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Cosmological perturbations in brane-world theories: Formalism
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We develop a gauge-invariant formalism to describe metric perturbations in five-dimensional brane-world
theories. In particular, this formalism applies to models originating from heterotic M theory. We introduce a
generalized longitudinal gauge for scalar perturbations. In this gauge, we derive the five-dimensional evolution
equations for scalar perturbations as well as the most general structure of the scalar brane stress-energy tensor.
As an application, we discuss some aspects of the evolution of fluctuations on the brane. Moreover, we show
how the five-dimensional formalism can be matched to the known four-dimensional one in the limit where an
effective four-dimensional description is appropriate.

PACS numbegps): 98.80.Cq, 98.65:r

[. INTRODUCTION internal and external fluctuations basically decouple. The ad-
ditional dimensions effect perturbations of the three-
In recent years, the way in which string theory is believeddimensional universe only via the kinematics of the back-
to be connected to observable physics has changed dramaground scale factor&@nd/or dilaton background fields0]).
cally. The new viewpoint is mainly due to two ideas: namely The situation is quite different for brane-world theories. The
the brane-world ide@l—-7] and the idea that couplings and branes are stretched across the three-dimensional universe
scales of additional dimensions are much more flexible thamand are located at specific points in the internal space. More-
previously assumefR,8,5,4. Not only have these ideas led over, they carry world volume fields that can only propagate
to new directions in M-theory phenomenology and, moreon the brane and that are likely to be excited in the early
generally, string-theory inspired particle phenomenology, butiniverse, both coherently and thermally. As a consequence,
also in early universe cosmology. the cosmological background in an early brane-world uni-
Much of the recent activity in brane-world cosmology is verse is highly inhomogeneous in the additional dimensions
centered around five-dimensional brane-world theories, sesince the branes constitute localized sources of stress-energy.
for example[9-37]. A large class of such theories arises Even if perturbations around such a background are treated
from heterotic M theory[4,38,39. Other five-dimensional at the linearized level, the perturbations of the three-
models have been introduced in Reffl40—43 which may  dimensional universe are effected by the non-linear distor-
provide an alternative solution to the hierarchy problem. tion of the cosmological background in the internal dimen-
A central question is whether the possible existence of &ions. This constitutes a crucial difference between
brane world and large additional dimensions in the early uniconventional Kaluza-Klein cosmology and brane-world cos-
verse leads to observable consequences today. Specificaliyology which is directly related to the presence of branes. It
cosmological perturbations as, for example, observed in this this difference that may lead to new predictions for cos-
cosmic microwave background provide us with a window tomological perturbations in brane-world models and that mo-
the early universe that, perhaps, can be used to test the bransrates the present investigation.
world idea. It is with this motivation in mind that we set out  In this paper, we will develop a formalism for metric
to study metric perturbations in brane-world models. It mayfluctuations in brane-world theories that takes the character-
not be immediately clear that the existence of additional diistic property of brane-world cosmologies, the above men-
mensions and branes should have important consequencésned inhomogeneity in the additional dimensions, into ac-
for the formation and evolution of cosmological perturba-count. We understand such a formal development as a first
tions. Let us, as a comparison, consider “traditional” step towards analyzing predictions for cosmological pertur-
Kaluza-Klein cosmologies, where the higher-dimensionabations in brane-world theories. In the next section, we start
universe is usually split into a product of maximally symmet-out to generalize the well-known formalism of four-
ric subspaces each one with an individual scale factor. Coddimensional gauge-invariant metric perturbati¢a4,49 to
mological perturbations are normally treated at the linearizedrane-world theories with an arbitrary number of additional
level and, hence, in such Kaluza-Klein cosmolodi#8-49  dimensions. Subsequently, in Sec. Ill, we focus on five-
dimensional brane-world models on the orbif@¥Z, re-
lated to those originating from heterotic M thed#;38,39.

*Email address: C.VanDeBruck@damtp.cam.ac.uk Specifically, we consider the five-dimensional Einstein equa-
TEmail address: dorca@het.brown.edu tion coupled to bulk as well as brane stress-energy. For such
*Email address: rhb@het.brown.edu a theory we derive the equations of motion for scalar metric
$Email address: lukas@thphys.ox.ac.uk perturbations in a generalized longitudinal gauge. Consis-
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tency of these equations is used to determine the most gen- W, =By + Sy . (4)

eral structure of the stress-energy on the brane. In Sec. IV,

these results are applied to find the Israel matching condi€onsequently, we have four scalar metric perturbations
tions[46] for the scalar metric perturbations restricted to the(¢,,¥,4,E4,B,), two vector perturbationsH,;,S,) and a
branes. Finally, in Sec. V, we show how our formalism fortensor perturbationhy;;). All these perturbations are func-
brane-world metric perturbations is related to the conventions of time as well as of the spatial coordinates of
tional one in four dimensions. This is done by a matchingcourse. Next we consider an infinitesimal coordinate trans-
procedure applied in a limit where the five-dimensionalformation

brane-world theory has an effective four-dimensional de-

scription. XH— XM= XF A EF, (5)

Il. GAUGE-INVARIANT VARIABLES where the vectoé* depends on all four coordinates, in gen-

) ) ) _ ) eral. The corresponding infinitesimal change of the metric is
In this section, we will develop a gauge-invariant formal- given by

ism for metric perturbations in brane-world models. Using
such a gauge-invariant approach is particularly useful in or-
der to identify the correct physical degrees of freedom. Once
this has been done, a specific gauge can be chosen in ordertte understand how this coordinate transformation acts on the
simplify the subsequent equations. Specifically, we will use anetric perturbations we splg* as guz(goygi) into a time
generalized longitudinal gauge later on. However, as and a spatial part. The spatial componéntan be decom-
warm-up for the higher-dimensional case, we would first likeposed further into a gradient and a divergence-less part as
to review the well-known four-dimensional gauge-invariant o

formalism following Ref.[45]. g=¢i+ . 7)

g4,u1/_>§4,uv:g4,uv_zv(,u§v) . (6)

