
This is a repository copy of Pre-surgical mapping of eloquent cortex for paediatric epilepsy
surgery candidates: Evidence from a review of advanced functional neuroimaging.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/122339/

Version: Accepted Version

Article:

Collinge, S, Prendergast, G, Mayers, ST et al. (11 more authors) (2017) Pre-surgical 
mapping of eloquent cortex for paediatric epilepsy surgery candidates: Evidence from a 
review of advanced functional neuroimaging. Seizure, 52. pp. 136-146. ISSN 1059-1311 

https://doi.org/10.1016/j.seizure.2017.09.024

© 2017 British Epilepsy Association. Published by Elsevier Ltd. This manuscript version is 
made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Accepted Manuscript

Title: Pre-surgical mapping of eloquent cortex for paediatric

epilepsy surgery candidates: Evidence from a review of

advanced functional neuroimaging

Authors: Sarah Collinge, Garreth Prendergast, Steven T.

Mayers, David Marshall, Poppy Siddell, Elizabeth Neilly,

Colin D. Ferrie, Gayatri Vadlamani, Jeremy Macmullen-Price,

Daniel J. Warren, Arshad Zaman, Paul Chumas, John

Goodden, Matthew C.H.J. Morrall

PII: S1059-1311(17)30054-7

DOI: https://doi.org/10.1016/j.seizure.2017.09.024

Reference: YSEIZ 3039

To appear in: Seizure

Received date: 17-2-2017

Revised date: 16-6-2017

Accepted date: 29-9-2017

Please cite this article as: Collinge Sarah, Prendergast Garreth, Mayers Steven

T, Marshall David, Siddell Poppy, Neilly Elizabeth, Ferrie Colin D, Vadlamani

Gayatri, Macmullen-Price Jeremy, Warren Daniel J, Zaman Arshad, Chumas

Paul, Goodden John, Morrall Matthew C.H.J.Pre-surgical mapping of eloquent

cortex for paediatric epilepsy surgery candidates: Evidence from a review

of advanced functional neuroimaging.SEIZURE: European Journal of Epilepsy

https://doi.org/10.1016/j.seizure.2017.09.024

This is a PDF file of an unedited manuscript that has been accepted for publication.

As a service to our customers we are providing this early version of the manuscript.

The manuscript will undergo copyediting, typesetting, and review of the resulting proof

before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that

apply to the journal pertain.

https://doi.org/10.1016/j.seizure.2017.09.024
https://doi.org/10.1016/j.seizure.2017.09.024


1 
 

Pre-surgical mapping of eloquent cortex for paediatric epilepsy surgery candidates: Evidence 

from a review of advanced functional neuroimaging 

 

Author names & affiliations: 

Sarah Collinge, BSc, DClinPsych, Clinical Psychologist, Birch Hill Hospital, Birch Road, Rochdale, OL12 

9QB, UK [sarahcollinge@nhs.net] 

 

Garreth Prendergast, PhD, Research Associate, Institute of Psychological Sciences, The University of 

Manchester, Oxford Road, Manchester M13 9PL, UK [garreth.prendergast@manchester.ac.uk] 

 

Steven T. Mayers, BSc, MSc, DClinPsy., Clinical Psychologist, Complex Rehabilitation Unit, Walton 

Centre for Neurology and Neurosurgery, Lower Lane, Fazakerley, Liverpool, L9 7LJ, UK 

[steven.thomas.mayers@gmail.com] 

 

David Marshall, BA, MRes, DClinPsy., Clinical Psychologist, Department of Clinical Psychology, South 

West Yorkshire Partnership NHS Foundation Trust, Newton Lodge, Fieldhead Hospital, Ouchthorpe 

Lane, WF1 3SP, UK [david.marshall@swyt.nhs.uk] 

 

Poppy Siddell, BSc, Research Assistant, Paediatric Neuropsychology, The Leeds Teaching Hospitals 

NHS Trust, E Floor, Martin Wing, Leeds General Infirmary, Great George Street, Leeds, LS1 3EX, UK 

[poppysiddell@nhs.net] 

 

Elizabeth Neilly, BA, MSc, AHEA, Health Faculty Team Librarian, Health Sciences Library, University 

of Leeds, Leeds, LS2 9JT, UK [e.m.neilly@leeds.ac.uk] 



2 
 

 

Colin D. Ferrie, BSc, MB, ChB, MD., Consultant Paediatric Neurologist, Oxford Science Editing 

Limited, John Eccles House, Oxford Science Park, Oxford, OX4 4GP, UK [colinferrie@aol.com] 

 

Gayatri Vadlamani, MBBS, MD, FRCP, FRCPCH, Consultant Paediatric Neurologist, Paediatric 

Neurology, The Leeds Teaching Hospitals NHS Trust, Leeds General Infirmary, Great George Street, 

Leeds, LS1 3EX, UK [gayatri.vadlamani@nhs.net] 

 

Jeremy Macmullen-Price, MB, ChB, MRCP, FRCR, ECONR, Consultant Neuroradiologist, The Leeds 

Teaching Hospitals NHS Trust, Leeds General Infirmary, Great George Street, Leeds, LS1 3EX, UK 

[jeremy.macmullen-price1@nhs.net] 

 

Daniel J. Warren, BMedSci (Hons), MB, ChB, MRCP, FRCR, Consultant Neuroradiologist, The Leeds 

Teaching Hospitals NHS Trust, Leeds General Infirmary, Great George Street, Leeds, LS1 3EX, UK 

[danielwarren@nhs.net] 

 

Arshad Zaman, PhD, Neurospecialist, Medical Physics, The Leeds Teaching Hospitals NHS Trust, 

MRI, B Floor, Clarendon Wing, Leeds General Infirmary, LS1 3EX, UK [a.zaman@leeds.ac.uk] 

 

Paul Chumas, MD FRCS(SN), Consultant Neurosurgeon, Department of Neurosurgery, The Leeds 

Teaching Hospitals NHS Trust, G Floor, Jubilee Wing, Leeds General Infirmary, Great George Street, 

Leeds, LS1 3EX, UK [p.chumas@nhs.net] 

 



3 
 

John Goodden, MBBS(Lond), FRCS(Neuro.Surg), Consultant Neurosurgeon, The Leeds Teaching 

Hospitals NHS Trust, Department of Neurosurgery, G Floor, Jubilee Wing, Leeds General Infirmary, 

Great George Street, Leeds, LS1 3EX, UK [j.goodden@nhs.net] 

 

Matthew C.H.J. Morrall* , BSc, D. Clin. Psychol., Consultant Paediatric Neuropsychologist, The Leeds 

Teaching Hospitals NHS Trust, Paediatric Neuropsychology, E Floor, Martin Wing, Leeds General 

Infirmary, Great George Street, Leeds, LS1 3EX, UK [m.morrall@nhs.net] 

 

Corresponding Author*: 

 

Matthew C.H.J. Morrall, BSc, DClinPsych., Consultant Paediatric Neuropsychologist, The Leeds 

Teaching Hospitals NHS Trust, Paediatric Neuropsychology, E Floor, Martin Wing, Leeds General 

Infirmary, Great George Street, Leeds, LS1 3EX, UK 

Email: m.morrall@nhs.net; Tel: ++44(0)113 3926796 

 

Disclosure of Conflicts of Interest: 

 

None of the authors has any conflict of interest to disclose. The review was not funded. 

