
This is a repository copy of Robust recovery of missing data in electricity distribution 
systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/122382/

Version: Accepted Version

Article:

Genes, C., Esnaola, I. orcid.org/0000-0001-5597-1718, Perlaza, S.M. et al. (2 more 
authors) (2019) Robust recovery of missing data in electricity distribution systems. IEEE 
Transactions on Smart Grid, 10 (4). pp. 4057-4067. ISSN 1949-3053 

https://doi.org/10.1109/TSG.2018.2848935

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1

Robust Recovery of Missing Data in Electricity

Distribution Systems
Cristian Genes, Iñaki Esnaola, Samir M. Perlaza, Luis F. Ochoa, and Daniel Coca.

Abstract—The advanced operation of future electricity distri-
bution systems is likely to require significant observability of the
different parameters of interest (e.g., demand, voltages, currents,
etc.). Ensuring completeness of data is, therefore, paramount. In
this context, an algorithm for recovering missing state variable
observations in electricity distribution systems is presented. The
proposed method exploits the low rank structure of the state
variables via a matrix completion approach incorporating prior
knowledge in the form of second order statistics. Essentially,
the recovery method combines nuclear norm minimization with
Bayesian estimation. The performance of the new algorithm is
compared to the information-theoretic limits and tested through
simulations using actual data of an urban low voltage distribution
system. The impact of the prior knowledge is analyzed when a
mismatched covariance is used and under a Markovian sampling
that introduces structure in the observation pattern. Numerical
results demonstrate that the proposed algorithm is robust and
outperforms existing state of the art algorithms.

Index Terms—recovery of missing data, distribution systems,
matrix completion, Bayesian estimation

I. INTRODUCTION

THE wide-spread adoption of residential scale low carbon

technologies, such as photovoltaic systems and electric

vehicles, undoubtedly brings technical challenges to the elec-

tricity distribution systems. This is because these systems have

been designed for passive loads, see [1] and [2]. From the

standpoint of the smart grid vision, electricity distribution

systems including low voltage (LV) circuits, are likely to adopt

more active roles so as to cost-effectively manage controllable

network elements and participants [3]. As a result, monitoring

and control procedures are expected to face increasingly de-

manding performance requirements posed by the dynamic and

unknown scenarios that the smart grid gives rise to. Advanced

control strategies require timely and accurate data describing

the state of the grid. In this setting, the sensing infrastructure

is expected to provide complete and reliable state information

of the distribution system. However, in practical scenarios,
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the operator faces challenges like data injection attacks [4],

[5] or missing data [6], [7]. Sensor failures, unreliable com-

munication or data storage issues are some of the causes for

incomplete sets of observations. As a consequence, the state of

the grid is not perfectly known and control mechanisms are

difficult to implement. For instance, accurate measurements

are necessary to implement a centralized control scheme for

voltage regulation in distribution systems [8]. In view of this,

it is vital to develop estimation procedures for the missing data

using the available observations.

Missing data recovery can be cast as a minimum mean

square error (MMSE) estimation problem when a probabilistic

description of the underlying process governing the state

variables is available. However, the MMSE estimation relies

on accurate second order statistics which is an unrealistic

assumption in practical scenarios [7], [9]. The increased num-

ber of nonlinear loads and the turbulent nature of distributed

generation options in the locally controlled grid affects the

precision of the postulated statistics for the state variables.

For that reason, the efficiency of MMSE estimation is limited

in the smart grid context [7].

Matrix completion (MC) was recently proposed to recover

missing data from partial observations [10]. The main advan-

tage is that the recovery via MC requires mild assumptions

about the setting, e.g. access to second order statistics is not

required. Instead, matrix completion-based recovery exploits

the fact that correlated state variable vectors give rise to

approximately low rank data matrices. That being the case, the

recovery of the missing entries of low rank matrices is feasible

in a convex optimization context provided that a sufficient

fraction of the entries is observed [10], [11], and [12]. The

key theoretical results therein are based on the assumption

that the locations of sampled entries are uniformly distributed.

In practice, however, this assumption is not always satisfied.

For instance, in electricity distribution systems, missing data

entries tend to display significant structure across both space

and time [7]. The applicability of MC recovery for non-

uniform sampling is studied in [6] and [13]. Not surprisingly,

low rank minimization tools are also used to address the

problem of electricity price forecasting [14] and to develop

a framework for efficient processing of synchrophasor data

[6]. However, the nature of synchrophasor data is different

from the LV distribution data used in this work. In particular,

data describing the state variables of a LV distribution system

exhibits lower temporal resolution and significant correlation

that permits modeling the state variables as a stochastic

process.

Singular value thresholding (SVT) is a MC based recovery

algorithm introduced in [15]. The main advantage of this
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algorithm is the low computational cost which allows the use

matrices with up to one billion entries [15]. On the other side,

the main shortcoming of SVT is that it requires parameter

tuning for the thresholding step and there are no guidelines

for choosing the optimal value. In [16] the problem of opti-

mal soft-thresholding is addressed using Stein's unbiased risk

estimate (SURE) [17] where a closed-form expression for the

performance of the soft-thresholding step is provided in a

denoising framework.