A. The four-dimensional formalism As a result, the transformation parametér contains two
) o . . scalar componentsé?, £) and one vector component'}.
Starting point is a background metric with a maximally Gjyen this setup, one can compute the transformation prop-
symmetric three-dimensional spatial space. This metric is Ofties of the metric perturbations by applying E6) to the

the form perturbed metric(3) and taking into account that,
dsz=a2{dt2—ﬂ--dx‘dxj} 1) =ai(§0,—§i). For the scalar perturbations one finds
)~ Ay ij )

where indices,j, ...=1,2,3 run over the three spatial indi- ba=p—Ha£" =&, (8)
ces. Indicesu,v,...=0,1,2,3 are used to index four- _

dimensional space-time. Furthermoag=a,(t) is the four- Vo= s+ H,E°, 9
dimensional scale factor arfd;; is the metric of the three-

dimensional maximally symmetric space explicitly given by B,=B,+&°— 3 (10)

-2
(2) E,=E4—¢. (11)

1
Qij = 5” 1+ ZkX'Xm5|m

Here, H, is the Hubble parameter defined bi,=a,/a,.

Herek=0,1,—1 corresponds to a flat, closed or open uni- .
g’he vector perturbations transform as

verse, respectively. The idea is now to classify perturbation
of the metric(1) according to their transformation properties ~
with respect to the maximally symmetric space. This leads to Fai=Fai—mi, (12)
the perturbed metric ~ .
S4i=Sai— 7 s (13
dsi=af{(1+2¢4)dt—[(1—24h) Qjj + 2E 4+ 2F 45 _ o
o , while the tensor perturbatidny;; is invariant. In these equa-

+hgijJdX dX +W,;dtdX}. (3)  tions, spatial indices are lowered and raised with the metric
_ _ ) ) » Qj;, that is, for examplaf‘izﬂijg“ and 7;=4Q;;7'. With
Here and in the following four-dimensional quantities aréihege results, it is straightforward to introduce the following
indexed by “4” to distinguish them from their higher- ?auge-invariant variables.

dimensional counterparts to be introduced later. The vertica
bar refers to a covariant derivative with respect to the metricScalar variables
Qj;. The vectorF, has a vanishing divergence, that is

F,'=0 and the tensoh,; is traceless and divergence-less, D=, +Hy(Bys—Ey)+B,—Ey (14)
that ish,;'=0 andhimj:o. In addition, we can decompose

the off-diagonal perturbatiow,; further into the gradient of W=, —H,(Bs—Ey). (15)
a scalaB, and a divergence-less vectsy; . Explicitly, this

reads Vector variables
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o [ we have used their tensor properties with respect to the three-
f S4| l:4| (16) . . . . g . .
dimensional spatial subspace for this classification. At first
Tensor variables glance, one might now want to use their tensor properties
with respect to the (3 d)-dimensional spatial space. The
hgij - (17) cosmological principle, of course, only asserts the maximal

symmetry of the usual three-dimensional space but the maxi-
As the physical degrees of freedom, one has therefore idemnal symmetry of thed-dimensional internal space may be
tified two scalar perturbations, one vector perturbation andaken as an additional, simplifying assumption. It is at this
one tensor perturbation. Of particular importance are the tw@oint, that the brane-world nature of the theory comes into
scalar perturbation®, and ¥, on which we are going to the game. Since the branes are localized in the additional
focus. The expressiorid4) and(15) for these perturbations dimensions the assumption of maximal symmetry cannot, in
suggest the gauge choidy,=E,=0 in the scalar sector general, be extended to those dimensions. In fact, as will
which is referred to akngitudinal gaugeClearly, from the  become more explicit below, the branes lead to stress-energy
above transformation properties of the scalar perturbationi the Einstein equation localized in the additional dimen-
such a choice can be made. Then, the gauge-invariant scalsions and, hence, the symmetry of the background metric
variables coincide with the “original” variables, that is, will typically not be enhanced with respect to the four-
®,=¢, and¥,= 4. This gauge choice considerably sim- dimensional case. Consequently, we split the coordinates
plifies subsequent calculations and its generalization will bénto two groups, namely the inhomogeneous coordinates
quite helpful to deal with the higher-dimensional case. They?)=(t,y>,- - -,y*"9) on which the background metric gen-

perturbed metric then takes the form erally depends in a non-trivial way and the usual three spatial
) ) o coordinates X') corresponding to the maximally symmetric
dsj=az{(1+2¢,)dt*~ (1-24,)Q;dXdX}.  (18)  space. In the following we use indicasb, ... =05, . . . 4

+d for time and the additional d|menS|ons mdmep,
Finally, we need to specify the stress-energy. For the back-. 1,2,3 for the three-dimensional space and |nd|ces
ground, by the maximal symmetry of the three-dimensional a,B,...=01,235... 4-d for the full (4+d)-

spatial space, it is dictated to be of the form dimensional space-time. Then the most general higher-

dimensional metric consistent with the maximally symmetric

M = — — —
Tafy=diagps, = Pa, = Pa, = Pa). (19 three-dimensional spatial manifold is given by
;-28 scalar perturbations to this stress-energy can be written ds?=a?{ yabdyadyb—ﬂijdxidxi}, 1)
s —(patpa)a; v where the scale facta and the metricy,,, are functions of
ST, = P4 P4 Pa)8y Vajj (20)  the coordinateg® only. Here();; is the metric of the maxi-

(patpa)asw, —5p45'j+o4"|j mally symmetric space of constant curvature given in Eq.
(2). Given this structure of the background metric, we are
with the potentiab 4 for the velocity fieldv,; and the quan-  forced to classify metric perturbations by their three-
tity o specifying the anisotropic stress. The equations of modimensional tensor properties as in the four-dimensional
tion for the background and the scalar perturbations subjeciase. We stress again that this is a direct consequence of the
to the above stress-energy are given in R3] and will not  prane-world nature of the theory that we are considering.
be repeated here. These equations form the basis for thgith these remarks in mind, the higher-dimensional gener-
study of cosmological perturbations and we now turn to deglization of the perturbed metri3) can be written in the

velop their higher-dimensional generalization. form
B. Gauge-invariant variables in brane-world theories ds?=a%{ y,c( 55+ 2¢5)dy?dyP — [ (1—2¢) Qi + 2Ey;
We would now like to proceed in close analogy with the +2F )+ h;;JdX dX — 2W,;dy?dx'}. (22)

four-dimensional case reviewed above and develop a gauge-

invariant formalism of metric perturbations in brane-world As in the four-dimensional casg; andh;; have a vanishing

theories. First, we consider the general situatiord@fddi-  divergence and, in additioty;; is traceless. As before, the

tional dimensions although later we will be more specific andhree-vectordV,; can be split as follows:

focus on the casd=1, that is, a five-dimensional universe.

