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ABSTRACT

Context. Massive stars play a vital role in the Universe, however, their evolution even on the main-sequence is not yet well understood.
Aims. Because of the steep mass-luminosity relation, massive main-sequence stars become extremely luminous. This brings their
envelopes very close to the Eddington limit. We analyse stellar evolutionary models in which the Eddington limit is reached and
exceeded, explore the rich diversity of physical phenomena that take place in their envelopes, and investigate their observational
consequences.
Methods. We use published grids of detailed stellar models, computed with a state-of-the-art, one-dimensional hydrodynamic stellar
evolution code using LMC composition, to investigate the envelope properties of core hydrogen burning massive stars.
Results. We find that the Eddington limit is almost never reached at the stellar surface, even for stars up to 500 M�. When we define
an appropriate Eddington limit locally in the stellar envelope, we can show that most stars more massive than ∼40 M� actually exceed
this limit, in particular, in the partial ionisation zones of iron, helium, or hydrogen. While most models adjust their structure such that
the local Eddington limit is exceeded at most by a few per cent, our most extreme models do so by a factor of more than seven. We
find that the local violation of the Eddington limit has severe consequences for the envelope structure, as it leads to envelope inflation,
convection, density inversions, and, possibly to, pulsations. We find that all models with luminosities higher than 4× 105 L�, i.e. stars
above ∼40 M� show inflation, with a radius increase of up to a factor of about 40. We find that the hot edge of the S Dor variability
region coincides with a line beyond which our models are inflated by more than a factor of two, indicating a possible connection
between S Dor variability and inflation. Furthermore, our coolest models show highly inflated envelopes with masses of up to several
solar masses, and appear to be candidates for producing major luminous blue variable eruptions.
Conclusions. Our models show that the Eddington limit is expected to be reached in all stars above ∼40 M� in the LMC, even in lower
mass stars in the Galaxy, or in close binaries or rapid rotators. While our results do not support the idea of a direct super-Eddington
wind driven by continuum photons, the consequences of the Eddington limit in the form of inflation, pulsations and possibly eruptions
may well give rise to a significant enhancement of the time averaged mass-loss rate.
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1. Introduction

Massive stars are powerful engines and strongly affect the evolu-
tion of star-forming galaxies throughout cosmic time (Bresolin
et al. 2008). In particular the most massive stars produce copi-
ous amounts of ionising photons (Doran et al. 2013), emit pow-
erful stellar winds (e.g. Kudritzki & Puls 2000; Smith 2014)
and, in their final explosions, are suspected to produce the most
energetic and spectacular stellar explosions, as pair-instability
supernovae (Kozyreva et al. 2014), superluminous supernovae
(Gal-Yam et al. 2009), and long-duration gamma-ray bursts
(Larsson et al. 2007; Raskin et al. 2008).

Massive main-sequence stars, which we understand here as
those that undergo core hydrogen burning, have a much higher
luminosity than the Sun, as they are known to obey a sim-
ple mass-luminosity relation, L ∼ Mα, with α > 1. However,
whereas this relation is very steep near the solar mass (α � 5),
it is shown in Kippenhahn & Weigert (1990) that α → 1 for
M → ∞. Indeed, Köhler et al. (2015) find α � 1.1 for
M = 500 M�.

� Appendices are available in electronic form at
http://www.aanda.org
† Present address: Max-Planck-Institut für Astronomie,

Königstuhl 17, 69117 Heidelberg, Germany.

Since the Eddington factor is proportional to L/M, it is de-
bated in the literature whether main-sequence stars of higher and
higher initial mass eventually reach the Eddington limit (Langer
1997; Crowther et al. 2010; Maeder et al. 2012). The answer is
clearly: yes, they do. Even when only electron scattering is con-
sidered as a source of radiative opacity, the Eddington limit cor-
responds to a luminosity-to-mass ratio of R := log

(
L
L� /

M
M�

)
�

4.6 (Langer & Kudritzki 2014) for hot stars with a solar helium
abundance. This is extremely close to the R-values obtained for
models of supermassive stars, where this ratio is nearly mass in-
dependent (Fuller et al. 1986; Kato 1986). In fact, Kato (1986)
showed that zero-age main-sequence (ZAMS) models computed
only with electron scattering opacity reach the Eddington limit
at a mass of about ∼105 M�.

Whether supermassive stars exist is an open question. Also
the mass limit of ordinary stars is presently uncertain (Schneider
et al. 2014), however, there is ample evidence for stars with ini-
tial masses well above 100 M� in the local Universe. A num-
ber of close binary stars have been found with component initial
masses above 100 M� (Schnurr et al. 2008, 2009; Taylor et al.
2011; Sana et al. 2013). Crowther et al. (2010) proposed ini-
tial masses of up to 300 M� for several stars in the LMC, based
on their luminosities. Bestenlehner et al. (2014) identified more
than a dozen stars more massive than 100 M� from the sample
of ∼1000 OB stars near 30 Doradus, which are analysed in the
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frame of VLT-Flames Tarantula Survey (Evans et al. 2011). The
hydrogen-rich stars among them have measured R-values of up
to 4.3. In hot stars with finite metallicity, the ion opacities can
easily exceed the electron scattering opacity (Iglesias & Rogers
1996). It is thus to be expected that the true Eddington limit,
which accounts for all opacity sources, is located at R-values
of 4.3 or below. This implies that these stars should in fact also
have reached, or exceeded their Eddington limit.

In this paper, we explore the question of massive main-
sequence stars reaching, or exceeding the Eddington limit from
the theoretical side. We show by means of detailed stellar mod-
els, as described in Sect. 2, that even all stars more massive than
∼40 M� are found to reach the Eddington limit. In Sect. 3, we
demonstrate the need to properly define a local Eddington fac-
tor in the stellar interior, which we then use in Sect. 4 to show
that when it exceeds the critical value of one, the stellar enve-
lope becomes inflated. We show further in Sects. 5 and 6 that
super-Eddington conditions can lead to density inversions and
induce convection. We compare our results to previous studies
in Sect. 7, and relate them to observations in Sect. 8, before sum-
marising our conclusions in Sect. 9.

2. Stellar models

The grids of the stellar models we used have been published in
Brott et al. (2011) and Köhler et al. (2015). We consider only the
core hydrogen burning models computed with LMC metallicity.
Each stellar evolution sequence computed by Brott et al. (2011)
and Köhler et al. (2015) consists of typically 2000 individual
stellar models. However, the full amount of data defining a stellar
model is only stored for a few dozen time points per sequence,
in non-regular intervals. We analyse those stored models. This
scheme has the disadvantage that the density of models in the
investigated parameter space is not always as high as it should be
ideally. Still, as shown below, it allows for a thorough sampling
of the considered parameter space, and it is fully consistent with
the results already published.

The stellar models were computed with a state-of-the-
art, one-dimensional hydrodynamic implicit Lagrangian code
(BEC), which incorporates latest input physics (for details, see
Braun 1997; Yoon et al. 2006; Brott et al. 2011; Köhler et al.
2015, and references therein). Convection was treated as in the
standard non-adiabatic mixing length approach (Böhm-Vitense
1958; Kippenhahn & Weigert 1990) and a mixing length param-
eter of α = l/Hp = 1.5 (Langer 1991) was adopted, with l and Hp
being the mixing length and the pressure scale height, respec-
tively. This value of the mixing length parameter leads to a good
representation of the Sun (Suijs et al. 2008), whereas its cali-
bration to multi-dimensional hydrodynamic models shows that
it tends to decrease towards lower gravities (Trampedach et al.
2014; Magic et al. 2015). The convective velocities were lim-
ited to the local value of the adiabatic sound speed. The con-
tribution of turbulent pressure (de Jager 1984) was neglected,
since it is not expected to be important in determining the stellar
hydrostatic structure (Stothers 2003). Indeed, our recent study
which includes turbulent pressure (Grassitelli et al. in prepara-
tion) shows that e.g. for an 80 M� evolutionary sequence, the
stellar radius is increased over that of models without turbulent
pressure by at most a few per cent at any time during its main-
sequence evolution. Rotational mixing of chemical elements,
following Heger et al. (2000), and transport of angular momen-
tum by magnetic fields due to the Spruit-Taylor dynamo were
also included (Spruit 2002). The efficiency parameters fc and fμ
for rotational mixing were set to 0.0228 and 0.1, respectively

(Brott et al. 2011). Radiative opacities were interpolated from
the OPAL tables (Iglesias & Rogers 1996). The opacity enhance-
ment due to Fe-group elements at T ∼ 200 kK plays a vital role
in determining the envelope structure in our stellar models. Even
though flux-mean opacities are appropriate to study the momen-
tum balance near the stellar photosphere, in the following we
only consider the Rosseland mean opacities, which are thought
to behave very similarly to the flux-mean opacities especially at
an optical depth larger than one.

The outer boundary condition of the stellar models corre-
sponds to a plane-parallel grey atmosphere model on top of the
photosphere. In other words, the effective temperature was used
as a boundary condition at a Rosseland optical depth of 2/3. The
adopted stellar wind mass-loss recipe leads to small, but finite
outflow velocities in the outermost layers, which induces a slight
deviation from hydrostatic equilibrium.

