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Cosmological perturbations in brane-world theories: Formalism
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We develop a gauge-invariant formalism to describe metric perturbations in five-dimensional brane-world
theories. In particular, this formalism applies to models originating from heterotic M theory. We introduce a
generalized longitudinal gauge for scalar perturbations. In this gauge, we derive the five-dimensional evolution
equations for scalar perturbations as well as the most general structure of the scalar brane stress-energy tensor.
As an application, we discuss some aspects of the evolution of fluctuations on the brane. Moreover, we show
how the five-dimensional formalism can be matched to the known four-dimensional one in the limit where an
effective four-dimensional description is appropriate.
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I. INTRODUCTION

In recent years, the way in which string theory is believ
to be connected to observable physics has changed dra
cally. The new viewpoint is mainly due to two ideas: name
the brane-world idea@1–7# and the idea that couplings an
scales of additional dimensions are much more flexible t
previously assumed@2,8,5,6#. Not only have these ideas le
to new directions in M-theory phenomenology and, mo
generally, string-theory inspired particle phenomenology,
also in early universe cosmology.

Much of the recent activity in brane-world cosmology
centered around five-dimensional brane-world theories,
for example@9–37#. A large class of such theories aris
from heterotic M theory@4,38,39#. Other five-dimensiona
models have been introduced in Refs.@40–43# which may
provide an alternative solution to the hierarchy problem.

A central question is whether the possible existence o
brane world and large additional dimensions in the early u
verse leads to observable consequences today. Specifi
cosmological perturbations as, for example, observed in
cosmic microwave background provide us with a window
the early universe that, perhaps, can be used to test the b
world idea. It is with this motivation in mind that we set o
to study metric perturbations in brane-world models. It m
not be immediately clear that the existence of additional
mensions and branes should have important conseque
for the formation and evolution of cosmological perturb
tions. Let us, as a comparison, consider ‘‘traditiona
Kaluza-Klein cosmologies, where the higher-dimensio
universe is usually split into a product of maximally symm
ric subspaces each one with an individual scale factor. C
mological perturbations are normally treated at the lineari
level and, hence, in such Kaluza-Klein cosmologies@47–49#
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internal and external fluctuations basically decouple. The
ditional dimensions effect perturbations of the thre
dimensional universe only via the kinematics of the ba
ground scale factors~and/or dilaton background fields@50#!.
The situation is quite different for brane-world theories. T
branes are stretched across the three-dimensional univ
and are located at specific points in the internal space. M
over, they carry world volume fields that can only propag
on the brane and that are likely to be excited in the ea
universe, both coherently and thermally. As a conseque
the cosmological background in an early brane-world u
verse is highly inhomogeneous in the additional dimensi
since the branes constitute localized sources of stress-en
Even if perturbations around such a background are tre
at the linearized level, the perturbations of the thre
dimensional universe are effected by the non-linear dis
tion of the cosmological background in the internal dime
sions. This constitutes a crucial difference betwe
conventional Kaluza-Klein cosmology and brane-world co
mology which is directly related to the presence of branes
is this difference that may lead to new predictions for co
mological perturbations in brane-world models and that m
tivates the present investigation.

In this paper, we will develop a formalism for metri
fluctuations in brane-world theories that takes the charac
istic property of brane-world cosmologies, the above m
tioned inhomogeneity in the additional dimensions, into a
count. We understand such a formal development as a
step towards analyzing predictions for cosmological pert
bations in brane-world theories. In the next section, we s
out to generalize the well-known formalism of fou
dimensional gauge-invariant metric perturbations@44,45# to
brane-world theories with an arbitrary number of addition
dimensions. Subsequently, in Sec. III, we focus on fiv
dimensional brane-world models on the orbifoldS1/Z2 re-
lated to those originating from heterotic M theory@4,38,39#.
Specifically, we consider the five-dimensional Einstein eq
tion coupled to bulk as well as brane stress-energy. For s
a theory we derive the equations of motion for scalar me
perturbations in a generalized longitudinal gauge. Con
©2000 The American Physical Society15-1
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tency of these equations is used to determine the most
eral structure of the stress-energy on the brane. In Sec
these results are applied to find the Israel matching co
tions @46# for the scalar metric perturbations restricted to t
branes. Finally, in Sec. V, we show how our formalism f
brane-world metric perturbations is related to the conv
tional one in four dimensions. This is done by a match
procedure applied in a limit where the five-dimension
brane-world theory has an effective four-dimensional
scription.

II. GAUGE-INVARIANT VARIABLES

In this section, we will develop a gauge-invariant forma
ism for metric perturbations in brane-world models. Usi
such a gauge-invariant approach is particularly useful in
der to identify the correct physical degrees of freedom. O
this has been done, a specific gauge can be chosen in ord
simplify the subsequent equations. Specifically, we will us
generalized longitudinal gauge later on. However, as
warm-up for the higher-dimensional case, we would first l
to review the well-known four-dimensional gauge-invaria
formalism following Ref.@45#.

A. The four-dimensional formalism

Starting point is a background metric with a maxima
symmetric three-dimensional spatial space. This metric is
the form

ds4
25a4

2$dt22V i j dxidxj%, ~1!

where indicesi , j , . . . 51,2,3 run over the three spatial ind
ces. Indicesm,n, . . . 50,1,2,3 are used to index four
dimensional space-time. Furthermore,a45a4(t) is the four-
dimensional scale factor andV i j is the metric of the three
dimensional maximally symmetric space explicitly given

V i j 5d i j F11
1

4
kxlxmd lmG22

. ~2!

Here k50,1,21 corresponds to a flat, closed or open u
verse, respectively. The idea is now to classify perturbati
of the metric~1! according to their transformation propertie
with respect to the maximally symmetric space. This lead
the perturbed metric

ds4
25a4

2$~112f4!dt22@~122c4!V i j 12E4u i j 12F4(i u j )

1h4i j #dxidxj1W4idtdxi%. ~3!

Here and in the following four-dimensional quantities a
indexed by ‘‘4’’ to distinguish them from their higher
dimensional counterparts to be introduced later. The vert
bar refers to a covariant derivative with respect to the me
V i j . The vectorF4i has a vanishing divergence, that
F4i

u i50 and the tensorh4i j is traceless and divergence-les
that ish4i

i50 andh4i
j

u j50. In addition, we can decompos
the off-diagonal perturbationW4i further into the gradient of
a scalarB4 and a divergence-less vectorS4i . Explicitly, this
reads
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W4i5B4u i1S4i . ~4!