The coordinates of the additional dimensions are denoted by W,i=Bgi+ S, (23

(y3,---,y**9. For the purpose of this subsection, all we

need to specify is that the branes are stretched across th‘MhereSah 0. Observe that the perturbed met(®2), de-

usual four-dimensional space-time and are located at speciffined in this way, is completely general. In fact, this can be

points (or submanifolds in the additional dimensions. We easily seen by counting degrees of freedom. As an example,

will be more precise about the brane positions later when wave can consider the simplest case of only one extra dimen-

consider the five-dimensional case. sion settingy=y® anda,b, ...=0,5. Then, the most gen-
How should metric perturbations be classified in such aeral perturbed metric contains 15 degrees of freedom, which

brane-world theory? In the previous four-dimensional casere parameterized by the seven scalar perturbatiqb@,ség,
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¢g, #, E, B,), six degrees of freedom from the vector per- We conclude that the physical degrees of freedom consist of
turbations £, S,;) and two degrees of freedom from the the d+1)(d+2)/2+1 gauge invariant scalar pgrturbations
tensor perturbatioh;; . Of course, in counting the degrees of (Pap, V), d+1 gauge invariant vector perturbatiafg and
freedom originating from vector and tensor perturbations we? 92uge invariant tensor perturbatibp. The above gauge-
have taken the constraints on these quantities into accountnvarant variables are a direct generalization of the corre-
Let us now return to the general casedédditional di- sponding four-dimensional ones. Specifically, restricting to

mensions and consider the coordinate transformations N0 additional dimensions and settingo=1, Eqs.(33)—(36)
exactly reproduce the four-dimensional expressiohd—

XX ¥ = XY & (24)  (17). However, in the casé>0 our formalism clearly has a
richer structure than the conventional four-dimensional one.

with infinitesimal parameterg®. In accordance with the
above discussion, we split these parameters &%) (  C. A generalized longitudinal gauge for scalar perturbations
=(£%,&). We adopt the useful convention that indices of In th b . il f h luti
typea (i) are lowered, raised and contracted using the metric n the su seque_nt sections we will focus on the Vo utlo_n

’ . of scalar perturbations. Vector and tensor perturbations will
Yab (£2i;). Furthermore, we take the vertical bar to denote

{he covariant derivative with respect 4a. or Q. dependin be discussed elsewhere. In order to simplify this discussion
; pectf@, or £);; dep 9 we introduce aeneralized longitudinal gaug®er the scalar
on the index type. From the transformation law

perturbations. In analogy with the four-dimensional case, this
~ auge is specified b
gaﬂ:gaﬁ_zv(agﬁ) ’ (25) gaug P y

of the metric, and taking into account thdt,=a?(¢,,

— &), we find for the transformation of the scalar perturba-getting these quantities to zero can indeed be achieved by an
tions appropriate choice of the scalar transformation paramégers
and ¢ in Egs. (26)—(29). Note that we have exactly the cor-

B,=0, E=0. (37)

— _ C
O¢apb= ~ &(aln) ~H €cvap, @8 rect number of transformation parameters to do this and that,
Sy=Ha¢ 27) consequently, the gauge ambiguity in the scalar sector is
ar complete eliminated by this choice. Then, the scalar part of
SE=—¢ (29) the metric takes the simple form
_ d?=a?{y,( 65+ 245 dy3dy?— (1—2¢)Q;;dxX dx}.
5Ba= 1=, (29 {ac o+ 263 .
where we have introduced the generalized Hubble para

rr]5urthermore, in this gauge, the scalar perturbatippsand
¢ coincide with their gauge-invariant counterparts, that is

He=l8. 30 Da=ban, V=0 39

eters

as it is the case in four dimensions.
The vector perturbations in the metf22) change according

to D. The five-dimensional case
SFi=—1,, (31 Let us restrict in this section and for the rest of the paper
to the case of a single extra dimensigry®. Then, the
0S4i= — Nija- (32 indicesa,b, ... run over the values 0,5 only. Furthermore,

in order to be more explicit, we choose the conformal gauge
Finally, the tensor perturbatidm; is invariant under the first

order gauge transformatig5). From these results we eas- (7ap) =b?diag1,- 1) (40)

ily find the following gauge-invariant quantities. , i
for the background metrig,, by performing a large gauge

Scalar variables transformation. Herd&=Db(t,y) is a new, independent scale

. factor. Then, the perturbed five-dimensional me{é@) re-
D op=Papt H (B~ Elc) 7ab+(B(a_E|(a)|b) (33 duces to