 

Text Pages: 39  

Word Length: 6337 

Figures:  4 



4 
 

Tables:  3 

Highlights  
 

 A systematic review has not been published before.  
 34 papers met inclusion criteria with 353 paediatric participants identified. 
 PPV 74% (95 % CI 61-87) and NPV 65% (95% CI 52-78) for fMRI language 

were obtained. 
 It remains unclear which language paradigms produce optimal activation. 
 Paradigms and analyses concordant with independent measures are needed. 

 

 

Abstract 

Purpose: A review of all published evidence for mapping eloquent (motor, language and memory) 

cortex using advanced functional neuroimaging (functional magnetic resonance imaging [fMRI] and 

magnetoencephalography [MEG]) for paediatric epilepsy surgery candidates has not been 

conducted previously. Research in this area has predominantly been in adult populations and 

applicability of these techniques to paediatric populations is less established.  

Methods: A review was performed using an advanced systematic search and retrieval of all 

published papers examining the use of functional neuroimaging for paediatric epilepsy surgery 

candidates.  

Results: Of the 2,724 papers retrieved, 34 met the inclusion criteria. Total paediatric participants 

identified were 353 with an age range of 5 months-19 years. Sample sizes and comparisons with 

alternative investigations to validate techniques are small and variable paradigms are used. 

Sensitivity 0.72 (95% CI 0.52-0.86) and specificity 0.60 (95% CI 0.35-0.92) values with a Positive 

Predictive Value of 74% (95 % CI 61-87) and a Negative Predictive Value of 65% (95% CI 52-78) for 
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fMRI language lateralisation with validation, were obtained. Retrieved studies indicate evidence 

that both fMRI and MEG are able to provide information lateralising and localising motor and 

language functions. 

Conclusions: A striking finding of the review is the paucity of studies (n=34) focusing on the 

paediatric epilepsy surgery population. For children, it remains unclear which language and 

memory paradigms produce optimal activation and how these should be quantified in a statistically 

robust manner. Consensus needs to be achieved for statistical analyses and the uniformity and 

yield of language, motor and memory paradigms. Larger scale studies are required to produce 

patient series data which clinicians may refer to interpret results objectively. If functional imaging 

techniques are to be the viable alternative for pre-surgical mapping of eloquent cortex for children, 

paradigms and analyses demonstrating concordance with independent measures must be 

developed.  

299 words 

Key words: paediatric; epilepsy surgery; fMRI; MEG; memory; language; motor 
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Introduction 

Paediatric epilepsies are the most common serious neurological disorders of childhood, affecting 

between 0.5-1% of children and young people under the age of 16 years1. Childhood epilepsies are 

associated with the greatest amount of psychological and psychiatric morbidity with 

psychopathology three-to-six times greater than in the general childhood population2. Epilepsies 

are known to impair behaviour, affect, cognition and learning significantly 2-5. Not all epilepsies 

respond to anti-epileptic drugs and other treatments such as the ketogenic diet, vagal nerve 

stimulators and resective and functional surgery have become available 6-8.  

Epidemiological studies indicate that 27 in every million children might benefit from resective 

surgery for an epilepsy. While this equates to approximately 405 children per year in the UK; only 

about 25% of such procedures actually take place 9. An epilepsy in adulthood may lead to 

detriment to already acquired functions. However, for a child, language, memory and motor 

functioning are acquired progressively and seizures interfere with what is to be developed, as well 

as what has been acquired 10. The International League Against Epilepsy (ILAE) recommends 

resective surgery is considered for medically refractory epilepsies where a patient has not 

responded to two or three anti-epileptic drugs or where seizure activity is disabling 9. The primary 

aim of resective surgery is seizure freedom although this is not always achieved. The likelihood of 

seizure freedom is related to the aetiology of the epilepsy and extent of the procedure undertaken 

9. For instance, surgery in the event of developmental malformations such as hemimegalencephaly 

has been associated with reduced likelihood of complete seizure freedom in comparison to other 

malformations 11. Secondary to seizure control are outcomes for cognition and behaviour 12 with 

seizure freedom or reduction being associated with measured reductions in psychopathology and 

aggressive behaviours 13. 
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Surgical candidacy has traditionally been established via semiology, structural neuroimaging, vEEG 

and neuropsychological evaluation 9, 14. These remain essential investigations. The purpose of 

epilepsy surgery is to abolish or significantly reduce epileptic seizures that are refractory to 

medication. However, the extent of resection is limited by the potential for cognitive, perceptual 

and motor deficits 15. The mapping of eloquent areas for language, memory and motor function is 

critical for refractory epilepsies. Despite its reported limitations, the intracarotid amobarbital test 

or Wada continues to be used to estimate potential post-operative impairment to language and 

memory 15, 16. As a demanding and invasive test, Wada has risks and it serves to lateralise and not 

localise function. Significant developments have led to the alternative use of advanced non-

invasive techniques to map function, namely motor, language and memory with fMRI and MEG 17, 

18. fMRI is used to identify variations in magnetic resonance signalling associated with altered blood 

oxygenation level-dependency (BOLD) as the brain engages in an activity i.e. response to a 

cognitive task, creating the basis for mapping brain function 17. A development associated with this 

is resting state fMRI (rs-fRMI) which is concerned with spontaneous BOLD variations in the absence 

of an explicit task with rs-fMRI being advocated as a reliable method for assessing large-scale brain 

networks in children19. MEG is also used to identify functional regions based on the examination of 

extra-cranial magnetic fields produced by neuronal activity. MEG is also able to produce localising 

information related to ictal onset zones 20, 21; however, a review of this use is not an aim of this 

paper. 

