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A. YU. VERETENNIKOV

ON CONVERGENCE RATE FOR ERLANG–SEVASTYANOV TYPE

MODELS WITH INFINITELY MANY SERVERS

IN MEMORY AND TO THE 90TH ANNIVERSARY OF A.D. SOLOVYEV

(06.09.1927–06.04.2001)

Polynomial convergence rate to stationarity is shown for extended Erlang – Sev-
astyanov’s model with variable intensities of service and arrivals.

1. Introduction

Consider a service system or a process with countably many servers and one incom-
ing flow of “events” or customers “of the same type” such that the incoming flow has
intensity λ(X), which depends on the number n of the customers in the system, and
some variables (x0, x1, . . . , xn) ∈ Rn+1; we will use notations X = (n, x0, x1, . . . , xn) and
x = (x0, x1, . . . , xn), where n ∈ Z+. Then, a bit non-rigorously, existence of intensity
λ(Xt) means that

P (one new customer arrives on (t, t+ ∆) | Xt) = λ(Xt)∆ + o(∆),

as ∆ ↓ 0; actually, for continuous intensities this definition is strict but continuity will not
be assumed. Here Xt = (nt;x

0
t ;x

1
t , . . . , x

nt
t ) where nt signifies the number of customers

in the system at time t, each xit, 1 ≤ i ≤ nt, stands for the elapsed service time of
the corresponding customer at time t, while x0t signifies the time from the most recent
arrival. The latter makes sense mainly for states where nt = 0; however, for simplicity of
presentation we keep the same notations for all states; just for n ≥ 1, x0 must coincide
with one of the other xi values (namely, with the minimal one). Every customer with
the elapsed time of service xi is being served by the corresponding server also with some
intensity h(Xi); respectively, the vector (x1t , · · · , xnt ) consists of all such elapsed times of
all different customers currently present in the system; the meaning of x0t was explained
earlier.

In such a state space the process Xt is definitely Markov; however, for discontinuous
intensities λ(·) a justification of existence of the process is needed, which issue was
discussed, e.g., in [5] and [26]. In particular, in [5] it has been proved that the process
defined in such a way is well-defined and is strong Markov, which will be useful in the
sequel.

The problem addressed in this paper is convergence rate to the stationary regime
under appropriate conditions. Recently such convergence rate was studied for the case
where λ may only depend on n – the number of customers on service – but not on other
continuous variables. Here we address a more general case. The price for this generality
is that the explicit formulae for the stationary distribution due to Fortet and Sevastyanov
are not valid any more (but, of course, modelling is available).
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Recall for completeness that Erlang’s formulae for the stationary regime in the case of
exponentially distributed service time (the system M/M/∞) are known since the article
[7] (“Erlang formulae B” in the sequel literature),

(1) pn = p0
λn

µn
, p0 = 1− λ

µ
.

where µ−1 is expectation of the service time, under the assumption of the convergence
of the series (

∑
n pn), i.e., for λ < µ. This was extended under appropriate assumptions

(see, e.g., [11, Ch.4, §4-5]) to the case where λ = λn may depend on the current number
of customers n currently in the system,

(2) pn = P (n customers in the system) = p0

∏n−1
i=0 λi
µn

,

where

p0 =

( ∞∑
n=0

∏n−1
i=0 λi
µn

)−1
,

and
∏0
i=1 λi ≡ 1, and to a more general situation where intensity µ may also depend on n

(in which case µn in (2) should be replaced by
∏n
i=1 µi). Similar formulae also hold true

for finitely many servers in the system under the condition that the customers arriving
while all servers are busy become lost.

Fortet [8] for a finite number of servers case gave the density of a stationary distribution
for a general – non-exponential – service time distribution possessing a density g(x) =
G′(x) where G is the distribution function of service time with a finite mean value

µ−1 :=

∫ ∞
0

t dG(t) ≡
∫ ∞
0

(1−G(t)) dt:

(3) p(n;x) = p(n;x1, . . . , xn) = p0

n−1∏
i=0

λi(1−G(xi)), n ≥ 1,

where p0 is the normalizing constant; in the case of infinite number of servers it is given
by the same formula as in (2). Sevastyanov [17] extended and strengthened this result
to the case without assumption on the existence of a density g and for the first time
has proved convergence in total variation of the non-stationary system to its stationary
regime using his version of the ergodic theorem for Markov processes with general state
spaces. This was a breakthrough and by this reason the author’s view is that the name
“Erlang–Sevastyanov systems” is appropriate here. In [17] the number of servers was
assumed finite and waiting in a queue unavailable, as in [8]. Further, there were several
extensions of this result to the case of infinitely many servers [13, 15, 19, 21]. In all these
cases starting from [8], in particular situations with a constant intensity µ the explicit
formula (2) holds true, although, the process which equals the number of customers in
the system at time t is not Markov.