The mass-loss prescription from Vink et al. (2000, 2001)
was employed to account for the winds of O- and B-type stars.
Moreover, parameterized mass-loss rates from Nieuwenhuijzen
& de Jager (1990) were used on the cooler side of the bi-stability
jump, i.e. at effective temperatures less than 22 000 K, if the
Nieuwenhuijzen & de Jager (1990) mass-loss rate exceeded that
of Vink et al. (2000, 2001). Wolf-Rayet (WR) type mass-loss
was accounted for using the empirical prescription from Hamann
et al. (1995) divided by a factor of 10 (Yoon et al. 2006), when
the surface helium mass fraction became greater than 70%.

Evolutionary sequences of massive stars, with and without
rotation, were computed up to an initial mass of 500 M�, starting
with LMC composition. The initial mass fractions of hydrogen,
helium and metals were taken to be 0.7391, 0.2562, and 0.0047
respectively, in accordance with the observations of young mas-
sive stars in the LMC (Brott et al. 2011).

3. The Eddington limit

The Eddington limit refers to the condition in which the out-
wards radiative acceleration in a star balances the inwards grav-
ity, in hydrostatic equilibrium. It is a concept that is thought to
apply at the stellar surface, in the sense that if the Eddington
limit is exceeded, a mass outflow should arise (Eddington 1926;
Owocki et al. 2004). If we denote the gravity as g = GM/r2 and
the radiative acceleration mediated through the electron scatter-
ing opacity as grad = κeL/4πr2, then the classical Eddington fac-
tor Γe is defined as

Γe :=
L

LEdd
=
grad

g
=
κeL

4πcGM
, (1)

where L,M, and κe are the luminosity, mass, and electron-
scattering opacity, respectively, with the physical constants hav-
ing their usual meaning. The classical Eddington parameter Γe
therefore does not depend on the radius r as the inverse r2 scal-
ing in both grad and g cancel out. Whereas Γe is often convenient
to consider, it provides a sufficient instability criterion to stars,
but not a necessary one because usually the true opacity exceeds
the electron scattering opacity significantly and also contributes
to the radiative force.

As it turns out below, even when the Rosseland mean opaci-
ties are used, the models we analyse practically never reach the
Eddington limit at their surface. Therefore, we instead consider
the Eddington factor in the stellar interior as

Γ′(r) :=
L(r)

LEdd(r)
=
κ(r)L(r)

4πcGM(r)
, (2)
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Fig. 1. Different Eddington factors inside a 285 M�, non-rotating, main-
sequence model with log L/L� = 6.8 and Teff = 46 600 K (cf. Fig. 9 and
Appendix A). The shaded areas mark the different convection zones and
the hatched area marks the region with a density inversion. The radius
of the non-inflated core is denoted as rcore (defined in Sect. 4). The black
dashed horizontal line is drawn at Γ = 1 for convenience.

where M(r) is the Lagrangian mass coordinate, κ(r) is the
Rosseland mean opacity, and L(r) is the local luminosity (Langer
1997). However, Γ′(r) > 1 also does not provide a stability limit
in the stellar interior because the stellar layers turn convectively
unstable following Schwarzschild’s criterion when Γ′(r) → 1
(Joss et al. 1973; Langer 1997). As the luminosity transported by
convection does not contribute to the radiative force, we subtract
the convective luminosity in the above expression and redefine
the Eddington factor as

Γ(r) :=
Lrad(r)
LEdd(r)

=
κ(r)(L(r) − Lconv(r))

4πcGM(r)
· (3)

For example, near the stellar core where convective energy trans-
port is highly efficient, Γ(r) stays well below unity in spite of
Γ′(r) 	 1 and no instability, i.e. departure from hydrostatic
equilibrium, occurs (see Fig. 1). In the rest of the paper we
refer to Γ(r) as the Eddington factor unless explicitly specified
otherwise.

Even with this definition, a super-Eddington layer inside a
star does not necessarily lead to a departure from hydrostatic
equilibrium or a sustained mass outflow. In the outer envelopes
of massive stars, non-adiabatic conditions prevail and convective
energy transport is highly inefficient, which pushes Γ(r) close
to (or above) one. We find that the stellar models counteract
this kind of a super-Eddington luminosity by developing a posi-
tive gas pressure gradient, thus restoring hydrostatic equilibrium
(Langer 1997; Asplund 1998). In these situations, the canonical
definition of Ledd being the maximum sustainable radiative lumi-
nosity locally in the stellar interior (in hydrostatic equilibrium)
breaks down and loses its significance. As we see below, the ra-
diative luminosity beneath the photosphere can be up to a few
times the Eddington luminosity.

In Fig. 1, the behaviour of Γ and Γ′ is shown along with
the electron-scattering Eddington factor Γe in a 285 M� non-
rotating stellar model, which provides an educative example (see
Appendix D for further examples). As explained above, Γ′ and
Γe are significantly greater than one in the convective core of
the star. The indicated sub-surface convection zones are caused
by the opacity peaks at T ∼ 1.5 × 106 K (deep iron bump) and
at T ∼ 2 × 105 K (iron bump). Near the bottom of the inflated

envelope (r/rcore >∼ 1; see Sect. 4 for the definition of rcore), Γ ap-
proaches one and the Fe opacity bump drives convection. An ex-
tended region with Γ ≈ 1 follows. A thin shell very close to the
photosphere contains the layers with a positive density gradient
and with Γ > 1.

The stellar models have been computed with a hydrody-
namic stellar evolution code, however, because of the large time
steps required for stellar evolution calculations, non-hydrostatic
solutions are suppressed by our numerical scheme. The result-
ing hydrostatic structures are still valid solutions of the hydro-
dynamic equations (see Heger et al. 2000; Kozyreva et al. 2014,
for the equations to be solved). Models computed with time steps
small enough to resolve the hydrodynamic timescale reveal that
some, and potentially many of our models are pulsationally un-
stable, as will be shown in a forthcoming paper. However, in the
cases analysed so far, the pulsations saturate and do not lead to a
destruction or ejection of the inflated envelopes. In this respect,
we consider our analysis of the hydrostatic equilibrium struc-
tures as useful.

3.1. Effect of rotation on the Eddington limit

The effect of the centrifugal force on the structure of rotating
stellar models has been studied by a number of groups in the
past, including Heger et al. (2000) and Maeder & Meynet (2000).
This is done by describing the models in a 1D approximation
where all variables are taken as averages over isobaric surfaces
(Kippenhahn & Thomas 1970). The stellar structure equations
are modified to include the effect of the centrifugal force (Endal
& Sofia 1976). The equation of hydrostatic equilibrium becomes

dP
dm

4πr2 + fP
GM(r)

r2
= 0, (4)

and the radiative temperature gradient in the energy transport
equation (in the absence of convection) takes the form

∇rad =
3

16πacG
κPL
MT 4

fT
fP
, (5)

where the quantities fP and fT have the same definition as in
Heger et al. (2000). Consequently, the Eddington luminosity gets
modified as:

LEdd =
4πcGM
κ

fP

fT
· (6)

However, the Eddington factor,

Γ =
Lrad

LEdd
=
∇
∇rad

L
LEdd

=
4a
3

T 4∇
P

(7)

does not have any explicit dependence on fP and fT because
the factor fP/ fT cancels out. Therefore formally, the Eddington
factor remains unaffected by rotation. Of course, if the internal
evolution of a rotating model is changed, for example, by rota-
tional mixing, its Eddington factor is still different from that of
the corresponding non-rotating model.

Of course, real stars are three-dimensional and the centrifu-
gal force must affect the hydrostatic stability limit. However, this
is expected to be a function of the latitude at the stellar surface,
and in a 2D view, the effect is largest at the equator (Langer
1997). To first order, the critical luminosity Lc to unbind matter
at the stellar equatorial surface becomes

Lc = LEdd

⎛⎜⎜⎜⎜⎜⎝1 −
(
vrot

vKep

)2⎞⎟⎟⎟⎟⎟⎠ , (8)
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Fig. 2. Positions of the analysed stellar models with Γmax > 0.9 in the Hertzsprung-Russell (HR) diagram (coloured dots). Models with Γmax > 1.1
are coloured dark blue. The solid lines show the evolutionary tracks of non-rotating stellar models (Köhler et al. 2015). The initial masses are
marked in units of solar mass. The dashed line corresponds to the zero-age main-sequence of the non-rotating models. The hot and the cool edges
of the S Dor instability strip from (Smith et al. 2004) are indicated with thick dotted lines. The interior structures of the models marked with yellow
diamonds are shown in Appendix D.

where vrot and vKep are the stellar equatorial rotation velocity
and the corresponding Keplerian value, respectively. However,
to compute the effect reliably, the stellar deformation due to ro-
tation as well as the effect of gravity darkening need to be ac-
counted for (Maeder & Meynet 2000; Maeder 2009). To do this
realistically for stars near the Eddington limit requires 2D calcu-
lations at least.

The implication is that the effect of rotation on the critical
stellar luminosity cannot be properly described through the mod-
els analysed here. Those models see the same critical luminos-
ity as if rotation was absent. Since mixing of helium in these
models is very weak for rotation rates below those required for
chemically homogeneous evolution, most of the rotating mod-
els evolve very similar to the non-rotating models (Brott et al.
2011; Köhler et al. 2015), and thus merely serve to augment our
database.

