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Simplicial Cohomology of Orbifolds

I. Moerdijk and D.A. Pronk∗

Abstract

For any orbifold M, we explicitly construct a simplicial complex S(M)
from a given triangulation of the ‘coarse’ underlying space together with
the local isotropy groups of M. We prove that, for any local system on M,
this complex S(M) has the same cohomology as M. The use of S(M) in
explicit calculations is illustrated in the example of the ‘teardrop’ orbifold.

Introduction.

Orbifolds or V-manifolds were first introduced by Satake [9], and arise naturally
in many ways. For example, the orbit space of any proper action by a (discrete)
group on a manifold has the structure of an orbifold; this applies in particular
to moduli spaces. Furthermore, the orbit space of any almost free action by a
compact Lie group has the structure of an orbifold, as does the leaf space of
any foliation with compact leaves and finite holonomy. Examples of orbifolds
are discussed in [3, 9, 11] and many others.

For an orbifoldM, one can define in a natural way a cohomology theory with
coefficients in any local system onM. This cohomology is not an invariant of the
underlying (‘coarse’) space, but of the finer orbifold structure. If the orbifold is
given as the orbit space X/G of a group action as above, this cohomology is the
equivariant sheaf cohomology of the group action. It agrees with the (ordinary)
cohomology of the Borel construction EG×G X .

This cohomology is the most natural one for orbifolds. It fits in well with
the notion of fundamental group described in [11], by the familiar ‘Hurewicz
formula’ H1(M, A) = Hom(π1(M), A) (where A is any abelian group).

The purpose of this paper is to give a simplicial description of these coho-
mology groups, suitable for calculations. More precisely, using triangulations of
singular spaces [4], we will associate to any orbifold M, presented by an orb-
ifold atlas as in [9], a simplicial set S(M). The construction of S(M) uses the
simplices in a triangulation of the coarse underlying space M of M, as well as
all the local isotropy groups. The construction will have the following property.

Theorem For any local system of coefficients A on the orbifold M, there is
a canonically associated local system A on the simplicial set S(M), for which
there is a natural isomorphism H∗(M,A) ∼= H∗(S(M), A).

∗This research is part of a project funded by the Netherlands Science Organization (NWO).
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After reviewing some preliminary definitions, we will present our construction
in Section 2 of this paper. The proof of the theorem will be based on the fact
that the simplicial set S(M) associated to an orbifoldM is also closely related
to the representation of M by a groupoid G(M) suggested in [5]. In fact, our
proof shows that S(M) has the same homotopy type as the classifying space of
G(M).

Before giving the proof in Section 4, we will present an example of cal-
culations based on the simplicial construction for the ‘teardrop’ orbifold. We
believe that much more work should be done in this direction. In fact, the ex-
plicit description of the simplicial set in terms of an atlas for the orbifold, and
the resulting description of the cohomology groups by generators and relations,
makes it suitable for computer assisted calculations.

1 Preliminaries.

1.1 Basic definitions. In this section we briefly review the basic definitions
concerning orbifolds, or V-manifolds in the terminology of Satake (see [9, 10,
11]). Let M be a paracompact Hausdorff space. An orbifold chart on M is given
by a connected open subset Ũ ⊆ R

n for some integer n ≥ 0, a finite group G
of C∞-automorphisms of Ũ , and a map ϕ: Ũ → M , such that ϕ is G-invariant
(ϕ ◦ g = ϕ for all g ∈ G) and induces a homeomorphism of Ũ/G onto the open
subset U = ϕ(Ũ ) ⊆ M . An embedding λ: (Ũ , G, ϕ) →֒ (Ṽ , H, ψ) between two
such charts is a smooth embedding ϕ: Ũ →֒ Ṽ with ψ ◦ λ = ϕ. An orbifold
atlas on M is a family U = {(Ũ , G, ϕ)} of such charts, which cover M and are
locally compatible in the following sense: given any two charts (Ũ , G, ϕ) for
U = ϕ(Ũ ) ⊆ M and (Ṽ , H, ψ) for V ⊆ M , and a point x ∈ U ∩ V , there exists
an open neighborhood W ⊆ U ∩ V of x and a chart (W̃ ,K, χ) for W such that
there are embeddings (W̃ ,K, χ) →֒ (Ũ , G, ϕ) and (W̃ ,K, χ) →֒ (Ṽ , H, ψ). Two
such atlases are said to be equivalent if they have a common refinement. An
orbifold (of dimension n) is such a space M with an equivalence class of atlases
U . We will generally write M = (M,U) for the orbifoldM represented by the
space M and a chosen atlas U .

1.1.1 Remarks.

(i) For two embeddings λ, µ: (Ũ , G, ϕ) ⇉ (Ṽ , H, ψ) between charts, there ex-
ists a unique h ∈ H such that µ = h ◦ λ. In particular, since each g ∈ G
can be viewed as an embedding of (Ũ , G, ϕ) into itself, there exists for the two
embeddings λ and λ ◦ g a unique h ∈ H with λ ◦ g = h ◦ λ. This h will be de-
noted by λ(g). In this way, every embedding λ also induces an injective group
homomorphism, (again denoted) λ:G→ H , with defining equation

λ(g · x̃) = λ(g)λ(x̃) (x̃ ∈ Ũ).

Furthermore, if h ∈ H is such that λ(Ũ) ∩ h · λ(Ũ) 6= ∅, then h belongs to the
image of this group homomorphism λ:G → H , and hence λ(Ũ) = h · λ(Ũ ).
(This is proved in [9] for the codimension 2 case, and in [7] for the general case.)
(ii) By the differentiable slice theorem for smooth group actions [6], any orb-

ifold of dimension n has an atlas consisting of ‘linear’ charts, i.e. charts of the
form (Ũ , G) where G is a finite group of linear transformations and Ũ is an open
ball in R

n.