The paper [21] was based on the MSc project by the author on the topic suggested
by Professor A.D. Solovyev. The ultimate goal of that time – to estimate rates of
convergence for Erlang–Sevastyanov systems – was partially realised only recently [23]
where a polynomial convergence for such systems with finitely or infinitely many servers
has been established under certain assumptions on the intensities; a bit earlier in [12]
exponential rate was proved under more severe than in [23] assumptions. The problem
of evaluating convergence rates without assuming anything about intensities apparently
remains open. At the same time, neither in [17], nor in [21] existence of intensities
was assumed. Note that there are also general results about exponential or polynomial
convergence for Markov processes and for regeneration processes to stationarity under
the assumption of appropriate exponential or polynomial recurrence along with a “local
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mixing” or regeneration [1, 2, 9, 10, 16, 20], et al. So far, none of these general results
cover directly the particular Erlang–Sevastyanov type systems and their convergence
rates and especially the setting with a “more general” dependence of λ(·) of the “whole
state” of the process. In any case, the results proposed below do not follow from earlier
results, including those from [23]. On the other hand, close results for single–server
systems were recently studied in [22, 25, 26], and some ideas from the latter articles will
be used in the sequel. A general dependence of intensity of service h(·) on all coordinates
of the process (assuming that the description of this process makes it Markov) is allowed.
Initially, the result of this paper was announced in [24]. The literature in the references
is by all means not complete; more references can be found in [23].

The paper consists of Introduction, Main result, Proof of main result.

2. Erlang – Sevastyanov type system: main result

Let us introduce the state space X : it is a union of countably many subsets,

X =

∞⋃
n=0

{(n, x0, . . . , xn), x0, . . . xn ≥ 0};

denote also Xn := {(n, x0, . . . , xn), x0, . . . xn ≥ 0}. To any n ≥ 0 there correspond n+ 1
non–negative coordinates (x1, . . . , xn) and x0, which signify, respectively, the elapsed
times of service of all existing n customers (x1, . . . , xn) and the time from the last arrival
(x0), including for n = 0. It is convenient to assume that a newly arrived customer with
number n+1 gets a coordinate xi = 0 for any i = 1, . . . , n+1 with equal probabilities. For
state X = (n, x0, . . . , xn), denote x = (x0, . . . , xn), and n(X) = n(x) = n (i.e., we do not
distinguish n(X) and n(x)). To establish convergence rate, we will use a characteristic
of the service time distribution called intensity of service,

h(t) :=
g(t)

1−G(t)
, t ≥ 0, g(t) = G′(t).

If the intensity function is constant, it means an exponential distribution of the service
time. With a convention

∑0
j=1 = 0, denote

Vm,a(X) :=

n(X)∑
j=1

(1 + xj)m

a

, Λ := sup
X∈X

(λ(X)/(n(X) ∨ 1)),

λ0 := inf
Y ∈X0

λ(Y ), λ̄n := sup
X∈Xn

λ(X), n ≥ 0.

Note that Vm,a as a function does not depend on x0 and that this function is symmetric
with respect to (x1, . . . , xn). Notation a ∨ b stands for max(a, b), and a ∧ b = min(a, b).
The process Xt is assumed right-continuous.

Theorem 1. Let there exist C0, D > 0, m > 1, a > 1 and ` > 0 such that

(4)
C0

1 + t
≤ h(t) ≤ D, t ≥ 0,

(5) 0 < λ0 ≤ Λ <∞,
and

(6) C0 >

(
a+

`+ 1

m

)(
m+ Λ2a+

`+1
m

)
.

Then for any 0 < k < `, if C0 is large enough, then there exist constants C,C1 > 0 such
that for every X0 ∈ X and t ≥ 0,

(7) ‖µX0
t − µ‖TV ≤

C(Vm,a+`/m(X0) ∨ 1 + C1)

tk+1
∧ 2,
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where µXt is the distribution of Xt with the initial value X, µ is the unique stationary
measure of the process, and ‖ · ‖TV is the total variation distance.

Remark 1. The condition (6) used here is a bit more precise than in [23]; probably it
may allow some further generalizations. For any k > 0, the bound (7) with some m and
a is valid for any C0 which is large enough. Recall that strong Markov property holds
true for our system, see [5]. Uniqueness of stationary distribution as well as its existence
is a part of the statement of the Theorem.
Remark 2. The constant C,C1 in (7) are not just finite but do admit some effective
estimate, which will be seen in the proof. In the earlier versions including [23] similar
constants in the main estimate – e.g., in the main inequality in [23] – also admit certain
effective estimates in principle. Nonetheless, in the present paper we show step by step
how such estimates may be achieved. There is a hope that better and more precise
bounds may be obtained in the future. More that that, there is a hypothesis that the
condition (5) may be relaxed to a condition similar to (4),

(8)
C ′0

1 + t
≤ λ(0, t) ≤ Λ <∞, t ≥ 0,

with some C ′0. Yet, this seems more technical and we do not pursue this goal here.

3. Proof of Theorem 1

0. We will be using notation ∗ for an arbitrary value of any coordinate of the process:
for example, (1, ∗, 0) = (X = (1, x0, 0) ∈ X : n(X) = 1, x0 ≥ 0), and X0 = {(0, ∗)}. The
starting idea is to construct a Lyapunov function and to apply coupling method. The
coupling algorithm to be used here will be a “two-step” one, which makes it, perhaps,
just a little bit unusual. Eventually, we are going to show that roughly speaking the
state (1, 0, 0) may be considered as a “generalised regeneration”, with some uniformly
bounded from above polynomial moments for the distributions of the length between the
generalised regeneration periods. (The word “generalised” here means that it is necessary
to change probability space to make it work.) Due to the strong Markov property, this
will suffice for the proof.