3.2. The maximum Eddington factor

In our stellar models, we have determined the maximum
Eddington factor Γmax over the whole star, i.e Γmax :=
max [Γ(r)]. The maximum Eddington factor Γmax generally oc-
curs in the outer envelopes of our models, where convective en-
ergy transport is much less efficient than in the deep interior.
The variation of Γmax across the upper HR diagram is shown in

Fig. 2 for all analysed core hydrogen burning models that have
Γmax > 0.9.

Three distinct regions with Γmax > 1 can be identified in
Fig. 2, which can be connected to the opacity peaks of iron, he-
lium, and hydrogen. When one of these opacity peaks is situated
sufficiently close to the stellar photosphere, the densities in these
layers are so small that convective energy transport becomes in-
efficient. As a consequence, super-Eddington layers develop that
are stabilised by a positive (i.e. inwards directed) gradient in den-
sity and gas pressure (see Sect. 5 below). The envelope inflation,
which occurs when Γmax approaches one, is discussed in Sect. 4.

Figure 3 shows Γmax as a function of the effective temper-
ature for all our models with Γmax > 0.9. The models that have
the hydrogen opacity bump close to their photosphere can obtain
values of Γmax as high as ∼7. This manifests itself as a promi-
nent peak around Teff ≈ 5.5 kK. The inset panel shows the much
weaker peaks in Γmax due to partial ionisation zones of Fe and
HeII, at T/kK ∼ 200 and 50, respectively. The peak caused by
the Fe opacity bump may extend to hotter effective temperatures
and apply to hot, hydrogen-free Wolf-Rayet stars, which are not
part of our model grid.

For stars above about 125 M�, Γmax reaches one, even on
the ZAMS. This is demonstrated in Fig. 4 which shows both
Γmax and effective temperature as a function of mass for the non-
rotating stellar models. As these models evolve away from the
ZAMS to cooler temperatures, super-Eddington layers develop
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in their interior. The blue curve shows a maximum effective tem-
perature of 57 000 K at about 200 M�, beyond which it starts de-
creasing with further increase in mass. This behaviour is related
to the phenomenon of inflation, which is discussed in detail in
Sect. 4. However, the “effective temperature” at the base of the
extended, inflated envelope, Teff,core (see Sect. 4), still increases
with mass in the whole considered mass range.

3.3. The spectroscopic HR diagram

Figure 5 shows the location of our analysed models in the spec-
troscopic HR diagram (sHRD, Langer & Kudritzki 2014; Köhler
et al. 2015) where instead of the luminosity, L := T 4

eff/g is
plotted as a function of the effective temperature. The quan-
tity L can be measured for stars without knowing their distance.
Moreover, we have log(L /L�) = R (cf. Sect. 1), such that L is

directly proportional to the Eddington factor Γe as

Γe =
κeL

4πcGM
=
κeσT 4

eff

cg
=
κeσ

c
L , (9)

where g is the surface gravity and the constants have their usual
meaning. Therefore one can directly read off Γe (right Y-axis
in Fig. 5) from the sHRD. Massive stellar models often evolve
with a slowly increasing luminosity over their main-sequence
lifetimes. Therefore, where in a conventional HR diagram mod-
els with very different Γmax might cluster together (see Fig. 2),
they separate out nicely in the sHRD since L ∝ L/M. The effect
of the opacity peaks on the maximum Eddington factor (Γmax) at
temperatures corresponding to the three partial ionisation zones
(Fe, HeII and H) is seen more clearly in the sHRD in Fig. 5 com-
pared to the ordinary HR diagram (Fig. 2).

We find that for our ZAMS models the electron scattering
opacity is κe ≈ 0.34, while the true photospheric opacity κph
is around 0.5. Therefore it is expected that the true Eddington
limit (Γ = 1) is achieved at about Γe = 0.7 for stellar models
that retain the initial hydrogen abundance at the photosphere.
Therefore in Fig. 5 we have drawn two horizontal lines corre-
sponding to Γe = 0.7, one assuming the initial hydrogen mass
fraction X = 0.74 (green line) and the other assuming X = 0
(red line). While models with helium-enriched photospheres ex-
ceed the green line comfortably, even the most helium-enriched
models (rotating or otherwise) stay below the red line.

From Köhler et al. (2015), we know that models with
log L /L� > 4.4 are all hydrogen-deficient, either due to mass-
loss or rotationally induced mixing, as both processes lead to an
increasing L/M-ratio (cf. their Fig. 18). Figure 5 thus demon-
strates that the models that contain super-Eddington layers due
to the partial ionisation of helium all have hydrogen deficient
envelopes, i.e. they are correspondingly helium-enriched.

Figure 5 reveals that the electron scattering Eddington fac-
tor Γe is not a good proxy for the maximum true Eddington
factor (Γmax) obtained inside the star. For example, along the
horizontal line log L /L� = 4.3, corresponding to Γe � 0.5,
Γmax varies from well below one to values near seven at the cool
end. However, we note that below 30 000 K helium and hydrogen
recombine, the gas is not fully ionised any more. The line opac-
ities of helium and hydrogen become important, which causes
the increase in Γmax (see Figs. 3 and 14).

3.4. Surface Eddington factors and the location of Γmax

The optical depth where Γmax is reached gives an idea of how
deep in the stellar interior the layer with the highest Eddington
factor is located. We investigate this in Fig. 6, which shows
that Γmax is located at largely different optical depths in differ-
ent types of models. While the maximum Eddington factors oc-
cur generally at optical depths below ∼10 000, we see that in
the three effective temperature regimes identified by the super-
Eddington peaks in Figs. 2 and 3, Γmax can even be located at an
optical depth of ∼10 or below.

For example, when the tracks above log L/L� = 6.2 ap-
proach effective temperatures of ∼30 kK, Γmax is located at the
Fe-peak, which is deep inside the envelope (τ � 1400). The
models at this stage become helium-rich (Ys >∼ 70%) and the
Wolf-Rayet mass-loss prescription is applied. Once these tracks
turn bluewards in the HR diagram, the position of Γmax jumps
to the helium opacity peak, which is located much closer to the
stellar surface. Consequently, we find three orders of magnitude
of difference between these two types of models with similar
effective temperature and luminosity.
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When considering the surface Eddington factors in the sHRD
(Fig. 7), we see that only the models with Γ(R�) > 0.98 have
log L /L� values of more than 4.6. As discussed above, these
models, which started on the main-sequence with initial masses
above 300 M� are extremely helium-rich and may correspond
to the most extreme late-type WN stars (Sander et al. 2014). As
shown in Fig. 8, they exceed the Eddington limit by just a few per
mille, which is possible because of the high assumed mass-loss
rates that imply a slight deviation from hydrostatic equilibrium
near the stellar surface (cf. Sect. 3 above). However, these mod-
els are those in which our assumption of an optically thin wind
might break down (see Fig. 7 in Köhler et al. 2015). Since the in-
clusion of an optically thick outflow may lead to changes of the
temperature and density structure near the surface, the surface
Eddington-factors for these particular models are not reliable.

In summary, we find, on the one hand, that many of our mod-
els contain layers at optical depths between a few and a few thou-
sand in which the Eddington factor exceeds the critical value of
one. On the other hand, for none of our models we can con-
clude that the Eddington limit is reached very near to, or at the
surface, where for the vast majority we can even exclude that
this happens. This finding leads to a shift in the expectation of
the response of stars that reach the Eddington limit during their

evolution. We might not expect direct outflows driven by super-
Eddington luminosities, but instead internal structural changes,
in particular envelope inflation.

4. Envelope inflation

Inflation of massive, luminous stars refers to the formation of ex-
tended, extremely dilute stellar envelopes. An example of an in-
flated model is shown in Fig. 9. The red shaded region is the non-
inflated core and the blue shaded region is what we refer to as the
inflated envelope. In the example, the model is inflated by 60%
of its core radius (defined below). In the presented model, the
inflated envelope only contain a small fraction of a solar mass,
i.e. ≈10−5 M�.

Envelope inflation is inherently different from classical red
supergiant formation. The latter occurs after core hydrogen ex-
haustion, as a consequence of vigorous hydrogen shell burn-
ing. This process expands all layers above the shell source,
which usually comprise several solar masses in massive stars,
and it also operates in low-mass stars, such that no proximity
to the Eddington limit is required. The mechanism of envelope
inflation that we discuss already works during core hydrogen
burning, i.e. even on the ZAMS for sufficiently luminous stars
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(cf. Fig. 4). Previous investigations have suggested that infla-
tion is related to the proximity of the stellar luminosity to the
Eddington luminosity (Ishii et al. 1999; Petrovic et al. 2006;
Gräfener et al. 2012) in the envelopes of massive stars with
a high luminosity-to-mass ratio (>∼104 L�/M�). The amount of
mass contained in an inflated envelope is usually very small. As
we shall see below, inflation, in extreme cases, can also produce
core hydrogen burning red supergiants.

We define inflation in our models through Δr/rcore := (R� −
rcore)/rcore, with rcore being the radius at which inflation starts
and R�, the photospheric radius. Since the densities in inflated
envelopes are small, the dominance of radiation pressure in these
envelopes is much larger than it is in the main stellar body. We
define a model to be inflated if β(r), which is the ratio of gas
pressure to total pressure, reaches a value below 0.15 in the in-
terior of a model. The radius at which β goes below 0.15 for the
first time from the centre outwards is denoted as rcore, i.e. the
start of the inflated region. The remaining extent of the star until
the photosphere (R� − rcore) is considered the inflated envelope.