Consequently, we have four scalar metric perturbatio
(f4 ,c4,E4 ,B4), two vector perturbations (F4i ,S4i) and a
tensor perturbation (h4i j ). All these perturbations are func
tions of time as well as of the spatial coordinatesxi , of
course. Next we consider an infinitesimal coordinate tra
formation

xm→ x̃m5xm1jm, ~5!

where the vectorjm depends on all four coordinates, in ge
eral. The corresponding infinitesimal change of the metric
given by

g4mn→g̃4mn5g4mn22¹ (mjn) . ~6!

To understand how this coordinate transformation acts on
metric perturbations we splitjm as jm5(j0,j i) into a time
and a spatial part. The spatial componentj i can be decom-
posed further into a gradient and a divergence-less part

j i5j u i1h i . ~7!

As a result, the transformation parameterjm contains two
scalar components (j0,j) and one vector component (j i).
Given this setup, one can compute the transformation pr
erties of the metric perturbations by applying Eq.~6! to the
perturbed metric ~3! and taking into account thatjm

5a4
2(j0 ,2j i). For the scalar perturbations one finds

f̃45f2H4j02 j̇0, ~8!

c̃45c41H4j0, ~9!

B̃45B41j02 j̇, ~10!

Ẽ45E42j. ~11!

Here, H4 is the Hubble parameter defined byH45ȧ4 /a4.
The vector perturbations transform as

F̃4i5F4i2h i , ~12!

S̃4i5S4i2ḣ i , ~13!

while the tensor perturbationh4i j is invariant. In these equa
tions, spatial indices are lowered and raised with the me
V i j , that is, for examplej u i5V i j j

u j and h i5V i j h
j . With

these results, it is straightforward to introduce the followi
gauge-invariant variables.

Scalar variables

F45f41H4~B42Ė4!1Ḃ42Ë4 ~14!

C45c42H4~B42Ė4!. ~15!

Vector variables
5-2
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COSMOLOGICAL PERTURBATIONS IN BRANE-WORLD . . . PHYSICAL REVIEW D62 123515
Fi5S4i2Ḟ4i . ~16!

Tensor variables

h4i j . ~17!

As the physical degrees of freedom, one has therefore id
tified two scalar perturbations, one vector perturbation a
one tensor perturbation. Of particular importance are the
scalar perturbationsF4 and C4 on which we are going to
focus. The expressions~14! and ~15! for these perturbations
suggest the gauge choiceB45E450 in the scalar secto
which is referred to aslongitudinal gauge. Clearly, from the
above transformation properties of the scalar perturbat
such a choice can be made. Then, the gauge-invariant s
variables coincide with the ‘‘original’’ variables, that is
F45f4 andC45c4. This gauge choice considerably sim
plifies subsequent calculations and its generalization will
quite helpful to deal with the higher-dimensional case. T
perturbed metric then takes the form

ds4
25a4

2$~112f4!dt22~122c4!V i j dxidxj%. ~18!

Finally, we need to specify the stress-energy. For the ba
ground, by the maximal symmetry of the three-dimensio
spatial space, it is dictated to be of the form

T4
m

n5diag~r4 ,2p4 ,2p4 ,2p4!. ~19!

The scalar perturbations to this stress-energy can be wr
as

dT4
m

n5S dr4 2~r41p4!a4
21v4u j

~r41p4!a4v4
u i 2dp4d i

j1s4
u i

u j
D ~20!

with the potentialv4 for the velocity fieldv4u i and the quan-
tity s specifying the anisotropic stress. The equations of m
tion for the background and the scalar perturbations sub
to the above stress-energy are given in Ref.@45# and will not
be repeated here. These equations form the basis for
study of cosmological perturbations and we now turn to
velop their higher-dimensional generalization.

B. Gauge-invariant variables in brane-world theories

We would now like to proceed in close analogy with t
four-dimensional case reviewed above and develop a ga
invariant formalism of metric perturbations in brane-wor
theories. First, we consider the general situation ofd addi-
tional dimensions although later we will be more specific a
focus on the cased51, that is, a five-dimensional univers
The coordinates of the additional dimensions are denoted
(y5,•••,y41d). For the purpose of this subsection, all w
need to specify is that the branes are stretched across
usual four-dimensional space-time and are located at spe
points ~or submanifolds! in the additional dimensions. W
will be more precise about the brane positions later when
consider the five-dimensional case.

How should metric perturbations be classified in suc
brane-world theory? In the previous four-dimensional c
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we have used their tensor properties with respect to the th
dimensional spatial subspace for this classification. At fi
glance, one might now want to use their tensor proper
with respect to the (31d)-dimensional spatial space. Th
cosmological principle, of course, only asserts the maxim
symmetry of the usual three-dimensional space but the m
mal symmetry of thed-dimensional internal space may b
taken as an additional, simplifying assumption. It is at t
point, that the brane-world nature of the theory comes i
the game. Since the branes are localized in the additio
dimensions the assumption of maximal symmetry cannot
general, be extended to those dimensions. In fact, as
become more explicit below, the branes lead to stress-en
in the Einstein equation localized in the additional dime
sions and, hence, the symmetry of the background me
will typically not be enhanced with respect to the fou
dimensional case. Consequently, we split the coordina
into two groups, namely the inhomogeneous coordina
(ya)5(t,y5,•••,y41d) on which the background metric gen
erally depends in a non-trivial way and the usual three spa
coordinates (xi) corresponding to the maximally symmetr
space. In the following we use indicesa,b, . . . 50,5, . . . ,4
1d for time and the additional dimensions, indicesi , j , . . .
51,2,3 for the three-dimensional space and indic
a,b, . . . 50,1,2,3,5, . . . ,41d for the full (41d)-
dimensional space-time. Then the most general high
dimensional metric consistent with the maximally symmet
three-dimensional spatial manifold is given by

ds25a2$gabdyadyb2V i j dxidxj%, ~21!

where the scale factora and the metricgab are functions of
the coordinatesya only. HereV i j is the metric of the maxi-
mally symmetric space of constant curvature given in E
~2!. Given this structure of the background metric, we a
forced to classify metric perturbations by their thre
dimensional tensor properties as in the four-dimensio
case. We stress again that this is a direct consequence o
brane-world nature of the theory that we are consideri
With these remarks in mind, the higher-dimensional gen
alization of the perturbed metric~3! can be written in the
form

ds25a2$gac~db
c12fb

c!dyadyb2@~122c!V i j 12Eu i j

12F ( i u j )1hi j #dxidxj22Waidyadxi%. ~22!