2



(iii) If (Ũ , G, ϕ) and (Ṽ , H, ψ) are two charts for the same orbifold structure
on M , and Ũ is simply connected, then there exists an embedding (Ũ , G, ϕ) →֒
(Ṽ , H, ψ) whenever U ⊆ V , i.e. when ϕ(Ũ ) ⊆ ψ(Ṽ ) (see [10], footnote 2). In
this paper we will take all charts to be simply connected.
(iv) If (Ũ , G, ϕ) is a chart, and V is a connected (and simply connected) open

subset of U ⊆M , then V inherits a chart structure from U in the following way:
let Ṽ be a connected component of ϕ−1(V ) ⊆ Ũ , and letH = {g ∈ G| g·Ṽ = Ṽ }.
Then (Ṽ , H, ϕ|Ṽ ) is a chart, which embeds into (Ũ , G, ϕ), and hence defines the
same orbifold structure on points in V .

1.1.2 Examples. We list some well-known examples, see e.g. [5, 7, 11].
(i) If a discrete group Γ acts smoothly and properly on a manifold N , the

orbit space M = N/Γ has a natural orbifold structure. Examples are weighted
projective space and moduli spaces.
(ii) If a compact Lie group L acts smoothly on a manifold N and the isotropy

group Lx at each point x ∈ N is finite and acts faithfully on a slice Sx through
x, then the orbit space N/L has a natural orbifold structure. Moreover any
orbifold can be represented this way.
(iii) If N is a manifold equipped with a foliation F of codimension n, with the

property that each leaf is compact and the holonomy group at each point is finite,
then the space of leaves N/F has the natural structure of an n-dimensional
orbifold. Again, any orbifold can be represented in this way.

1.2 Triangulation of orbifolds. LetM = (M,U) be an orbifold of dimen-
sion n. For each point x ∈M , one can choose a linear chart (Ũ , G, ϕ) around x,
with G a finite subgroup of the linear group Gl(n,R). Let x̃ ∈ Ũ be a point with
ϕ(x̃) = x, and Gx = {g ∈ G| g · x̃ = x̃} the isotropy subgroup at x̃. Up to con-
jugation, Gx is a well defined subgroup of Gl(n,R). The space M thus carries
a well-known natural stratification, whose strata are the connected components
of the sets

SH = {x ∈M | (Gx) = (H)},

where H is any finite subgroup of Gl(n,R) and (H) is its conjugacy class. It is
also well-known ([12, 4]) that there exists a triangulation T of M subordinate
to this stratification (i.e. the closures of the strata lie on subcomplexes of the
triangulation T ). By replacing T by a stellar subdivision, one can assume that
the cover of closed simplices in T refines the atlas U . For a simplex in such a
triangulation, the isotropy groups of all interior points of σ are the same, and are
subgroups of the isotropy groups of the boundary points. By taking a further
subdivision of T , we may in fact assume that there is one face σ′ ⊂ σ such that
the isotropy is constant on σ − σ′, and possibly larger on σ′. In particular, any
simplex σ will then have a vertex v ∈ σ with maximal isotropy, i.e. Gx ⊆ Gv

for all x ∈ σ. We call such a triangulation adapted to U . For reference we state:

Proposition 1.2.1 For any orbifold M and any orbifold atlas U there exists
an adapted triangulation T for M = (M,U).

Let σ be a (closed) n-simplex in such a triangulation, which is contained in a
chart U . (In this paper we will take all simplices to be closed.) The next lemma
describes how to lift σ to a simplex σ̃ in Ũ by choosing a connected component

of the inverse image ϕ−1(
◦
σ) of the interior.
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Lemma 1.2.2 For every connected component S of the inverse image ϕ−1(
◦
σ)

of the interior of σ, the map ϕ restricts to a homeomorphism on the closures
ϕ|S :S

∼
−→ σ = σ; in particular the triangulation of σ lifts to a triangulation of

S.

Proof. As is well-known (see e.g. [12, Lemma 1]), the map ϕ: Ũ → Ũ/G = U
restricts to a covering projection on each stratum. In particular, since the

isotropy is constant on the interior
◦
σ, we find that ϕ−1(

◦
σ) =

∐

Si is a disjoint

sum of open simplices Si with ϕ:Si
∼
−→

◦
σ. Let S be one of these Si. By

continuity, ϕ maps S to σ. This restriction is also surjective, because σ ⊆ U and
the action of G on Ũ is continuous. Since T is subordinate to the stratification,
the isotropy groups of the boundary points of σ contain the isotropy group of
the interior points, and therefore ϕ has to be one-one on S. Since ϕ is also open
(as quotient map), it follows that ϕ|S :S

∼
−→ σ.

By taking further stellar subdivisions of T , we may assume that for every
simplex σ in T , the closure of the open star

St(σ) = ∪{
◦
τ |σ ⊆ τ}

is contained in a chart of the atlas U . We will call a triangulation of M with
these properties a good triangulation forM = (M,U).

Proposition 1.2.3 For any orbifold M and any orbifold atlas U there exists a
good triangulation T for M = (M,U).

Consider such a good triangulation. Let x be a point of M , let σ(x) be
the smallest simplex containing x, and consider the open star neighborhood
Σx = St(σ(x)). Let (Ũ , G, ϕ) be a chart in the atlas U for which St(σ(x)) ⊂
U = ϕ(Ũ). For later purposes, it is useful to describe how St(σ(x)) lifts to a
triangulation in Ũ .