V=y—HYB,~Ep). (34) ds?=a?{b?[(1+2¢)dt?—2Wdtdy— (1—2T')dy?]
Vector variables —[Qij(1=2¢) + 2E;; + 2F ;) + hy; JdX d X
Fai=Sai—Fija- (35) —2Wg;dtdx —2Ws;dydx}, (41)
Tensor variables where we have defined
hi . (36) ¢p=do, T=—¢3, W=2¢5=—2¢5. (42
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Recall that the scale factos and b are functions of the assume that the three-branes, stretching across
coordinates andy only while the perturbations depend on (3+1)-dimensional space-time, are located at these fix
all spacetime coordinates. The scalar gauge-invariant varpoints in the orbifold direction. This setup is appropriate for

ables defined in Eq33) can now be written more explicitly a large class of five-dimensional heterotic M-theory models

as [4,38,39 that originate from 11-dimensional Fora-Witten
0 theory. It also applies to the five-dimensional models intro-
P,=0, duced in Refs[41,42.
1 Next, we should truncate the five-dimensional metric in
— bt —[(Ha— B.—E)+B.—E order to make it consistent with the orbifolding. Since the
¢ b2[( 0~ Ho)(Bo=E)+Bo metric has to be intrinsically even under tdg action its
, various components satisfy the constraints
—(Hs+Hs)(Bs—E')] (43
9u(=Y)=9,uY), (48
(I)ZE(Dg M M
1 9us(—Y)=—0,s5(Y), (49)
:F_E[(Hs_HS)(BE_E J*Bs—E Oss(—Y)=0ss5(Y)- (50
- At the same time, we have to make sure that coordinate
—(Ho+ Bo—E 44 . ' ;
(Ho*Ho)(Bo—E)] “49 transformations do not lead out of the class of metrics de-
O .=P5 fined this way. The parametéf for an infinitesimal coordi-
$o nate transformation has, therefore, to be restricted by
w 1 . . _
=5 - E[(B(’ﬁ— Bs) —2E' —2Hs(Bo—E) 1 (—y)=&(y), (52)
5 _\)— _ ¢5

which directly follows from Eq.(25). From these rules we

can deduce th&, properties of the various quantities in

metric (47) for scalar perturbations. While the background
(46) scale factors, b as well as the perturbations, ¢ andI’ are

Z, even, that is, for example(—y)=a(y), the perturbation
Here and in the following the d@prime) denotes the deriva- W is Z, odd, that isW(—y)=—W(y). Similarly, for the
tive with respect to timgthe coordinatey). Furthermore, we scalar components in the transformation paramétgrwe
have introduced a second set of “Hubble” parametefs  find that&, andé are even whiles is odd. Also note that the
=bj,/b. Let us specialize these results to the generalizederivative along the fifth dimension of an odd variable is
longitudinal gauge defined by,=Bs=E=0. Then the even and vice versa. For instant¥®,(y)=W’(-y). Based
above scalar gauge-invariant variables coincide withy, I' on theseZ, truncations we should now discuss the continuity

1 .
O=V=y- @[HO(BO—E)_H5(55_E/)]-

andW. The metric simplifies to properties of all quantities. Normally, one requires the metric

2o 2ip? ) ) to be continuous across the whole of space-time in order to
ds"=aXbT(1+2¢)dt"~2Wdydt-(1-2I")dy”] have a sensible notion of length and time. We will also adopt
_(1_2¢)Qijdxidxj}_ (47) this viewpoint, however with an additional subtlety. Since

the orbifolding identifies the upper and lower half of the
This metric will be the starting point for our treatment of circle in the fifth dimension already one of them, say the
scalar perturbations in the following sections. In addition toupper half, constitutes the whole of space-time. In fact, in-
the perturbationg) and ¢ that we are familiar with from the stead of working with theorbifold picture where one keeps
four-dimensional case it contains two new perturbatidns, the full circle as we do here, one could also useltbendary

andW, that are related to the presence of the fifth dimensionpicture where only one half of the circie line-segmentis
considered. This shows that a jump of a metric component at

an orbifold fix point does not contradict the continuity re-
quirement. Of course, such a jump is possible only for an
odd component of the metric. Concretely, we therefore re-
As we have previously mentioned, the main applicationquire that all components of the mettid7) are continuous
we have in mind for this paper is a compactification of aacross the full orbicircle except for the odd componént
five-dimensional theory on the orbifol8, /Z,. We start by  which may jump at the fix pointgbut is continuous other-
compactifying the fifth dimension on a circle restricting the wise). Corresponding assumptions have to be made for the
corresponding coordinateto the rangey e[ — R,R] with the ~ parameteré® so that coordinate transformations do not
endpoints identified. The action of th® orbifolding sym-  change these continuity properties of the metric. Clearly the
metry on the circle is taken to bg— —y. Consequently, even component&, and¢ have to be continuous then. Is the
there exist two fix points ay=y;=0 andy=y,=R. We  odd components allowed to jump at the orbifold points?

Ill. THE PERTURBED EINSTEIN EQUATION
IN THE LONGITUDINAL GAUGE
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Equation (26) shows thatl'= — ¢2, which has to be even Concretely, the delta functions on the right-hand side of this

and continuous, transforms with the derivatéife Hence, if ~ equation have to be matched by corresponding delta func-

& jumped at the fix points it would lead to a delta-function tions that appear on the left-hand side. The appearance of

Singu|arity in the metric which is C|ear|y unacceptab|e_ We,these latter delta functions, however, is controlled by the

therefore, have to require thgg is continuous everywhere structure of the equations and the Continuity assumptions

on the orbicirclé In particular, this means that vanishes —about the metric discussed above. _

at the fix points, that ig5(y,)=0. Let us see what this implies in detail. We start with the
It is clear that the above conclusions depend somewhat ofackground stress-energy. For the bulk, the most general

the fact that we are working with an orbifold. For example, if form of this tensor consistent with the three-dimensional

we had considered compactification on a circle instead, afmaximal symmetry is

components of the metric had to be continuous. Correspond-

ingly, some of the conclusions below will be slightly modi- p 0 -

fied for other compactifications, however, in a way that is Tez=| 0 —p5ij 0 |. (54)

usually rather obvious.