As in the four-dimensional case,Fi andhi j have a vanishing
divergence and, in addition,hi j is traceless. As before, th
three-vectorsWai can be split as follows:

Wai5Bau i1Sai , ~23!

whereSa
i
u i50. Observe that the perturbed metric~22!, de-

fined in this way, is completely general. In fact, this can
easily seen by counting degrees of freedom. As an exam
we can consider the simplest case of only one extra dim
sion settingy5y5 and a,b, . . . 50,5. Then, the most gen
eral perturbed metric contains 15 degrees of freedom, wh
are parameterized by the seven scalar perturbations (f0

0, f5
0,
5-3
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f5
5, c, E, Ba), six degrees of freedom from the vector pe

turbations (Fi , Sai) and two degrees of freedom from th
tensor perturbationhi j . Of course, in counting the degrees
freedom originating from vector and tensor perturbations
have taken the constraints on these quantities into accou

Let us now return to the general case ofd additional di-
mensions and consider the coordinate transformations

xa→xã5xa1ja ~24!

with infinitesimal parametersja. In accordance with the
above discussion, we split these parameters as (ja)
5(ja,j i). We adopt the useful convention that indices
typea ( i ) are lowered, raised and contracted using the me
gab (V i j ). Furthermore, we take the vertical bar to deno
the covariant derivative with respect togab or V i j depending
on the index type. From the transformation law

g̃ab5gab22¹ (ajb) , ~25!

of the metric, and taking into account thatja5a2(ja ,
2j i), we find for the transformation of the scalar perturb
tions

dfab52j (aub)2Hcjcgab , ~26!

dc5Haja , ~27!

dE52j, ~28!

dBa5ja2j ua , ~29!

where we have introduced the generalized Hubble par
eters

Hc5
auc

a
. ~30!

The vector perturbations in the metric~22! change according
to

dFi52h i , ~31!

dSai52h i ua . ~32!

Finally, the tensor perturbationhi j is invariant under the firs
order gauge transformation~25!. From these results we ea
ily find the following gauge-invariant quantities.

Scalar variables

Fab5fab1Hc~Bc2Euc!gab1~B(a2Eu(a! ub) ~33!

C5c2Hc~Bc2Euc!. ~34!

Vector variables

Fai5Sai2Fi ua . ~35!

Tensor variables

hi j . ~36!
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We conclude that the physical degrees of freedom consis
the (d11)(d12)/211 gauge invariant scalar perturbation
(Fab ,C), d11 gauge invariant vector perturbationsFai and
a gauge invariant tensor perturbationhi j . The above gauge
invariant variables are a direct generalization of the cor
sponding four-dimensional ones. Specifically, restricting
no additional dimensions and settingg0051, Eqs.~33!–~36!
exactly reproduce the four-dimensional expressions~14!–
~17!. However, in the cased.0 our formalism clearly has a
richer structure than the conventional four-dimensional o

C. A generalized longitudinal gauge for scalar perturbations

In the subsequent sections we will focus on the evolut
of scalar perturbations. Vector and tensor perturbations
be discussed elsewhere. In order to simplify this discuss
we introduce ageneralized longitudinal gaugefor the scalar
perturbations. In analogy with the four-dimensional case,
gauge is specified by

Ba50, E50. ~37!

Setting these quantities to zero can indeed be achieved b
appropriate choice of the scalar transformation parameterja
andj in Eqs.~26!–~29!. Note that we have exactly the co
rect number of transformation parameters to do this and t
consequently, the gauge ambiguity in the scalar secto
complete eliminated by this choice. Then, the scalar par
the metric takes the simple form

ds25a2$gac~db
c12fb

c!dyadyb2~122c!V i j dxidxj%.
~38!

Furthermore, in this gauge, the scalar perturbationsfab and
c coincide with their gauge-invariant counterparts, that is

Fab5fab , C5c ~39!

as it is the case in four dimensions.

D. The five-dimensional case

Let us restrict in this section and for the rest of the pa
to the case of a single extra dimensiony5y5. Then, the
indicesa,b, . . . run over the values 0,5 only. Furthermor
in order to be more explicit, we choose the conformal gau

~gab!5b2diag~1,21! ~40!

for the background metricgab by performing a large gauge
transformation. Hereb5b(t,y) is a new, independent scal
factor. Then, the perturbed five-dimensional metric~22! re-
duces to

ds25a2$b2@~112f!dt222Wdtdy2~122G!dy2#

2@V i j ~122c!12Eu i j 12F ( i u j )1hi j #dxidxj

22W0idtdxi22W5idydxi%, ~41!

where we have defined

f5f0
0 , G52f5

5 , W52f0
5522f5

0 . ~42!
5-4
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Recall that the scale factorsa and b are functions of the
coordinatest and y only while the perturbations depend o
all spacetime coordinates. The scalar gauge-invariant v
ables defined in Eq.~33! can now be written more explicitly
as

F1[F0
0

5f1
1

b2
@~H02H0!~B02Ė!1Ḃ02Ë

2~H51H5!~B52E8!# ~43!

F2[F5
5

5G2
1

b2
@~H52H5!~B52E8!1B582E9

2~H01H0!~B02Ė!# ~44!

F3[F0
5

5
W

2
2

1

2b2
@~B081Ḃ5!22Ė822H5~B02Ė!

22H0~B52E8!# ~45!

F4[C5c2
1

b2
@H0~B02Ė!2H5~B52E8!#.

~46!

Here and in the following the dot~prime! denotes the deriva
tive with respect to time~the coordinatey). Furthermore, we
have introduced a second set of ‘‘Hubble’’ parametersHa
5bua /b. Let us specialize these results to the generali
longitudinal gauge defined byB05B55E50. Then the
above scalar gauge-invariant variables coincide withf, c, G
andW. The metric simplifies to

ds25a2$b2@~112f!dt222Wdydt2~122G!dy2#

2~122c!V i j dxidxj%. ~47!