Denote

τ0 := inf(t ≥ 0 : Xt ∈ X0), τ01 := inf(t > τ0 : Xt = (1, 0, 0)),

and

τ010 := inf(t > τ01 : Xt = (0, ∗)).
The two-step coupling idea is to consider two versions of the process, one of them

stationary (existence of which is yet to be established), and to couple firstly the first
components of the two processes waiting when they both are simultaneously in the set
X0, and secondly coupling their remaining components at their transition from (0, ∗) to
(1, 0, 0).

1. To estimate τ0, we construct a Lyapunov function only for the variables (n, x1, . . . , xn),
i.e., ignoring the component x0. We want to show that the process

Xt = (n(Xt), X
0
t , X

1
t , . . . , X

n
t )

with probability one hits the set {X : n(X) = 0} ≡ X0, being also positive recurrent
uniformly in the variable x0. (Note that given the assumptions this is reasonable, since
only λ0(·) depends on x0 essentially, and λ0(·) itself is bounded away from zero and from
infinity.) So, informally speaking, we may arrange coupling of two versions of the process
– the original one (X) and the stationary one (say, Y ) – on their joint jump from n = 0
to n = 1 (or, more precisely, from the set X0 × X0 to state (1, 0, 0, 1, 0, 0) ∈ X1 × X1).
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Note, however, that existence of a stationary measure itself is yet to be shown; this will
be addressed at step 9 of this proof which consists of 10 major steps (the preliminary
zero one is not counted): the first part is fairly close to the calculus from [23], while the
second one is a “simple coupling” on the passage of the system “from n = 0 to n = 1”.
For the convenience of the reader and by the suggestion of the referee we keep most of
the calculus trying to minimize references which would make it necessary to read another
paper ([23]), even though it increases the volume to some extent. The constants C,C ′,
etc. in the calculus may change from line to line; different contants on one line will be
denoted by C,C ′, C ′′.

For X = (n, x0, x1, . . . , xn) with n ≥ 1 and for 1 ≤ j ≤ n denote

Xj,− := (n− 1, x0, x1, . . . , xj−1, xj+1, . . . , xn)

(i.e., the component xj has been dropped, which means one service completed and which
automatically decreases the value of n by one unit), and for 1 ≤ j ≤ n+ 1,

Xj,+ := (n+ 1, 0, x1, . . . , xj−1, 0, xj , . . . , xn)

(i.e., a new component 0 has been added between the old xj−1 and xj , which means a new
arrival and which automatically increases the value of n by one unit and the component
x0 jumps to zero). For n = 0 we have X = (0, x0) with some x0 ≥ 0, and then (j = 1)

X1,+ := (1, 0, 0).

The element Xj,− is not defined for n(X) = 0.
Now, the extended generator of our Markov process (see, e.g., [5]) reads,

Lg(X) = Lg(n, x) = λ(X)
1

n(x) + 1

n(x)+1∑
j=1

[g(Xj,+)− g(X)]

+1(n(x) > 0)

n(x)∑
j=1

h(xj)[g(Xj,−)− g(X)] +

n(x)∑
i=0

∂

∂xi
g(n, x).(9)

It would be a “honest” generator of the Markov process – see [6] – under the assumption
of continuity of all intensities λ and h. A corresponding Dynkin’s formula – which is,
actually, the definition of extended generator (except that we do not state the exact
domain of this operator, but only some sub-domain, which is sufficient for our goals) –
has a form,

(10) EX0
g(Xt) = g(X0) +

t∫
0

EX0
Lg(Xs) ds,

for any function g from the class of bounded C1
b functions (i.e., with bounded continuous

derivatives in any xi, 0 ≤ i ≤ n(X)). The proof of this formula for L given in (2) follows
from the “complete expectation” formula (by analogy with the complete probability
formula); some details in a slightly different setting may be found in [26]; see also [5].
Equivalently, the equation (10) may be stated as follows: the difference

(11) g(Xt)− g(X0)−
t∫

0

Lg(Xs) ds

is a martingale (see, e.g., [5]). (We note that because of the jumps the accurate writing
should have used Lg(Xs−) under the integral here, but since integration is performed
with respect to the Lebesgue measure, it is equivalent to Lg(Xs).)

Using just bounded functions is often not sufficient. It follows further that for locally
bounded C1 functions (i.e., with one continuous derivative in all components (x0, . . . , xn))
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the same expression (11) is a local martingale (i.e. a martingale stopped by some appro-
priate “localizing sequence” of stopping times, see, e.g., [14]). For the sequel, note that
another form of Dynkin’s formula for bounded functions f(t,X) from the class C1

b in all
xi and in t reads (fs denotes ∂f/∂s),

EX0
f(t,Xt) = f(0, X0) +

t∫
0

EX0
(fs(s,Xs) + Lf(s,Xs)) ds.