This paper proposes an information-theoretic framework

for assessing the performance of missing data recovery tech-

niques in electricity distribution grids. The advantage of

this viewpoint is twofold. First, the fundamental limits of

missing data recovery in electricity distribution systems are

characterized. As a result, the optimal performance attainable

by a given sensing infrastructure can be specified. Secondly,

existing missing data recovery algorithms can be benchmarked

against the fundamental limits. On the other hand, operational

regimes in which the performance is largely suboptimal can

be identified. In view of this, a novel algorithm for recovering

missing data in electricity distribution systems is presented.

The proposed recovery method is based on SVT [15] and ad-

dresses two distinct challenges posed by electricity distribution

systems:

• Practical missing data patterns do not follow independent

and identically distributed observation patterns,

• The sensing infrastructure introduces noise.

The proposed algorithm addresses these challenges by provid-

ing an adaptive thresholding based on second order statistics.

To that end, the addition of a MMSE estimation step makes

possible the use of SURE [17] in a missing data recovery

setting. The performance of the new algorithm is tested against

SVT recovery [15] and MMSE estimation under realistic

assumptions, i.e., the postulated statistics are not accurate and

the sampling pattern is not uniform. Numerical results show a

significant gain in performance for both cases when compared

to SVT recovery. Remarkably, the proposed algorithm is robust

to mismatched second order statistics which suggests that

accurate statistics are not required to recover missing LV data

in electricity distribution systems.

II. SYSTEM MODEL

Consider a LV distribution system with L feeders. Each

feeder includes a sensing unit that measures the electrical

magnitudes of operational interest at predetermined time in-

stants. These measurements that include phase active power,

phase reactive power and phase voltage support the operator

in controlling, monitoring, and managing the network. In

practice, the acquisition process provides the operator with

a noisy and incomplete set of state variables. For that reason,

the operator needs to recover the missing LV data using the

available observations.

A. Source Model for State Variables

For a given electrical magnitude s, let m
(s)
i,j be the cor-

responding value at feeder i ∈ {1, 2, ..., L} at time j ∈
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Figure 1. Singular values of the matrix M containing the voltage measure-
ments, when N = L = 500, compared to a low-rank approximation of the
same matrix when the rank is one hundred.

{1, 2, ..., N}. The matrix of state variables for magnitude s, de-

noted by M
(s) ∈ R

N×L, contains the aggregated state variable

vectors from all feeders, i.e. M
(s) ∆

= [m
(s)
1 ,m

(s)
2 , ...,m

(s)
L ]

where, m
(s)
i = [m

(s)
i,1 ,m

(s)
i,2 , ...,m

(s)
i,N ]T ∈ R

N . Without loss of

generality the analysis is carried out for a particular electrical

magnitude, and therefore, the index s is dropped. The resulting

data matrix M contains the state variable of interest at time

instants 1, 2, ..., N for all L feeders.

Actual LV data is used to model the statistical structure

of the data generated in a low voltage electricity distri-

bution system. The actual LV data set under consideration

contains values from 200 residential secondary substations

across the North West of England collected from June

2013 to January 2014. The data collection is part of the

“Low Voltage Network Solutions” project run by Electricity

North West Limited [18]. Each substation creates a daily file

containing values of voltage, current and power levels for

all three phases. An analysis of the distribution and sample

covariance matrix of the voltage measurements in the LV data

set under consideration is presented in [7]. Therein, it is shown

that state variables can be modelled as a multivariate Gaussian

random process, more specifically for all i ∈ {1, 2, ..., L}, it

holds that

mi∼N (µ,Σ), (1)

and mi is a sequence of independent and identically dis-

tributed random variables. Consequently, M is a realization of

the random process describing the value of the state variable

of interest across the grid. The significant correlation among

the state variables observed in the LV data set induces a large

condition number [19] in the singular value decomposition, i.e.

there are a few singular values that concentrate most of the

norm of the matrix, and therefore, the matrix can be modelled

as approximately low rank, see [10], [11], and [12]. That being

the case, the truncated low-rank approximation of the matrix

obtained by setting the rank(M)−K smallest singular values

to zero does not introduce a significant approximation error for
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Figure 2. Block diagram describing the system model.

some values of K. For instance, Fig. 1 depicts the singular

values, in decreasing order, of the matrix M. It also shows

the singular values of a low rank approximation of the same

matrix. Interestingly, the first five singular values in decreasing

order concentrate 98.78% of the matrix nuclear norm while

the first thirty singular values concentrate 99.4% of the matrix

nuclear norm. This justifies posing the recovery problem as

a rank minimization problem. It is important to note that the

recovery strategies analyzed do not impose constraints on the

minimum number of observations per column. In contrast,

the information cascading matrix completion (ICMC) based

recovery in [6] operates under the assumption that there is a

minimum number of observations per column which is lower

bounded by the rank [20]. Moreover, the ICMC recovery

requires knowledge of the rank of the matrix to be estimated

[20] which is not a realistic assumption in a practical scenario.

Fig. 2 describes the distribution system monitoring model.

In this setting, the electrical magnitudes describing the state

of the system are modelled as a random process that outputs

a realization M ∈ R
N×L every N time instants. The state

of the grid is fully described by the entries of the matrix

M. However, the operator observes a subset of the complete

set of state variables, i.e. measurements are lost during the

acquisition process. The aim of the estimation process is to

recover the missing entries.