This metric will be the starting point for our treatment
scalar perturbations in the following sections. In addition
the perturbationsf andc that we are familiar with from the
four-dimensional case it contains two new perturbationsG
andW, that are related to the presence of the fifth dimens

III. THE PERTURBED EINSTEIN EQUATION
IN THE LONGITUDINAL GAUGE

As we have previously mentioned, the main applicat
we have in mind for this paper is a compactification of
five-dimensional theory on the orbifoldS1 /Z2. We start by
compactifying the fifth dimension on a circle restricting t
corresponding coordinatey to the rangeyP@2R,R# with the
endpoints identified. The action of theZ2 orbifolding sym-
metry on the circle is taken to bey→2y. Consequently,
there exist two fix points aty5y150 and y5y25R. We
12351
ri-
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n

assume that the three-branes, stretching ac
(311)-dimensional space-time, are located at these
points in the orbifold direction. This setup is appropriate f
a large class of five-dimensional heterotic M-theory mod
@4,38,39# that originate from 11-dimensional Horˇava-Witten
theory. It also applies to the five-dimensional models int
duced in Refs.@41,42#.

Next, we should truncate the five-dimensional metric
order to make it consistent with the orbifolding. Since t
metric has to be intrinsically even under theZ2 action its
various components satisfy the constraints

gmn~2y!5gmn~y!, ~48!

gm5~2y!52gm5~y!, ~49!

g55~2y!5g55~y!. ~50!

At the same time, we have to make sure that coordin
transformations do not lead out of the class of metrics
fined this way. The parameterja for an infinitesimal coordi-
nate transformation has, therefore, to be restricted by

jm~2y!5jm~y!, ~51!

j5~2y!52j5~y!, ~52!

which directly follows from Eq.~25!. From these rules we
can deduce theZ2 properties of the various quantities i
metric ~47! for scalar perturbations. While the backgroun
scale factorsa, b as well as the perturbationsf, c andG are
Z2 even, that is, for example,a(2y)5a(y), the perturbation
W is Z2 odd, that isW(2y)52W(y). Similarly, for the
scalar components in the transformation parameterja, we
find thatj0 andj are even whilej5 is odd. Also note that the
derivative along the fifth dimension of an odd variable
even and vice versa. For instance,W8(y)5W8(2y). Based
on theseZ2 truncations we should now discuss the continu
properties of all quantities. Normally, one requires the me
to be continuous across the whole of space-time in orde
have a sensible notion of length and time. We will also ad
this viewpoint, however with an additional subtlety. Sin
the orbifolding identifies the upper and lower half of th
circle in the fifth dimension already one of them, say t
upper half, constitutes the whole of space-time. In fact,
stead of working with theorbifold picturewhere one keeps
the full circle as we do here, one could also use theboundary
picture where only one half of the circle~a line-segment! is
considered. This shows that a jump of a metric componen
an orbifold fix point does not contradict the continuity r
quirement. Of course, such a jump is possible only for
odd component of the metric. Concretely, we therefore
quire that all components of the metric~47! are continuous
across the full orbicircle except for the odd componentW
which may jump at the fix points~but is continuous other-
wise!. Corresponding assumptions have to be made for
parameterja so that coordinate transformations do n
change these continuity properties of the metric. Clearly
even componentsj0 andj have to be continuous then. Is th
odd componentj5 allowed to jump at the orbifold points?
5-5
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Equation ~26! shows thatG52f5
5, which has to be even

and continuous, transforms with the derivativej58 . Hence, if
j5 jumped at the fix points it would lead to a delta-functio
singularity in the metric which is clearly unacceptable. W
therefore, have to require thatj5 is continuous everywhere
on the orbicircle.1 In particular, this means thatj5 vanishes
at the fix points, that isj5(yn)50.

It is clear that the above conclusions depend somewha
the fact that we are working with an orbifold. For example
we had considered compactification on a circle instead,
components of the metric had to be continuous. Correspo
ingly, some of the conclusions below will be slightly mod
fied for other compactifications, however, in a way that
usually rather obvious.

Given this setup the Einstein equations can be written

Gab[Rab2
1

2
gabR5Tab1 (

n51

2

Tab
(n)d~y2yn!, ~53!

where we have set the five-dimensional Newton constan
one, for simplicity. The delta functions in this equation a
covariant with respect to the fifth dimension, that is, th
include a factor of 1/A2g55. Furthermore,Tab is the bulk
stress-energy tensor induced by fields that propagate in
full five-dimensional space time. The brane stress-ene
tensorsTab

(n) , on the other hand, originate from fields that a
confined to the branes at the orbifold fix points.

In order to proceed further, we need to specify the
stress-energy tensors. Two requirements should be taken
account when doing this. First, one should use the fact
the background has a maximally symmetric thre
dimensional space. Secondly, the brane stress-energy te
should be restricted in a way that is consistent with th
nature of representing fields on the branes. This latter
quirement can be most easily implemented by using the c
straints that follow from the Einstein equation~53! itself.
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Concretely, the delta functions on the right-hand side of t
equation have to be matched by corresponding delta fu
tions that appear on the left-hand side. The appearanc
these latter delta functions, however, is controlled by
structure of the equations and the continuity assumpti
about the metric discussed above.

Let us see what this implies in detail. We start with t
background stress-energy. For the bulk, the most gen
form of this tensor consistent with the three-dimensio
maximal symmetry is

Ta
b5S r 0 2r

0 2pd i
j 0

r 0 2q
D . ~54!

In particular, we note that the 05 component can be n
vanishing. This possibility is, in fact, already realized for t
simple case of a bulk scalar field that depends ont andy. As
far as the symmetry of the background metric is concern
the background brane stress-energy tensors should hav
same structure as Eq.~54!. However, as we will see in a
moment, there are two more requirements that follow fro
the equations of motion, namely that the 55 and the 05 co
ponents vanish. As a result, the background stress-energ
the branes has the form

T(n)a
b5S r (n) 0 0

0 2p(n)d i
j 0

0 0 0
D . ~55!