Equivalently, it can be stated that for f from the specified class of functions the difference

f(t,Xt)− f(0, X0)−
t∫

0

(fs(s,Xs) + Lf(s,Xs)) ds

is a martingale. Similarly to the case of functions g(X), it follows that for locally bounded
C1 functions f(t,X) with locally bounded first derivatives with respect to t and all xi

the latter difference is a local martingale.

2. Let us show that Vm,a may serve as a Lyapunov function. For Xt 6∈ X0 and the
constants m and a satisfying a weakened version of the standing assumption (6),

(12) C0 > a(m+ Λ2a),

and with n = n(Xt) and with Mt being some local martingale we have (cf. with [23,
Lemma 2]),

dVm,a(Xt) = λn(Xt)

1 +

n∑
j=1

(1 +Xj
t )m

a

−

 n∑
j=1

(1 +Xj
t )m

a dt

−
n∑
i=1

h(Xi
t)

−
 ∑

1≤j≤n, j 6=i

(1 +Xj
t )m

a

+

 n∑
j=1

(1 +Xj
t )m

a dt

+

n∑
i=1

 n∑
j=1

(1 +Xj
t + dt)m

a

−

 n∑
j=1

(1 +Xj
t )m

a+ dMt

≡ (I1 − I2 + I3)dt+ dMt.(13)

Due to the assumption (4) we get,

I2 ≥ C0

n∑
i=1

(1 +Xi
t)
−1(1 +Xi

t)
mVm,a−1(Xt) = C0Vm−1,1(Xt)Vm,a−1(Xt).

Hence, we can see that, at least, the “main term” −I2 is negative for Xt 6∈ X0.
Our next task is to show that I1 and I3 are dominated by I2. Then it would imply that

the stationary measure (see step 9 for its existence) integrates some polynomial. This,
in turn, would allow to extend our Lyapunov function so as to include some multiplier
that depends on time (see step 2 below). The latter would provide for some k > 0 a

crucial bound Exτ
k+1
0 < ∞ along with its quantitative version (see the estimate (21)

below). Finally, the similar inequality for τ01 would imply coupling between the original
process and its stationary version (but not an immediate regeneration at τ0, unlike in
[23]), which would mean a certain rate of convergence to the stationary regime.

We estimate (cf. with [23, Lemma 3]) with n = n(X),

I1 = λ(Xt)

1 +

n∑
j=1

(1 +Xj
t )m

a

−

 n∑
j=1

(1 +Xj
t )m

a ≤ λ̄na2aVm,a−1(Xt).
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Due to the inequality n ≤ Vm−1,1(Xt) we find,

I1 ≤ λ̄na2aVm,a−1(Xt) ≤ Λna2a Vm,a−1(Xt) ≤ Λ a2a Vm−1,1(Xt)Vm,a−1(Xt).

Further, we have,

I3 =

n∑
i=1

a
 n∑
j=1

(1 +Xj
t )m

a−1

m

n∑
j=1

(1 +Xj
t )m−1

 = amVm−1,1(Xt)Vm,a−1(Xt).

Notice that both the estimate for I1 and the expression for I3 are comparable with the
estimate for I2. Overall,

I1 − I2 + I3 ≤ −(C0 − Λa2a −ma)Vm−1,1(Xt)Vm,a−1(Xt) < 0,

for Xt 6∈ X0. So, we get,

(14) EXVm,a(Xt∧τ0) + (C0−a(m+ Λ2a))EX

t∧τ0∫
0

Vm−1,1(Xs)Vm,a−1(Xs) ds ≤ Vm,a(X).

A formal justification of (14) uses a localising sequence from the definition of a local
martingale. In our case, let us denote TR := inf(t ≥ 0 : n(Xt) + max0≤i≤n(Xt) x

i
t ≥ R)

for any R > 0. Then, all term in the version of Dynkin’s formula

(15) EXVm,a(Xt∧τ0∧TR) = EX

t∧τ0∧TR∫
0

LVm,a(Xs) ds+ Vm,a(X),

are bounded and the identity (15) itself follows, e.g., from the “complete expectation”
formula mentioned earlier. In other words, the process

Mt∧τ0∧TR := Vm,a(Xt∧τ0∧TR)−
t∧τ0∧TR∫

0

LVm,a(Xs) ds− Vm,a(X)

is a stopped martingale in t. Due to the bounds on all terms of LV (Xs), we get
(16)

EXVm,a(Xt∧τ0∧TR)+(C0−a(m+Λ2a))EX

t∧τ0∧TR∫
0

Vm−1,1(Xs)Vm,a−1(Xs) ds ≤ Vm,a(X),

and now (14) follows from (16) by Fatou’s lemma as R→∞, as required, since TR →∞
(because the first component of the process X has jumps ±1, other components increase
between their exclusively negative jumps with rate +1, and because intensity of arrivals
satisfy the condition λ̄n ≤ Λn, n ≥ 1, so that neither the first nor any other component
of the process may achieve infinity over a finite time with a positive probability, cf. [11])
and since at any t the trajectories of the process are continuous almost surely (the latter
due to the existence of intensities of both arrivals and service). In the sequel in similar
places we will drop this standard part related to localising sequence. As t→∞, due to
(12) and by Fatou’s lemma we obtain,

(17) EXVm,a(Xτ0) + (C0 − a(m+ Λ2a))EX

τ0∫
0

Vm−1,1(Xs)Vm,a−1(Xs) ds ≤ Vm,a(X).