A review of all published evidence for advanced functional neuroimaging for paediatric epilepsy 

surgery candidates has not been conducted previously. Where reviews have been conducted for 

this population, none have used advanced search techniques and are fMRI 17, MEG 20, 22 or function 

23 specific. In addition, the majority of studies examining the use and utility of fMRI and MEG for 
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pre-surgical mapping of eloquent cortex in epilepsy surgery candidates have focused 

predominantly on adult populations 10. This paper identifies and reviews all published papers using 

fMRI and MEG to map motor, language and memory function in children who are epilepsy surgery 

candidates. In addition, the paper specifies and reviews the relevant clinical, methodological and 

statistical aspects. The current status of these techniques is described and recommendations are 

made to improve the uniformity and yield of these techniques.  
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Methods 

Search 

A systematic search and retrieval of all literature was conducted and papers were identified. 

Devised search terms used were: (Infant/  OR Adolescent/  OR Minors/  OR Child/  OR Schools/  OR 

Schools, Nursery/  OR Infant, Newborn/  OR Puberty/  OR exp Pediatrics/  OR Infan*  OR Newborn*  OR 

New-born*  OR Neonat*  OR Neo-nat*  OR Baby*  OR Babies OR Postnat*  OR Post-nat*  OR Child*  OR 

School*  OR Kid OR Kids OR adoles*  OR Teen* OR Girl*  OR Boy*  OR Minor*  OR Underag*  OR Under-

ag*  OR Puber*  OR Prepubescent*  OR Pre-pubescen* OR Youth*  OR Kindergar*  Or Kinder-gar*  OR 

Prepuberty Or Pre-puberty OR P?ediatric* ) AND (exp Epilepsy/  OR Seizure/  OR Cognit*  OR 

Neuropsych*  OR Neuro-psych*  OR Epilep*  OR Seizure*) AND (General Surgery/  OR Surg*  OR 

Operat* ) AND (Magnetoencephalography/  OR MEG OR Magnetoencephalograh*) OR (Magnetic 

Resonance Imaging/  OR MRI or fMRI OR Magnet*  Resonance Imag*) OR (Language/ OR 

Communication/  OR Speech/ OR Languag* OR Speech* OR Communi* ) OR (Movement/  OR Motor 

Activity/  OR Motor Skills/  OR movement*  OR dexter*  OR co-ordin*  OR coordin*) OR (exp Memory/  

OR Memor*  OR Recall*  OR Remember*  OR Recogni*  OR Forget* ). 

The databases searched were: AMED OVID SP, BIOSIS Previews OVID SP, CAB Abstracts OVID SP, 

EMBASE + EMBASE Classic OVID SP, Medline OVID SP, PsycINFO OVID SP, CINAHL EBSCO, Global 

Health OVID SP. A secondary search was conducted within the following databases: Cochrane 

Library including Cochrane Reviews, Database of Abstracts of Review of Effects and Clinical Trials. 

The period of search was unrestricted and auto alerts were set. The protocol for this systematic 

review was registered on PROSPERO (PROSPERO 2016:CRD42016042849) and is available in full on 



10 
 

the PROSPERO International prospective register of systematic reviews 

(http:/ /www.crd.york.ac.uk/prospero/display_record.asp?ID=CRD42016042849). 

 

Figure 1 illustrates this process which was completed in accordance with the Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses (PRISMA) statement 24. Subsequent 

outcomes/review criteria were developed and study quality was assessed.  

INSERT Figure 1: PRISMA Diagram 

Table 1 presents the studies identified for review following extraction and de-duplication. 

INSERT Table 1: All Identified Studies 

Data Extraction and Quality Appraisal  

In order to identify relevant papers, the initial filters applied removed: duplicates; non-English 

language papers (the study was unfunded and did not have resources for translation); papers 

pertaining to adults; papers referring to non-epileptic conditions and papers that focused on 

paediatric epilepsies but were not relevant i.e. they did not meet the stated inclusion criteria. 

Identified papers were read independently by members of the review team. Inclusion was 

dependent on four criteria being met: 

1. Papers related to the use of fMRI or MEG for the pre-surgical mapping of language, memory 

or motor functions in paediatric epilepsy surgery candidates. 

2. A demonstrated rationale as to why mapping techniques had been implemented. 

3. A coherent description of the paradigm used to assess language, memory or motor function 

with reference to the stimuli used and the manner of the response elicited. 
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4. An assessment as to whether mapping had made a significant contribution to treatment 

decisions. 

Those papers whose inclusion criteria were unclear were reviewed by separate members of the 

team who were blind to the opinion of the original reviewer. Papers describing both adult and 

paediatric patients were included, if the reported paediatric case/s could be extracted and 

analysed independently of the adult data.  The Oxford Centre for Evidence Based Medicine25 levels 

of evidence was utilised to appraise the quality of included studies with the QUADAS-2 used to 

assess the quality of diagnostic accuracy 26.  

 

Statistical Methods 

An analysis was conducted on the fMRI studies reporting outcome data for language (n=68). These 

papers were chosen specifically as there was a higher frequency of this type of study in the 

literature. Further, the patient data reported within them were more robust. Results were 

dichotomised into typical (left) and atypical (right or bilateral) language lateralisation. The 

proportion of cases correctly identified as typical (PPV) and the proportion of cases correctly 

identified as atypical (NPV) by fMRI, along with their 95% confidence intervals, were calculated 

using Wada as validation. Bivariate meta-analysis was used to provide a meta-analytic summary of 

the available data with a continuity correction used for cases with a value of zero. Given 

heterogeneity of data, Forest plots and ROC space plot, to ensure optimal visual representation of 

data, were produced using R (2015) and mada: Meta-Analysis of Diagnostic Accuracy; R package 

version 0.5.7. (2015) 27 with sensitivity, specificity, positive predictive values (PPV) and negative 

predictive values (NVP) derived from the available data. A descriptive analysis was also completed 

using the data from patients whose imaging technique was not concordant with the validation 
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procedure. In line with QUADAS-2 guidance 26, a quality score was not generated due to concerns 

regarding the use of a summative metric 28. 

 

Results 

Of 2,724 papers retrieved, 34 (1997-2016) met the inclusion criteria (Table 1). The level of 

evidence25 of the included studies was rated at Level 3 (26/34; 76%) and 4 (8/34; 24%). From 

QUADAS-226 rating, low concern was indicated for applicability with a mixed profile for risk of bias 

(Table 2).  

 

INSERT TABLE 2: QUADAS-2 Ratings 

 

Participant Characteristics 

Total paediatric participants were 353 with an age range of 0.5-19 years (M= 10.79). Information 

pertaining to gender was available for 218 of the participants with 48% (n= 103) of the participants 

being female. Handedness data was available for 237 participants. Of these, 83% (n= 197) were 

described as right handed, 16% (n= 27) left handed and 1% (n= 2) ambidextrous. A full description 

of participants was not possible due to the quality of reporting. 