Let us now proceed to the perturbed stress-energy tens
Since we are focusing on scalar perturbations we write
most general perturbation of the background bulk tensor~54!
that can be expressed in terms of scalars on the maxim
symmetric subspace. This leads to
he
of motion

, the

low

ve

early, for
dTa
b5S dr 2~r1p!b22v u j 2dr

~r1p!v u i 2dpd i
j1s u i

u j 2uu i

dr 12r ~f1G!2~r1q!W 2b22uu j 2dq
D ~56!

where v and u are two potentials for ‘‘velocity’’ fields ands, satisfyings u i
u i50, determines the anisotropic stress. T

perturbed brane stress-energy tensors should have the same structure. However, as we will see below, the equations
impose further constraints implying vanishing 55 and 5i components as well as vanishing anisotropic stress. Therefore
brane stress-energy perturbations are given by

dT(n)a
b5S dr (n) 2~r (n)1p(n)!b22v u j

(n) 2dr (n)

~r (n)1p(n)!v (n)u i 2dp(n)d i
j 0

dr (n)2r (n)W 0 0
D . ~57!

We would like to present the equations of motion based on the metric~47! and on the above stress-energy tensors that fol
from the Einstein equation~53!. However, in writing the metric~47! two gauge choices were involved and it is not,a priori,
clear that these choices can be made while, at the same time, keeping the branes aty5const hypersurfaces as we ha

1
From this conclusion we see that we have glossed over a subtlety when introducing the generalized longitudinal gauge. Cl

continuousj5 the quantityB5 can only be gauged to zero ifE52B5 is continuous, as can be seen from Eqs.~28! and~29!. We will, therefore,
in addition require the continuity ofE52B5.
5-6
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COSMOLOGICAL PERTURBATIONS IN BRANE-WORLD . . . PHYSICAL REVIEW D62 123515
conveniently assumed in writing Eq.~53!. As the first choice, we decided to work with the two-dimensional metricgab in
conformal gauge. Fortunately, this can be achieved while keeping the branes at hypersurfacesy5const@13#. In addition, we
have chosen the generalized longitudinal gauge~37! for the scalar perturbations. A brane, described byy5yn before the gauge
transformation that leads to longitudinal gauge, is described byy5 ỹ2j5(y)5yn after this gauge transformation, whereỹ is
the transformedy coordinate. However, sincej5(yn)50, as discussed above, this equation is solved byỹ5yn to linear order.
We conclude that, in the new coordinates that lead to the generalized longitudinal gauge, the brane location is unch
the relevant linear order. In summary, therefore, using the Einstein equation~53! with the branes described byy5yn does not
restrict the generality of our results given the gauge choices that we have made.

The background equations following from Eq.~53! have been given in Ref.@13# for the case of stress-energy induced
scalar fields and in Ref.@15# for the case of ideal fluids. For completeness and in order to incorporate some of the ge
zations that we have made~such as the inclusion of a 05 component of the bulk stress-energy! we will nevertheless presen
these equations here. We find

a2b2G0
0[3F2

ȧ2

a2
1

ȧḃ

ab
2

a9

a
1

a8b8

ab
1kb2G5a2b2Fr1 (

n51

2

r (n)d̄~y2yn!G ~58!

a2b2G5
5[3F ä

a
2

ȧḃ

ab
22

a82

a2
2

a8b8

ab
1kb2G52a2b2q ~59!

a2b2G0
5[3F2

ȧ8

a
12

ȧa8

a2
1

ȧb8

ab
1

a8ḃ

ab G52a2b2r ~60!

a2b2Gi
j[F3

ä

a
1

b̈

b
2

ḃ2

b2
23

a9

a
2

b9

b
1

b82

b2
1kb2Gd i

j52a2b2Fp1 (
n51

2

p(n)d̄~y2yn!Gd i
j .

~61!

Here we have defined the delta-functiond̄ which incorporates a factor 1/ab. Based on these equations we can now justify
vanishing of the 55 and 05 components in the brane stress-energy~55!. Such components, if non-vanishing, would appear
the right-hand sides of Eqs.~59! and ~60! multiplied with delta-functions. We should, therefore, have corresponding d
function terms on the left-hand sides of these equations. Since the scale factorsa andb are assumed to be continuous, de
functions can only appear from second derivatives of these quantities with respect toy. However, there are no such terms
Eqs.~59! and ~60!. Hence, we conclude that the 55 and 05 components in Eq.~55! must vanish.

For the perturbations, we find, to linear order,

~ab!2dG0
0[3F2

a8b8

ab
22

a9

a
2

a8

a

]

]y
2

ȧ

a

]

]t
GG23F ȧ8

a
12

a8ȧ

a2
1

ȧ

a

]

]yGW26F2
ȧ2

a2
1

ȧḃ

abGf

13F3
a8

a

]

]y
2

b8

b

]

]y
23

ȧ

a

]

]t
2

ḃ

b

]

]t
12kb2Gc1b2~2c1G! u i

u i13c9

5a2b2H dr1 (
n51

2

~dr (n)1Gr (n)!d̄~y2yn!J ~62!

~ab!2dG5
5[26F2

a82

a2
1

a8b8

ab GG23Fa8̇

a
12

a8ȧ

a2
1

a8

a

]

]tGW13F2
ȧḃ

ab
22

ä

a
2

a8

a

]

]y
2

ȧ

a

]

]t
Gf

13F3
a8

a

]

]y
1

b8

b

]

]y
23

ȧ

a

]

]t
1

ḃ

b

]

]t
12kb2Gc1b2~2c2f! u i

u i23c̈

52a2b2dq ~63!
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~ab!2dG0
5[3Fa9

a
22

a8b8

ab
22

a82

a2 GW13F2
ȧ8

a
22

ȧb8

ab
22

a8ḃ

ab
24

a8ȧ

a2
1

ȧ

a

]

]yGf

13F ]2

]t]y
2

b8

b

]

]t
2

ḃ

b

]

]y
Gc2

b2

2
Wu i

u i23
a8

a
Ġ

5a2b2H 2dr 2 (
n51

2

dr (n)d̄~y2yn!J ~64!

