SNR1 and

←−−
SNR2, with i ∈ {1, 2}, for Example 5.

min(θ6, θ1 + 2θ2, θ2 + θ3, θ4 + θ2)<θ8<min
(
θ1 + 2θ2,

θ2 + θ3, θ2 + θ7
)
.

(58b)

Condition (58a) implies that the active sum-rate bound in

C(←−n 11, 0) is greater than the active sum-rate bound in C(0, 0).
Condition (58b) implies that the active weighted sum-rate

bound on R1 + 2R2 in C(←−n 11, 0) is greater than the active

weighted sum-rate bound on R1 + 2R2 in C(0, 0).

To simplify the inequalities containing the operator

max(·, ·) in (57) and (55), the following 4 cases are identified:

Case 1 :−→n 11 − n12 < n21 and −→n 22 − n21 < n12; (59)

Case 2 :−→n 11 − n12 < n21 and −→n 22 − n21 > n12; (60)

Case 3: −→n 11 − n12 > n21 and −→n 22 − n21 < n12; and (61)

Case 4: −→n 11 − n12 > n21 and −→n 22 − n21 > n12. (62)

Case 1: Under condition (54), the Case 1, i.e., (59), is not
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possible.

Case 2: Under condition (54), the case 2, i.e., (60), this case

is possible.

Plugging (60) into (57) yields:

R1 +R26min
(
−→n 22 +

−→n 11 − n12,max (−→n 11, n21)

+−→n 22 − n21

)
, (63a)

R1 +R26max (n21,
←−n 11) +

−→n 22 − n21, (63b)

R1 + 2R262−→n 22 − n21 +max (n21,
←−n 11) . (63c)

Plugging (60) into (55) yields:

R1 +R26
−→n 22, (64a)

R1 + 2R262−→n 22. (64b)

To simplify the inequalities containing the operator max(·, ·)
in (63), the following 2 cases are identified:

Case 2a :−→n 11 > n21; and (65)

Case 2b :−→n 11 6 n21. (66)

Case 2a: Plugging (65) into (63) yields:

R1 +R26
−→n 11 +

−→n 22 − n21, (67a)

R1 +R26max (n21,
←−n 11) +

−→n 22 − n21, (67b)

R1 + 2R262−→n 22 − n21 +max (n21,
←−n 11) . (67c)

Comparing inequalities (67a) and (67b) with inequality (64a),

it can be verified that min
(
−→n 11 + −→n 22 − n21, max

(
n21,

←−n 11

)
+ −→n 22 − n21

)
> −→n 22, i.e., condition (58a) holds,

when ←−n 11 > n21. Comparing inequalities (67c) and (64b),

it can be verified that 2−→n 22−n21+max (n21,
←−n 11) > 2−→n 22,

i.e., condition (58b) holds, when ←−n 11 > n21. Therefore,
←−n ∗

11 = n21 under conditions (54), (56), (60), and (65).

Case 2b: Plugging (66) into (63) yields:

R1 +R26
−→n 22, (68a)

R1 +R26max (n21,
←−n 11) +

−→n 22 − n21, (68b)

R1 + 2R262−→n 22 − n21 +max (n21,
←−n 11) . (68c)

Comparing inequalities (68a) and (68b) with inequality (64a),

it can be verified that min
(
−→n 22, max

(
n21, ←−n 11

)
+ −→n 22 −

n21

)
= −→n 22, i.e., condition (58a) does not hold, for all←−n 11 ∈

N. Comparing inequalities (68c) and (64b) it can be verified

that 2−→n 22−n21+max (n21,
←−n 11) > 2−→n 22, when←−n 11 > n21,

which implies that ←−n 11 > max (−→n 11, n12). However, under

the conditions (54), (56), (60), and (66), the bounds (64b) and

(68c) are not active. Hence, condition (58b) does not hold.

Therefore, for all ←−n 11 ∈ N, the capacity region cannot be

enlarged under conditions (54), (56), (60), and (66).

Case 3: Under condition (54), the Case 3, i.e., (61), is possible.

Plugging (61) into (57) yields:

R1 +R26min
(
max (−→n 22, n12) +

−→n 11 − n12,

−→n 11 +
−→n 22 − n21

)
, (69a)

R1 +R26max (−→n 11 − n12,
←−n 11) + n12, (69b)

R1 + 2R26max (−→n 22, n12) +
−→n 22 − n21

+max (−→n 11 − n12,
←−n 11) . (69c)

Plugging (61) into (55) yields:

R1 +R26
−→n 11, (70a)

R1 + 2R26max(−→n 22, n12)+
−→n 22 − n21+

−→n 11 − n12. (70b)

To simplify the inequalities containing the operator max(·, ·)
in (69) and (70), the following 2 cases are identified:

Case 3a :−→n 22 > n12; and (71)

Case 3b :−→n 22 6 n12. (72)

Case 3a: Plugging (71) into (69) yields:

R1 +R26
−→n 22 +

−→n 11 − n12, (73a)

R1 +R26max (−→n 11 − n12,
←−n 11) + n12, (73b)

R1 + 2R262−→n 22 − n21 +max (−→n 11 − n12,
←−n 11) . (73c)

Plugging (71) into (70) yields:

R1 +R26
−→n 11, (74a)

R1 + 2R262−→n 22 − n21 +
−→n 11 − n12. (74b)

Comparing inequalities (73a) and (73b) with inequality (74a),

it can be verified that min
(
−→n 22+

−→n 11−n12, max
(−→n 11−n12,

←−n 11

)
+ n12

)
> −→n 11, i.e., condition (58a) holds, when

←−n 11 >
−→n 11 − n12. Comparing inequalities (73c) and (74b),

it can be verified that 2−→n 22 − n21 + max
(−→n 11 − n12,

←−n 11

)
> 2−→n 22−n21+

−→n 11−n12, i.e., condition (58b) holds,

when←−n 11 >
−→n 11 − n12. Therefore,←−n ∗

11 = −→n 11−n12 under

conditions (54), (56), (61), and (71).

Case 3b: Plugging (72) into (69) yields:

R1 +R26
−→n 11, (75a)

R1 +R26max (−→n 11 − n12,
←−n 11) + n12, (75b)

R1 + 2R26n12+
−→n 22 − n21+max (−→n 11 − n12,

←−n 11) . (75c)

Plugging (71) into (70) yields:

R1 +R26
−→n 11, (76a)

R1 + 2R26
−→n 22 − n21 +

−→n 11. (76b)

Comparing inequalities (75a) and (75b) with inequality (76a),

it can be verified that min
(
−→n 11, max

(−→n 11 − n12, ←−n 11

)
+

n12

)
= −→n 11, i.e., condition (58a) does not hold, for all←−n 11 ∈

N. Comparing inequalities (75c) and (76b), it can be verified

that n12+
−→n 22−n21+max

(−→n 11−n12,←−n 11

)
> −→n 22−n21+

−→n 11, i.e., condition (58b) holds, when ←−n 11 >
−→n 11 − n12.

Therefore, ←−n ∗
11 = −→n 11 − n12 under conditions (54), (56),

(61), and (72).

Case 4: Under condition (54), Case 4, i.e., (62), is possible.

Plugging (62) into (57) yields:

R1 +R26min (−→n 22+
−→n 11 − n12,

−→n 11+
−→n 22 − n21) ,(77a)

R1 +R26max (−→n 11 − n12,
←−n 11) +

−→n 22 − n21, (77b)

R1 + 2R262−→n 22 − n21 +max (−→n 11 − n12,
←−n 11) . (77c)

Plugging (62) into (55) yields:

R1 +R26
−→n 11 − n12 +

−→n 22 − n21, (78a)

R1 + 2R262−→n 22 − n21 +
−→n 11 − n12. (78b)
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Comparing inequalities (77a) and (77b) with inequality (78a),

it can be verified that min
(
min

(
−→n 22 +−→n 11 − n12, −→n 11 +

−→n 22−n21

)
, max

(−→n 11−n12, ←−n 11

)
+−→n 22−n21

)
> −→n 11−

n12 + −→n 22 − n21, i.e., condition (58a) holds, when ←−n 11 >
−→n 11 − n12. Comparing inequalities (77c) and (78b), it can

be verified that: 2−→n 22 − n21 + max
(−→n 11 − n12, ←−n 11

)
>

2−→n 22 − n21 +
−→n 11 − n12, i.e., condition (58b) holds, when

←−n 11 >
−→n 11 − n12.

Therefore, ←−n ∗
11 = −→n 11 − n12 under conditions (54), (56),

and (62).

From all the observations above, when both transmitter-

receiver pairs are in VWIR (event E1 in (17) holds true),

it follows that when ←−n 11 > ←−n ∗
11 and −→n 11 > n21

(event E8,1 in (24) with i = 1 holds true) with ←−n ∗
11 =

max (−→n 11 − n12, n21), then C(0, 0) ⊂ C(←−n 11, 0). Otherwise,

C(0, 0) = C(←−n 11, 0). Note that when events E1 and E8,1 hold

simultaneously true, then the event S1,1 in (28) with i = 1
holds true, which verifies the statement of Theorem 1. The

same procedure can be applied for all the other combinations

of interference regimes. This completes the proof.