Given this setup the Einstein equations can be written as ' 0 —d

1 2 In particular, we note that the 05 component can be non-
Gup=Rups— EgaﬁR:Taﬁ”L 2 T%(S(V—Yn)y (53 vgmshmg. This possibility is, in fact, already realized for the
n=1 simple case of a bulk scalar field that depends andy. As
far as the symmetry of the background metric is concerned,
the background brane stress-energy tensors should have the
same structure as E@54). However, as we will see in a

where we have set the five-dimensional Newton constant t
one, for simplicity. The delta functions in this equation are

covariant with respect to the fifth dimension, that is, theyyoment there are two more requirements that follow from
include a factor of Iy —gss Furthermore,T, is the bulk  yhe equations of motion, namely that the 55 and the 05 com-

stress-energy tensor induced by fields that propagate in &,hents vanish. As a result, the background stress-energy on
full five-dimensional space time. The brane stress-energye pranes has the form

tensorsT{}, on the other hand, originate from fields that are

confined to the branes at the orbifold fix points. p™ 0 0

In order to proceed further, we need to specify these (e 0 —opMs 0
stress-energy tensors. Two requirements should be taken into T = P i ' (55
account when doing this. First, one should use the fact that 0 0 0

the background has a maximally symmetric three-

dimensional space. Secondly, the brane stress-energy tenstuat us now proceed to the perturbed stress-energy tensors.
should be restricted in a way that is consistent with theirSince we are focusing on scalar perturbations we write the
nature of representing fields on the branes. This latter remost general perturbation of the background bulk teSér
guirement can be most easily implemented by using the corthat can be expressed in terms of scalars on the maximally
straints that follow from the Einstein equati@bd) itself. = symmetric subspace. This leads to

Sp —(p+pb v —or
ST = (p+p)o’ —opd+ally  —ul (56)
Sr+2r(¢p+T)—(p+q)W —b~?uj; —-4q

wherev andu are two potentials for “velocity” fields andr, satisfying 0'"“=0, determines the anisotropic stress. The
perturbed brane stress-energy tensors should have the same structure. However, as we will see below, the equations of motior
impose further constraints implying vanishing 55 aridcbmponents as well as vanishing anisotropic stress. Therefore, the
brane stress-energy perturbations are given by

sp —(pM+ p(n))bfzvl(]_n) —srm
ST(n)aB: (p(M -+ pM)y(MIi - 5p(n)5ij 0 ) (57)
srM— pMyy 0 0

We would like to present the equations of motion based on the n{é#fjand on the above stress-energy tensors that follow
from the Einstein equatio(b3). However, in writing the metri¢47) two gauge choices were involved and it is rafpriori,
clear that these choices can be made while, at the same time, keeping the brgmesoast hypersurfaces as we have

'From this conclusion we see that we have glossed over a subtlety when introducing the generalized longitudinal gauge. Clearly, for
continuousés the quantityBs can only be gauged to zeroHf; — B is continuous, as can be seen from EgS) and(29). We will, therefore,

in addition require the continuity dts— Bs. 123515-6
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conveniently assumed in writing EE53). As the first choice, we decided to work with the two-dimensional mejgicin

conformal gauge. Fortunately, this can be achieved while keeping the branes at hypersurfacast[13]. In addition, we

have chosen the generalized longitudinal gal&ye for the scalar perturbations. A brane, described by, before the gauge
transformation that leads to longitudinal gauge, is described=by — £°(y) =y, after this gauge transformation, wherés

the transformeq coordinate. However, sinc®(y,) =0, as discussed above, this equation is solvegi-y,, to linear order.

We conclude that, in the new coordinates that lead to the generalized longitudinal gauge, the brane location is unchanged to
the relevant linear order. In summary, therefore, using the Einstein equ&8pwith the branes described lyy=y,, does not

restrict the generality of our results given the gauge choices that we have made.

The background equations following from E&3) have been given in Ref13] for the case of stress-energy induced by
scalar fields and in Ref15] for the case of ideal fluids. For completeness and in order to incorporate some of the generali-
zations that we have madsuch as the inclusion of a 05 component of the bulk stress-enemgyvill nevertheless present
these equations here. We find

[ .2 ST ” I 2
ac ab a” a'b _
2120 — _ 2| _ 4212 (n) _
a?b2G%, 32a2+ab Lt ap TkDP|=a% p+n§:‘,1p S(y—v,) (58)
(4 ab a’? a'b’
225 — Y M 2| — _ a2RK2
abGs—3a ab 2az ab +kb a‘b-q (59
a’ aa’ ab’ a'b
21200 ol _ 4 T T g2p2
a‘b°G®;=3 a+2a2+ab+ab acber (60)

S a b bZ a” b” bl2 )
a‘h Gle 3—+————3———+F+kb

i _ 4212
a b p2 "a b dj=—a’b

2
p+n§=)l p‘”)g(y—yn)}éﬂ-

(61)

Here we have defined the delta-functiénvhich incorporates a factordl. Based on these equations we can now justify the
vanishing of the 55 and 05 components in the brane stress-e(&5gysuch components, if non-vanishing, would appear on
the right-hand sides of Eq$59) and (60) multiplied with delta-functions. We should, therefore, have corresponding delta-
function terms on the left-hand sides of these equations. Since the scale faatwi® are assumed to be continuous, delta
functions can only appear from second derivatives of these quantities with resget¢idwever, there are no such terms in
Egs.(59) and(60). Hence, we conclude that the 55 and 05 components i35 must vanish.

For the perturbations, we find, to linear order,

b)26G%=3 2alb’ za” a0 _ag r-3 é,+2a,é+é J W-6 2‘;3‘2+£ab
(ab) o ab a ady adt a a2 ady a2 ab|?
gt 2.7 3éa b 7 2kb? |+ b2 (2y+T) 1)+ 3y
PPa oy Caa pa KRRty
2 —_—
=a’b?| Sp+ 2, (5p<“>+rp<“)>5(y—yn>] (62)
n=1
b)125G5= — 6 2a/2+a,b, r-3 _/+2a/- A Y 22-ib 2{i 2o _ag
(ab)“6Gg= 22 ab a2  a dt ab "a ady adt
T P AL 3é 0, b2 +2Kb? |+ b?(2 =34
2y Doy Sast bt Y+ (29— )" i—3¢
=—a’bh%5q (63
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" o7