 

Concordant and non-concordant cases 

Where available, identifiable data indicating concordance (i.e. cases where imaging and validation 

agreed) were separated (Supplementary Table 1).  In total, there were 88 (76%) concordant 

responses produced by 63 participants. The mean age of these participants was 14.36 years. A full 

description of participants was not possible due to quality of reporting. Available data indicating 

non-concordance was extracted (i.e. cases where imaging and validation did not agree) from seven 
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studies 29-35. In total, there were 28 (24%) non-concordant responses produced by 20 patients with 

a mean age of 14.93 years. A full description of the 20 was not possible due to quality of reporting. 

Of the 116 cases of concordance/non-concordance extracted in the retrieved studies, data from 

eight participants appeared in both concordant and non-concordant groups (7%) 30-32, 34, 35. Of these 

eight, the mean age was 16.20 years. A full description was not possible due to quality of reporting.   

1. MEG 

Seven studies were identified as using MEG 29, 36-41. One study presented both MEG and fMRI data 

42. No memory related studies were retrieved.  

Language 

Six studies were identified 29, 36-39, 42 assessing the reliability of MEG in language mapping. Data from 

37 are included in 43 and it is unclear how many further patients in this later study were under the 

age of 18 years. A total of 62 patients between the ages of 4 and 18 years old were identified from 

the studies.  

Language Production 

Two studies examined expressive language 38, 42. The methodologies utilised by the language 

production studies were: aloud naming of line-drawings of common objects 38 and sub-vocalisation 

of three letter words 42. In the former, vocalisation occurred after the stimulus had been removed 

from the screen in order to avoid muscle artefacts during acquisition. Castillo et al. 38 were able to 

map expressive language in one patient which was shown to have an atypical, bilateral 

representation of language. The localisation of eloquent cortex was found to be concordant with 

the findings of the Electrical Stimulation Mapping (ESM) validation procedure and situated in close 
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proximity to the patient’s cortical lesion. Ota et al. 42 also demonstrated 100% concordance with 

Wada for their three paediatric patients taken from their mixed sample. These patients were 

deemed to have typical, left-sided language representation. Ota et al. determined a Laterality Index 

(LI) using the formula (R-L)/ (R+L) which was reported in the results section, whereas a similar 

statistic was not reported in the Castillo et al. study. Cut off scores were similarly absent.  

Language Comprehension 

Receptive language mapping using MEG was reported in five studies 29, 36,37,41,42. Van Poppel et al. 36 

demonstrated MEG as a viable procedure for passive language mapping in three patients aged 2, 3 

and 16 years. Two of the patients described in the study did not meet the age inclusion criteria for 

this review; however, data were reported for MEG concordance with ESM demonstrated in the 16 

year old.  A 180-word continuous recognition module consisting of familiar words was presented to 

the patients.  Each patient was allowed to fall asleep naturally or via sedation prior to the mapping 

procedure.  Words were presented one every two seconds. Sources between 250-800 ms post-

presentation were utilised to determine laterality and functional language cortex.  There were no 

descriptions in the paper concerning the development or justification of the LI.  

Papanicolaou et al 37 compared language lateralisation from MEG with those obtained via Wada 

and found an 87% rate of concordance with a sensitivity of 0.98 and selectivity of 0.83.  Although 

the study included a mixture of paediatric and non-paediatric patients, it included 19 paediatric 

patients reported in Hertz-Pannier et al43.  One of the remaining studies used the same technique 

as described by Lee et al29.  The same laterality measure was used but instead of comparing results 

to an independent measure such as Wada, the aim of the study was to determine to what extent 

analysis of language laterality paradigms was affected by researcher subjectivity. Eight of 21 
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individuals were paediatric patients and it was found that there was excellent concordance for 

language localisation estimates performed in different acquisition sessions and when datasets 

were evaluated by different raters. Localisations were found consistently in language specific 

cortex. The authors noted that the strong measures of inter-rater and test-retest reliability indicate 

that language localisation via MEG was amenable to standardised analysis and interpretation 

procedures.  It should be noted that across all studies, the description of assessment preparation 

was minimal. 

Motor 

One study 40 was identified and reported data for two individuals, one of whom was a 16 year old 

female with 3T MRI revealing a lesion in the left medial parietal lobe, close to the left lower limb 

S1. Here MEG was used in addition to the specified preoperative evaluation for localisation of the 

epileptogenic sensorimotor cortical regions. MEG was indicated as providing improved spatial 

precision with consequent benefit for the patient with a suspected epileptogenic zone near the 

sensorimotor cortex with seizures frequent enough for ictal MEG.  

2. fMRI 

26 studies were identified as using fMRI 30-35, 43-63. One study presented both MEG and fMRI data42. 

Language 

In total, 21 studies using fMRI to predict language regions were identified 30-35, 43-47, 49, 52-54, 57-62. A 

total of 223 patients participated (age 5 months -19 years). One paper utilised rs-fMRI57 with 

another35 using a passive fMRI paradigm whereby the patients were given an auditory presentation 

of a children’s story and asked to listen whilst keeping their head still and their eyes fixated on a 



16 
 

point in the centre of the monitor. In total, 75.5% concordance (n=98) was reported for fMRI with 

Wada as shown in Table 3. In total, 75.5% (74 of 98) were classified correctly by fMRI against Wada. 

Sixty percent of responses with left-hemisphere language lateralisation were classified correctly by 

fMRI compared with 6.12% of responses with bilateral representation. fMRI demonstrated left-

sided language representation in 64 (65.3%) of 98 responses.  

[Insert table 3: Wada and fMRI results based on left, right and bilateral language representations for all 

included studies] 

 

Extracted data were dichotomised and used to calculate the PPV and NPV for typical and atypical 

language lateralisation by fMRI against validation. Results of the bivariate meta-analysis 

demonstrated a sensitivity value of 0.72 (95% CI 52-86) and a specificity value of 0.60 (95% CI 0.35-

0.92). A PPV of 74% (95% CI 61 - 87) for ‘typical’ fMRI language lateralisation and a NPV of 65% (95 

% CI 52 - 78) for ‘atypical’ lateralisation were obtained. If an example cohort of 100 children and 

young people were studied, with 50 having typical lateralisation on Wada, this would suggest that 

fMRI would lateralise language to the ‘typical’ hemisphere in 37 cases (74%), and lateralise 

language to the ‘atypical’ hemisphere in 32.5 cases (64%). Figure 2 depicts point estimate, CI of the 

best estimate of the average and prediction interval. Forest Plots for sensitivity (Figure 3) and 

specificity (Figure 4) are presented as supplementary figures. 