We emphasize that our choice of the threshold value for β
is arbitrary and not derivable from first principles. However, we
have verified that this prescription identifies inflated stars in dif-
ferent parts of the HR diagram very well (cf. Appendix D). As
β → 0 for M → ∞, our criterion may fail for extreme masses,
however, the mass averaged value of β for the most massive
ZAMS model that we analysed (500 M�) is 0.3. A threshold
value of 0.15 thus appears adequate for the present study. As
an example, let us consider a typical inflated model, shown in
Appendix A. The value of β in Fig. A.4 decreases sharply at
the base of the inflated envelope, to around 0.01. Even if the
β threshold is varied by 30%, i.e. 0.15 ± 0.045, the non-inflated
core radius rcore changes by only 4%. This goes to show that
for clearly inflated models, the value of rcore is insensitive to the
threshold value of β.

We furthermore performed a numerical experiment which is
suited to show that the core radii identified as described above
are indeed robust. We chose an inflated 300 M� model, and then
increased the mixing length parameter α such that convection
becomes more and more efficient. As shown in Fig. B.1, as a
result the extent of the inflated envelope decreased without af-
fecting the model structure inside the core radius, which thus re-
mained independent of α. For α = 40 convection became nearly
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adiabatic, inflation almost disappeared, and the fact that the pho-
tospheric radius in this case became very close to the core radius
validates our method of identifying rcore.

Figure 10 shows the amount of inflation as defined above,
for all our models that fulfil the inflation criterion, in the HR di-
agram. It reveals that overall, inflation is larger for cooler tem-
peratures. This is not surprising since inflation does not appear to
change the stellar luminosity and must therefore induce smaller
surface temperatures. We also see that inflation is larger for more
luminous stars, which is expected because the Eddington limit is
supposed to play a role (see below). We also find inflation in-
creases along the evolutionary tracks of the most massive stars
that turn back from the blue supergiant stage, which in this case
is due to the shrinking of their core radii. A distinction between
the inflated and the non-inflated models is made by drawing the
black lines in Fig. 10. They are drawn such that no model is in-
flated below the solid line and all the models are inflated above
the dotted line. In between these two lines we find a mixture of
both inflated and non-inflated models. We find that essentially all
models above log(L/ L�) � 5.6 are inflated. Consequently, stars
above ∼40 M� inflate during their main-sequence evolution.

Figure 11 shows the inflation factor as function of the stellar
effective temperature for our inflated models. Whereas inflation
increases the radius of our hot stars by up to a factor of 5, the
cool supergiant models can be inflated by a factor of up to 40.
We refer to Appendix A for the detailed structures of several
inflated models.

In Fig. 12, we take a look at inflation as a function of the core
effective temperature Teff,core defined as

Teff,core =
L

4πσr2
core
, (10)

where L refers to the surface luminosity and the constants have
their usual meaning. We can see that even our coolest models
have high core effective temperatures in the sense that if their in-
flated envelopes were absent their stellar effective temperatures
would have been higher than 20 000 K. Those stars with stellar
effective temperatures below ∼50 000 K contain the He II ionisa-
tion zone within their envelopes, and stars with stellar effective
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Fig. 11. Inflation as a function of the effective temperature for all anal-
ysed models that fulfill our inflation criterion.
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Fig. 12. Inflation as a function of the effective temperature at the core-
envelope boundary for all analysed models with Δr/rcore > 0. Colour
coding indicates the Teff at the photosphere.

temperatures below ∼10 000 K also contain the H/He I ionisa-
tion zone. However, as revealed by the density and temperature
structure of these models (cf. Appendix D), the temperature at
the bottom of the inflated envelope is always about 170 000 K,
and thus corresponds to the temperature of the iron opacity peak.
We conclude that the iron opacity is at least in part driving the
inflation of all the stars. For those with cool enough envelopes,
helium and hydrogen are likely relevant in addition.

4.1. Why do stellar envelopes inflate?

As suggested earlier, the physical cause of inflation in a given
star may be its proximity to the Eddington limit. Figure 13 shows
the correlation between inflation and Γmax for our models. As ex-
pected, we find that our stellar models are not inflated when Γmax
is significantly below 1, and they are all inflated for Γmax > 1.
Indeed, the top panel of Fig. 13 gives the clear message that the
Eddington limit, in the way it is defined in Sect. 3, is likely con-
nected with envelope inflation.

Comparing Fig. 13 (top panel) to Fig. 11 shows that inflation
increases up to Teff ≈ 5500 K. Thereafter, Teff and Γmax decrease
and the stars keep getting bigger without significant changes in
rcore, and, hence, inflation still increases. However, the drop in
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inflation for the coolest models shows an opposite trend. This is
because the non-inflated core radius rcore now moves outwards
(increases) such that inflation (Δr/rcore) decreases even though
R� keeps increasing (cf. definition of rcore in Sect. 4).

In the zoom-in view shown in the lower panel of Fig. 13, we
see some models being inflated for Γmax in the range ∼0.9 . . .1.
Partly, this may be because of the arbitrariness in our definition
of inflation. The exact value of Δr/rcore depends somewhat on
the choice of the threshold value of β to characterize inflation (cf.
Appendix D), i.e. the models withΔr/rcore � 2 and Γmax < 1 may
be at the borderline of inflation. The models with Δr/rcore � 2
but Γmax > 1 are all very hot (Teff ∼> 40 000 K) and in those
models, the inflation is intrinsically small, but generally unam-
biguous.

Still, we see a significant number of models below the
Eddington limit (Γmax < 1), which show a quite prominent in-
flation, i.e. which have a radius increase due to inflation of more
than a factor of five. We investigated this kind of a model by arti-
ficially increasing its mass-loss rate above the critical value Ṁcrit
(Petrovic et al. 2006), such that the inflated envelope was re-
moved (cf. Sect. 4.2). We then found that, on turning down the
mass-loss rate to its original value, the model regained its initial
inflated structure with Γmax < 1. However, Γmax = 1 was reached
and exceeded in the course of our experiment. We conclude
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that a stellar envelope may remain inflated even if the condition
Γmax = 1 is not met any more in the course of evolution, but that
Γmax � 1 may be required to obtain inflation in the first place.

In contrast to earlier ideas of a hydrodynamic outflow being
triggered when the stellar surface reaches the Eddington limit
(Eddington 1926; Owocki et al. 2004), in our models this never
happens. When the properly defined Eddington limit is reached
inside the envelope, its outermost layers expand hydrostatically
and produce inflation. Two possibilities arise in this process.
When the star approaches the Eddington limit, the ensuing en-
velope expansion leads to changes in the temperature and the
density structure. Consequently, the envelope opacity can either
increase or decrease. Figure 14 shows that the effect of expan-
sion generally leads to a reduced opacity such that the expansion
is indeed alleviating the problem. The star then expands until
the Eddington limit is just not exceeded any more, which is the
reason why we find so many inflated models with Γmax � 1.

Figure 14 shows the OPAL opacities for hydrogen-rich com-
position for various constant values of R as function of temper-
ature, where R = ρ/(T/106)3. Kippenhahn & Weigert (1990)
showed that for constant β = Pgas/P and constant chemical com-
position, R as a function of spatial co-ordinate inside the star
is a constant. Thus, for un-inflated models, the opacity curves
in Fig. 14 may closely represent the true run of opacity with
temperature inside the star. In the inflated models, β is dropping
abruptly at the base of the inflated envelope, which means that
the opacity is jumping from a curve with a higher R-value to
one with a lower R-value at this location. That is, the opacity
is smaller everywhere in the inflated envelope compared to the
situation where inflation would not have happened.

For the chemical composition given in Fig. 14 and assuming
β ≡ const., we find

R � 1.8 × 10−5 β

1 − β , (11)

such that if β drops from 0.5 in the bulk of the star to 0.1 in
the inflated envelope, R drops by one order of magnitude. The
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corresponding reduction in opacity can be significant, i.e. up to
about a factor of two.

When upon expansion the envelope becomes cool enough
for another opacity bump to come into play, the problem of not
exceeding the Eddington limit might not be solvable this way.
Instead, when a new opacity peak is encountered in the outer
part of the envelope, super-Eddington conditions occur, i.e. lay-
ers with Γmax > 1 (cf. Figs. 2 and 5), along with a strong pos-
itive gas pressure (and density) gradient (cf. Sects. 3 and 5).
This is most extreme when the envelopes become cool enough
(Teff ∼< 8000 K) such that the hydrogen ionisation zone is present
in the outer part of the envelope, where Eddington factors of up
to seven are achieved.