Further, in particular, it follows that EXτ0 < ∞ for any X. In the sequel we shall
see that also EXτ01 < ∞, which does signify that the process X is positive recurrent
(see the details in steps 2–3 below). According to the Harris–Khasminsky principle –
fully justified by steps 2–3 and 9 below – there is an invariant measure µ (we show in



96 A. YU. VERETENNIKOV

the sequel that it is unique) and Vm−1,1(X)Vm,a−1(X) is integrable with respect to this
measure µ. Due to the the elementary inequality (see [23])

Vm,1(X)(m−1)/m ≤ Vm−1,1(X),

(also recall that Vm,a(Xτ0) = 1 and Vm,a(X)Vm,b(X) = Vm,a+b(X)), we obtain,

EXVm,a(Xτ0) + (C0 − a(m+ Λ))EX

τ0∫
0

Vm,a−1/m(Xs) ds ≤ Vm,a(X).

In particular, for any t,

EXVm,a(Xτ0) ∨ EXVm,a(Xt∧τ0) ≤ Vm,a(X).(18)

3. Let Vm,a,k(t,X) := (1 + t)kVm,a(X), k < `. Similarly to the above, we have due to
Dynkin’s formula,

dVm,a,k(t,Xt) = (1 + t)k [I1 − I2 + I3] dt+ dM̃t + k(1 + t)k−1 Vm,a(Xt) dt

≤ −(1 + t)k(C0 − a(m+ Λ))Vm,a−1/m(Xt) dt+ k(1 + t)k−1 Vm,a(Xt) dt+ dM̃t.(19)

Now the task is to ensure that the negative part in the right hand side of the last
expression prevails all other terms. We will be using the inequality established in the
step 2 above. The second term may be split into two parts,

I := k(1 + t)k−1 Vm,a(Xt)

≡ I × 1(k(1 + t)k−1 Vm,a(Xt) ≤ ε(1 + t)kVm,a−1/m(Xt))

+ I × 1(k(1 + t)k−1 Vm,a(Xt) > ε(1 + t)kVm,a−1/m(Xt)).

The first part of this term here with ’≤ ε’, is dominated by the main negative expression
if ε < C0 − a(m+ Λ2a).

Let us estimate the second part of this term. We have, for any ` > k,

I × 1(k(1 + t)k−1 Vm,a(Xt) > ε(1 + t)kVm,a−1/m(Xt))

≤ I × (k Vm,a(Xt))
`

(ε(1 + t)Vm,a−1/m(Xt))`
= I × k`

(ε(1 + t))`
Vm,`/m(Xt).

Therefore, the second part of the second term does not exceed

k(1 + t)k−1 × k`

(ε(1 + t))`
Vm,a+`/m(Xt).

Denote a′ := a+ `/m, and recall that, in any case,

(20) C0 > a′(m+ Λ2a
′
).

Now, let us collect all terms and their bounds, integrate and take expectation,

EXVm,a,k(t ∧ τ0, Xt∧τ0) + (C − a(m+ Λ)− ε)EX

t∧τ0∫
0

(1 + s)kVm,a−1/m(Xs) ds

≤ Vm,a(X) + C ′
∞∫
0

EX1(s ≤ t ∧ τ0)(1 + s)k−1−`Vm,a+`/m(Xs) ds.

Here by virtue of (18) and due to the condition (20),

EX1(s ≤ t ∧ τ0)Vm,a+`/m(Xs) ≤ Vm,a+`/m(X).
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Thus,
∞∫
0

EX1(s ≤ t ∧ τ0)(1 + s)k−1−`Vm,a+`/m(Xs) ds ≤ CVm,a+`/m(X),

where the constant C clearly admits an effective estimate. Further, due to Fatou’s lemma,
for k < ` this implies,

EXVm,a,k(τ0, Xτ0) + C ′EX

τ0∫
0

(1 + s)kVm,a−1/m(Xs) ds ≤ Vm,a(X) + CVm,a+`/m(X),

again with two new constants C,C ′. Since Vm,a−1/m(Xs) ≥ 1 for s < τ0 (and since
τ0 = 0 for X0 ∈ X0), we obtain

EXτk+1
0 ≤ CVm,a(X) + CVm,a+`/m(X).

or, with one more new constant C,

EXτk+1
0 ≤ CVm,a+`/m(X).(21)

Here also the constant C does allow an effective estimate. Emphasize that so far we still
used a bit relaxed version (20) (namely, C0 > a′(m + Λ2a

′
) with a′ = a + `/m) of our

standing assumption (6).