Lemma 1.2.4 The closed star St(σ(x)) lifts to a triangulation R of

ϕ−1(St(σ(x))) ⊆ Ũ

with the property that every connected component of ϕ−1(St(σ(x))) contains
precisely one lifting x̃ of x, and these components are open star neighborhoods
Σx̃ = St(σ(x̃)) for the triangulation R:

ϕ−1(Σx) =
∐

x̃∈ϕ−1(x)

Σx̃.

Proof. According to Lemma 1.2.2, for every n-simplex τ ∈ St(σ(x)) and every

connected component of ϕ−1(
◦
τ ) there is precisely one lifting τ̃ of τ containing

that connected component. Since we could lift the whole triangulation of τ to
τ̃ , we get together with τ̃ also all its boundary simplices. Let R be the set
of all those liftings (for all n-simplices in St(σ(x)) and their boundaries). It
is clear that they cover ϕ−1(St(σ(x))). Remark that for every simplex ρ ∈ R,
ϕ|ρ becomes a homeomorphism onto a simplex in St(σ(x)). Let ρ1, ρ2 ∈ R be

4



two simplices with ρ1 ∩ ρ2 6= ∅. Then ϕ(ρ1 ∩ ρ2) ⊆ ϕ(ρ1) ∩ ϕ(ρ2). This last
intersection is a simplex in T , which we will denote by τ . Let

τ̃i := ϕ−1(ϕ(ρ1) ∩ ϕ(ρ2)) ∩ ρi

be the two liftings of τ in the ρi. (Note that ρ1 ∩ ρ2 = τ̃1 ∩ τ̃2.) There exists an
element g ∈ G such that g · τ̃1 = τ̃2. This element g is in the isotropy group of
ϕ(ρ1∩ρ2), but not in the isotropy group of the rest of τ . Since T is subordinate
to the stratification induced by the isotropy groups, it follows that ϕ(ρ1 ∩ ρ2) is
a subsimplex of τ , and therefore a subsimplex of ϕ(ρ1). We know already that
ϕ|ρ1: ρ1

∼
−→ ϕ(ρ1), so ρ1 ∩ ρ2 = ϕ−1(ϕ(ρ1 ∩ ρ2)) ∩ ρ1 is a simplex in R.

Now consider two liftings x̃ and g · x̃ of x in Ũ , and their open star neigh-
borhoods Σx̃ and Σg·x̃. Suppose Σx̃ ∩ Σg·x̃ 6= ∅, and let y be a point in this

intersection. Thus y ∈
◦
τ where x̃ ∈ τ and g · x̃ ∈ τ . But ϕ: Ũ → U is one-one

on τ , as shown in Lemma 1.2.2. So x̃ = g · x̃ and Σx̃ = Σg·x̃. This proves the
lemma.

Corollary 1.2.5 Let M = (M,U) be any orbifold with atlas U . There exists
an atlas V for M such that
(i) V refines U ;
(ii) For every chart (Ṽ , H, ψ) in V, both Ṽ and V are contractible;
(iii) The intersection of finitely many charts in V is either empty or again a

chart in V.

Proof. For a good triangulation T of (M,U) as above, consider a simplex σ.
The open star V = St(σ) is contained in U for some chart (Ũ , G, ϕ) in U . Let
x be a point in the interior of σ, so that V = Σx. Choose a lifting x̃ of x in Ũ .
Then, by Lemma 1.2.4 and Remark 1.1.1(iv), the map ϕ: Σx̃ → Σx is part of a
chart for M. The collection of all these charts for open stars V = St(σ) is the
required atlas V .

Following the terminology of [2, page 42], we call a cover V of M by charts
as in Proposition 1.2.5 a good cover of the orbifoldM.

1.3 Sheaf cohomology. Let M = (M,U) be an orbifold. Recall ([7]) that
a sheaf onM is given by the following data:
(i) For each chart (Ũ , G, ϕ) in U an (ordinary) sheaf of abelian groups AŨ on

Ũ ;
(ii) For each embedding

λ: (Ũ , G, ϕ)→ (Ṽ , H, ψ)

an isomorphism
A(λ):AŨ

∼
−→ λ∗(AṼ ).

These isomorphisms are required to be functorial in λ; i.e. if

µ: (Ṽ , H, ψ)→ (W̃ ,K, χ)
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is another embedding, then the following square commutes:

AŨ

A(λ)
//

A(µλ)

��

λ∗(AṼ )

λ∗A(µ)

��
(µλ)∗(AW̃ ) λ∗µ∗(AW̃ )

where ‘=’ denotes the canonical isomorphism;
(iii) It follows that each AŨ is a G-equivariant sheaf on Ũ , see [7].

With the obvious notion of morphisms between sheaves, these sheaves form
an abelian category Ab(M) with enough injectives.

Referring to the examples in Section 1.1, we remark that if the orbifold is
defined from the action of a compact Lie group L on a manifold N , then this
category is (equivalent to) the category of L-equivariant sheaves on N . And
if the orbifold is defined from a suitable foliation F on a manifold N , it is
(equivalent to) the category of holonomy-invariant sheaves on N .

For a sheaf A as above, a global section s of A is by definition a system
of sections sŨ ∈ Γ(Ũ ,AŨ ), one for each chart Ũ , and compatible in the sense

that for each embedding λ: Ũ → Ṽ , the identity A(λ)(sŨ ) = λ∗(sṼ ) holds. The
group of all these global sections is denoted Γ(M,A). This defines a functor
Γ:Ab(M) → Ab, into the category of abelian groups, which is right exact and
preserves injectives. For an abelian sheaf A, one defines

Hn(M,A) = (RnΓ)(A).