B. Acquisition

The sensing infrastructure introduces additive white Gaus-

sian noise (AWGN) as a result of the thermal noise present at

each sensor. The resulting measurements are given by

R = M+N, (2)

where

(N)i,j ∼ N (0, σ2), (3)

for i ∈ {1, 2, ..., N} and j ∈ {1, 2, ..., L}. Moreover, it

is also assumed that only a fraction of the complete set

of measurements (entries in R) are communicated to the

operator. Denote by Ω the subset of observed entries, i.e.,

Ω ⊆ {1, 2, ...N} × {1, 2., ..., L}. By definition it follows that

Ω is given by

Ω
∆
= {(i, j) : (R)i,j is observed}. (4)

Formally, the acquisition process is modelled by the function

f : RN×L → R
|Ω| with f(M) = PΩ(R) where

PΩ(R) = (R)Ω, (5)

and |Ω| denotes the cardinality of Ω. The observations given

by (5) describe all the data that is available to the operator for

estimation purposes and therefore, the recovery of the missing

data is performed from the observations PΩ(R).

C. Estimation

The estimation process of the complete matrix of state

variables based on the available observations is modelled by

the function g : R|Ω| → R
N×L. The estimate M̂ = g(f(M))

is obtained by solving an optimization problem based on an

optimality criterion. In this paper, the optimality criterion is

the mean square error (MSE) given by

MSE (M; g) =
E
[
‖M− g(f(M))‖2F

]

NL
, (6)

where ‖·‖F denotes the Frobenius norm. The normalized mean

square error (NMSE) is defined as

NMSE (M; g) = MSE (M; g)
NL

‖M‖2F
. (7)

For this optimality criterion, the optimal estimate of the

missing data is given by the MMSE estimate

M̂MMSE = E[M|f(M),Σ], (8)

where Σ ∈ R
N×N is the covariance matrix defined in (1).

Note that, in general, obtaining the optimal estimate M̂MMSE

requires knowledge of the probability distribution describing

the state variables. If the state variables follow a Gaussian

distribution it boils down to the knowledge of the second

order moments, i.e. the covariance matrix Σ which needs to be

known prior to the estimation process. In practice, the operator

relies on postulated statistics that typically do not match the

actual statistics. Consequently, the accuracy of the estimate is

a function of the difference between the real and the postulated

statistics.

III. INFORMATION-THEORETIC LIMIT

In order to assess the performance of the missing data

recovery techniques in absolute terms, this section introduces

the optimal performance theoretically attainable (OPTA) by

an estimator g when the state variables follow a multivariate

Gaussian distribution. For a given number of observations, the

minimum distortion achievable by any estimation method is

determined by the rate-distortion function [21]. In the electric-

ity distribution setting described above, the observations are

corrupted by additive white Gaussian noise which determines

the finite rate at which information about the state variables is

obtained. Consequently, the optimal performance is bounded

by the capacity of the AWGN channel, denoted by C, i.e.,

R(D) < C, (9)

where R is the rate at which the source needs to be observed

to achieve a distortion D. In view of this, the OPTA for a

multivariate Gaussian source is given by

R(D) ≤
|Ω|

2NL
log10(1 + snr), (10)

where the signal to noise ratio, denoted by snr, is defined as

snr
∆
=

1
N

Tr(Σ)

σ2
, (11)



4

where σ2 is defined in (3). The rate-distortion function of a

multivariate Gaussian process is computed using the following

parametric equations [22]
{
R(θ) = 1

N

∑N−1
i=0 max(0, 1

2 log
λi

θ
)

D(θ) = 1
N

∑N−1
i=0 min(θ, λi),

(12)

where R is the source rate in nats/symbol, D is the mean

square error distortion per entry, λi is the i th largest eigen-

value of Σ, and θ is a parameter. The NMSE theoretically

attainable, NMSE(M;OPTA), follows from combining (7) and

(12) and is determined by

NMSE(M;OPTA) = D
NL

‖M‖2F
. (13)

IV. RECOVERY OF MISSING DATA

In this section, the information-theoretic limit for missing

data recovery presented in Section III, is compared with

MMSE estimation and the singular value thresholding (SVT)

recovery.

A. Minimum Mean Squared Error Estimation

Linear MMSE (LMMSE) estimation achieves the optimal

performance in the recovery of missing data for a given set of

observations Ω when the data is generated by a multivariate

Gaussian source and the optimality criteria is the MSE.

However, this estimation procedure relies on access to second

order statistics of the state variables. In particular, the available

entries from the column i of the matrix R are given by

PΩ(ri) = Ai(mi + ni), (14)

where Ai is defined such that Aimi = PΩ(mi) and i ∈
{1, 2, ..., L}. Consequently, the LMMSE estimate for each

state variable vector is given by

m̂i = µ+ Γi(PΩ(ri)−Aiµ), (15)

where µ is defined in (1) and

Γi = ΣA
T
i (AiΣA

T
i + σ2

I)−1, (16)

i ∈ {1, 2, ..., L}. The normalized error achieved by the

LMMSE estimator is given by

NMSE(M;LMMSE) =
‖M− M̂LMMSE‖

2
F

‖M‖2F
, (17)

where M̂LMMSE = [m̂1, m̂2, ..., m̂L], with m̂i defined in (15).