b)2sao=3| & 220 2a'2w 32 2éb, za/b 8,279
(@ab)"0Cs=3 3 ~25p 22 WY % P P 2 taw|?
A b “wi, -
dtay bt bay T 2WiT¥g
2 E—
=a2b2[ - 5r—nz1 5r(”)5(y—Yn)] (64)
b)26G = > I+bl+1 MH—3a —%b r+2
@b)"oGi=| 5 7+ ¥25 a ¢bat "/’“
2
=a2{—(p+p)v—2 (p‘”)+p‘”))v(”’6(y—yn)} (65)
n=1 .
i
b)25G% = 3al+,r+b,+07 3'a+b+lawz' =-a® 66
(ab) ~|7a b b ay¢ 2a b 24t 4 Ii_ A (66)
b)25G]= 6” AP LI 3‘;’1& bo bo & r
(ab)"oG;= b “p2 “ady ~adt bdat by g2
. 2b’b 2lb’ 65' 3a’ 0 a0 bo b o &
b2 ‘b "a “adt “ady baoy b it dtay
2b2 2b Gé 3a d Sé 9 ba b o a9 ad ¢
p2 b "a Tady “adt bat by 42 ady cad Car Car v
+2b2(¢//—¢+I‘)kk] 8i—02(y—p+D)l,
2
=a2b2| —5p5',-+a|'“—n21 (5p(”)+rp(”))5'1-5(y—yn)J. (67)

Given those results, we can now return to the question obnly involves the bulk anisotropic stress as a source term. If
why the perturbations of the brane stress-energy tensors muste bulk anisotropic stress vanishes as well, as, for example,
have the specific fornt57). We recall that all quantities in s the case for a perfect fluid in the bulk, one concludes that
our metric(47) are even except the off-diagonal perturbation
W which is odd under th&, symmetry. From our continuity
assumptions, delta function terms in the perturbed Einstein

tensor can, therefore, arise from first derivativesivith  The quantitys— ¢+ I is the analog of the four-dimensional
respect toy and second derivatives with respectyt@f all uantity ¢, — ¢, that also vanishes in the absence of aniso-

other quantities. Inspection of the above equations shows_ .: ; ; i
oo opic stress. This correspondence will be made more explicit
that such terms are absent in theahd 55 components of the in gec v P P

perturbed Einstein tensor. Consequently, the corresponding
components in the perturbed brane stress-energy should van-
ish. Furthermore, all terms i6G'; that could potentially lead
to delta-functions are proportional tﬁ This implies that
the anisotropic stress on the brane, which would contribute A systematic study of density fluctuation in five dimen-
to the traceless part of E¢67), must vanish. As a result, the Sions requires solving the full set of five-dimensional equa-

—¢+T'=0. (69

IV. DENSITY FLUCTUATIONS ON THE BRANE

traceless part of Eq67)

o1 _ _
(= ¢+ D)= 3 (= o+ )0 = a0l (69)

tions of motion given in the previous section. However, for
specific questions it might be useful to have some informa-
tion about the metric restricted to the brane. For example, it
is this restricted metric that is felt by matter which is con-
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fined to the brane. In this section, we are going to derive
such equations on the brane starting from the general equa- ¢’'=—
tions of motion above.

For aZ, even field the meaning of its value on the brane 1
is quite clear. AZ, odd field may jump across the brane so tiab( spM—Tp) (74
its value may have a sign ambiguity. To simplify the nota-
tion, we define the value of an odd field on the brane as the

a b o
a b ot

1
thab( SpM—TpM)

one that is approached from within the interwed[0,R]. W::E(p(“)+ p(M)p (M (75)
This is precisely the boundary value of the field as viewed in b

the boundary picture and, at the same time represents one

half of the jump at the fix point. We also recall that the scale W= sr(™ (76)
factorsa, b and the perturbationg, ¢ andI" are even and p™ '

hence continuous while the perturbatidhis odd and may

jump across the fix points. Interestingly, the last equation implies that the component

Let us start with the background equations of motionsT(M5; of the brane stress-energy perturbation vanishes, as
[13,15. We have already mentioned that the delta-functioncan be seen by comparison with E&7). The component
sources in Eqs(58) and (61) have to be matched by the ST(M%=—sr(", however, is non-zero and is, from Egs.
terms containing secorg derivatives of the scale factoes  (75), (76) determined by
andb. This leads to

a
Sr(n = ;Bp<n)(p(n)+ p™M)p (™., (77)

a’ 1 b’ 1
—=%—abp™, —=+_ab(p™+pM). (70
a 6 b 2 We have, therefore, found an important additional constraint
on the perturbed brane energy-momentum teriS@y. The
These conditions, as well as the following ones, are valid afuantity or ™ is, in fact, uniquely fixed by the other compo-
the brane positiong=y, where the uppeflower) sign holds  nents. For vacuum energy wit™ = —p™ on the branes
for the branen=1 (n=2). While the two other non- s js zero, but it is generally non-vanishing otherwise.
VaniShing equations of motion do not contain delta funCtionS;rhiS iS, perhapS, somewhat Surprising since one could have
they can still be restricted to the brane. From the 05 compoexpected that a purely four-dimensional stress-energy tensor
nent(60) we find on the brangwith all 5 components vanishinghould be
allowed. Here we see that this is generally not the case.
. a Next, we deal with the odd components 05 andobthe
pM= —35(P(")+ p(™)F2abr (7)) perturbed equations of motion given in E484) and (66).
Restriction to the branes leads us, after some algebra, to

which represents to an energy conservation equation on the . alopm
brane. Note, however, that, in addition to intrinsic brane 5(”)=—(1+w(”))(v(”)“i—3¢)—3—< —w(”))é(”)
guantities, this equation also involves the off-diagonal bulk al\ spm
stress-energy componentThis reflects the simple fact that _ (M., (M) 22
the branes are not isolated systems but can exchange energy 2(L+wiva(ptq)
with the bulk. Finally, we should consider the 55 component S\ or
(59). Restricted to the branes it results in an equation of F2ab{T+2¢—6M+ — ) (79
motion for the values of the scale factaasand b on the Tlp
brane given b
g y and