~ab!2dGi
0[H F3

2

a8

a
1

b8

b
1

1

2

]

]yGW1F3
ȧ

a
1

ḃ

b
Gf1F ḃ

b
1

]

]t
GG12ċJ

u i

5a2H 2~r1p!v2 (
n51

2

~r (n)1p(n)!v (n)d̄~y2yn!J
u i

~65!

~ab!2dG5
i[H F3

a8

a
1

b8

b GG1Fb8

b
1

]

]yGf1F3

2

ȧ

a
1

ḃ

b
1

1

2

]

]t
GW22c8J

u i
52a2uu i ~66!

~ab!2dGj
i [H F26

a9

a
22

b9

b
12

b82

b2
23

a8

a

]

]y
23

ȧ

a

]

]t
2

ḃ

b

]

]t
2

b8

b

]

]y
2

]2

]t2GG

1F2
b8ḃ

b2
22

ḃ8

b
26

ȧ8

a
23

a8

a

]

]t
23

ȧ

a

]

]y
2

ḃ

b

]

]y
2

b8

b

]

]t
2

]2

]t]yGW

1F2
ḃ2

b2
22

b̈

b
26

ä

a
23

a8

a

]

]y
23

ȧ

a

]

]t
2

ḃ

b

]

]t
2

b8

b

]

]y
2

]2

]y2Gf1F6
a8

a

]

]y
26

ȧ

a

]

]t
12

]2

]y2
22

]2

]t2Gc

12b2~c2f1G! uk
ukJ d i

j2b2~c2f1G! u i
u j

5a2b2H 2dpd i
j1s u i

u j2 (
n51

2

~dp(n)1Gp(n)!d i
j d̄~y2yn!J . ~67!
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Given those results, we can now return to the question
why the perturbations of the brane stress-energy tensors
have the specific form~57!. We recall that all quantities in
our metric~47! are even except the off-diagonal perturbati
W which is odd under theZ2 symmetry. From our continuity
assumptions, delta function terms in the perturbed Eins
tensor can, therefore, arise from first derivatives ofW with
respect toy and second derivatives with respect toy of all
other quantities. Inspection of the above equations sh
that such terms are absent in the 5i and 55 components of th
perturbed Einstein tensor. Consequently, the correspon
components in the perturbed brane stress-energy should
ish. Furthermore, all terms indGi

j that could potentially lead
to delta-functions are proportional tod i

j . This implies that
the anisotropic stress on the brane, which would contrib
to the traceless part of Eq.~67!, must vanish. As a result, th
traceless part of Eq.~67!

~c2f1G! u i
u j2

1

3
~c2f1G! uk

ukd
i
j52a2s u i

u j ~68!
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only involves the bulk anisotropic stress as a source term
the bulk anisotropic stress vanishes as well, as, for exam
is the case for a perfect fluid in the bulk, one concludes t

c2f1G50. ~69!

The quantityc2f1G is the analog of the four-dimensiona
quantityc42f4 that also vanishes in the absence of ani
tropic stress. This correspondence will be made more exp
in Sec. V.

IV. DENSITY FLUCTUATIONS ON THE BRANE

A systematic study of density fluctuation in five dime
sions requires solving the full set of five-dimensional equ
tions of motion given in the previous section. However, f
specific questions it might be useful to have some inform
tion about the metric restricted to the brane. For example
is this restricted metric that is felt by matter which is co
5-8
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fined to the brane. In this section, we are going to der
such equations on the brane starting from the general e
tions of motion above.

For aZ2 even field the meaning of its value on the bra
is quite clear. AZ2 odd field may jump across the brane
its value may have a sign ambiguity. To simplify the no
tion, we define the value of an odd field on the brane as
one that is approached from within the intervalyP@0,R#.
This is precisely the boundary value of the field as viewed
the boundary picture and, at the same time represents
half of the jump at the fix point. We also recall that the sc
factorsa, b and the perturbationsf, c andG are even and
hence continuous while the perturbationW is odd and may
jump across the fix points.

Let us start with the background equations of moti
@13,15#. We have already mentioned that the delta-funct
sources in Eqs.~58! and ~61! have to be matched by th
terms containing secondy derivatives of the scale factorsa
andb. This leads to

a8

a
57

1

6
abr (n),

b8

b
56

1

2
ab~r (n)1p(n)!. ~70!

These conditions, as well as the following ones, are valid
the brane positionsy5yn where the upper~lower! sign holds
for the branen51 (n52). While the two other non-
vanishing equations of motion do not contain delta functio
they can still be restricted to the brane. From the 05 com
nent ~60! we find

ṙ (n)523
ȧ

a
~r (n)1p(n)!72abr ~71!

which represents to an energy conservation equation on
brane. Note, however, that, in addition to intrinsic bra
quantities, this equation also involves the off-diagonal b
stress-energy componentr. This reflects the simple fact tha
the branes are not isolated systems but can exchange e
with the bulk. Finally, we should consider the 55 compon
~59!. Restricted to the branes it results in an equation
motion for the values of the scale factorsa and b on the
brane given by

ä

a
2

ȧḃ

ab
1kb252

a2b2

3 F 1

12
r (n)~r (n)13p(n)!1qG .

~72!

An analogous procedure can now be applied to the pertu
equations. Observe that only the componentsdG0

0, dGi
i ,

dG5
0 and dGi

0 contain explicit delta-function terms. The
should be matched by terms containing firsty derivatives of
W and secondy derivatives of all other quantities. This lead
to

c85
ȧ

a
W6

1

6
ab~dr (n)2Gr (n)! ~73!
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f852S ȧ

a
1

ḃ

b
1

]

]t
DW6

1

3
ab~dr (n)2Gr (n)!

6
1

2
ab~dp(n)2Gp(n)! ~74!

W57
a

b
~r (n)1p(n)!v (n) ~75!

W5
dr (n)

r (n)
. ~76!

Interestingly, the last equation implies that the compon
dT(n)5

0 of the brane stress-energy perturbation vanishes
can be seen by comparison with Eq.~57!. The component
dT(n)0

552dr (n), however, is non-zero and is, from Eq
~75!, ~76! determined by

dr (n)57
a

b
r (n)~r (n)1p(n)!v (n). ~77!