Figure 2: ROC Space Plot: Sensitivity and specificity of individual studies with CIs and bivariate 

meta-analysis 

[Insert Figure 2] 
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Supplementary Figure 3: Forest plot of sensitivity values for available fMRI data using a 

validation method (N=65) 

Supplementary Figure 4: Forest plot of specificity values for available fMRI data using a validation 

method (N=65) 

[Insert/ link to Supplementary Figures 3 & 4] 

The first study demonstrated the ability of fMRI to map language function in children using a word 

generation task 42. Eleven children (9-18 years) were asked to generate words that began with a 

specific letter presented via intercom. Three cycles were completed with 40 seconds of activation 

followed by 40 seconds of rest. Words were generated covertly first and if no activation was found, 

this was repeated using overt word naming. This temporal pattern of activation was correlated 

with the time series of activation for each voxel and an empirically defined threshold of 0.7 was 

used to identify activations. No details regarding how this threshold was derived were provided. 

Regions of interest were defined and an asymmetry index was used to determine hemispheric 

lateralisation by dividing the number of right-sided pixels by the number of left-sided pixels. Seven 

patients showed clear activations for covert naming and the remaining four (at the younger end of 

the cohort) showed activations after overt naming. The inferior frontal gyrus and middle frontal 

gyrus regions showed the most consistent localising information and in seven patients where 

dominance was confirmed via Wada or cortical stimulation, there was 100% concordance between 

these measures and fMRI. The authors noted the large variability of activation size and noise level 

across individuals; although arbitrarily altering the threshold did not change the lateralisation, it did 

change levels of significance.  
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Following this study there were a number of reported examples where language mapping 

performed via fMRI was concordant with independent measures in the paediatric population. 

Rutten et al. 44 reported a 14 year old with a tumour in the left inferior frontal gyrus (typically 

regarded as a crucial region for language production). Four language tasks were performed and 

although the report does not describe the analysis technique used, the language area identified via 

electrical stimulation was found to be located 3mm medially in relation to the area defined by 

fMRI. This case demonstrates that fMRI can be used in the paediatric population to infer regions 

required for language processing and although the paper provides limited information regarding 

specific paradigms used or analysis methods, it is clear that clinically relevant information may be 

gathered.  

One retrieved paper focused specifically on how fMRI can be used in the surgical decision making 

process 49. Due to brain plasticity, it is very difficult to predict activation patterns in individuals that 

have sustained a focal brain injury and therefore fMRI is potentially of most use to this population. 

The paper reports 31 cases where fMRI localisation of language function was discussed with a 

multidisciplinary surgical team. One case study reported a patient with a lesion in the left inferior 

frontal gyrus. The language area was found to be dorsal to this region and invasive electrical 

stimulation revealed speech arrest when this area was stimulated. Surgery was performed which 

resulted in seizure freedom and no speech or cognitive deficit. In two reported cases, fMRI 

identified left hemisphere dominance. Therefore, due to the location of cortical lesion, the patients 

were deemed to be high-risk. One did not proceed to surgery and the other had the region 

embolised rather than resected. The task used was covert verb generation in response to hearing a 

concrete noun.  
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Two papers provide crucial information in the progression towards functional imaging becoming 

used more routinely52, 53. The first investigated receptive and expressive language in 29 children 53. 

These patients either had a presumed postnatally acquired disorder (hippocampal sclerosis) or a 

developmental disorder (focal cortical dysplasia). On a range of language tasks, it became clear that 

language organisation in patients with an epilepsy was complex creating difficulty in predicting 

outcomes. This study reported that receptive and expressive language was affected to differing 

degrees depending on whether the underlying pathology involved frontal or temporal networks. 

Shurtleff et al. 52 detailed the methods necessary to perform fMRI with very young individuals. Eight 

children less than eight years were identified, with six of these being five or six years old. Co-

operation was facilitated with extensive training by experienced staff and verb generation tasks 

were practiced overtly until they could be performed covertly. A number of case studies are 

presented which relate the functional results to the underlying pathology and subsequent 

intervention. The key finding was that with the appropriate language paradigm, very young 

children can engage well with fMRI. 

Motor 

Five original pieces of research were identified 50, 51, 55, 56, 61 and four studies which investigated 

both motor and language 49, 52, 58, 59. A total of 40 patients (5-18 years) were included. The majority 

of studies used finger-tapping tests. A block design was utilised whereby patients tapped at least 

once with their affected hand and also the unaffected hand; rest periods were interspersed. Few 

studies reported adequately whether a prompt was used to initiate movement e.g. Liegeois et al49. 

One study that alternated hand and tongue movements, utilised tongue or hand pictures as 

prompts 50. If children were unable to engage in hand movements, parents or clinicians would 

move the hand 49, 52, 61. The recording of outcomes following fMRI using a motor paradigm varied.  
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In one example, imaging was considered effective as it indicated that further subdural grid mapping 

was required. Following this, surgery was successful with no loss of hand function and reduced 

seizures 48. Another concluded that motor performance improved following fMRI guided surgery 54. 

In the majority of studies, fMRI was found to be accurate and further, invasive procedures were not 

necessary 49. The studies concluded motor paradigms were effective and were used with children 

as young as five with functional age equivalents as low as three years, if pre-scanning training was 

adequate 51.  

Memory 

One paper was identified which involved 16 candidates for right anterior temporal lobe resection 

aged 16-54 years48. Two participants (12.5%) were involved aged 16 and 18. The paradigm involved 

the Roland Hometown Walking Task64. In advance of scanning, patients were asked to prepare a 

map of their hometown including ten destinations that were known well. During scanning, patients 

were asked to visualise their route. After 30 seconds (when the first destination should have been 

reached) a baseline task interrupted the route and participants were asked to covertly count in odd 

numbers beginning with 21. Following this, the control condition was implemented every 30 

seconds as consequent destinations were reached. A 1.5T scanner was used and images were 

corrected for movement. Outside the scanner, the Rey Visual Design Learning Test 65 was 

implemented to account for non-verbal immediate recall. Based on the Hometown Walking Task, 

researchers concluded fMRI with a simple retrieval task measured memory function. It 

acknowledged that the Hometown Walking Task is potentially an inadequately controlled non-

specific memory task. The study used pre-defined regions of interest situated over mesio-temporal 

structures and the number of activated voxels in this region in each hemisphere was used to 

calculate an asymmetry index. This method was very similar to the laterality indices described 
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previously for both fMRI and MEG lateralisation of language function. No significant memory 

impairment was identified post-surgery. 
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Discussion 

Retrieved studies indicate evidence that both fMRI and MEG are able to provide information 

lateralising and localising motor and language functions. A PPV of 74% (95% CI 61-87) for ‘typical’ 

lateralisation of language fMRI with validation was demonstrated from available data. The 

retrieved studies provide evidence that these non-invasive methods are of benefit. However, there 

is no clear standardised guidance for clinicians regarding which patients are most likely to benefit 

from a particular modality. Evidence indicates these modalities should not be used as screening 

tests but should be used to help answer specific questions. For focal lesions this is usually for 

establishing the relationship of the lesion to the specific eloquent cortex and for mesial temporal 

epilepsy, assessment of language. Only one retrieved study sought to evaluate memory48.  