APPENDIX B

PROOF OF THEOREM 2: IMPROVEMENT OF THE

INDIVIDUAL RATE Ri BY USING FEEDBACK IN LINK i

The proof of Theorem 2 is obtained by comparing

C(←−n 11, 0)
(
resp. C(0,←−n 22)

)
and C(0, 0), for all possible

parameters −→n 11, −→n 22, n12, n21, and ←−n 11 (resp. −→n 11, −→n 22,

n12, n21, and ←−n 22). More specifically, for each tuple
(−→n 11,

−→n 22, n12, n21

)
, the exact value←−n †

11 (resp←−n †
22) for which any

←−n 11 >
←−n †

11 (resp ←−n 22 >
←−n †

22) ensures an improvement on

R1 (resp. R2), i.e., ∆1(
←−n 11, 0) > 0 (resp. ∆2(0,

←−n 22) > 0),

is calculated. This procedure is tedious and repetitive, and thus,

in this appendix only one combination of interference regimes

is studied, namely, VWIR - VWIR.

Proof:

Consider that both transmitter-receiver pairs are in VWIR,

i.e., conditions (54) hold. Under these conditions, the capacity

regions C(0, 0) and C(←−n 11, 0) are given by (55) and (57),

respectively. When comparing C(0, 0) and C(←−n 11, 0), note that

(55a), (55b), (55c), and (55e) are equivalent to (57a), (57b),

(57c), and (57e), respectively. In this case any improvement

on R1 is produced by an improvement on R1+R2 (condition

(58a)) or 2R1 + R2 (condition (58a)), and thus, the proof

of Theorem 2 in these particular interference regimes follows

exactly the same steps as in Theorem 1. This completes the

proof.

APPENDIX C

PROOF OF THEOREM 4: IMPROVEMENT OF THE SUM-RATE

CAPACITY BY USING FEEDBACK IN ONE

TRANSMITTER-RECEIVER PAIR

The proof of Theorem 4 is obtained by comparing

C(←−n 11, 0)
(
resp. C(0,←−n 22)

)
and C(0, 0), for all possible

parameters −→n 11, −→n 22, n12, n21, and ←−n 11 (resp. −→n 11, −→n 22,

n12, n21, and ←−n 22). More specifically, for each tuple
(−→n 11,

−→n 22, n12, n21

)
, the exact value ←−n +

11 (resp ←−n +
22) for which

any ←−n 11 >
←−n +

11 (resp ←−n 22 >
←−n +

22) ensures an improvement

on R1 + R2, i.e., Σ(←−n 11, 0) > 0 (resp. Σ(0,←−n 22) > 0), is

calculated. This procedure is tedious and repetitive, and thus,

in this appendix only one combination of interference regimes

is studied, namely, VWIR - VWIR.

Proof:

Consider that both transmitter-receiver pairs are in VWIR,

i.e., conditions (54) hold. Under these conditions, the capacity

regions C(0, 0) and C(←−n 11, 0) are given by (55) and (57),

respectively. When comparing C(0, 0) and C(←−n 11, 0), note that

(55a), (55b), (55c), and (55e) are equivalent to (57a), (57b),

(57c), and (57e), respectively.

In this case, the proof is focused on any improvement on

R1 + R2 (condition (58a)), and thus, the proof of Theorem

4 in these particular interference regimes follows exactly the

same steps as in Theorem 1.

From the analysis presented in Appendix A, it follows that:

Case 2a: condition (58a) holds true, when ←−n 11 > n21 under

conditions (54), (56), (60), and (65).

Case 2b: condition (58a) does not hold true, under conditions

(54), (60), and (66).

Case 3a: condition (58a) holds true, when ←−n 11 >
−→n 11− n12

under conditions (54), (56), (61), and (71).

Case 3b: condition (58a) does not hold true, when
←−n 11 >

−→n 11 − n12 under conditions (54), (56), (61), and (72).

Case 4: condition (58a) holds true, when ←−n 11 >
−→n 11 − n12

under conditions (54), (56), and (62).

From all the observations above, when both transmitter-

receiver pairs are in VWIR (event E1 in (17) holds true), it

follows that when ←−n 11 >
←−n +

11, −→n 11 > n21 (event E8,1 in

(24) with i = 1 holds true), −→n 22 > n12 (event E8,2 in (24)

with i = 2 holds true), −→n 11 + −→n 22 > n12 + 2n21 (event

E10,1 in (26) with i = 1 holds true), and −→n 11 + −→n 22 >

n21 + 2n12 (event E10,2 in (26) with i = 2 holds true)

with ←−n +
11 = max (−→n 11 − n12, n21), then Σ(←−n 11, 0) > 0.

Otherwise, Σ(←−n 11, 0) = 0. Note that when events E1, E8,1,

E8,2, E10,1, and E10,2 hold simultaneously true, then the

event S4 in (31) holds true, which verifies the statement of

Theorem 4. The same procedure can be applied for all the

other combinations of interference regimes. This completes

the proof.
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