We have, therefore, found an important additional constra
on the perturbed brane energy-momentum tensor~57!. The
quantitydr (n) is, in fact, uniquely fixed by the other compo
nents. For vacuum energy withp(n)52r (n) on the branes
dr (n) is zero, but it is generally non-vanishing otherwis
This is, perhaps, somewhat surprising since one could h
expected that a purely four-dimensional stress-energy te
on the brane~with all 5 components vanishing! should be
allowed. Here we see that this is generally not the case.

Next, we deal with the odd components 05 and 5i of the
perturbed equations of motion given in Eqs.~64! and ~66!.
Restriction to the branes leads us, after some algebra, to

ḋ (n)52~11w(n)!~v (n)u i
u i23ċ !23

ȧ

a S dp(n)

dr (n)
2w(n)D d (n)

22~11w(n)!v (n)a2~r1q!

72abS G12f2d (n)1
dr

r D r

r (n)
~78!

and

v̇ (n)
u i

b2
5F2

ȧ

a
~123w(n)!2

ẇ(n)

11w(n)
1

ḃ

bGv (n)
u i

b2

2
dp(n)

u i

dr (n)

d (n)

11w(n)
2f u i

72
a

b

1

r (n) F u

11w(n)
2rv (n)G

u i

, ~79!

wherew(n)5p(n)/r (n) and d (n)5dr (n)/r (n) denotes the en-
ergy contrast on the branes. These equations represen
conservation of energy and momentum for scalar pertur
tions, including possible energy-momentum flow from t
5-9
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bulk onto the brane or from the brane into the bulk. Th
should be compared with the corresponding equations in
dimensions, Eq.~30! in @51#, taking into account that the
variableu of @51# is related to the peculiar velocityv via u
5v u i

u i . Equation~78! differs from the four-dimensional re
sult by the last two terms. They describe the energy fl
from the bulk onto the brane. In Eq.~79! we have two new
terms with respect to the four-dimensional equation. Th
describe momentum flux between bulk and brane. The c
pling between bulk gravity and brane matter expressed
the above equations is one of the main results of this pa
It shows that, when considering scalar metric perturbati
on the branes, the branes cannot simply be viewed a
isolated system but have to be considered together with
bulk environment. Practically, this implies that frequen
one cannot simply copy four-dimensional formulas wh
dealing with physics on a brane that is embedded in a hig
dimensional space. Finally, we restrict the 55 componen
the equations of motion, Eq.~63!, to the brane. We find the
following evolution equation for the perturbations project
onto the branes:

b2~2c2f! u i
u i23c̈23

ȧ

a
ḟ13S ḃ

b
23

ȧ

a
D ċ16kb2~c1f!

1a2b2r (n)2F1

6
~113w(n)!f1

dq12qf

r (n)2

1
1

6 S 11
3

2
w(n)D d (n)1

dp(n)

4dr (n)
d (n)

6
a

b

r

r (n)
~11w(n)!v (n)G50. ~80!

V. MATCHING TO THE FOUR-DIMENSIONAL
EFFECTIVE THEORY

In the previous subsection, we have derived a set of eq
tions for the metric on the branes, essentially by restrict
the five-dimensional equations of motion. These results m
for example, be useful to analyze the evolution of matter t
is confined to the brane. However, the most important tas
to extract predictions for structure in the late universe fr
our formalism of metric perturbations in brane-world the
ries. In this section, we will explain the basic steps in t
direction.

First, we should introduce the four-dimensional effecti
theory, describing physics at low energy, that is associate
our five-dimensional brane-world theory~53!. It is this four-
dimensional theory that described the evolution of the u
verse ‘‘today’’ and that is used for the interpretation of o
servational results. Theoretical predictions, originating fr
our brane-world theory, should therefore be formulated
terms of this effective theory. The five- and the fou
dimensional effective theory are related by a vacuum s
that constitutes a specific solution of the five-dimensio
theory and should respect the symmetries that we expe
find in the four-dimensional theory. Specifically, fou
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dimensional Lorentz invariance implies that the vacuum m
ric should have the structure

ds25A2~y!dxmdxnhmn2B2~y!dy2. ~81!

The functionsA andB have to be such that this metric solve
the five-dimensional theory in the vacuum configuration. F
our five-dimensional theory~53!, the simplest possibility is
to have no stress energy in the vacuum which results in a
vacuum metric,A,B5const. In five-dimensional heterotic M
theory the vacuum configuration is determined by cert
potentials in the bulk and on the branes that involve
dilaton @4,39#. In this case,A andB are non-trivial functions
of y and the deviation from the flat vacuum metric is det
mined by the size of the so called strong coupling expans
parameter. The vacua proposed in Refs.@41,42# are based on
a vacuum configuration with specific cosmological consta
in the bulk and on the branes and result in an exponen
function for A in the coordinate system whereB5const.
Each one of these different vacuum states is associated
its specific low-energy theory. For the sake of simplicity a
concreteness, we will here focus on the first possibil
namely the flat vacuum. This choice represents, at the s
time, a good approximation for five-dimensional heterotic
theory in the case of a small strong-coupling expansion
rameter. The four-dimensional effective theory describes
dynamics of the collective excitations of the vacuum state
our case, these excitation are given by a four-dimensio
metric g4mn and the modulusb describing the size of the
fifth dimension. The vacuum metric with these collecti
modes put in has the structure

ds̄25e2bg4mndxmdxn2e2bdy2, ~82!

whereg4mn andb are functions ofxm. As usual, the effective
four-dimensional description is valid as long as these fu
tions are varying slowly enough. This is the case if all fou
dimensional momenta are much smaller than the mass o
first Kaluza-Klein excitation around the vacuum state. In o
case this mass is given bye2b/2R. Let us, therefore, con-
sider a five-dimensional evolution that is approaching
vacuum state~82!. Even though the five-dimensional metr
is then close to the vacuum metric it will still have sma
Kaluza-Klein excitations that can be described in linear p
turbation theory. A useful way to extract the zero mod
from such a five-dimensional metric with small contributio
from Kaluza-Klein modes is to perform an average over
fifth dimension. Doing this systematically leads to the fo
lowing four-dimensional effective theory associated to t
brane-world theory~53! and the vacuum state~82!:

R4mn2
1

2
g4mnR45

3

2 S ]mb]nb2
1

2
g4mn]b2D1T4mn

~83!

¹4
2b5J4 . ~84!