Improving Uniformity and Yield 

Statistics and Reporting 

Volumetric functional imaging tends to use uniform file formats with t-scores, z-scores and dipole 

locations all able to be visualised using one of the two most popular file types (NIfTI and ANALYZE). 

This allows data to be compared and transferred from one platform to another, for example 

importing into image-guided software for neurosurgery. Studies using fMRI to investigate human 

brain function typically use SPM 66(www.fil.ion.ucl.ac.uk/spm) and FSL 

67(http:/ / fsl.fmrib.ox.ac.uk/ fsl/ fslwiki/) to post-process and analyse their data. The retrieved papers 

vary greatly in their descriptions of analyses used. The variation is more troubling when there are 

existing metrics of laterality reported in the literature.  
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Robust statistical thresholding is applied to identify significant activity and the thresholds 

calculated are adjusted to account for the multiple comparisons problem 68, 69. Thresholds are used 

to identify genuine activity and to guard against interpreting non-stimulus-driven responses as 

being of interest. A threshold applied to data should be objective and any subsequent metrics 

applied to these areas of activity, such as laterality measures should also be objective. A number of 

the fMRI studies discussed give sparse details regarding the analyses performed and the thresholds 

used and focus instead on how the results relate to other independent measures such as 

electrocorticography or Wada. A number of studies use established software to generate statistical 

maps but then estimate lateralisation metrics based upon qualitative visual examination 49. Korman 

et al 53 provide a discussion of the trade-off between objective identification and the problems this 

can cause due to variations in anatomy and specific thresholds chosen and thus propose qualitative 

inspection is a more reliable method by which to establish lateralisation. However, a counter 

argument is provided 43, where they explicit ly consider the effect that thresholds have on the 

activity seen and inferences made 54. Most studies perform their analyses at the group level rather 

than the individual level and thus the effect sizes will be small with Type I and II errors more 

common for diagnostic scans consisting of a single individual. Therefore, diagnostic mapping of 

eloquent regions should use all the resources provided by the scientific community in terms of 

providing objective, robust identification of significant cortical activity.  

In MEG, due to the smaller size of the research field in comparison to MRI, there is less consensus 

both in the specific analyses used and the software used to implement them. All of the retrieved 

MEG papers use dipole fitting. This is the application of an algorithm which searches for a point-like 

focal source with a location, orientation and strength that minimises the error between the 

predicted field from the fitted dipole and the observed field 70. Dipole fitting is the main analysis 
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tool and the only statistics applied to a dipole estimate are descriptive (typically the goodness-of-fit  

and correlation value). There is no defined way of inferring statistical significance from a dipole 

solution and thus the error rate of such an analysis can be difficult to ascertain. Studies which 

localise function in MEG have moved beyond the dipole fit and now use other analyses such as 

spatial filtering 71, 72. Spatial filtering is a data-driven adaptive scanning technique which, unlike 

dipolar methods, makes no assumptions regarding the number of underlying sources. These 

methods are used widely and can be subjected to inferential statistical tests 73, 74. Spatial filtering 

approaches are now commonplace in MEG investigations of cerebral activity in response to a task; 

however, despite these advances in methodology and modelling, the dipole fit remains the 

preferred method for pre-surgical mapping of eloquent cortex in MEG. Although localisation of 

eloquent regions for research investigations of cortical function has developed more advanced 

modelling methods and introduced statistical rigour into the process, in a clinical context, recently 

published guidelines still advocate use of the dipole to perform localisation 75, despite the fact that 

spatial filtering approaches have been shown to be a robust method of localising such activity 76. 

Although there has been an attempt to develop standard practices in the localisation of eloquent 

brain regions in MEG, there are still large variations in approaches and the methods lag behind the 

level of statistical inferences which are typically demanded in research studies.  

Memory Mapping 

Only one retrieved study related to memory mapping 48. The lack of studies investigating memory 

is not unique to the paediatric population. In the adult population, there are fewer papers that map 

memory in epilepsy patients with fMRI 77-80 or MEG 81. Many of the studies retrieved related to 

language mapping compare the results to Wada outcomes and highlight the potential that non-

invasive functional imaging has for replacing this invasive procedure. However, Wada has a 
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language and memory component and it is the memory component that is of significant interest, 

particularly for resection to the temporal lobe of the language dominant hemisphere 73, 75.  

The type of memory activation task and baseline imaging state effect the extent and location of 

hippocampal activation. Richardson et al 78 examined verbal memory outcome showing stronger 

activation on the left side predicted greater decline. However, results across key studies using 

preoperative hippocampal activation methods have shown inconsistent findings 78, 82-85. These 

inconsistencies coupled with technical measurement difficulties, namely signal drop 

out/macroscopic field inhomogeneity86 have led to using language lateralisation as a method to 

predict post-operative memory. Cited support for this approach is a larger region of interest with 

consequent reduced measurement difficult ies; distinct verbal and non-verbal episodic memory 

networks with different patterns of hemispheric lateralisation and language lateralisation being 

correlated significantly with verbal memory lateralisation 87. Binder and colleagues 88 show that the 

risk of verbal memory decline is more likely to be related to lateralisation of material specific 

memory networks which are correlated with language lateralisation assessed via contrasted 

semantic and tone decision tasks and not stimuli yielding episodic memory asymmetry. While these 

data should perhaps be regarded as preliminary due to small numbers and adult participants, this 

literature provides guidance for appropriate paediatric protocols. 

Paradigm developments for children are required to ensure optimal activation and accurate pre-

operative prediction of likely episodic memory decline. As noted, while inconsistent outcomes for 

hippocampal activation have led to fMRI language lateralisation being promoted to establish pre-

operative risk to memory, it must be remembered that no studies have attempted to devise 

optimal memory activation paradigms for paediatric patients. While this paper does not suggest 

that Wada has been abandoned too early, if functional imaging techniques are to be a viable 
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alternative in the pre-surgical evaluation of paediatric epilepsy patients, it is necessary to develop 

protocols that are able to demonstrate concordance with independent measures. Wada is a test 

that may be failed, providing an indication for likely significant detriment to post-operative 

memory. The retrieved literature does not provide criteria for failure. 