4. For the hitting time τ01 defined earlier it follows straight away due to (21) and from
the assumption (5) that

(22) EXτ0 (τ01 − τ0)k+1 ≤
∞∫
0

sk+1λ0 exp(−λ0s) ds = λ
−(k+1)
0 Γ(k + 2) <∞,

and, hence, since Vm,a+`/m(X) ≥ 1 for n(X) > 0, we obtain

EXτk+1
01 = EXEXτ0 (τ0 + (τ01 − τ0))k+1 ≤ CVm,a+`/m(X) (n(X) > 0).(23)

Recall for completeness that, according to (22), for n(X) = 0 we have EXτk+1
01 ≤ C =

λ
−(k+1)
0 Γ(k + 2) < ∞. Thus, (23) can be written in a more general form for any initial

value X with some new C as follows,

EXτk+1
01 = EXEXτ0 (τ0 + (τ01 − τ0))k+1 ≤ CVm,a+`/m(X) ∨ 1.(24)

Moreover, since Vm,a(X) ≡ 0 for X ∈ X0, and thus, 1(τ0 ≤ s < τ01)Vm,a(Xs) ≡ 0, we
also get under the full assumption (6) with “`+ 1”, that

EX

τ01∫
0

Vm,a+`/m(Xs) ds = EX(

τ0∫
0

+

τ01∫
τ0

)Vm,a+`/m(Xs) ds

= EX

τ0∫
0

Vm,a+`/m(Xs) ds ≤ CVm,a+(`+1)/m(X) ∨ 1.(25)

5. Sufficiency of the bound (23). For some readers it could be a “common knowledge”
that the inequality (23) suffices for the proof of the statement of the Theorem because the
state (1, 0, 0) may be regarded as a regeneration state (yet, note that the sojourn time of
the process at this state as well as at all other states is zero). However, for the author it
was not so easy to provide a proper reference which would justify exactly what is stated
including the bound (7). So, for the sake of completeness and for the convenience of the
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reader we offer a version of coupling below. The reader who knows a right reference may
skip the remaining paragraphs.

6. Now, for the hitting time

τ010 := inf(t > τ01 : Xt = (0, ∗)),
which will play its role in the sequel, we can use the same estimate (21) from the previous
step, which gives the following bound:

EXτ01
(τ010 − τ01)k+1 ≤ CVm,a+`/m((1, 0, 0)) = C.(26)

As an immediate corollary we also get from (26) and (23) that

EXτk+1
010 ≤ CVm,a+(`+1)/m(X) ∨ 1.(27)

Naturally, all constants C here (and earlier) may depend on k.

7. “Hitting the set X0 × X0”. Similarly to (21), it may be justified for the couple of
independent processes (Xt, Yt) with possibly different initial values that

EX0,Y0
τ̄k+1
00 <∞,

with a bound,

(28) EX0,Y0 τ̄
k+1
00 ≤ C

(
Vm,a+`/m(X0) + Vm,a+`/m(Y0)

)
,

with any k < `, where

τ̄00 := inf(t ≥ 0 : (Xt, Yt) ∈ X0 ×X0).

The inequality (28) can be established similarly to the lines of proving (38–39) in [23].
So, let us consider a couple of processes Xt and Yt on two independent probability spaces
where the process Yt is a stationary version of Xt (with a stationary initial distribution:
the existence of this distribution will be independently justified in step 9 in the sequel).
Consider new Lyapunov functions for the two component process:

V̄m,a(X,Y ) := Vm,a(X) + Vm,a(Y ),

and

V̄k,m,a(t,X, Y ) := Vk,m,a(t,X) + Vk,m,a(t, Y ).

It follows from Dynkin’s formulae for the couple (Xt, Yt) and for the function
V̄m,a,k(t,Xt, Yt) with the restrictions on the parameters given in the assumptions of
the Theorem that for (Xt, Yt) 6∈ X0 ×X0 we have,

dV̄m,a,k(t,Xt, Yt)

= (1 + t)k
[
IX1 − IX2 + IX3 + IY1 − IY2 + IY3

]
dt+ k(1 + t)k−1 V̄m,a(Xt, Yt) dt+ dM̄t,

with some local martingale M̄t and with natural notations

IX1 = λ(Xt)

1 +

n∑
j=1

(1 +Xj
t )m

a

−

 n∑
j=1

(1 +Xj
t )m

a ,

IX2 =

n∑
i=1

h(Xi
t)

−
 ∑

1≤j≤n, j 6=i

(1 +Xj
t )m

a

+

 n∑
j=1

(1 +Xj
t )m

a ,

IX3 =

n∑
i=1

a
 n∑
j=1

(1 +Xj
t )m

a−1

m

n∑
j=1

(1 +Xj
t )m−1
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(former I1, I2, and I3), and

IY1 = λ(Yt)

1 +

n∑
j=1

(1 + Y jt )m

a

−

 n∑
j=1

(1 + Y jt )m

a ,

IY2 =

n∑
i=1

h(Y it )

−
 ∑

1≤j≤n, j 6=i

(1 + Y jt )m

a

+

 n∑
j=1

(1 + Y jt )m

a ,

IY3 =

n∑
i=1

a
 n∑
j=1

(1 + Y jt )m

a−1

m

n∑
j=1

(1 + Y jt )m−1

 .