B. Singular Value Thresholding

Low rank matrices are recovered from a subset of the

entries via rank minimization techniques under mild coherence

conditions on the set of observations [10]. Specifically, the

missing entries are recovered by solving the following rank

minimization problem:

minimize
X

rank(X)

subject to PΩ(X) = PΩ(M).
(18)

Unfortunately, this rank minimization problem is NP-hard.

Favorably, in [10] it is shown that when the entries on Ω
are sampled uniformly at random, the solution of the rank

minimization problem in (18) is obtained with high probability

by solving the nuclear norm minimization problem in (20).

SVT is a matrix completion algorithm [15] which produces

a sequence of matrices X
k that converges to the unique

solution of the following optimization problem:

minimize
X

τ‖X‖∗ +
1

2
‖X‖2F

subject to PΩ(X) = PΩ(M),
(19)

where ‖X‖∗ is the nuclear norm of the matrix X. Note that

when τ → ∞, the optimization problem in (19) converges to

the nuclear norm minimization problem proposed in [10]

minimize
X

‖X‖∗

subject to PΩ(X) = PΩ(M).
(20)

For large values of τ , SVT provides the solution to the

nuclear norm minimization problem. Compared to alternatives

like SeDuMi [23] or SDPT3 [24], SVT features a lower

computational cost per iteration. This is achieved by exploiting

the sparsity of Yk and the low-rank property of Xk to reduce

storage requirements. The low computational cost results in

the possibility of using larger matrices. Simulation results in

[15] show that SVT recovers matrices with nearly a billion

entries. In comparison, SeDuMi and SDPT3 produce accurate

solutions for squared matrices with dimension close to fifty.

In [25] the structure of the problem is exploited to reduce

the memory requirements and increase the matrix size up to

350. Because of the dimension of the data sets produced by

low voltage distribution systems, the remaining of the paper

focuses on the SVT as a benchmark MC-based recovery. The

main idea in SVT consists in the following iteration steps:
{
X

k = Dτ (Y
k−1),

Y
k = Y

k−1 + δs
(
PΩ(M)− PΩ(X

k)
)
,

(21)

where Y
0 = 0, δs is the step size that obeys 0 < δs < 2, and

the soft-thresholding operator, Dτ , applies a soft-thresholding

rule to the singular values of Y
k−1, shrinking these towards

zero. Note that the index k is not a power but an iteration

index. For a matrix Y ∈ R
N×L of rank r with singular value

decomposition given by

Y = USV
T , S = diag({σi(Y)}1≤i≤r), (22)

where U and V are unitary matrices of size N × r and L× r,

respectively, and σi(Y) are the singular values of the matrix

Y, the soft-thresholding operator is defined as

Dτ (Y)
∆
= UDτ (S)V

T , with Dτ (S) = diag({(σi(Y)−τ)+}),
(23)

where t+ = max(0, t). Interestingly, the choice of τ is

important to guarantee a successful recovery, since large values

guarantee a low-rank matrix estimate but for values larger

than max
i

(σi(Y)) all the singular values vanish. In [15],

the proposed threshold is τ = 5N . However, simulation

results presented in [7] show that τ = 5N gives suboptimal
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Figure 3. LV data recovery performance using SVT, LMMSE estimation, for
different levels of mismatch, and the OPTA, when SNR = 20 dB.

performance when the number of missing entries is large. The

choice of τ governs the performance trade-off between the

high and low sampling regimes. Large values of τ yield a good

performance when a small number of observations is available.

Conversely, smaller values of τ yield a good performance

when a large number of observations is available. Unfortu-

nately, finding the optimal threshold when the matrix is sparse

is still an open problem. In general, the value of the threshold

for soft-thresholding based recovery algorithms is obtained

via numerical optimization in [7] and [12]. The same soft-

thresholding operator, Dτ , is used in a different framework for

denoising [12], [26], and [27]. In this context, the performance

of the denoiser, measured in MSE, is estimated using Stein's

unbiased risk estimate (SURE) [17]. In [16] a closed-form

expression for the unbiased risk estimate is presented for the

operator Dτ .

C. Performance Evaluation with Actual LV Data

This subsection presents a comparison between LMMSE

and SVT, and the theoretical limit, OPTA, using actual LV

data. The test matrix, M, is a square matrix of size 500, i.e.

N = L = 500, and contains voltage measurements covering

the state of the grid for a period of 2 hours. Each column

represents a different state variable vector that describes the

grid on a different day and for a different feeder. The entries

in Ω are sampled uniformly at random with probability

P[(i, j) ∈ Ω] =
1

NL
E[|Ω|], (24)

and the performance of the SVT-based recovery is defined in

terms of the NMSE given by

NMSE(M; SVT) =
‖M− M̂SVT‖

2
F

‖M‖2F
, (25)

where M̂SVT is the SVT estimate of M based on PΩ(R). Let

γ be the ratio of missing entries for the matrix M, that is:

γ
∆
= 1−

1

NL
|Ω|. (26)

Since the performance of the LMMSE estimator depends on

the covariance matrix Σ, a mismatched covariance matrix

model [28] and [29] is introduced to account for the difference

between the postulated and actual statistics. Specifically, the

postulated covariance matrix is given by

Σ
∗ = Σ+

1

SMR

‖Σ‖2F
‖∆‖2F

∆, (27)

where Σ is the actual covariance matrix in (1), ∆ = HH
T

with H ∈ R
N×N any matrix whose entries are distributed as

N (0, 1). The strength of the mismatch is determined by the

signal to mismatch ratio (SMR), which is defined such that

for SMR = 1 the norm of the mismatch is equal to the norm

of the real covariance matrix, i.e., ‖Σ‖2F = ‖ 1
SMR

‖Σ‖2

F

‖∆‖2

F

∆‖2F .