This definition of the sheaf cohomology ofM is just a special case of the coho-
mology of a topos [1], and hence it satisfies all the standard functoriality and
invariance properties. By way of example, we mention some of these properties:

1.3.1 Standard properties.

(i) Any (strong, [7]) map between orbifolds f :N → M induces an exact
functor f∗:Ab(M)→ Ab(N ), and an induced homomorphism f∗:Hn(M,A)→
Hn(N , f∗A).
(ii) There is also an (adjoint) functor f∗:Ab(N )→ Ab(M) and a correspond-

ing (‘Leray’) spectral sequence

Ep,q
2 = Hp(M, Rqf∗(B))⇒ Hp+q(N ,B)

see [1, Exposé V, Section 5].
(iii) There are adjoint functors

π∗:Ab(M) ⇆ Ab(M) :π∗,

where Ab(M) is the category of abelian sheaves on the underlying space M .
There is a corresponding Leray spectral sequence

Ep,q
2 = Hp(M,Rqπ∗(A))⇒ Hp+q(M,A),

where for a point x ∈ M , the stalk Rqπ∗(A)x is Hq(Gx̃,Ax̃). (Here Ax̃ is the
stalk of AŨ at any lifting x̃ ∈ Ũ of x for some chart (Ũ , G, ϕ), and the stabilizer
Gx̃ acts on Ax̃ since AŨ is G-equivariant.
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(iv) (Mayer-Vietoris) If M = U ∪ V is a union of two open sets, the orbifold
structure M restricts to orbifold structures M|U and M|V , and there is a
Mayer-Vietoris sequence

→ Hn(M|U,A|U)⊕Hn(M|V,A|V )→ Hn(M|U∩V,A|U∩V )→ Hn+1(M,A)→

(v) Define a presheaf Hq(A) on the underlying space M , by Hq(A)(U) =
Hq(M|U,A|U). For any open cover V of M , there is a spectral sequence

Ep,q
2 = Ȟp(V ,Hq(A))⇒ Hp+q(M,A)

with as Ep,q
2 -term the Čech cohomology of this cover V with coefficients in this

presheaf Hp(A); see [1, Exposé V, Section 3].
(vi) We single out a special case of this last property (v). A sheaf onM is said

to be locally constant if each of the (ordinary) sheaves AŨ is locally constant.
Now suppose V is a ‘good’ atlas forM, as in Corollary 1.2.5, and let A be any
locally constant sheaf. For any chart (Ṽ , H, ψ) in V , the restriction AṼ is a

constant sheaf on a contractible space Ṽ , and Hq(M|V,A|V ) is the cohomology
of the groupG = GV with coefficients in the GV -module AV = Γ(Ṽ ,AṼ ). Thus,
for a locally constant sheaf A and a good cover V , the spectral sequence takes
the form

Ȟp(V , V 7→ Hq(GV , AV ))⇒ Hp+q(M,A).

2 Simplicial complexes for orbifolds.

Our purpose in this section is to describe explicitly for any orbifoldM = (M,U)
a simplicial set S, with the property that any locally constant sheaf A on M
induces a local system of coefficients A on S for which there is a natural iso-
morphism

H∗(M,A) ∼= H∗(S,A),

see Theorem 2.1.1 below.

2.1 The simplicial set. Let us fix an n-dimensional orbifold M with un-
derlying space M and (chosen) atlas U ; let us also fix a triangulation T of M,
and write S0 for the set of n-simplices. We assume that the triangulation is
adapted to U , as described in Section 1.2. Recall that this means that T has
the following properties:

(i) For each n-simplex σ ∈ S0 there is a chart (Ũσ, Gσ, ϕσ), such that σ ⊆ Uσ;
(ii) For each simplex τ there is a face τ ′ ⊆ τ such that the isotropy is constant

on τ − τ ′; in particular every simplex has a vertex v(τ) with maximal isotropy.

We assume that a choice of charts Uσ and vertices v(τ) as in (i) and (ii) above
has been made. (Note that we do not require the stronger property of being
‘good’ for the triangulation, because in some examples that would force us to
construct a simplicial complex which is bigger than necessary, and hence less
suitable for calculations.)

We now construct the simplicial set S = S(T ) with the same cohomology
as M. The description of S will use various choices, besides the charts Uσ
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and the vertices v(τ) already mentioned. First of all, choose for each simplex
σ ∈ S0 a lifting σ̃ as in Lemma 1.2.2, mapped homeomorphically to σ ⊆ Uσ by
ϕσ: Ũσ → Uσ. Next, fix for each vertex v of T a neighborhood Uv of v and a
chart (Ũv, Gv, ϕv) over Uv, so small that Uv ⊆ Uσ whenever v ∈ σ ∈ S0. Also
fix a lifting ṽ ∈ ϕ−1

v (v), and an embedding λσ,v: Ũv →֒ Ũσ with λσ,v(ṽ) ∈ σ̃.
We will not require these Uv to belong to the original atlas U . In fact, they

can be chosen so small that Gv is also the isotropy group of v in the chart
(Ũv, Gv, ϕv), so that the notation is unambiguous; in this case the lifting ṽ is
unique.

Let σ0, σ1 ∈ S0 be two simplices of maximal dimension n, and assume σ0 ∩
σ1 6= ∅. Below, in Section 2.2, we will construct for any two simplices τ and ρ
with

τ ⊆ ρ ⊆ σ0 ∩ σ1 (1)

an injective map
µτ,ρ,σ0,σ1 :Gv(τ) → Gv(ρ). (2)

We will write µ or µτ,ρ if the (other) subscripts are clear from the context. This
map µ in (2) will not be a homomorphism in general; it will map Gv(τ) to a coset
of a conjugate of the subgroup Gv(τ) = {g ∈ Gv(ρ)| g · v(τ) = v(τ)} in Gv(ρ).
However the construction will have the following multiplicative property: if

τ ⊆ ρ ⊆ σ0 ∩ σ1 ∩ σ2

then, for h1, h2 ∈ Gv(τ),

µσ0,σ1(h1) · µσ1,σ2(h2) = µσ0,σ2(h1h2). (3)

Moreover, if τ = ρ and σ0 = σ1 then µ:Gv(τ) → Gv(τ) is the identity.
With these choices made, the simplicial set S = S(T ) can be described. As

already defined above,

S0 = {σ|σ is an n-simplex of T }.