4.2. Influence of mass-loss on inflation

One might wonder about the sustainability of the inflated layers
against mass-loss, which is an important factor in the evolution
of metal-rich massive stars. Petrovic et al. (2006) estimated that
the inflated envelope cannot be replenished when the mass-loss
rate exceeds a critical value of

Ṁcrit = 4πr2
core ρmin

√
GM
rcore
, (12)

where M and rcore stand for the stellar mass and the un-
inflated radius, respectively, and ρmin is the minimum density
in the inflated region. Petrovic et al. (2006) found Ṁcrit ∼
10−5 M� yr−1 for a massive hydrogen-free Wolf-Rayet star of
24 M�. However, for a typical inflated massive star on the main-
sequence (see Fig. A.1), this critical mass-loss rate is of the or-
der 10−3 . . . 10−1 M� yr−1. These high mass-loss rates are only
expected in luminous blue variable (LBV)-type giant eruptions.
The mass-loss rates applied to our models are several orders of
magnitude smaller (cf. Köhler et al. 2015).

The mass-loss history of four evolutionary sequences with-
out rotation are shown in Fig. 15. Even the 500 M� model never
exceeds a mass-loss rate ∼5 × 10−4 M� yr−1. The critical mass-
loss rate for all models shown in Fig. 15 is much higher than
the actual mass-loss rates applied. Whereas Ṁcrit typically ex-
ceeds Ṁ by a factor of 1000 for the inflated models in the 50 M�
sequence, it exceeds that of the 500 M� sequence by a factor
of 3 . . .100. It is thus not expected that mass-loss prevents the
formation of the inflated envelopes in massive stars near the
Eddington limit. In fact, it may be difficult to identify a source of
momentum that might drive such strong mass-loss (Shaviv 2001;
Owocki et al. 2004). Gräfener et al. (2011) in the Milky Way and
Bestenlehner et al. (2014) in the LMC found a steep dependence
of the mass-loss rates on the electron-scattering Eddington fac-
tor Γe for very massive stars, but they do not find mass-loss rates
that substantially exceed 10−4 M� yr−1.

As many of the models analysed here may be pulsationally
unstable, the mass-loss rates may be enhanced in this case. Grott
et al. (2005) show that hot stars near the Eddington limit may un-
dergo mass-loss due to pulsations, although extreme mass-loss
rates are not predicted. For very massive cool stars, on the other
hand, Moriya & Langer (2015) find that pulsations may enhance
the mass-loss rate to values of the order of 10−2 M� yr−1. These
extreme values could prevent the corresponding stars to spend
a long time on the cool side of the Humphreys-Davidson limit.
A detailed consideration of this issue is beyond the scope of the
present paper.
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Fig. 15. Mass-loss history of four non-rotating evolutionary sequences
from our grid. The initial masses are given along each evolutionary
track. The colours indicate the different mass-loss prescriptions that
were used in different phases, as described in Sect. 2.

5. Density inversions

An inflated envelope can be associated with a “density inver-
sion” near the stellar surface, i.e. a region where the density in-
creases outwards. An example is shown in Fig. 9. In hydrostatic
equilibrium, Γ(r) > 1 implies

dPgas

dr > 0, and thus dρ
dr > 0. As a

consequence, all the models that have layers in their envelopes
exceeding the Eddington limit show density inversions. The cri-
terion for density inversion can be expressed as (Joss et al. 1973;
Paxton et al. 2013)

Lrad

LEdd
>

⎡⎢⎢⎢⎢⎣1 +
(
∂Pgas

∂Prad

)
ρ

⎤⎥⎥⎥⎥⎦−1

, (13)

where Pgas, Prad and ρ stand for the gas pressure, radiation pres-
sure, and density, respectively. A density inversion gives an in-
wards force and acts as a stabilizing agent for the inflated en-
velopes. In the above inequality, Pgas is assumed to be a function
of ρ and T only, i.e. the mean molecular weight μ is assumed
to be constant. Density inversions might also be present in low-
mass stars like the Sun where they are caused by the steep in-
crease of μ around the hydrogen recombination zone (cf. Érgma
1971).

Figure 16 identifies our core hydrogen burning models,
which contain a density inversion. The quantity Δρ/ρ represents
the strength of the density inversion normalized to the minimum
density attained in the inflated zone. We can identify three peaks
in Δρ/ρ at Teff/kK ∼ 55, 25, and 5.5 (see also Fig. 17), which
coincides exactly with the three Teff-regimes in which models
exceed the Eddington limit (cf. Fig. 3). The maximum of the
density inversions in the three zones is related to the relative
prominence of the three opacity bumps of Fe, HeII, and H re-
spectively, as shown in Fig. 17.

However, an inflated model is not necessarily accompanied
by a density inversion. This is depicted clearly in Fig. 18 where
we investigate the correlation between inflation and density in-
version (this can also be seen by comparing Figs. 10 to 16).
Figure 18 shows many models that are even substantially in-
flated but do not develop a density inversion. The three peaks
in the distribution of density inversions of Fig. 17 also show up
distinctly in this plot at the three characteristic effective temper-
atures (shown in colour). Models that show a density inversion
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Fig. 17. Extent of density inversions (Δρ/ρ) as a function of Teff for our
models. The three peaks correspond to the three opacity bumps of Fe,
HeII, and H in the OPAL tables, as indicated.

do always show some inflation. This is less obvious from Fig. 18
because the hottest models show the smallest amount of inflation
(Fig. 11).

The stability of density inversions in stellar envelopes has
been a matter of debate for the last few decades but there has
been no consensus on this issue yet (see Maeder 1992). There
have been early speculations by Mihalas (1969) while studying
red supergiants that a density inversion might lead to Rayleigh-
Taylor instabilities (RTI), resulting in “elephant trunk” structures
washing out the positive density gradient. However, as rightly
pointed out by Schaerer (1996), RTI does not develop since the
effective gravity geff = g(1 − Γ) acting on the fluid elements is
directed outwards in the super-Eddington layers, which contain
the density inversion. Kutter (1970), on the other hand, claimed
that a hydrodynamic treatment of the stellar structure equations
prevents any density inversion and instead leads to a steady mass
outflow. However, this claim is refuted by the present work, since
our code solves the 1D hydrodynamic stellar structure equations,
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Fig. 18. Top: correlation between inflation and density inversions for our
models with log L/L� > 5. Bottom: zoomed-in view of the area within
the back dotted lines in the top panel.

in agreement with previous hydrodynamical models by Glatzel
& Kiriakidis (1993) and Meynet (1992). Stothers & Chin (1973)
suggested that density inversions will lead to strong turbulent
motions instead of drastic mass-loss episodes. However, these
layers are unstable to convection, so turbulence is present in any
case.

Additionally, Glatzel & Kiriakidis (1993) argued in favour
of a sustainability of density inversions in the sense that they can
be viewed as a natural consequence of strongly non-adiabatic
convection, and pointed out that the only plausible way to sup-
press density inversions is to use a different theory of convection.
The only instability expected from simple arguments therefore
is convection, which is in line with Wentzel (1970) and Langer
(1997).

Still, Ekström et al. (2012) and Yusof et al. (2013) recently
considered density inversions as “unphysical”. Density inver-
sions have been suppressed in their models by replacing the pres-
sure scale height in the Mixing Length Theory with the density
scale height (cf. Sect. 7). This approach has often been adopted
by many investigators in the past to prevent numerical difficul-
ties. As the density scale height tends to infinity when a density
inversion starts to develop, this measure tends to enormously in-
crease the convective flux in the relevant layers. It is doubtful
whether in reality the convective flux can be increased so much,
as the ratio of the local thermal to the local dynamical timescale
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Fig. 19. Upper HR diagram (log L/L� > 5) showing the maximum
of the ratio of the convective velocity to the local isothermal sound
speed (Miso) of the analysed models as coloured dots. Models with
Miso < 1 are shown in black. Some representative evolutionary tracks
of non-rotating models, for different initial masses (indicated along the
tracks in units of solar mass), are also shown with solid black lines.

in the relevant layers is much smaller than one, such that convec-
tive eddies lose their thermal energy much faster than they rise,
and thus hardly transport any energy at all. Multi-dimensional
hydrodynamical simulations would help to settle this issue. We
briefly return to this point in Sect. 7.

6. Sub-surface convection

We also studied the convective velocities in the sub-surface con-
vection zones associated with the opacity peaks in our stellar
models (Cantiello et al. 2009). We measure these velocities in
units of either the isothermal or the adiabatic sound velocity, i.e.
cs,ad and cs,iso, respectively, which we compute as

cs,ad =

√
γP
ρ

(14)

and

cs,iso =

√
kBT
μ
=

√
Pgas

ρ
, (15)

where γ is the adiabatic index, P is the total pressure, ρ is the
density, μ is the mean molecular weight, T is the temperature,
and kB is the Boltzmann constant. We define Miso as the maxi-
mum ratio of the convective velocity over the isothermal sound
speed in the stellar envelope, and Mad correspondingly using the
adiabatic sound speed.

The true sound speed is in between the adiabatic and isother-
mal speed, closer to the first one in the inner parts of the star, and
closer to the second in the inflated stellar envelope (cf. Sect. 5).
In Figs. 19 and 20, we show the values of Miso and Mad for
our models in the HR diagram. Whereas the convective veloc-
ities are always smaller than the adiabatic sound speed, Fig. 19
shows that the isothermal sound speed can be exceeded locally
in our models by a factor of a few. The convective velocity
and sound speed profiles for an extreme model are presented in
Appendix C.