a ab a’b?[ 1 (), a wm o plym,

T Kb?=— —— | = M oM 3pM) + } Ui | % awmy o

2 b 3 |12P (P p)+q . 5 S (1-3w) T b g2

5p(ﬁ)|i 5

An an.alogous procedure can now be applied to %he perturbed - 5p™ 14w — i
equations. Observe that only the componed@&;, &G;,
8G2 and 6G? contain explicit delta-function terms. They a 1 u
should be matched by terms containing fiysierivatives of F20 = = —ro™| | (79
W and secong derivatives of all other quantities. This leads prl1+w li
to

wherew™=p™M/p(M and 5M= 5p(M/p(" denotes the en-
: 1 ergy contrast on the branes. These equations represent the
a i -
W' = —W==ab(sp™M—TpM) (73) conservation of energy and momentum for scalar perturba
a 6 tions, including possible energy-momentum flow from the
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bulk onto the brane or from the brane into the bulk. Theydimensional Lorentz invariance implies that the vacuum met-
should be compared with the corresponding equations in foutic should have the structure

dimensions, Eq(30) in [51], taking into account that the

variable # of [51] is related to the peculiar velocity via ¢ ds’=A%(y)dx“dx"y,,—B(y)dy?. (82)

=yl . Equation(78) differs from the four-di ional re-
sulljt ‘tl)y ﬂ?: a};cs)? (twg t(lerrenr: [they dees?:lsirbeITheenselﬁgfg;eﬂuxThe functionsA andB have to be such that this metric solves

from the bulk onto the brane. In E{79) we have two new the five-dimensional theory in the vacuum configuration. For

terms with respect to the four-dimensional equation. The;pur five-dimensional theor$s3), the simplest possibility is

describe momentum flux between bulk and brane. The cou® have no stress energy in the vacuum which results in a flat

pling between bulk gravity and brane matter expressed Vi%ﬂacuumr:netrch,Bzcon?t. In f!ve-qhmoclensmngl hdetsrotlc M
the above equations is one of the main results of this pape heory the vacuum configuration Is determined by certain

It shows that, when considering scalar metric perturbationg’_o'[em'aIS in the l_aulk and on the branes_that mvo_lve the
laton[4,39]. In this caseA andB are non-trivial functions

on the branes, the branes cannot simply be viewed as d the deviation f he icis d

isolated system but have to be considered together with thg' ¥ &:jnb t r? gwau?nh rom t ﬁ dat vacuum mlgtnc IS etgr-

bulk environment. Practically, this implies that frequently Mined Dy the size of the so called strong coupling expansion
parameter. The vacua proposed in Rp4.,42 are based on

one cannot simply copy four-dimensional formulas when i . ! . ;
dealing with physics on a brane that is embedded in a highef Yacuum configuration with specific cosmqloglcal constants
the bulk and on the branes and result in an exponential

dimensional space. Finally, we restrict the 55 component o . . .
the equations of motion, E63), to the brane. We find the unction for A in the_ coordinate system W.heB: cqnst. .
following evolution equation for the perturbations projected_EaCh one of these different vacuum states is a_ssoc_ated with
onto the branes: its specific low-energy theory. For the sake of simplicity and
concreteness, we will here focus on the first possibility,
namely the flat vacuum. This choice represents, at the same
P+ 6K (g+ @) time, a good approximation for five-dimensional heterotic M
theory in the case of a small strong-coupling expansion pa-

'35,1
b "a

) i an a8 (D
b%(2yp— )" —39—3_¢+3

1 5q+2q¢ rameter. The four-dime_nsiona_l ef_fective theory describes the
+a2p2p™M2 ~(1+3wM)p+ ———— dynamics of the collective excitations of the vacuum state. In
6 p(M2 our case, these excitation are given by a four-dimensional
" metric g4, and the moduluss describing the size of the
+E 1+§w(”) PO op o) fifth dimension. The vacuum metric with these collective
6 2 45p(n) modes put in has the structure
ar ds’=e"fg,, dx dx"—e?’dy?, (82
igm(l+w(n))v(n) =0. (80) . .
P whereg,,,, andg are functions ok*. As usual, the effective
four-dimensional description is valid as long as these func-
V. MATCHING TO THE FOUR-DIMENSIONAL tions are varying slowly enough. This is the case if all four-
EFFECTIVE THEORY dimensional momenta are much smaller than the mass of the

first Kaluza-Klein excitation around the vacuum state. In our
In the previous subsection, we have derived a set of equaase this mass is given By #/2R. Let us, therefore, con-
tions for the metric on the branes, essentially by restrictingsider a five-dimensional evolution that is approaching the
the five-dimensional equations of motion. These results mayacuum staté82). Even though the five-dimensional metric
for example, be useful to analyze the evolution of matter thafs then close to the vacuum metric it will still have small
is confined to the brane. However, the most important task ikaluza-Klein excitations that can be described in linear per-
to extract predictions for structure in the late universe fromyyrpation theory. A useful way to extract the zero modes
our formalism of metric perturbations in brane-world theo-from such a five-dimensional metric with small contributions
ries. In this section, we will explain the basic steps in thisfrom Kaluza-Klein modes is to perform an average over the
direction. fifth dimension. Doing this systematically leads to the fol-
First, we should introduce the four-dimensional EffeCtivebwing four-dimensional effective theory associated to the

theory, describing physics at low energy, that is associated tgrane-world theory53) and the vacuum stat@2):
our five-dimensional brane-world theof§3). It is this four-

dimensional theory that described the evolution of the uni- 1 )
verse “today” and that is used for the interpretation of ob-  Raur™ 594uRa= 5| 9uBIB~ 594,087 | + Tap,

servational results. Theoretical predictions, originating from (83)
our brane-world theory, should therefore be formulated in
terms of this effective theory. The five- and the four- V§B=J4. (84)

dimensional effective theory are related by a vacuum state

that constitutes a specific solution of the five-dimensionaFour- and five-dimensional quantities are related by
theory and should respect the symmetries that we expect to

find in the four-dimensional theory. Specifically, four- e’=—(gs9) (85

123515-10
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94w:eﬁ<9uv> (86) It i; interesting 'Fo explicitly compute the background CL_Jrrent
J, in the equation of motior{84) for the modulusy. It is
1 2 given by
Tapr=(Tun) + SR nzl T (87 L
34:§[P4_3p4+267X<Q>]- (94
2 -38 1 v
Ja=3e€ (Tse) + §95f Tapw- (88)  With the above expression fgr, andp,, this implies that

the modulusy has a runaway potential leading to a growing

Here, () denotes the average over the fifth dimension. agSize of the fifth dimension. Therefore, the theory, as stands,

stated, this four-dimensional theory is a good description a¥"i” nqt stay in the range of vaIidity' of the four-dimensiqpal
long as all momenta are small comparedefo®/2R, the effective theory. As is well-known, it needs further stabiliza-

mass of the first Kaluza-Klein mode. The Kaluza-Klein tion of the modulug3 by means of a potential. In the context

modes have decoupled from the above equations at line&f Sting or M theory one expects such a potential to be

order. However, due to the presence of the branes, thdenerated by non-perturbative effects. ,