Fig. 3 shows the performance, measured in NMSE, for

the SVT-based recovery compared to the performance of the

LMMSE estimator when different levels of mismatch are

introduced and to the theoretical limit given by the OPTA.

Numerical results in this section are obtained for a signal to

noise ratio value of SNR= 20 dB, where SNR
∆
= 10 log10snr.

It can be seen that the performance of the SVT algorithm

is closer to the theoretical limit when the number of missing

entries is large. Interestingly, the LMMSE estimator gives bet-

ter performance when SMR ≥ 100. However, when SMR=10

and γ ≤ 0.55 the SVT algorithm outperforms the LMMSE

estimator. Moreover, the SVT provides a better recovery for

SMR=1 for almost all values of γ. In view of this, the LMMSE

estimation requires accurate second order statistics to perform

competitively in this setting which is an unrealistic assumption

in a practical scenario. Moreover, the performance of the SVT

algorithm depends of the threshold τ [7] which is difficult to

optimize for this case.

V. MAIN RESULT

This section introduces a novel algorithm for missing data

recovery that incorporates imperfect second order statistics.

The new approach is based on the SVT algorithm but it

exploits the information about the second order statistics to

optimize the threshold τ at each iteration k.

A. Soft-thresholding parameter

The main shortcoming of the SVT algorithm is the lack

of guidelines for tuning the threshold τ . Numerical results in

[7] show that the value 5N proposed in [15] is not optimal

for every scenario. In order to provide better recovery it is

essential to tune the value of τ for each iteration of the

algorithm. In SVT the soft-thresholding operator is applied

on a sparse matrix which increases the difficulty of the tuning

process.
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B. Exploiting second order statistics

In order to overcome the limitation imposed by the sparse

structure of the matrix Y
k, the proposed algorithm estimates

the missing entries prior to the soft-thresholding step. Thus, the

available prior knowledge is exploited to produce an estimate

of the entries not contained in Ω. In this case, at each iteration

k of the proposed algorithm the matrix Z
k is computed as

Z
k = Y

k + L
k, (28)

where Y
k is defined as in the SVT algorithm and L

k is the

LMMSE estimate given by

L
k = PΩc(µ) +ΣΩcΩΣ

−1
ΩΩ(PΩ(Y

k)− PΩ(µ)), (29)

where Ω is the set of observed entries, Ωc is the set of missing

entries, ΣΩcΩ is the covariance matrix between the entries in

Ωc and the entries in Ω and ΣΩΩ is the covariance matrix

of the entries in Ω. In a nutshell, the unknown entries are

estimated using the LMMSE-based recovery at each iteration

k. The result is a complete matrix Z
k for which the tuning of

the threshold is feasible.

C. Optimization of thresholding parameter

Following the brief discussion in Section IV-B, the closed-

form expression for the risk estimator provided in [16] is

incorporated into the proposed algorithm. The use of SURE

is made possible by the addition of the LMMSE step, which

provides a linear estimation for the entries in Ωc. This ensures

that the matrix provided as input to the soft-thersholding

step is complete and the optimization of τ is solvable as a

denoising problem. In this context, the performance of the

soft-thresholding operator can be estimated when the input

matrix accepts the following model [16]

Z = M+W, (30)

where the entries of W are

(W)i,j
iid
∼ N (0, σ2

Z
), (31)

for i ∈ {1, 2, ..., N} and j ∈ {1, 2, ..., L}. In this setting, the

SURE [17] is given by

SURE(Dτ )(Z) =−NLσ2
Z
+

min(N,L)∑

i=1

min(τ2, σ2
i (Z))

+ 2σ2
Z

div(Dτ (Z)),

(32)

where σi(Z) is the i-th singular value of Z for i ∈
{1, 2, . . . , N}. A closed-form expression for the divergence

of this estimator is obtained in [16]. For the case in which

Z ∈ R
N×L the divergence is given by

div(Dτ (Z)) =

min(N,L)∑

i=1

[
I(σi(Z) > τ) + |N − L|

(σi(Z)− τ)+
σi(Z)

]

+ 2

min(N,L)∑

i 6=j,i,j=1

σi(Z)(σi(Z)− τ)+
σ2
i (Z)− σ2

j (Z)
,

(33)

when Z has no repeated singular values and is zero otherwise.

Therefore, combining (32) and (33) gives a closed-form ex-

pression for the performance of the soft-thresholding operator

for different values of τ and different noise levels σ2
Z

.

The proposed algorithm approximates σ2
Z

with the weighted

sum of the noise in Ω and in Ωc. Consequently, σ2
Zk is

calculated as

σ2
Zk =

‖Yk − PΩ(M)‖2F + |Ωc|DLMMSE

NL
, (34)

where DLMMSE represents the average noise per entry in Ωc.

The optimal threshold for the matrix Z
k is denoted by τk∗ and

it is calculated using

τk∗ = arg min
τ

SURE(Dτ )(Z
k), (35)

where σ2
Zk is given by (34).