Furthermore, for k ≥ 1,

Sk =
∑

σ0,···,σk∈S0

σ0∩···∩σk 6=∅

Gk
v(σ0∩···∩σk).

An element of Sk can also be denoted by

σ0
g1
← σ1 ← · · ·

gk← σk, (4)

to suggest the analogy with nerves. So σ0, · · · , σk in (4) are n-simplices, and
g1, · · · , gk ∈ Gv(τ) where v(τ) is the chosen vertex with maximal isotropy on
τ = σ0 ∩ · · · ∩ σk. The degeneracy maps si:Sk−1 → Sk (i = 0, · · · , k − 1) are
defined in the usual way,

si(σ0
g1
← · · ·

gk−1
← σk−1) = (σ0

g1
← · · ·σi

1
← σi · · ·

gk−1
← σk−1).

The face maps dj :Sk → Sk−1 (j = 0, · · · , k) are defined by means of the maps
µ in (2), as

dj(σ0
g1
←− · · ·

gk←− σk) =















σ1
µ(g2)
←− σ2 ←− · · ·

µ(gk)
←− σk, (j = 0)

σ0
µ(g1)
←− · · ·σj−1

µ(gjgj+1)
←− σj+1 · · · ←− σk, (0 < j < k)

σ0
µ(g1)
←− · · ·

µ(gk−1)
←− σk−1, (j = k),
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where the µ’s carry the following subscripts. Write τ = σ0 ∩ · · · ∩ σk and
ρ = σ0 ∩ · · · σ̂j ∩ · · · ∩ σk. Then

µ(gj) = µτ,ρ,σj−1,σj
(gj)

and

µ(gjgj+1) = µτ,ρ,σj−1,σj+1 (gjgj+1)

= µτ,ρ,σj−1,σj
(gj)µτ,ρ,σj ,σj+1(gj+1),

the latter by (3). The simplicial identities now follow easily.
Before we define these maps µ, we state the theorem. Let A be a locally

constant sheaf on M. This sheaf induces in a natural way a local system of
coefficients A on the simplicial set S•, with, for any σ ∈ S0,

Aσ = Γ(σ̃,AŨσ
).

To describe the twisting, observe that, since A is locally constant, AŨσ
is con-

stant on σ̃. So for any vertex w̃ ∈ σ̃ there is a canonical isomorphism from the
stalk at w̃,

AŨσ ,w̃
∼ // Aσ.

Modulo these isomorphisms, the twisting by an element (σ0
g
← σ1) ∈ S1 is now

defined as the dashed map in the diagram of maps between stalks

AŨσ1 ,ṽ1
//______________ AŨσ0 ,ṽ0

λ∗1(AŨσ1
)ṽ AŨ,v

oo g // AŨ,v
// λ∗0(AŨσ0

)ṽ

Here v = v(σ0∩σ1), so g ∈ Gv. Furthermore, λi = λσi,v: Ũv → Ũσi
is the chosen

embedding (i = 0, 1), with the property that ṽi = λ(ṽ) ∈ σ̃i. Finally, g in the
diagram denotes the left action by g ∈ Gṽ (cf. condition (iii) in the description
of sheaves in Section 1.3).

Theorem 2.1.1 For any triangulated orbifold M with associated simplicial set
S as above, and for any locally constant sheaf A on M, there is a natural
isomorphism

H •(M,A) ∼= H •(S,A).

We will now first define the maps µ involved in the definition of S. The
proof of the theorem will be given in Section 4.3.

2.2 Construction of µ. Fix σ0, σ1 ∈ S and τ ⊆ ρ ⊆ σ0∩σ1 as in (1). Write
v = v(τ) and w = v(ρ) for the corresponding vertices with maximal isotropy on
τ and ρ, respectively. We will construct

µ:Gv → Gw . (5)
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Let θ be the 1-simplex joining v and w in ρ. Then the isotropy group of any
interior point of θ agrees with that of v, while that of w is possibly larger, w
being maximal on θ. Recall that we have already chosen

λi = λσi,v: Ũv → Ũσi
, λi(ṽ) ∈ σ̃i,

χi = λσi,w: Ũw → Ũσi
, χi(w̃) ∈ σ̃i.

First consider the special case that there is a chart (W̃ ,H, ψ) for a neighborhood
W ⊇ θ, for which Uv, Uw ⊆ W and W ⊆ Uσ0 ∩ Uσ1 . (Such a chart exists, for
example, when one starts with a ‘good’ atlas U as in Section 1.2, in which case
one can take W = Uσ0 ∩ Uσ1 .) Choose an embedding

γ0: W̃ → Ũσ0

with γ0(W̃ ) ∩ σ̃0 6= ∅. Let θ̃ = γ−1
0 (σ̃0 ∩ ϕ−1

σ0
(θ)) ⊆ W̃ be a lifting of θ, and

choose the other embedding
γ1: W̃ → Ũσ1

such that γ1(θ̃) ⊆ σ̃1. Also choose embeddings

Ũv
α
−→ W̃

β
←− Ũw

with α(ṽ), β(w̃) ∈ θ̃.
Now observe that, since γ0α and λ0 both map ṽ into σ̃0, one has γ0α(ṽ) =

λ0(ṽ), and hence there is a g0 ∈ Gv such that γ0α = λ0g0 (cf. Section 1.1,
Remark (i)). Similarly, we find g1 ∈ Gv and h0, h1 ∈ Gw, such that

γiα = λigi, γiβ = χihi, (i = 0, 1).