Language Mapping 

MEG and fMRI can non-invasively map language function in children and these measures agree 

with estimates from Wada and electrical stimulation measurements. These are consistent across 

scan sessions and researchers. Other modalities are available. For example, ECoG is used to localise 

language eloquent areas for those being considered as potential paediatric epilepsy surgery 

candidates 89 and consequently these data are used for validation. However, the number of 

validation studies performed on children is very small and greater rigour for details of stimuli and 

analysis is required. Many of the MEG studies use similar paradigms, consisting of spoken nouns 

and a list of target nouns which must be identified. Little published work has been undertaken on 

optimising language protocols specifically for the paediatric population. One of the greatest 

challenges for MEG with young individuals is to ensure there is minimal movement. To achieve this, 

scanning procedures need to remain short whilst still ensuring adequate signal-to-noise.  

In fMRI, the standard protocol is to present a letter to the patient via intercom and they are then 

required to generate words silently beginning with this letter. This technique is shown to work well. 

However, it may be useful to identify a wider range of language paradigms that are effective. For 

example, a young patient may have a low phonemic score but a higher semantic naming score, in 

which case a different language paradigm might be more suitable. These considerations are 

particularly important given one of the retrieved papers highlighted the different ways the 
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language network is related to the specific type of cortical lesion 53. The specific implementations 

should also be unique to each individual. For example, a number of papers use a 30 second ‘on-off’ 

design. However, if the patient is able to generate words at a normal rate, a 15 second ‘on-off’ 

paradigm would be more appropriate as in the same time there would be twice as many 

repetitions which greatly enhances the power of the subsequent statistical tests.  

Somatosensory and Motor Mapping 

One potential contributing factor to the lack of studies on mapping of the motor cortex in MEG and 

fMRI in paediatric and adult populations is that the paradigms and analyses are simple. Both motor 

and somatosensory paradigms work effectively for localisation of the central sulcus in an individual 

and therefore it is a viable alternative to other techniques for patient populations who cannot 

tolerate other procedures. Motor paradigms were largely uniform across different studies. Some 

used auditory cues via intercom, whilst others used visual cues. For children where reading is 

unimpeded, words can be used to cue movement. In younger individuals, coloured pictures, e.g. a 

cartoon hand on a green background and a cross on a red background, can be used effectively. The 

responses measured are typically strong and it is possible to monitor if the patient is performing 

the task. The quickest method of investigating bilateral motor function is to alternate movement of 

the left and right hands; however, when scanning very young patients, it may be preferable to 

localise function of the left and right hand independently to prevent the patient from altering the 

sequence of activation. As with the motor paradigms discussed previously in MEG, despite subtle 

variations they work well typically and are of short duration. A number of studies describe the 

scanning of very young children and, although this is time consuming and needs more preparation 

than adult scanning, it is clearly possible. 
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Conclusions 

Paediatric epilepsies are the most common serious neurological disorders of childhood. Surgery is 

an effective treatment and in the UK only around 25% of such procedures takes place 9. fMRI is the 

predominating tool and all retrieved studies report stimulus-related changes in cerebral blood-flow 

and oscillatory biomagnetic signals. These methods were also reported to be effective in very 

young children. Although there were differences across specific protocols used, there were 

descriptions of a range of approaches which children were both able to tolerate and produce useful 

signal changes. One notable weakness is the limited number of functional imaging studies, 

particularly for memory, which focus on the paediatric population. The majority of studies (76%) 

achieved Level 3 evidence status 25.  

Due to the small number of research studies focusing on children, it remains unclear if results from 

the adult population can be unequivocally extrapolated to children. The numbers reported in this 

review would be larger if some studies provided comprehensive and consistent information 90. It is 

necessary that studies are replicated in entirely paediatric populations. More studies with larger 

participant numbers and a comparison of paradigms leading to the development of task uniform 

paradigms are required. Consequently, agreed outcomes allowing prospective collection of data, 

permitting systematic evaluation coupled with an Individual Participant Data analysis approach 

may be of benefit 91. Such approaches have been accomplished previously 92, 93 allowing data 

combining, planned prospective meta-analysis and sufficient power. 

It remains unclear which language and memory tasks produce optimal activation and how this is 

quantified in a statistically robust manner. If non-invasive functional imaging is to be used routinely 

in patient populations for pre-surgical evaluation, analyses must be robust, reliable and removed 
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from subjective interpretation 39. To achieve this, it is crucial that studies are transparent about the 

specific analyses performed so others may replicate the approach in their locality and more 

importantly, improve it. Retrieved papers indicate a tendency to be either technical or clinical in 

their focus i.e. oriented to describing the procedure and analysis in depth with minimal reference 

to clinical practice, or vice versa. Review of risk for bias via QUADAS-2 indicates the requirement of 

improvements to study design and reporting. Reported studies need to include enough technical 

details to allow the stimuli and analyses to be replicated and must also inform clinicians in the field 

of the relevance the scans have to diagnosis and surgical planning. Presenting concordant 

aggregated outcome alone is insufficient. As this review shows, a percentage of findings were not 

concordant with validation (NPV 65% [CI 52 -78] for language fMRI with validation). Non-

concordance needs to be understood and managed. A consideration of both helps to ensure 

selective outcome reporting and analyses are minimised and patient outcomes are optimised 94. 

Lack of concordance may be managed clinically through the use of other techniques such as Wada 

to determine the integrity of contralateral memory and ECoG high-ɶ ŵŽĚƵůĂƚŝŽŶ ƚŽ ůŽĐĂůŝƐĞ 

language eloquent cortex89. There is strong preliminary evidence that fMRI and MEG can be used 

to lateralise and localise language and motor function in paediatric epilepsy surgery candidates and 

therefore support treatment decisions.  
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Figure 1: PRISMA Diagram 
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Fig. 2 ROC Space Plot: Sensit ivity and specificity of individual studies with CIs and bivariate 
meta-analysis.
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Table 1:  All identified studies 
and  characteristics 

 

 Paper Country of Origin N (n) Age range 
 

Imaging (n) Level of 
evidence 

Imaging task(s) Validation (n) 
 