Supersonic convective velocities (adiabatic or isothermal,
depending on the physical conditions in the envelope) may not
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Fig. 20. Upper HR diagram (log L/L� > 5) showing the maximum
of the ratio of the convective velocity to the local adiabatic sound
speed Mad of the analysed models (computed with an adiabatic index
of 5/3) as coloured dots. Some representative evolutionary tracks of
non-rotating models, for different initial masses (indicated along the
tracks in units of solar mass), are also shown with solid black lines.

be realistic and are outside the frame of the standard Mixing
Length Theory. Therefore, in some of our models, the convec-
tive velocities, and thus the convective energy transport, may
have been overestimated. A limitation of the velocities to the
adequate sound speed is expected to reduce the convective flux,
which might lead to further inflation of the stellar envelope.

The cool models, with the strongest inflation, have relatively
smaller values of Miso (compared to the hot WR-type models)
but large values of Mad (Fig. 20) in the sub-surface convection
zones. This is primarily because of the fact that while cs,ad de-
pends on the total pressure, cs,iso only depends on the gas pres-
sure. In the very outer layers of the cool, luminous models,
β → 1 and hence Pgas ≈ Ptot. In these situations, cs,ad and cs,iso
are only a factor

√
γ apart, where γ is the adiabatic index.

We find that the convective energy transport is not always
negligible in the inflated models (cf. Sect. 4.1). We therefore
evaluate the amount of flux that is actually carried by convec-
tion in the inflated envelopes of our models. We define the quan-
tity η(Miso) as the fraction of the total flux carried by convec-
tion in the stellar envelope, at the location where the isothermal
Mach number is the largest. This quantity is plotted as a func-
tion of the effective temperature in Fig. 21. It is evident from
this figure that η(Miso) need not be small for stellar envelopes to
be inflated. However, the hotter a model is the lower its η(Miso)-
value at a given luminosity (see Fig. 22). For models hotter than
Teff ≈ 63 kK (e.g. the hydrogen-free He stars), η(Miso) indeed
goes towards zero (Grassitelli et al., in prep.). The behaviour of
the quantity η(Miso) in the HR diagram is shown in Fig. 22.

7. Comparison with previous studies

7.1. Stellar atmosphere and wind models

Since the Eddington limit was thought to be reached in mas-
sive stars near their surface (cf. Sect. 3), several papers have in-
vestigated this using stellar atmosphere calculations. Lamers &
Fitzpatrick (1988) investigated the Eddington factors in the at-
mospheres of luminous stars in the temperature-gravity diagram,
while Ulmer & Fitzpatrick (1998) did so in the HR diagram.
Both studies took the full radiative opacity into account. While
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Fig. 22. Upper HR diagram showing all the inflated stellar models in
our grid as coloured dots. The convective efficiency η(Miso), which is
the ratio of the convective flux to the total flux at the position where the
isothermal Mach number is the largest in the stellar envelope, is colour
coded. Some representative evolutionary tracks of non-rotating models,
for different initial masses (indicated along the tracks in units of solar
mass), are also shown with solid black lines.

their technique did not allow them to reach Eddington factors
of one or more, Ulmer and Fitzpatrick found that model atmo-
spheres with a maximum Eddington factor of 0.9 are located
near the observed upper luminosity limit of stars in the Large
Magellanic Cloud (Humphreys & Davidson 1979; Fitzpatrick &
Garmany 1990).

The main feature in the lines of constant Eddington factors
in the HR diagram found by Ulmer and Fitzpatrick is a drop
from Teff � 60 000 K to 15 000 K. This may correspond to the
drop in the maximum Eddington factor seen in our models in the
same temperature interval (cf. Figs. 2 and 5). Note that the peak
around Teff � 30 000 K in Fig. 3 only corresponds to helium-rich
models, which are not considered by Ulmer and Fitzpatrick.

On the other hand, neither inflation nor super-Eddington lay-
ers or density inversions are reported by Ulmer and Fitzpatrick,
or, to the best of our knowledge, from any hot, main-sequence
star model atmosphere calculation so far. One reason might
be that many model atmospheres only include a rather limited

optical depth range (e.g. up to τ = 100 in Ulmer and Fitzpatrick),
such that the iron opacity peak is often not included in the model.
Additionally, the computational methods employed might not al-
low for a non-monotonic density profile.

Given the ubiquity of inflation for models above log L/L� >
5.5 or M > 50 M� in the LMC, and a correspondingly lower
limit in the Milky Way due to its higher iron content, it is helpful
to construct model atmospheres that include this effect and iden-
tify its observational signatures. As the density profiles of these
kinds of atmospheres near the photosphere are significantly dif-
ferent from those in non-inflated atmospheres, these signatures
may indeed be expected.

Asplund (1998) gives a thorough analysis of the Eddington
limit in cool star atmosphere models. Indeed, he finds super-
Eddington layers and density inversions in his models, and gives
arguments for the physically appropriate nature of these phe-
nomena. He also discusses the effects of stellar winds on these
features, and finds they may be suppressed by extremely strong
winds, but not by winds with mass-loss rates in the observed
range. Asplund does not find inflation in his models, again, ar-
guably because the iron opacity peak is not included in his model
atmospheres, which appears essential even for our models with
cool effective temperatures.

Owocki et al. (2004) and van Marle et al. (2008) studied
the winds of stars that reach or exceed the Eddington limit at
their surface. As we have shown above, this condition is gener-
ally not found in our models (cf. Figs. 7 and 8). However, it may
occur in helium-rich stars (see again Fig. 7) and hydrogen-free
Wolf-Rayet stars (cf. Heger & Langer 1996), as well as in stars
that deviate from thermal or hydrostatic equilibrium. Noticeably,
Owocki et al. (2004) find that the mass-loss rates in this case are
still quite limited, because of the energy loss attributed to lifting
the wind material out of the gravitational potential (see, Heger
& Langer 1996).

We want to emphasize in this context that the Eddington limit
investigated in the quoted models as well as in our own may be
different from the true Eddington limit, because of a number of
effects that are all related to the opacity of the stellar matter in
the stellar envelopes. One is that convection, which is necessar-
ily present in the layers near or above the Eddington limit, may
induce density inhomogeneities or clumping that can alter the ef-
fective radiative opacity (Shaviv 1998). In fact, depending on the
nature of the clumping, the opacity may be enhanced (Gräfener
et al. 2012) or reduced (Owocki et al. 2004; Ruszkowski &
Begelman 2003; Muijres et al. 2011). Furthermore, such opacity
calculations are tedious, and even in the currently used opacities,
important contributions might still be missing.

Finally, the effect of stellar rotation on the stability limit
in the atmospheres especially of hot stars is clearly important
(Langer 1997, 1998; Maeder & Meynet 2000). However, it adds
another dimension to this difficult problem and is therefore gen-
erally not included (cf. Sect. 7.2).

7.2. Stellar interior models

The peculiar core-halo density structure of inflated stars was
first pointed out by Stothers & Chin (1993), after Iglesias et al.
(1992) found the large iron bump in the opacities near 170 000 K.
Further studies pointing out this phenomenon comprise Ishii
et al. (1999), Petrovic et al. (2006), Gräfener et al. (2012), and
Köhler et al. (2015). Conceivably, inflation may be present in
further models of very massive stars, but often no statements on
the presence or absence of this phenomenon are made in these
papers.
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For example, the models for very massive stars by Yusof
et al. (2013) only discuss the electron-scattering Eddington fac-
tor in their models. On the ZAMS, their models are hotter and
more compact than those of Köhler et al. (2015) analysed here,
which implies that inflation is either weaker or absent. This dif-
ference might be due to the different treatment of convection in
the sub-surface convective zones, where Yusof et al. (2013) as-
sume the mixing length to be proportional to the density scale
height instead of the standard pressure scale height. This pro-
hibits the formation of density inversions, and since the density
scale height tends to infinity when a model attempts to establish
a density inversion, the convection may transport an arbitrarily
large energy flux in this scheme. While the physics of convection
introduces one of the biggest uncertainties in the atmospheres
of stars close to the Eddington limit, efficient convective energy
transport in inflated envelopes appears unlikely (cf. Sect. 5).

A suppression of inflation may have significant conse-
quences for the evolution of massive stars, as the stellar models
stay bluer and as a result have lower mass-loss rates and lower
spin-down rates. The final fates of these non-inflated stars is sig-
nificantly different compared to inflated stars (see Köhler et al.
2015, for a detailed discussion).

Gräfener et al. (2012) find inflation which, for their mod-
els without clumping, correspond well to those of Petrovic et al.
(2006) for the Wolf-Rayet case, and to our unpublished solar
metallicity main-sequence models, which show a bending of
the ZAMS to cool temperatures for M ∼> 100 M�. The mod-
els of Ishii et al. (1999) also agree very well. Including the
work of Stothers & Chin (1993), we conclude that the effect of
inflation in models of massive main-sequence stars is found in at
least four independent stellar structure codes, with three of them
quantitatively producing very similar results.

As pointed out above, massive star evolutionary models,
which include effects of rotation, are being produced routinely
these days (cf. Maeder & Meynet 2010; Langer 2012; Chieffi &
Limongi 2013), but an investigation of the effect of stellar rota-
tion on the stability limit in the atmospheres of hot stars requires
the construction of two-dimensional stellar models.