Note that the cost function in (35) is quasiconvex and is

solved using standard optimization tools [16] over a predefined

interval [τmin, τmax]. Therefore, the iterations of the proposed

algorithm are





X
k = Dτ (Z

k−1),

Y
k = Y

k−1 + δb
(
PΩ(M)− PΩ(X

k)
)
,

Z
k = Y

k + L
k,

(36)

where the Dτ is defined by (23) and the step size δb is similar

to the step size δs in the SVT algorithm. The initial conditions

are Z
0 = 0, Y

0 = 0 and τ = 0. The stopping criteria is

similar to the SVT algorithm, namely

‖PΩ(X
k −M)‖F

‖PΩ(M)‖F
≤ ǫ. (37)

A more detailed description of the proposed algorithm is

presented in Algorithm 1.

Algorithm 1 Bayesian Singular Value Thresholding

Input: observations set Ω, and observed entries PΩ(R), mean

µ, covariance matrix Σ, step size δb, tolerance ǫ, and

maximum iteration count kmax

Output: M̂BSVT

1: Set Y0 = 0

2: Set Z0 = 0

3: Set τ = 0
4: Set Ωc = {1, 2, ..., N} × {1, 2, ..., L} \ Ω
5: for k = 1 to kmax do

6: Compute [U,S,V] = svd(Zk−1)

7: Set Xk =
∑min(N,L)

j=1 max(0, σj(Z
k−1)− τ)ujvj

8: if ‖PΩ(X
k −M)‖F /‖PΩ(M)‖F ≤ ǫ then break

9: end if

10: Set Yk = Y
k−1 + δb

(
PΩ(M)− PΩ(X

k)
)

11: Set Lk = PΩc(µ) +ΣΩcΩΣ
−1
ΩΩ(Y

k − PΩ(µ))
12: Set Zk = Y

k + L
k

13: Set σ2
Zk = (‖Yk − PΩ(M)‖2F + |Ωc|DLMMSE)/NL

14: Set τ = arg min
τ

SURE(Dτ )(Z
k)

15: end for

16: Set M̂BSVT = X
k
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The main advantage of the proposed algorithm is that the

threshold is optimized at each iteration facilitated by the prior

knowledge incorporated into the structure of the algorithm.

First, an initial guess of the unavailable entries is formed,

at each iteration k, based on Y
k and the covariance matrix

Σ. The results are aggregated in the matrix Z
k which is

approximated by the model in (30). In this case, an estimate

of the noise level, σ2
Zk , is needed to compute the SURE.

The optimal value of τ for Z
k is obtained by minimizing

SURE(Dτ )(Z
k) in (32). Admittedly, the optimization of the

threshold is only possible as long as second order statistics

are available. Therefore, the new approach requires additional

knowledge that is not necessary when using the SVT algo-

rithm. That being said, the SVT algorithm requires setting the

value for the threshold which in general is difficult to tune. The

same amount of prior knowledge, i.e., covariance matrix, is

required by the LMMSE estimator. Still, when the postulated

statistics are not accurate, the performance of the LMMSE-

based recovery reduces by up to an order of magnitude in

NMSE (See Fig. 3). For the proposed algorithm, the trade-

off between the performance and the accuracy of the prior

knowledge is studied in Section VI.

VI. NUMERICAL ANALYSIS

This section analyzes the performance of the BSVT algo-

rithm using the LV data set presented in Section II-A. The data

matrix M, utilized to assess the performance of the proposed

algorithm, is the same used in Section IV-C and contains the

voltage measurements from the electricity distribution system.

Moreover, the performance of the BSVT algorithm is also

measured in terms of NMSE given by

NMSE(M;BSVT) =
‖M− M̂BSVT‖

2
F

‖M‖2F
, (38)

where M̂BSVT is the output of the BSVT recovery. The

performance of each recovery technique is averaged over one

hundred realizations of Ω for each ratio of missing entries. Nu-

merically, the proposed algorithm is evaluated on three aspects.

First, the gain in performance for the optimized threshold is

assessed. The Section VI-A compares the performance of the

SVT-based recovery with the BSVT algorithm when accurate

second order statistics are available. Secondly, the robustness

of the BSVT recovery when perfect prior knowledge is not

available is evaluated. A comparison between the SVT al-

gorithm, the LMMSE estimator and the BSVT recovery is

presented for different SMR values. The case in which perfect

second-order statistics are available is also included. Finally,

the robustness of the BSVT recovery to different sampling

patterns is evaluated using Markov-chain-based sampling. The

numerical performance of the new algorithm is compared

to the SVT algorithm in a practical scenario in which the

positions of the missing entries are not uniformly distributed

and the postulated statistics are not accurate.

A. Performance of the optimized threshold

In this section, the performance of the new algorithm is

compared to the SVT-based recovery using the same data

0 0.2 0.4 0.6 0.8 1
10-3

10-2

10-1

Figure 4. LV data recovery performance using SVT, LMMSE estimation and
BSVT for different levels of mismatch, when SNR = 20 dB.

matrix M and the same sets of available entries, Ω, for a

particular ratio of missing entries γ as defined in (26). The

positions of the missing entries are sampled uniformly at

random from the set of all entries.

