

This is a repository copy of Cationic disulfide-functionalized worm gels.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/122347/

Version: Supplemental Material

Article:

Ratcliffe, LPD, Bentley, KJ, Wehr, R et al. (3 more authors) (2017) Cationic disulfide-functionalized worm gels. Polymer Chemistry (38). pp. 5962-5971. ISSN 1759-9954

https://doi.org/10.1039/C7PY01306J

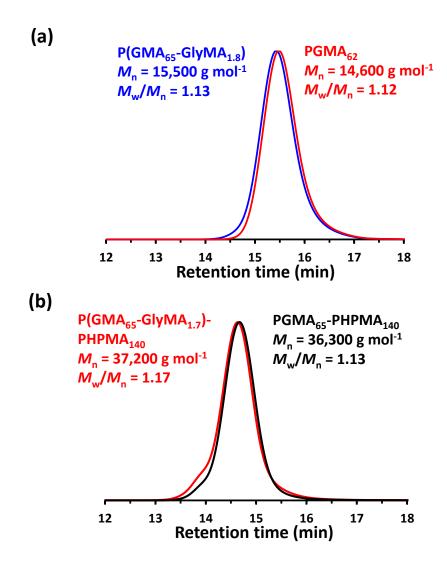
© 2017, Royal Society of Chemistry. This is an author produced version of a paper published in Polymer Chemistry. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

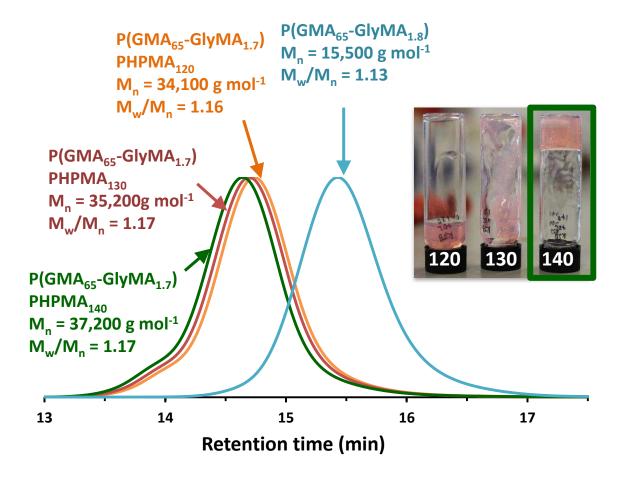
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

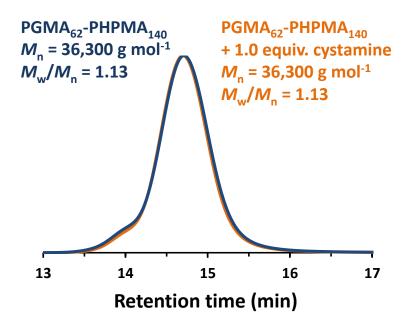
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.


Supporting Information for:

Cationic Disulfide-Functionalized Worm Gels


L. P. D. Ratcliffe,^{a,*} K. J. Bentley,^a R. Wehr,^a N. J. Warren,^{b,*} B. R. Saunders^c and S. P. Armes^{a,*}

^aDainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK


^bSchool of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT ^cSchool of Materials, The University of Manchester, MSS Tower, Manchester, M13 9PL, UK

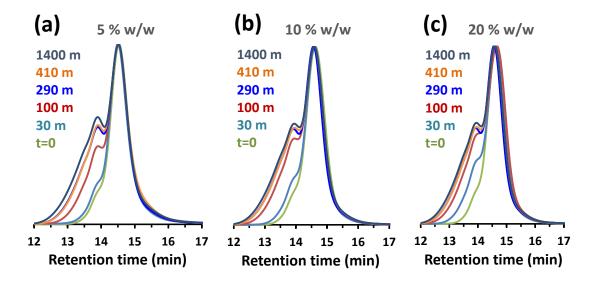

Figure S1. (a) DMF GPC chromatograms obtained for P(GMA₆₅-stat-GlyMA_{1.8}) and PGMA₆₂ macro-CTAs, both synthesized by RAFT solution (co)polymerization at 55 % w/w and 70 °C in ethanol, using a CTA/initiator molar ratio of 4.0. (b) DMF GPC chromatograms obtained for P(GMA₆₅-stat-GlyMA_{1.7})-PHPMA₁₄₀ and PGMA₆₂-PHPMA₁₄₀ worm gels, both synthesized by RAFT aqueous dispersion polymerization of HPMA at 20 % w/w and 50 °C using a CTA/initiator molar ratio of 4.0.

Figure S2. DMF GPC chromatograms obtained for P(GMA₆₅-stat-GlyMA_{1.8}) macro-CTA and for a series of P(GMA₆₅-stat-GlyMA_{1.7})-PHPMA_y diblock copolymers synthesized by RAFT aqueous dispersion polymerization of HPMA at 50 °C in water, at 20 % w/w solids utilizing a macro-CTA/VA-044 molar ratio of 4.0. The digital photographs of these diblock copolymers at 20 % w/w are shown, demonstrating that a free-standing gel was only formed at 22 °C for a diblock copolymer composition of P(GMA₆₅-stat-GlyMA_{1.7})-PHPMA₁₄₀ (white text corresponds to the PHPMA DP of these copolymers). This suggests the presence of a pure worm phase, as confirmed by the representative TEM image of a 0.2 % w/w dispersion of P(GMA₆₅-stat-GlyMA_{1.7})-PHPMA₁₄₀, diluted at 22 °C in water (see Figure 7b in the main text).

Figure S3. DMF GPC chromatograms obtained for PGMA₆₂-PHPMA₁₄₀, and PGMA₆₂-PHPMA₁₄₀ + cystamine at 10 % w/w, after stirring for 24 h at 22 °C (equivalent to cystamine/epoxide molar ratio = 1.0 for P(GMA₆₅-stat-GlyMA_{1.7})-HPMA₁₄₀), as a control experiment.

Figure S4. DMF GPC chromatograms for cystamine functionalization of P(GMA₆₅-stat-GlyMA_{1.7})-PHPMA₁₄₀ worm gel ([cystamine]/[epoxide] = 0.50) at (a) 5 % w/w, (b) 10 % w/w, and (c) 20 % w/w solids, stirred for 24 h at 22 °C.