We claim that for any k ∈ Gv there is a (unique) m ∈ Gw such that

α(g−1
0 kg1) = β(h−1

0 mh1). (6)

To see this, recall first that H denotes the group of the chart W̃ , and consider

ℓ = α(g−1
0 kg1).

Note that ℓ fixes α(ṽ) ∈ θ̃. Since the isotropy along α(θ̃) does not decrease from
α(ṽ), it follows that ℓ fixes θ̃, and hence also the point β(w̃). Thus ℓ = β(ℓ′) for
some ℓ′ ∈ Gw. Now let

m = h0ℓ
′h−1

1 .

Then α(g−1
0 kg1) = β(h−1

0 mh1), as required for (6).
We now define µ in (5) by

µ(k) = m. (7)

It can be shown that this definition is independent of the choices made above
(of W̃ , α, β).
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This defines µ in the special case, where the 1-simplex θ is contained in a chart
W with Uσ0 ∩ Uσ1 ⊇ W ⊇ Uv, Uw. In the general case, choose a subdivision of
θ into smaller 1-simplices, with vertices

v = x0, x1, · · · , xn = w.

Choose charts
Ũv = Ũx0 , Ũx1 , · · · , Ũxn

= Ũw,

liftings x̃i ∈ Ũxi
, and embeddings

λxj ,i: Ũxj
→ Ũσi

(i = 0, 1; j = 0, · · · , n),

with λxj ,i(x̃j) ∈ σ̃i, and coinciding with the embeddings already chosen for j =
0, n. Furthermore, choose this subdivision of θ sufficiently fine, and these charts
Ũxi

sufficiently small, so that each 1-simplex between xi and xi+1 is contained
in a chart Wi ⊇ Uxi

, Uxi+1, as in Figure 1. Now define µk:Gxk
→ Gxk+1

exactly

W W W0 1 2

x x x x
U

U U

x

x x

0 1 2 3

0

Ux1 2 3

Figure 1: A subdivision of θ with n = 3.

as the maps µ:Gv → Gw defined in (7) above, for k = 0, · · · , n− 1, and let

µ:Gv = Gx0 → Gxn
= Gw

be the composition
µ = µn−1 ◦ · · · ◦ µ1 ◦ µ0.

It can be shown that this definition of µ is again independent of the various
choices. In particular, for a finer subdivision of θ and a refinement of the system
of open sets Wj and Uxi

, one obtains the same map µ. We omit the details.

3 Example: the teardrop orbifold.

In this section we will apply the construction of the simplicial set S from the
previous sections to the teardrop orbifold (as described in [11]), and calculate its
cohomology groups. As before A denotes a locally constant sheaf of coefficients
on the orbifold considered, and A denotes the induced local system of coefficients
on S.

3.1 The triangulation. The quotient space of the teardrop orbifold is the
2-sphere with one cone point of order n. A chart around the cone point consists
of an open disk Ũ in R

2 with structure group Cn (the finite cyclic group of order
n), which acts on Ũ by rotations. We will denote this orbifold by Tear-n. Figure
2 shows a picture of the quotient space and a triangulation of this orbifold. The
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Quotient space: Triangulation:
σ(

)

f )

)

) )

c)

σ(

σ(

σ(

σ(

σ(

b a

e
d

v

w

t

u

Figure 2: The quotient space of the teardrop orbifold with a triangulation.

simplices σ(a), σ(b), σ(d), and σ(e) are on the front and the simplices σ(c) and
σ(f) are on the back of the teardrop. Moreover, t = σ(abde), u = σ(bcef),
v = σ(acdf) and w = σ(abc), where σ(i0 · · · in) = σ(i0) ∩ · · · ∩ σ(in).

The atlas we use for this orbifold consists of eight charts: an open disk L̃
with a trivial structure group to cover the lower half of the quotient space, and
an open disk Ũ with structure group Cn (acting by rotations) to cover the upper
half, and six charts to cover the equator in order to satisfy the compatibility
condition for atlases. Note that the triangulation is adapted to this atlas. Figure
3 shows the liftings (in the charts) of the 1- and 2-simplices in the triangulation,
as needed for the construction of the simplicial representation for this orbifold,
for the case that n = 3. The simplices σ(a), σ(b), and σ(c) are subsets of U ;
their liftings, denoted by σ̃(−), are shown in the left hand chart Ũ . Similarly
the liftings of σ(d), σ(e), and σ(f) are shown in the right-hand chart L̃. So

b
ac

e

f

σ( )
σ( )

σ( )
dσ( )

)σ(
σ( )

σ(ac)

~

~
~

~

~

~

~

U L
~ ~

Figure 3: Chosen liftings for the simplices of Figure 2, when n = 3.

Uσ(a) = Uσ(b) = Uσ(c) = Ũ , whereas Uσ(d) = Uσ(e) = Uσ(f) = L̃.

3.2 The µ-maps. Using these liftings we define the maps

µσ(ijk),σ(ij),σ(i),σ(j) :Gv(σ(ijk)) → Gv(σ(ij))

for every pair σ(i) and σ(j) for which the intersection is a 1-simplex σ(ij) and
σ(ijk) is a vertex with the same isotropy group as the interior of σ(ij). Note
that Gv(σ(ijk)) (where σ(i), σ(j) and σ(k) are three different simplices) is trivial
except for Gw = Gv(σ(abc)) = Cn. So the only possibly non-trivial µ-maps
are those with codomain Gw = Gv(σ(ab)) = Gv(σ(bc)) = Gv(σ(ac)). In order to
construct

µt,σ(ab),σ(a),σ(b):Gt → Gv(σ(ab)) = Gw,

note that θ, as used in Section 2.2, is σ(a) ∩ σ(b). We choose W = U and
θ̃ = σ̃(a)∩ σ̃(b), so both γ0 and γ1, as used in Section 2.2, are the identity map.
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Moreover, we choose
λσ(a),w = λσ(b),w (8)

(notation as in Section 2.1), whereas λσ(a),t and λσ(b),t have to be the same,

because the liftings of t in σ̃(a) and σ̃(b) are the same point in Ũ . And it is
obvious that

µt,σ(ab),σ(a),σ(b)(1Gt
) = 1Gv(σ(ab))

.