8. Comparison with observations

8.1. The VFTS sample

A prime motivation of Köhler et al. (2015) for computing the
evolutionary models for the very massive stars analysed here was
to provide a theoretical framework for the VLT Flames-Tarantula
Survey (VFTS, Evans et al. 2011). Within VFTS, multi-epoch
spectral data of about 700 early B and 300 O stars are being anal-
ysed through detailed model atmosphere calculations. Within
this effort, Bestenlehner et al. (2014) and McEvoy et al. (2015)
derived the physical properties of more than 50 very massive
stars, with luminosities log(L/ L�) > 5.5. We confront the mod-
els of Köhler et al. (2015) with this sample in Fig. 23.

Two sets of model data are included in Fig. 23, one that uses
the effective temperatures of the Köhler et al. models directly,
and a second one where the effective core temperature is used
as defined in Sect. 4 (cf. Eq. (10)). The latter approximates the
surface temperature of our models if inflation was completely
absent. An example calculation presented in Appendix B, where
inflation in a 300 M� is suppressed by increasing the mixing
length parameter, shows that this approximation is indeed quite
good. The ZAMS is also drawn for both sets of models. Note
that while wind effects are clearly seen in the spectra of all stars
in the sample, the optical depth of their winds is expected not

to exceed τ = 2 (cf. Fig. 7 in Köhler et al. 2015) until the stars
become very helium rich at their surface. Therefore, the effec-
tive temperatures derived from the observations need not be cor-
rected for optically thick winds.

As shown in Bestenlehner et al. (2014), the hottest stars in
their sample follow the ZAMS of the Köhler et al. models very
closely, well into the regime of inflation. One might expect un-
evolved stars to the left of the Köhler et al. ZAMS if inflation was
not present. In that case, the stars above log L/L� � 6.2 might
spend a significant fraction of their lifetime on the hot side of
the Köhler et al. ZAMS. The absence of these hot stars, however,
does not conclusively argue that inflation does exist in nature, i.e.
even without inflation, the star formation history in 30 Doradus
might preclude the existence of stars like this, or they may be
hidden in their natal cloud because of their youth (Yorke 1986;
Castro et al. 2014).

On the cool side, Fig. 23 shows an absence of observed stars
for log L/L� >∼ 6.15 and Teff <∼ 35 000 K. As the evolutionary
models predict about 30% of the core hydrogen burning to take
place at Teff <∼ 35 000 K in this luminosity regime, which may
indicate that the inflation in the models of Köhler et al. is too
strong. On the other hand, again, the absence of correspondingly
cool stars 30 Doradus may be a result of the local star formation
history.

In the luminosity range below, at 5.5 <∼ log L/L� <∼ 6.15,
stars as cool as Teff ∼< 15 000 K are observed for which McEvoy
et al. (2015) concluded that they are still core hydrogen burning
objects. The observed stars are somewhat cooler than the coolest
core effective temperature of our models, which may argue in
favour of inflation in real stars. Note that the life time of stars
in the regime Teff < 20 000 K is only 10% for the Köhler et al.
models in the considered luminosity range.

In summary, as the stellar evolution models for these high
masses are still quite uncertain, we do not find possible to argue
for or against inflation being present in the observed stars con-
sidered here based in Fig. 23. In fact, it is intriguing that most of
the observed stars are found in the regime where the inflated and
non-inflated models overlap. Nevertheless, the observed sample
above log L/ L� � 5.5 might constitute the best test case, since
according to our models, the envelopes of all of them are ex-
pected to be strongly affected by the Eddington limit. Model at-
mosphere calculations for these stars, which include inflation,
might shed new light on this question.

8.2. Further possible consequences of inflation

S Doradus type variability

Gräfener et al. (2012) argue that the S Doradus type variability of
LBVs may be related to the effect of inflation, and, in particular,
focussed on the case of AG Car (Groh et al. 2009). They propose
that an instability sets in when their 70 M� chemically homoge-
neous hydrostatic stellar model is highly inflated (≈120 R�) by
virtue of which the inflated layer becomes gravitationally un-
bound and a mass-loss episode follows.

In contrast to this idea, our inflated hydrodynamic stellar
models do not show any signs of this kind of instability. This
could be because of various simplifying assumptions made in
the models of Gräfener et al. (2012), in particular, their neglect
of the convective flux in the inflated envelopes (cf. Sect. 6).
Nevertheless, the physics of convection is very complex in these
envelopes, and our results do not necessarily imply that instabil-
ities do not occur.
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In fact, considering the hot edge of the S Doradus variabil-
ity strip, according to Smith et al. (2004), Fig. 22 shows that
it roughly separates the models with a low maximum convec-
tive efficiency (ηmax < 0.2) from those with a higher convective
efficiency. If these high fluxes could not be achieved in these
envelopes (cf. Sect. 6), a dynamical instability might well be
possible.

The hot edge of the S Doradus variability in the HR dia-
gram also coincides quite well with the borderline separating
mildly (Δr/rcore < 1) from strongly (Δr/rcore > 1) inflated mod-
els. Comparing this with the observed distribution of very mas-
sive stars in Fig. 23, which indicates that essentially no stars are
found far to the cool side of this line, could indicate again that
strongly inflated envelopes are indeed unstable and might lead to
S Doradus type variability and an increased time-averaged mass-
loss rate.

LBV eruptions

Glatzel & Kiriakidis (1993) speculated that strange mode
pulsations might be responsible for the LBV phenomenon.
These pulsations are characterized by very short growth
times (∼τdyn) and small brightness fluctuations roughly of the
order ∼10 . . .100 mmag (Glatzel et al. 1999; Grott et al. 2005).
However, the mass contained in the pulsating envelopes of their
models is negligible compared to the stellar mass, and the

associated brightness variations cannot explain the humongous
luminosity variations observed in LBV eruptions.

We have seen in Sect. 5 that an inflated envelope often pro-
duces a density inversion. These density inversions have been re-
peatedly proposed as a source of instabilities giving rise to erup-
tive mass-loss in LBVs (Maeder 1989; Maeder & Conti 1994;
Stothers & Chin 1993). Given our results, we consider it unlikely
that a density inversion can be the sole cause of LBV eruptions.
Density inversions are a generic feature present in a multitude
of our models (see Fig. 16), while the LBV phenomenon is quite
rare. Furthermore, the density inversions in our models are found
very close to the surface of the star with very small amounts of
mass above the inversion.

Given our results, inflation per se appears unlikely to cause
LBV eruptions, again, because it occurs too abundantly in our
models, and also because the mass of the inflated envelope is
generally very small. However, Fig. 24 reveals that this is not so
for our coolest models. Whereas for most models the mass of the
inflated envelope is smaller than ∼10−3 M�, intriguingly it rises
to several solar masses in the models that have effective temper-
atures below ∼10 000 K. These cool models, of which detailed
examples are presented in Appendix D, also show the highest
Eddington factors (Fig. 3) and the strongest inflation (Fig. 11).
This behaviour is seen in the mass range of 40 . . .100 M�, which
corresponds well to the masses of observed LBVs.

A key feature in our cool models with massive inflated en-
velopes is visible in Fig. 21. As the opacity in the hydrogen
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Fig. 24. Mass contained in the inflated envelope for all inflated models
of our grid, as a function of the effective temperature. The effective
actual mass of the models is colour-coded (see colour bar to the right).

recombination zone becomes very large, effectively blocking
any radiation transport, convective efficiencies of the order of
η � 1 are needed to transport the stellar luminosity through this
zone. Also, in the iron convection zone at the bottom of the en-
velope, a high convective efficiency (η � 0.5) is found in these
models. As shown in Figs. 19 and 20, this requires sonic or even
supersonic convective velocities in the framework of the stan-
dard MLT as implemented in our code. It thus appears conceiv-
able that in reality convection is less efficient in this kind of a
situation, e.g. because of viscous dissipation. When a star enters
this region with a massive inflated envelope, throughout which
the stellar luminosity can neither be transported by radiation nor
by convection, hydrostatic equilibrium is possible any more, and
the loosely bound inflated envelope may by dynamically ejected.
We believe that this scenario may relate to major LBV eruptions.

As proposed by Langer (2012), a rapid evolutionary
timescale of a star may be required to obtain LBV outbursts
in addition to the star reaching the Eddington limit. If evolu-
tion on the thermal timescale is rapid enough, this might pro-
duce LBVs after core hydrogen exhaustion. This rapid evolu-
tion may relate to most of the observed LBVs in our Galaxy and
the Magellanic Clouds, as well as LBVs after core helium ex-
haustion, which may address the recently accumulated evidence
of LBV outbursts in immediate supernova progenitors (Smith &
Arnett 2014).

Supernova shock break-out

A recent study by Moriya et al. (2015) concluded that inflated
stellar models can help to explain the extended rise time of the
shock break-out signal from the Type Ib supernova SN2008D
(Soderberg et al. 2008). In this scenario, the shock break-out oc-
curs deep inside the inflated envelope and consequently the rise
time is determined by the radiative diffusion time of the enve-
lope and not the light crossing time. They also noted that more
of these kinds of events, if observed in the future, might serve as
indicators of inflated supernova progenitors.