For any t where both Xt 6∈ X0 and Yt 6∈ X0, the terms IX2 and IY2 dominate their
counterparts IX1 , I

X
3 and IY1 , I

Y
3 , respectively. Let us inspect the case where one of the

processes belongs to X0, say, n(Yt) = 0. In this case Xt 6∈ X0, but the term IY2 = 0, and
we have,

IY1 = λ(Yt) = λ(0, yt) ≤ λ̄0, IY3 = 0

(the latter because
∑0
i=1 = 0). Hence, n(Yt) = 0 implies

IY1 − IY2 + IY3 = λ(0, yt) ≤ λ̄0.
So, the total sum of non-negative terms admits the bound (cf. with (19)),

IX1 + IX3 + IY1 + IY3 ≤ (1 + t)k[(a(m+ Λ))Vm,a−1/m(Xt) + λ̄0] + k(1 + t)k−1 Vm,a(Xt),

while the modulus of the only negative term (IX2 ) equals

C0(1 + t)kVm,a−1/m(Xt).

In the case n(Xt) = 0 instead, the situation is, of course, symmetric for X and Y and
the same conclusions hold. So, the earlier considerations for one process Xt in the steps
2–3 based on the inequality

C0 > a(m+ Λ)

remain valid and lead to the desired estimate (28) if we only check that

C0 > a(m+ Λ) + λ̄0.

However, the latter bound does follow from the standing assumption (6):

C0 >

(
a+

`+ 1

m

)(
m+ Λ2a+

`+1
m

)
,

since a > 1 and, hence, C0 > am+ 2aΛ > am+ aΛ + λ̄0.

8. Coupling at the “X0 7→ X1” passage. Further, from any state (0, ∗, 0, ∗) ∈ X0×X0,
coupling is achieved with a positive (bounded away from zero) probability over a unit
time interval on the passage to state (1, 0, 0, 1, 0, 0) ∈ X1 ×X1 due to the assumption

0 < λ0 ≤ λ̄0 <∞.
Indeed, denote

τ̄0011 := inf(t ≥ 0 : (Xt, Yt) = (1, 0, 0, 1, 0, 0) after visiting (0, ∗, 0, ∗)),

τ̄001 := inf(t ≥ 0 : (Xt, Yt) 6∈ X0 ×X0 after visiting (0, ∗, 0, ∗)).
It may happen that τ̄001 = τ̄0011, although, in general, τ̄001 ≤ τ̄0011. The moment τ̄0011
may be regarded as a moment of coupling, i.e., the moment where the two versions of
the process meet up, after which due to the strong Markov property the processes may
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be considered as equal, of course, after a corresponding change of the probability space.
(Clearly, without such a change the moment τ̄001 can never occur, i.e., it can equal
infinity.) Indeed, after such a change, we may assume that each of the two processes
perform jumps up from state (0, ∗) according to two independent flows of “events”, one
with intensity λ0 and the other due to the “remainder” flow with intensity λ0(·) − λ0.
The point is that the flow with intensity λ0 may be regarded as the same for the two
processes and, hence, on this new probability space both processes (more precisely, their
equivalents) jump up to state (1, 0, 0) simultaneously with probability at least p01 :=
(1− exp(−λ0))× exp(−2(λ̄0 − λ0)) on a unit interval of time.

Note that similarly to the bound (26) and due to (28), for the stopping time

τ̄00100 := inf(t > τ̄001 : (Xt, Yt) ∈ X0 ×X0)

the following holds true with some finite constant C > 0:
(29)

EXτ̄001
,Yτ̄001

(τ̄00100 − τ̄001)k+1 ≤ C sup
X,Y ∈(X0×(1,0,0))∪((1,0,0)×X0)

V̄m,a+`/m(X,Y ) = C.

Also, similarly to (22) and due to exactly the same calculus,

sup
X,Y ∈X0

EX,Y τ̄k+1
001 ≤ C = λ

−(k+1)
0 Γ(k + 2).(30)

Let us show that after the declared change of probability space, the moment τ̄001
satisfies the bound,

(31) EX0,Y0
τ̄k+1
001 <∞,

and that moreover, for any (this is the difference between (30) and (32) below) X0 =
(n1, x), Y0 = (n2, y) and for k < ` we have,

EX0,Y0
τ̄k+1
001 ≤ CV̄m,a+`/m(X0, Y0) ∨ 1,(32)

with a new C > 0. The crucial bound (32) here is due to (28) and to the fact that coupling
on the passage from X0 × X0 to state (1, 0, 0, 1, 0, 0) occurs with a positive probability
(p01) over a unit time (see above), with the help of one more geometric like series, as will
be shown below. Indeed, denote τ̄001 =: τ̄001(1), τ̄00100 =: τ̄00100(1), τ̄00100(0) =: τ̄00, and
by induction,

τ̄00100(i) := inf(t > τ̄001(i) : (Xt, Yt) = (0, ∗, 0, ∗)),
τ̄001(i+ 1) := inf(t > τ̄00100(i) : (Xt, Yt) 6∈ X0 ×X0), i ≥ 1.