Also (by the multiplicative property (3) of µ),

µt,σ(ab),σ(b),σ(a)(1Gt
) = 1Gv(σ(ab))

.

For similar reasons, when we choose

λσ(b),w = λσ(c),w (9)

we find that both maps
µ:Gu → Gv(σ(bc))

are described by
µ(1Gu

) = 1Gv(σ(bc))
.

The only non-trivial µ-maps are µv,σ(ac),σ(a),σ(c), and µv,σ(ac),σ(c),σ(a) from Gv

into Gv(σ(ac)) = Gw . With the notation of Section 2, θ = σ(ac) and we choose

W = Uv = Uw = U with θ̃ = σ̃(ac) ⊂ σ̃(a) as in Figure 3. Moreover, we take

λσ(a),w = λσ(a),v = γ1 = id.

Then (8) and (9) above induce that λσ(c),w = id. It follows from the choice of
the liftings in Figure 3, that

γ0 = λσ(c),v = ρ,

where ρ is rotation over 2(n − 1)π/n, which generates Gw. We conclude that
the group elements g0, g1, and h1 are all the identity element, and h0 = ρ, so:

µv,σ(ac),σ(c),σ(a)(1) = ρ.

Similarly one can show that:

µv,σ(ac),σ(a),σ(c)(1) = ρn−1.

(This also follows from the fact that they have to be each other’s inverses by
the multiplicative property of µ as stated in (3).)

3.3 The simplicial complex. With these µ-maps the simplicial complex
can be described as follows.

S0 = {σ(a), σ(b), σ(c), σ(d), σ(e), σ(f)},

Sn = {(σ(i0 · · · in), g1, · · · , gn); g1, · · · , gn ∈ Gσ(i0···in) and σ(i0 · · · in) 6= ∅}.

The degeneracy maps si are trivial as described in Section 2.1, and the face
maps are straightforward compositions on all combinations which do not contain
neighboring a and c in their σ-part, since the µ-maps are trivial in these cases.
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For the ac-combinations, we have to use the non-trivial part of the µ-maps
described above. For example, deleting the sigma’s from the notation, we can
describe the face operators on S2 by:

d0(f
1
←− c

1
←− a) = (c

ρ
←− a),

d1(f
1
←− c

1
←− a) = (f

1
←− a),

d2(f
1
←− c

1
←− a) = (f

1
←− c).

So for α ∈ Aσ(a), we find that (f
1
←− c) · ((c

ρ
←− a) ·α) = (f

1
←− a) · α. We use

this in the following calculation,

(a
ρ
← a) · α = (a

1
← c) · ((c

ρ
← a) · α)

= (a
1
← b) · ((b

1
← c) · ((c

ρ
← a) · α))

= (a
1
← d) · ((d

1
← b) · ((b

1
← f) · ((f

1
← c) · ((c

ρ
← a) · α))))

= (a
1
← f) · ((f

1
← d) · ((d

1
← e) · ((e

1
← b) · ((b

1
← f) ·

·((f
1
← a) · α)))))

= (a
1
← f) · ((f

1
← e) · ((e

1
← f) · ((f

1
← a) · α)))

= (a
1
← f) · ((f

1
← a) · α)

= α

(This calculation illustrates the effect of the fact that a loop around the singular
point v(σ(abc)) is contractible via the lower half of the teardrop.)

3.4 The cohomology groups We conclude from the above calculation that
Cn acts trivially on A, and it is not difficult to derive that:

H0(Tear-n;A) = A and H1(Tear-n;A) = 0.

To find the second cohomology group, we have to do some cocycle-coboundary
calculations in the local system of coefficients A on the simplicial set S. A coho-
mology class in H2 is represented by a cocycle α ∈ Z2(S,A), which we write as
an A-valued map α:S2 → A. Since the second cohomology group of the plane is
zero, we can choose the representant α in such a way that α(σ(ijk), g1, g2) = 0
when {i, j, k} ∩ {d, e, f} 6= ∅ and moreover,
α(σ(aca), ρn−1, ρ) = 0, α(σ(cac), ρ, ρn−1) = 0, α(σ(aba), 1, 1) = 0,

α(σ(bab), 1, 1) = 0, α(σ(bcb), 1, 1) = 0, α(σ(cbc), 1, 1) = 0.
It follows then from the cocycle-relations, that α is determined by the following
data














α(σ(caa), 1, ρi) α(σ(bba), ρi, 1) α(σ(cbb), 1, ρi)
α(σ(aab), ρi, 1) α(σ(ccb), ρi, 1)

α(σ(acc), 1, ρi) α(σ(baa), 1, ρi) α(σ(bbc), ρi, 1)
α(σ(aaa), ρi, ρj) α(σ(abc), 1, 1)

for i, j ∈ {1, 2, · · · , n−1}.

(10)
By choosing an appropriate coboundary, one can find an equivalent cocycle
α′, such that of all the values in (10) above, only α′(σ(abc), 1, 1) need not
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be zero. Moreover, two cocycles α1 and α2 of this form are equivalent iff
α1(σ(abc), 1, 1) = α2(σ(abc), 1, 1). We conclude:

H2(Tear-n;A) = A.