Kaluza-Klein modes cannot strictly be set to zero but have to The correspondence for the scalar perturbations reads

be integrated ouf52,53. This leads to higher order correc- r,=(I) (95)

tions to the above four-dimensional equations that are sup-*

pressed by powers of the four-dimensional Planck scale an$4:<¢_1~/2> (96)

that we have neglected. To be consistent with this approxi-

mation, the averagé-) that projects out the Kaluza-Klein Wa=(y+T12) (97)

excitations should be considered meaningful only at the lin-

earized level in Kaluza-Klein excitations. 2

We would now like to apply the above general correspons,, =e~X(5p+T'p)+ > (8p™M+ 20 ,pM)

dence to our formalism for metric fluctuations. To do this, 2ReX n=1

we need to assume a five-dimensional background solution (98)

that, for late time, approaches the vacuum configuration. For- 5

mulated in a four-dimensional language, this is the case if the B 1

four-dimensional Hubble parametét,=a,/a, and 3 are opg=e X(op+Ip)+ X Z
4=aglay 2REX n=1

small compared te@™ #/2R. Furthermore, it is helpful to as- (99)

sume that the averaggy,,) approaches one in this limit.

This can always be achieved by a redefinition of time. Weo,=e™X(o) (100

would like to explicitly work out the correspondence for the

scalar sector in longitudinal gauge that we have focused on e*3Xaﬁ

in this paper. The generalization to include vector and tensov 4=

perturbations is straightforward. Concretely, we apply the

(8pM+2T 4p™)

2

1
— (M 1 p(n)y, ()
T, (PP 2 (4P 1

correspondencéd5)—(88) to the five-dimensional quantities (10D
(47), (54), (55), (56) and (57) matching onto the four- |, particular, we conclude that

dimensional quantities specified in E¢§8), (19) and (20).

Furthermore, we need to decompose the four-dimensional Ya— pa={(h— p+T). (102

modulusB as
Hence, the four- and five-dimensional quantities that mea-
B=x—T4 (89 sure the presence of anisotropic stress are in direct corre-
spondence to one another as they should.
where y= x(t) is the time-dependent background ahig
=T",(t,x') is the perturbation. The matching of background V]. CONCLUSION

guantities leads to _ . . :
In this paper we have laid down a gauge-invariant formal-

e?¥=(a’b?) (90)  ism to describe metric fluctuations in brane-world theories.
This formalism is a straightforward generalization of the
a2=eX(a?) (91) well known formalism in four dimensions. It categorizes the

perturbations according to their tensor properties with re-
spect to the usual three-dimensional maximally symmetric

2
X ") space rather than a higher-dimensional space as one might
pa=e Xp)+ 2REX nzl P (92) have expected. This is a direct consequence of the brane-
world nature of the theory which generally leads to cosmo-
2 logical backgrounds that are inhomogeneous in the addi-
ps=e X(p) > pM, (93 tional dimensions. We have introduced a generalized
2REX n=1 longitudinal gauge in order to further study scalar perturba-
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tions. In the case of a five-dimensional model on the orbifoldbetween the bulk and the brane. Finally, we have shown how
S'/z,, on which we have focused, we have identified fourthe five-dimensional formalism for metric fluctuations can be
scalar metric perturbationg, , I' and W. This has to be matched to the known four-dimensional one in the limit
contrasted to the four-dimensional case where one only hashere the brane-world theory has an effective four-
two such perturbations. We have presented the evolutiodimensional description. This allows one to extract predic-
equations for these scalar perturbations which, mainly due ttions for structure in the late universe originating from brane-
the dependence of the background on the additional dimerworld theories. We hope to address this problem more
sion, are significantly more complicated than the correspondexplicitly in a future publication.

ing four-dimensional equations. It is those additional terms, Note addedAs this manuscript was prepared for submis-
related to the non-linearity of the background in the addi-sion, Refs.[54], [55] and [56] appeared which have some
tional coordinates, that encode possible new and interestingverlap with the present paper. Cosmological perturbations
information about the formation and evolution of perturba-are also discussed [57].

tions. Furthermore, given the gauge choices and assumptions
about the continuity of the metric that we have made, we
have determined the resulting most general form of the stress
energy on the brane. In particular, we have found that the C.v.d.B. is grateful to E. Eyras, J. Martin, C. Martins, H.
perturbed brane stress-energy has to have vanishing anis@eall and T. Shiromizu, and in particular D. Langlois, R.
tropic stress and that its 05 component is non-zero. We havglaartens and D. Wands for useful discussions. C.v.d.B. is
applied our formalism to calculate the matching conditionssupported by Nato/DAAD(at Brown and Deutsche Fors-
(Israel conditions for the five-dimensional metric restricted chungsgemeinschaftDFG, at Cambridge M.D. is sup-

to the branes. Among other results we have derived the equaorted by theFundacim Rama Areces The research was
tions describing energy and momentum conservation fosupported in partat Brown by the U.S. Department of En-
metric perturbations on the brane. As is expected on physicargy under Contract DE-FG02-91ER40688, TASK A.A.L. is
grounds, they illustrate that the brane cannot be viewed as aupported by the European Community under contract No.
isolated object but is subject to energy and momentum flo-MRXCT 960090.
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