Fig. 4 depicts the performance of both algorithms when

applied in identical scenarios and SNR = 20 dB. Clearly, the

optimized threshold and the Bayesian estimation step increase

the performance of the proposed algorithm when accurate

second order statistics are available. When the postulated

statistics, i.e., those available to the operator are identical

to the real statistics, the BSVT algorithm provides a better

performance for all values of γ. The gain in performance is

larger when the ratio of missing entries is smaller than 0.4.

Interestingly, the boost in performance is substantial in the

region in which SVT is least efficient when compared to the

fundamental limit (See Fig. 3).

However, in practical scenarios the postulated and actual

statistics are different. The impact of mismatched statistics is

considered in the following section.

B. Robustness with respect to mismatched statistics

In order to address the problem of missing data recovery

in a realistic scenario, a level of mismatch between the real

covariance matrix and the one available to the operator is

considered. The mismatch covariance matrix model presented

in (27) is used in this section to assess the sensibility of the

proposed algorithm to inaccurate prior knowledge. Hence, the

LMMSE estimator and the BSVT algorithm are compared in

the no-mismatch regime and for a SMR value of 100 and

10. The performance of the SVT-based recovery is included

as a benchmark for comparing rank minimization based ap-

proaches.

Fig. 4 depicts the performance of the different estimation

methods when mismatched second order statistics are available

and SNR = 20 dB. Remarkably, the proposed algorithm is

robust to mismatch in the second order statistics. In contrast
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Figure 5. LV data recovery performance using SVT, LMMSE estimation and
BSVT for different levels of mismatch, when SNR = 10 dB.
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Figure 6. LV data recovery performance using SVT, LMMSE estimation and
BSVT for different levels of mismatch, when SNR = 0 dB.

with the LMMSE estimator, the performance of the BSVT

algorithm does not change significantly when mismatch oc-

curs. Moreover, the BSVT algorithm gives better recovery than

the SVT-based recovery in all mismatch regimes throughout

the range of γ. In comparison with the LMMSE estimation,

the BSVT algorithm performs better for SMR = 100 when

γ ≤ 0.65. Furthermore, for SMR = 10 the proposed approach

is the best performing recovery method for almost all values

of γ.

Fig. 5 depicts the performance of different estimation

methods for different values of mismatch and SNR = 10
dB. Interestingly, the proposed approach outperforms SVT by

almost an order of magnitude. Remarkably, the optimization

of τ boosts the performance of the new algorithm in medium

and low SNR regimes.

Fig. 6 shows the performance of SVT, BSVT and LMMSE

for different values of mismatch in the low SNR regime

0 0.2 0.4 0.6 0.8 1
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Figure 7. LV data recovery performance using SVT, LMMSE estimation and
BSVT for different levels of mismatch, when SNR = 50 dB.

(SNR = 0 dB). Note that the case in which γ = 0.05 is not

included in Fig. 6 because neither SVT nor BSVT converge

to a low rank matrix in the experiments carried out for this

paper. However, for γ ≥ 0.15 the new algorithm outperforms

SVT by an order of magnitude.

A comparison between SVT, BSVT and LMMSE for dif-

ferent values of mismatch is presented in Fig. 7 for a value of

SNR = 50 dB. As expected, SVT outperforms BSVT in the

noiseless case as in that case the problem in this paper boils

down to the problem setting in [15]. It is worth noting that

the fast degradation with respect to observation noise of SVT

reported in [15] is also corroborated by the simulations in this

work.

In practical scenarios, when the mismatch regime is difficult

to establish, the choice between LMMSE and SVT is difficult

to make. Interestingly, the impact of imperfect second order

statistics for both LMMSE and BSVT is more significant in

the high SNR regimes. However, BSVT is a robust alternative

and gives better recovery in a wide range of missing data

regimes.

C. Robustness with respect to different sampling patterns

The problem of recovering missing data when the subset of

missing entries is not uniformly sampled is addressed in this

section. In practical scenarios, a sensor failure or a downtime

in the communication line provides the operator with a number

of consecutive unavailable measurements in the state variable

vectors. Let L0 be the number of consecutive missing entries.

The expected value of L0 varies depending on the reliability of

the sensing infrastructure. In the uniform sampling model this

scenario is not possible. Therefore, a more general sampling

procedure is introduced.

The proposed sampling model is based on a two-state

Markov Chain. In this setting, for each entry (M)i,j of the

matrix M, the finite state machine depicted in Fig. 9, is

either in state S1 in which case the entry (i, j) is available
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Figure 8. LV data recovery performance for the Markov-chain-based sampling
model, using SVT and BSVT for different levels of mismatch, when E[L0] =
N and SNR = 20 dB.

Figure 9. State diagram for the Markovian sampling model.

to the operator, or in state S2 in which case the entry is not

available. As before, the set Ω contains all the entries from

the matrix M that are available to the operator. In Fig. 9,

p1 is the transition probability from state S1 to S2 and p2 is

the transition probability from S2 to S1. Hence, the expected

value of the ratio of missing entries is given by the steady state

probability of being in S2. Consequently, the expected value

of the ratio of missing entries for the Markovian sampling

model is

E[γ] =
p1

p1 + p2
. (39)

The expected number of consecutive missing entries, E[L0],
is:

E[L0] =

n∑

l=0

l
p1

p1 + p2
(1− p2)

l. (40)

Solving (40) for n → ∞ and combining with (39) leads to

E[L0] =
1− E[γ]

p22
(1− p2). (41)

Therefore, for any given γ and L0, using (39) and (41), p1
and p2 are identified such that on average the sampling model

in Fig. 9 has a ratio of missing entries γ and the length of

the vectors with consecutive missing entries L0. Note that

the case E[L0] = 1 reduces to the uniform sampling model

with probability P[(i, j) ∈ Ω] = 1 − γ. In this framework, a

comparison between the SVT and the BSVT-based recoveries

is presented for the case in which the sampling pattern is not

uniform. In order to consider the case in which a particular
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Figure 10. Positions of the observed entries, Ω, generated by the Markovian
model for a 100× 100 matrix, when E[L0] = N and E[γ] = 0.8.

feeder does not provide any measurements, the expected length

of the vectors with missing data is selected to be equal to

the length of the state variable vectors, i.e., E[L0] = N . Fig.