At each moment τ̄001(i) coupling is possible with a positive probability p01 – see the
definition above – bounded away from zero. One of these moments will be a “successful
coupling”, i.e., will be equal to τ̄0011. (The change of probability space is assumed as pre-
scribed earlier). By virtue of the bounds (28), (29) and (30) and using the representation
for any i ≥ 1,

τ̄001(i) = τ̄00 + (τ̄001 − τ̄00) +

i−1∑
j=1

((τ̄001(j + 1)− τ̄00100(j)) + (τ̄00100(j)− τ̄001(j))) ,

we get by induction with some new C > 0 for any i ≥ 1,

(33) EX,Y τ̄k+1
001 (i) ≤ Cik

(
Vm,a+`/m(X) + Vm,a+`/m(Y )

)
∨ 1 = CikV̄m,a+`/m(X,Y ) ∨ 1.
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From (33) we finally get the decisive estimate for the coupling moment τ̄0011,

EX,Y τ̄k+1
0011 ≤

∞∑
i=1

EX,Y τ̄k+1
001 (i)(1− p01)i−1

≤ C
∞∑
i=1

(1− p01)i−1ikV̄m,a+`/m(X,Y ) ∨ 1 ≤ CV̄m,a+`/m(X,Y ) ∨ 1.(34)

9. Existence of some invariant measure µ follows from the fact that (1, 0, 0) is a regenera-
tion state and from (21) and (23) (suffices for one component), by the Harris–Khasminsky
formula

(35) µ(A) = cE(1,0,0)

τ01∫
0

1(Xt ∈ A) dt

(recall that the stopping time τ01 was defined earlier in the step 0). Here c is the
normalising constant. For the sequel notice that by virtue of (35) and (25),

(36)

∫
Vm,a+`/m(x)µ(dx) <∞,

however, for our aims the value of this integral also has to be estimated. From (35) (and
with the constant c from (35)), we have by virtue of (25),∫

Vm, a+`/m(X)µ(dX) = cE(1, 0, 0)

τ01∫
0

Vm, a+`/m(Xs) ds

≤ c 1

C0 − a′(m+ Λ)
Vm, a+(`+1)/m(1, 0, 0) =

c

C0 − a′(m+ Λ)
,

with a′ = a + `/m, because Vm, a+(`+1)/m(1, 0, 0) = 1. So, in order to obtain an upper
bound for the integral in (36), it remains to estimate the constant c from above. From
(35) with A = Ω we get,

c =
1

E(1, 0, 0)τ01
≤ 1

E(1, 0, 0)τ0 + E(0, 0)τ01
≤ 1

1

λ̄0
+

1

D

≡ λ̄0D

λ̄0 +D
.

This is firstly because the value of τ0 is stochastically minorated by a similar hitting time
for a pure death process with a constant intensity D (cf. with the assumption (4)) which
mean value equals D−1, so that

E(1, 0, 0)τ0 ≥ D−1,
and secondly, because the value of τ01 is stochastically minorated by a similar hitting
time for a pure birth process with a constant intensity λ̄0 which mean value equals λ̄−10 ,
so that

E(0, 0)τ01 ≥ λ̄−10 .

Therefore, we obtain the following bound for the value of the integral in (36):∫
S

Vm, a+`/m(X)µ(dX) = cE(1, 0, 0)

τ01∫
0

Vm, a+`/m(Xs) ds ≤

≤ λ̄0D

(λ̄0 +D)(C0 − (a+ `/m)(m+ Λ))
=: C1.(37)

Note that here again the assumption (6) was essentially used while deriving (37), precisely
with “`+ 1”, since (25) was applied for which the condition (6) is required.
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Returning now to (32), we can see that it follows by integration that for the distribution
µ (and with a new constant C),

(38) EX0,µτ̄
k+1
0011 ≤ CVm,a+`/m(X0) ∨ 1,

under the standing assumption (6) of the Theorem. Indeed, by virtue of (34) and a little
more precisely,

EX,µτ̄k+1
0011 =

∫
EX,Y τ̄k+1

0011µ(dY ) ≤ C
∫
V̄m,a+`/m(X,Y ) ∨ 1µ(dY )

= CVm,a+`/m(X) ∨ 1 + C

∫
Vm,a+`/m(Y ) ∨ 1µ(dY ) ≤ C(Vm,a+`/m(X) ∨ 1 + C1 + 1).

Note that here both constants C and C1 admit some effective estimates.

10. The final step of the proof is quite standard in coupling. Consider two independent
versions X and Y of our Markov process, one starting at X0 and another at the stationary
distribution µ found earlier. Now, on some new probability space as described, for
example, in [3], we estimate, uniformly in A ∈ B(R1),

|(µX0
t − µ)(A)| ≤ |EX0,µ(1(Xt ∈ A)− 1(Yt ∈ A))| 1(t ≥ τ̄0011)

+ |EX0,µ(1(Xt ∈ A)− 1(Yt ∈ A))| 1(t < τ̄0011)

≤ EX0,µ1(t < τ̄0011) = PX0,µ(t < τ̄0011) ≤ EX0,µτ̄
k+1
0011

tk+1
≤
C(Vm,a+`/m(X0) ∨ 1 + C̃1)

tk+1

(with C̃1 = C1 + 1). This shows the main statement of the Theorem; the version with
“. . . ∧ 2”, clearly, can be used for small values of t since the left hand side in (7) may
never exceed two. Uniqueness of a stationary distribution µ automatically follows from
this convergence. The Theorem 1 is proved.
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