Whereas the above result supports the idea that hydrogen-
free Wolf-Rayet stars may possess inflated envelopes (Petrovic
et al. 2006; Gräfener et al. 2012), LBVs have also been consid-
ered to be immediate progenitors of supernovae (Kotak & Vink
2006; Groh et al. 2013). In the realm of high cadence supernova

surveys, this opens up the possibility to also test the existence
of envelope inflation in hydrogen-rich stars through supernova
shock break-out observations.

9. Discussion and conclusions

We investigated the internal structures of the massive star mod-
els computed by Brott et al. (2011) and Köhler et al. (2015) us-
ing a 1D hydrodynamical stellar evolution code, with particular
emphasis on the Eddington limit. We find that the conventional
idea of sufficiently massive stars reaching the Eddington limit at
the stellar surface is not reproduced by our core hydrogen burn-
ing models, not even at 500 M� (cf. Figs. 7 and 8). Instead, we
find a suitably defined Eddington limit inside the star (Eq. (3))
is reached by models with log(L/ L�) � 5.6 (Fig. 2), which
leads to sub-surface convection, envelope inflation (Fig. 13), and
possibly to pulsations. Many of our models even exceed this
Eddington limit, and in the extreme case of red supergiants even
by factors of up to seven (Fig. 3), with the consequence that
strong density inversions develop such that hydrostatic equilib-
rium is maintained (Fig. 17).

In the analysed models, whose initial composition is cho-
sen to match that of the LMC, all stars above ∼40 M� reach the
Eddington limit in their envelopes. As iron opacities are mainly
responsible for this phenomenon, we expect that this mass limit
is higher at a lower metallicity, and similarly lower for massive
stars in our galaxy. Furthermore, there may be two groups of
stars for which this limit comes down even further. First, the
centrifugal force in rapidly rotating stars may lead to similar
conditions in the envelope layers near the stellar equator, i.e. to a
strong latitude dependence of inflation. Perhaps, this could give
rise to the so-called B[e] supergiants, which show a slow and
dense equatorial wind and a fast polar wind at the same time
(Zickgraf et al. 1985). Second, the mass losing stars in interact-
ing close binary systems evolve to much higher L/M-values than
corresponding single stars (Langer & Kudritzki 2014), and are
therefore expected to reach the Eddington limit for much lower
initial masses.

The stability of the inflated envelopes is not investigated
here, but many of them are likely to be pulsationally unsta-
ble (Glatzel & Kiriakidis 1993; Saio et al. 1998, Sanyal et al.,
in prep.). If so, it is expected that the pulsations will lead to
mass-loss enhancements (e.g. Moriya & Langer 2015), or to the
loss of the inflated envelope. In the latter case, the envelope is
expected to re-grow unless the achieved time average mass-loss
rate exceeds the high critical mass-loss rate (Sect. 4.2). We find
that in our coolest models, the mass contained in the inflated en-
velopes can reach several solar masses (Fig. 24), and speculate
that their dynamical loss may resemble LBV major eruptions (cf.
Sect. 8.2). Consequently, even though reaching or exceeding the
Eddington limit may not immediately lead to strong outflows in
stars, clearly the mass-loss rate of the stars is strongly affected,
in the sense that the mass-loss is significantly enhanced one way
or another.

It will be crucial to test observationally whether luminous,
main-sequence stars indeed possess inflated stellar envelopes.
This possibility has not yet been investigated with stellar atmo-
sphere models for hot stars. Perhaps the best candidates are the
S Doradus variables (Gräfener et al. 2012), which appear in the
part of the HR diagram where our models predict a radius infla-
tion by more than a factor of two (cf. Fig. 10).

Finally, we note that besides massive stars, the Eddington
limit is relevant to various other types of stars, as luminous
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post-AGB star, X-ray bursts, Novae, R Corona Borealis stars,
and accreting compact objects. It may be interesting to assess
to what extent similar phenomena as found in this work might
play a role in these objects.
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Appendix A: Interior structure of a 85 M� stellar
model
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Fig. A.1. Density structure of the stellar model. The black solid line
marks the base of the inflated envelope, i.e. where β = 0.15. The in-
tersection of the dotted lines with the red line on either side mark the
points where β = 0.15 ± 0.045.
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Fig. A.2. Run of Γ in the interior of the stellar model.
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Fig. A.3. Rosseland mean opacity κ in the interior of the stellar model.
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Fig. A.4. Run of β(=Pgas/Ptot) in the interior of the stellar model.
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Fig. A.5. Fraction of flux carried by radiation (Lrad/Ltot) in the interior
of the stellar model.
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Appendix B: Effect of efficient convection
on inflation

Knowing that convective flux is proportional to the mixing
length, we show here (Fig. B.1) that by increasing the mixing
length parameter α in an inflated 300 M� model near the ZAMS,
the inflation gradually goes away and what we are left with is an
almost non-inflated star, whose radius is well-approximated by
core radius rcore of the inflated model.
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Fig. B.1. Density profile of a 300 M� model with different values of the
mixing length parameter α (see Sect. 2). The black dotted line marks the
location of rcore, i.e. the base of the inflated envelope where β = 0.15.

Appendix C: Convective velocity profile
in a WR model

In Fig. C.1, the convective velocity is shown as a function of
radius in a massive (147 M�) WR-type (YS = 0.89) stellar model.
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Fig. C.1. Convective velocity, isothermal sound speed, and adiabatic
sound speed profiles in a 147 M� WNL type star with Ys = 89%.

The variation of isothermal and adiabatic sound speeds are also
plotted for comparison. The convective velocities exceed the lo-
cal isothermal sound speed in the envelope where conditions are
non-adiabatic, i.e. the thermal adjustment time is short. In these
models, turbulent pressure becomes important (which is not
taken into account in our models) as well as standard MLT fails
to be a good approximation for modelling convection.

Appendix D: Representative models

The profiles of different relevant physical quantities are shown
for a few selected stellar models at five distinct effective tem-
peratures corresponding to the three peaks in Γmax and the two
troughs in between the peaks (cf. Fig. 2).
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Fig. D.1. Detailed structure examples for stellar models with an effective temperature near 50 000 K, for three different luminosities (cf. Fig. 2). The
dashed line marks the point at which β falls below 0.15, i.e. the beginning of the inflated envelope. The square symbol marks the temperature TFe

at which κ is maximum because of the iron opacity bump. The hatched regions show the convective zones.
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Fig. D.2. Detailed structure examples for stellar models with an effective temperature near 25 000 K, for three different luminosities (cf. Fig. 2).
The dashed line marks the point at which β falls below 0.15, i.e. the beginning of the inflated envelope. The square and the cross mark the
temperatures TFe and TFe at which κ is maximum because of the iron and the helium opacity bumps respectively. The hatched regions show the
convective zones.

A20, page 21 of 24

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201525945&pdf_id=33


A&A 580, A20 (2015)

lo
g 

(ρ
 [g

/c
m

3 ])

L/L� = 6.0; Teff = 5690 K

-10

-8

-6

-4

-2

 0

lo
g 

(ρ
 [g

/c
m

3 ])

L/L� = 6.1; Teff = 5643 K

-10
-8
-6
-4
-2
 0
 2

lo
g 

(T
/K

)

 4

 5

 6

 7

lo
g 

(T
/K

)

 4

 5

 6

 7

Γ

 1
 2
 3
 4
 5
 6

Γ

 1

 2

 3

 4

 5

β

 0.1

 0.3

 0.5

 0.7

 0.9

β

 0

 0.2

 0.4

 0.6

 0.8

κ 
[c

m
2  g

-1
]

 1

 2

 3

 4

 5

κ 
[c

m
2  g

-1
]

 1

 2

 3

 4

 5

L r
ad

/L
to

t

 0

 0.2

 0.4

 0.6

 0.8

 1

L r
ad

/L
to

t

 0

 0.2

 0.4

 0.6

 0.8

 1

lo
g 

(o
pt

ic
al

 d
ep

th
)

Radius [R�]

-2
 0
 2
 4
 6
 8

 10

0 200 400 600 800 1000 1200

lo
g 

(o
pt

ic
al

 d
ep

th
)

Radius [R�]

-2
 0
 2
 4
 6
 8

 10

0 200 400 600 800 1000 1200

Fig. D.3. Detailed structure examples for stellar models with an effective temperature near 5000 K, for two different luminosities (cf. Fig. 2). The
dashed line marks the point at which β falls below 0.15, i.e. the beginning of the inflated envelope. The square, cross and the circle mark the
temperatures TFe, THe, and TH at which κ is maximum because of the iron, helium, and hydrogen opacity bumps respectively. The hatched regions
show the convective zones.
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Fig. D.4. Detailed structure examples for stellar models with an effective temperature near 32 000 K, for three different luminosities (cf. Fig. 2). The
dashed line marks the point at which β falls below 0.15, i.e. the beginning of the inflated envelope. The square symbol marks the temperature TFe

at which κ is maximum because of the iron opacity bump. The hatched regions show the convective zones.
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Fig. D.5. Detailed structure examples for stellar models with an effective temperature near 10 000 K, for three different luminosities (cf. Fig. 2).
The dashed line marks the point at which β falls below 0.15, i.e. the beginning of the inflated envelope. The square, cross and the circle mark the
temperatures TFe, THe, and TH at which κ is maximum because of the iron, helium, and hydrogen opacity bumps respectively. The hatched regions
show the convective zones.
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