10 shows an example of a sampling pattern generated by the

Markov-chain-based model, when E[L0] = N and E[γ] = 0.8.

Fig. 8 compares the performance of the SVT-based recovery

with the BSVT-based recovery for the case in which the matrix

M is sampled using the Markov-chain-based sampling model

with E[L0] = N . Different levels of mismatch are introduced

to assess the robustness of the new algorithm to mismatched

prior knowledge when the sampling pattern is not uniform.

Remarkably, the performance of the proposed approach is not

significantly affected by the amount of prior knowledge in

any of the missing data regimes. Moreover, BSVT performs

better than SVT when the sampling pattern is not uniform. A

significant gain in performance is observed for small values of

γ. Consider the following example for the sake of discussion,

for a fixed tolerance of 10−2 in NMSE, the SVT algorithm

recovers up to 4% of the entries of the matrix M while

BSVT recovers 40% (See Fig. 8). The improvement in the

data recovering performance for the same level of tolerance is

significant. Numerical results in this section show that BSVT

is not only providing better performance than SVT when the

entries are not uniformly sampled but it is also robust to

mismatched statistics. The robustness of the new algorithm

extends to different sampling patterns. In view of this, BSVT

represents a better alternative for recovering missing LV data

in practical scenarios than SVT and LMMSE estimation.

D. Convergence analysis

A convergence speed and computational effort comparison

between BSVT and SVT follows. Based on the algorithm

description, the computational cost per iteration increases in

the case of the proposed algorithm when compared with

that of SVT. However, the additional LMMSE step and the

computation of the optimal threshold τ significantly impact

the speed of convergence.
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Table I
CONVERGENCE PERFORMANCE COMPARISON FOR THE UNIFORM

SAMPLING CASE

SNR γ
#Iters Time(s)

BSVT SVT BSVT SVT

0
0.15 2 51 17.32 68.24

0.85 4 30 32.06 53.62

10
0.15 4 191 52.38 111.59

0.85 2 32 6 19.54

20
0.15 2 365 15.89 169.92

0.85 2 92 13.8 84.17

50
0.15 18 485 271.47 100.42

0.85 2 145 8.67 69.16

Table II
CONVERGENCE PERFORMANCE COMPARISON FOR THE MARKOVIAN

SAMPLING CASE

SNR γ
#Iters Time(s)

BSVT SVT BSVT SVT

0
0.15 6 53 133.71 60.86

0.85 2 20 17.1 22.89

10
0.15 13 175 293.74 104.08

0.85 2 43 15.89 30.77

20
0.15 9 329 156.44 172.46

0.85 2 80 16.59 12.6

50
0.15 9 446 152.96 72.72

0.85 2 30 16.73 2.04

Table I shows a convergence performance comparison be-

tween BSVT and SVT in terms of number of iterations and

computational time for different SNR values and different

values of γ. The computational platform used is the Iceberg

HPC cluster at The University of Sheffield. The results are

averaged over ten realizations of Ω. The column #Iters shows

the minimum number of iterations required by each algorithm

to achieve the corresponding NMSE of Figs. 4, 5, 6 and 7.

Time(s) denotes the time, measured in seconds, required to

recover the missing entries in the matrix M for each case.

A similar comparison for the Markovian sampling case is

presented in Table II. As expected, BSVT converges in fewer

iterations but incurs a higher computational cost per iteration

compared to SVT. Interestingly, the Markovian sampling case

requires a larger number of iteration in most of the cases

compared to the uniform sampling scenario. Moreover, BSVT

requires less computation time in comparison to SVT in most

of the cases for a large number of missing entries.

VII. CONCLUSION

A novel algorithm for recovering missing low voltage

distribution systems data that admits a low rank description
has been presented. The proposed approach, BSVT, combines

the low computational cost of SVT with the optimality of the

LMMSE estimator when the data source is modelled as a mul-

tivariate Gaussian random process and second order statistics

are available. The combined new approach addresses the issues

of individual recovery methods. The robustness of the new

algorithm on both mismatched statistics and sampling patterns

was demonstrated through simulations. In respect to the SVT

algorithm the new approach addresses the issue of choosing

the value of τ by calculating the optimal threshold at each

iteration. Compared with the standard LMMSE estimator the

new algorithm is robust to inaccurate second order statistics.

In order to assess practical scenarios, a sampling model that

incorporates missing state variable vectors, is illustrated. The

performance gain compared to SVT was significant for both

uniform and non-uniform sampling models. Ultimately, the

proposed algorithm is shown to provide a robust and low

complexity method to recover missing data in low voltage

distribution systems.
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