Four- and five-dimensional quantities are related by

e2b52^g55& ~85!
5-10



A
a

in
ne
t
t

-
u
a
ox

lin

on
is
tio
o
th

-
.

e
o

s
th
s

n

nd

nt

g
ds,

al
a-
xt
be

ea-
rre-

al-
es.
he
he
re-
tric
ight

ane-
o-

ddi-
ed

ba-

COSMOLOGICAL PERTURBATIONS IN BRANE-WORLD . . . PHYSICAL REVIEW D62 123515
g4mn5eb^gmn& ~86!

T4mn5^Tmn&1
1

2Reb (
n51

2

Tmn
(n) ~87!

J45
2

3
e23b^T55&1

1

3
g4

mnT4mn . ~88!

Here, ^•& denotes the average over the fifth dimension.
stated, this four-dimensional theory is a good description
long as all momenta are small compared toe2b/2R, the
mass of the first Kaluza-Klein mode. The Kaluza-Kle
modes have decoupled from the above equations at li
order. However, due to the presence of the branes,
Kaluza-Klein modes cannot strictly be set to zero but have
be integrated out@52,53#. This leads to higher order correc
tions to the above four-dimensional equations that are s
pressed by powers of the four-dimensional Planck scale
that we have neglected. To be consistent with this appr
mation, the averagê•& that projects out the Kaluza-Klein
excitations should be considered meaningful only at the
earized level in Kaluza-Klein excitations.

We would now like to apply the above general corresp
dence to our formalism for metric fluctuations. To do th
we need to assume a five-dimensional background solu
that, for late time, approaches the vacuum configuration. F
mulated in a four-dimensional language, this is the case if
four-dimensional Hubble parameterH45ȧ4 /a4 and ḃ are
small compared toe2b/2R. Furthermore, it is helpful to as
sume that the averagêg00& approaches one in this limit
This can always be achieved by a redefinition of time. W
would like to explicitly work out the correspondence for th
scalar sector in longitudinal gauge that we have focused
in this paper. The generalization to include vector and ten
perturbations is straightforward. Concretely, we apply
correspondence~85!–~88! to the five-dimensional quantitie
~47!, ~54!, ~55!, ~56! and ~57! matching onto the four-
dimensional quantities specified in Eqs.~18!, ~19! and ~20!.
Furthermore, we need to decompose the four-dimensio
modulusb as

b5x2G4 ~89!

where x5x(t) is the time-dependent background andG4
5G4(t,xi) is the perturbation. The matching of backgrou
quantities leads to

e2x5^a2b2& ~90!

a4
25ex^a2& ~91!

r45e2x^r&1
1

2Re2x (
n51

2

r (n) ~92!

p45e2x^p&1
1

2Re2x (
n51

2

p(n). ~93!
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It is interesting to explicitly compute the background curre
J4 in the equation of motion~84! for the modulusx. It is
given by

J45
1

3
@r423p412e2x^q&#. ~94!

With the above expression forr4 and p4, this implies that
the modulusx has a runaway potential leading to a growin
size of the fifth dimension. Therefore, the theory, as stan
will not stay in the range of validity of the four-dimension
effective theory. As is well-known, it needs further stabiliz
tion of the modulusb by means of a potential. In the conte
of string or M theory one expects such a potential to
generated by non-perturbative effects.

The correspondence for the scalar perturbations reads

G45^G& ~95!

f45^f2G/2& ~96!

c45^c1G/2& ~97!

dr45e2x^dr1Gr&1
1

2Re2x (
n51

2

~dr (n)12G4r (n)!

~98!

dp45e2x^dp1Gp&1
1

2Re2x (
n51

2

~dp(n)12G4p(n)!

~99!

s45e2x^s& ~100!

v45
e23xa4

4

r41p4
F ^~r1p!v&1

1

2Reb (
n51

2

~r (n)1p(n)!v (n)G .

~101!

In particular, we conclude that

c42f45^c2f1G&. ~102!

Hence, the four- and five-dimensional quantities that m
sure the presence of anisotropic stress are in direct co
spondence to one another as they should.

VI. CONCLUSION

In this paper we have laid down a gauge-invariant form
ism to describe metric fluctuations in brane-world theori
This formalism is a straightforward generalization of t
well known formalism in four dimensions. It categorizes t
perturbations according to their tensor properties with
spect to the usual three-dimensional maximally symme
space rather than a higher-dimensional space as one m
have expected. This is a direct consequence of the br
world nature of the theory which generally leads to cosm
logical backgrounds that are inhomogeneous in the a
tional dimensions. We have introduced a generaliz
longitudinal gauge in order to further study scalar pertur
5-11
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tions. In the case of a five-dimensional model on the orbif
S1/Z2, on which we have focused, we have identified fo
scalar metric perturbationsf, c, G and W. This has to be
contrasted to the four-dimensional case where one only
two such perturbations. We have presented the evolu
equations for these scalar perturbations which, mainly du
the dependence of the background on the additional dim
sion, are significantly more complicated than the correspo
ing four-dimensional equations. It is those additional term
related to the non-linearity of the background in the ad
tional coordinates, that encode possible new and interes
information about the formation and evolution of perturb
tions. Furthermore, given the gauge choices and assump
about the continuity of the metric that we have made,
have determined the resulting most general form of the st
energy on the brane. In particular, we have found that
perturbed brane stress-energy has to have vanishing a
tropic stress and that its 05 component is non-zero. We h
applied our formalism to calculate the matching conditio
~Israel conditions! for the five-dimensional metric restricte
to the branes. Among other results we have derived the e
tions describing energy and momentum conservation
metric perturbations on the brane. As is expected on phys
grounds, they illustrate that the brane cannot be viewed a
isolated object but is subject to energy and momentum fl
s.
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between the bulk and the brane. Finally, we have shown h
the five-dimensional formalism for metric fluctuations can
matched to the known four-dimensional one in the lim
where the brane-world theory has an effective fo
dimensional description. This allows one to extract pred
tions for structure in the late universe originating from bran
world theories. We hope to address this problem m
explicitly in a future publication.

Note added.As this manuscript was prepared for subm
sion, Refs.@54#, @55# and @56# appeared which have som
overlap with the present paper. Cosmological perturbati
are also discussed in@57#.
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