1 Hertz-Pannier et al (1997) USA 11 8.8 - 18 fMRI 3 Language Production IAT (6); ESM (1) 

2 Rutten et al. (1999) Netherlands 1 14 fMRI 4 Language Production ioESM 

3 Brier et al (2001) 
 

USA 19 8 - 18 fMRI 3 Language Comprehension IAT 

4 Castillo et al (2001) 
 

USA 1 18 MEG 4 Language Production ioESM 

5 Spreer et al (2003) Germany 4 15 - 17 fMRI 3 Language Comprehension IAT 

6 Adcock et al (2003) UK 1 15 fMRI 3 Language Production IAT 

7 Sabbah et al (2003) 
 

France 4 9 - 17 fMRI 3 Language Production IAT 

8 Papanicolaou et al. (2004) USA 19 8 - 18 MEG 3 Language Comprehension  IAT 

9 Medina et al. (2005) 
 

USA 7 7.1 - 
unknown 

fMRI 3 Language Production  Clinical Rating 

10 Janszky et al. (2005) Germany 2 16 - 18 fMRI 3 Memory fMRI 

11 
 
 

Liegeois et al (2006) UK 31 (7)* 7 - 18 fMRI 4 Motor (2), Language lateralisation (3), 
Language Production (1), Language 
Comprehension (1) 
 

ioESM 

12 Lee et al. (2006) 
 

USA 8 10 - 17 MEG 3 Language Comprehension Inter-rater concordance 

13 Szaflarski et al. (2008) USA 28 (1)* 17 fMRI 3 Language Production, Language 
Comprehension 

IAT 

14 Arora et al. (2009) USA 7 12 - 18 fMRI 3 Language Production (6) 
Language Comprehension (7)  

IAT 

15 Liu et al (2009) USA 4 12 - 16 fMRI 3 Motor ioESM 

16 Vitikainen et al. (2009) 
 

USA 2(1)* 16 MEG 4 Motor nTMS 

17 Pilato et al. (2009) 
 

Italy 1 14 fMRI 4 Motor TMS 

18 Shurtleff et al. (2010) USA 8 5 - 8 fMRI 3 Language Production (4) Motor (7) ESM, IAT 

19 Korman et al. (2010) 
 

USA 29 9 - 18  fMRI 3 Language Production, Language 
Comprehension 

nr. 

20 Jones et al. (2011) USA 59(9)* 8 - 18 fMRI 3 Language Lateralisation IAT 

21 Ota et al. (2011) Japan 4 14 - 18 fMRI + MEG 3 Language Comprehension IAT 
 
22 

 
Seo et al. (2011) 
 

 
USA 

 
14(13)† 

 
3-18 

 
MEG 

3  
Epileptigenic Foci 

 
iEEG 

23 van Poppel et al. (2012) USA 15(13)* 4 - 16 MEG 3 Language Comprehension nr. 
24 Rodin et al. (2013) Canada 20 nr. fMRI 3 Language Production, (7) 

Language Comprehension (7) 
IAT 
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*Paediatric data included within adult data;  † Paediatric data included with >4 years patient data; fMRI= functional magnetic resonance imaging; IAT= Intracarotid Amobarbital Test; iEEG= 
intercranial EEG; ioESM= intraoperative Electrocortical Stimulation Mapping; ESM= Electrocortical Stimulation Mapping; nTMS= navigated Transcranial Magnetic Stimulation; TMS= Transcranial 
Magnetic Stimulation; hgECoG=induced high gamma electrocorticography; nr. = not reported; pm-fMRI= passive motion functional magnetic resonance imaging.  
 
 
 
 

  

25 Zhang et al. (2013) China 7(6)* 7 - 17 fMRI 3 Motor Clinical Outcome 

26 Sommer et al (2013) Germany 25(3)* 12 - 18 iofMRI 3 Motor Clinical Outcome 
27 Vadivelu et al (2013) USA 2 4-9 rsfMRI 4 Language lateralisation Clinical Outcome 
28 Genetti et al (2014) Switzerland 23 (6)* 11-17 fMRI 3 Motor (4), Language Comprehension hgECoG, ESM 
29 Nooraine et al (2014) India 7 (2)* 11 fMRI 4 Motor (2), Language lateralisation (1) Clinical Outcome 
30 Gelinas et al (2014) USA 46 7-19 fMRI 3 Language lateralisation nr. 
31 Norrelgen et al (2014) Sweden 19 8-18 fMRI 3 Language lateralisation Dichotic listening 
32 Suarez et al (2014) USA 46 (21)* 8-17 Passive 

fMRI 
3 Language lateralisation ECS(5), IAT (13) 

33 Choudhri et al (2015) USA 56 (17)* 0.5-12.1  pm-fMRI 4 Motor nr. 
34 Sepeta et al (2016) USA 142 

(17)* 
6.8-12.8 fMRI 3 Language lateralisation nr. 
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Table 3: Wada and functional MRI results based on left, right and bilateral language 
representations for all included studies  
 
 Wada   

fMRI Left  Right Bilateral 
Left 56   (58.33%) 

 
0   1   (1.04; 4.35%) 

Right 1     (1.04%; 4.35%) 
 

9   (9.38%) 3   (3.15%; 13.04%) 

Bilateral 10   (10.42%; 43.48%) 
 

4   (4.16%; 17.31%) 8   (8.33%) 

 
Percentage of responses shown in parentheses (N=96) 
Percentage of non-concordant responses shown in bold (N=23) 
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 QUADAS-2 ratings of included studies   

Study Risk of bias Applicability Concerns 

Patient 
Selection 

Index Test Reference 
Standard 

Flow and 
Timing 

Patient 
Selection 

Index test Reference 
Standard 

Hertz-Pannier et al (1997)        
Rutten et al. (1999)        
Brier et al (2001)        
Castillo et al (2001)        
Spreer et al (2003)        
Adcock et al (2003)        
Sabbah et al (2003)        
Papanicolaou et al. (2004)        
Medina et al. (2005)        
Janszky et al. (2005)        
Liegeois et al (2006)        
Lee et al. (2006) 
 

       

Szaflarski et al. (2008)        
Arora et al. (2009)        
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= High;         = Low;            = Unclear; N/A = Not applicable  

Liu et al (2009) 
 

       

Vitikainen et al. (2009)        
Pilato et al. (2009)        

Shurtleff et al. (2010)        

Korman et al. (2010)   N/A N/A   N/A 
Jones et al. (2011)        

Ota et al. (2011) 
 

       

Seo et al. (2011) 
 

       

van Poppel et al. (2012)        

Rodin et al. (2013)        

Zhang et al. (2013)        

Sommer et al (2013)        

Vadivelu et al (2013)        

Genetti et al (2014)        

Nooraine et al (2014)        

Gelinas et al (2014)   N/A N/A   N/A 
Norrelgen et al (2014)        
Suarez et al (2014)        
Choudhri et al (2015)   N/A N/A   N/A 
Sepeta et al (2016)   N/A N/A   N/A 
        