The higher degree cohomology groups of Tear-n can be calculated using the
Mayer-Vietoris sequence for the upper and lower half-sphere, denoted by Un

and L, for m > 2:

// Hm−1(S1;A) // Hm(Tear-n;A) // Hm(Un;A)⊕Hm(L;A) // Hm(S1;A) //

// 0 // Hm(Tear-n;A) // Hm(Cn;A)⊕ 0 // 0 //

We conclude:

Theorem 3.4.1 The teardrop orbifold Tear-n has the following cohomology
groups:

H0(Tear-n;A) = A;

H1(Tear-n;A) = 0;

H2(Tear-n;A) = A;

Hm(Tear-n;A) = Hm(Cn;A), for m > 2.

4 Topological groupoids for orbifolds.

Again, we fix an orbifoldM with underlying space M and atlas U . Recall from
Section 1.3 the category Ab(M) of all abelian sheaves onM. In [7, Theorem 4.1]
we proved that this category can be represented as the category of equivariant
sheaves in various ways. Here we single out one particular such representation.

4.1 Etale groupoids. Let G be a topological groupoid. As in loc. cit.,
we write G0 for the space of objects and G1 for the space of arrows, while the
structure maps are denoted:

G1 ×G0 G1
m // G1

s //

t
// G0

u // G1
i // G1,

for composition, source, target, units and inverse, respectively. As usual, we
write 1x for u(x), g−1 for i(g), g◦h or gh form(g, h), and g:x→ y if s(g) = x and
t(g) = y. The groupoidG is said to be étale if s and t are local homeomorphisms,
and proper if (s, t):G1 → G0 ×G0 is a proper map.

A G-sheaf is a sheaf A on the space G0, equipped with a continuous (say,
right) action by G1. The category of all G-sheaves is denoted Ab(G). We recall
from [7]:

Theorem 4.1.1 For any orbifold M there exists a proper and étale topological
groupoid G, for which there is a natural equivalence Ab(M) ∼= Ab(G).
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One construction of G from M, suggested in [5] and different from that in
[7], is the following. Let G0 be the space of pairs (x̃, Ũ) with x̃ ∈ Ũ ∈ U ,
topologized as the disjoint sum of the sets Ũ in U . An arrow g: (x̃, Ũ)→ (ỹ, Ṽ )
is an equivalence class of triples

g = [λ, z̃, µ]: Ũ
λ
←− W̃

µ
−→ Ṽ ,

where z̃ ∈ W̃ and λ(z̃) = x̃, µ(z̃) = ỹ. Here W̃ is another chart forM, and λ, µ
are embeddings. The equivalence relation is generated by

[λ, z̃, µ] = [λν, z̃′, µν],

for λ, z̃, µ above and ν: W̃ ′ → W̃ another embedding, with ν(z̃′) = z̃. There is
a natural topology on the set G1 of all these equivalence classes, for which the
source and target maps s, t:G1 → G0 are each étale and together give a proper
map G1 → G0×G0. (See [8] for details.) Note that one can take any chart, not
necessarily from the chosen atlas U , to represent an arrow, as it will always be
equivalent to one represented by a chart in U . (In fact, given a chart W̃ around
ϕ(x̃) which is embeddable into Ũ and Ṽ , every arrow g: (x̃, Ũ)→ (ỹ, Ṽ ) can be
represented by a triple involving W̃ .)

For G constructed in this way, it is not difficult to see that there is an
equivalence of categories Ab(M) ≃ Ab(G).

If G is any topological groupoid, its nerve Nerve(G) is the simplicial space

whose n-simplices are strings
→
g= (x0

g1
← · · ·

gn
← xn), equipped with the natural

(fibered product) topology. One writes Gn for the space Nerve(G)n of these
n-simplices. If A is any G-sheaf, it induces a sheaf A(n) on Gn, with stalk

A
(n)
→

g
= Axn

.

Proposition 4.1.2 Let G be any étale topological groupoid representing the orb-
ifoldM as in Theorem 4.1.1. For each abelian sheaf A onM, there is a natural
spectral sequence

Ep,q
2 = HpHq(G•, A

(•))⇒ Hp+q(M,A).

(Here A corresponds by Theorem 4.1.1 to a G-sheaf A, with induced sheaf A(p)

on Gp, so that for fixed q, Hq(G•, A
(•)) is a cosimplicial group.)

Proof. Using the equivalence of Theorem 4.1.1, this spectral sequence is sim-
ply a special case of the standard one,

HpHq(G•, A
•)⇒ Hp+q(G,A),

for étale topological groupoids (see [1, V, (7.4.0.3)]). For later use, we recall that
the latter spectral sequence is constructed from the double complex Γ(Gp, I

q(p)),
where A→ I0 → I1 → · · · is any injective resolution in Ab(G). This induces a
resolution A(p) → I0(p) → I1(p) → I2(p) → · · · of sheaves on Gp which is again
injective.
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4.2 Proper groupoids. The groupoid G for M in Theorem 4.1.1 is not
unique. (However, it is unique up to weak, or ‘Morita’ equivalence [7].) For the
proof of Theorem 2.1.1, we will use the following construction. Let H0 →֒ G0

be a closed subspace. Then H0 is the space of objects of a topological groupoid
H , with H1 constructed as the fibered product

H1
� � //

��

G1

��
H0 ×H0

� � // G0 ×G0.

(11)

In other words, H is the full subgroupoid of G on the space of objects H0 ⊆ G0.
(This topological groupoid H is in general not étale.)

Lemma 4.2.1 Assume the closed subspace H0 ⊆ G0 has the property that the
map:

s ◦ π2:H0 ×G0 G1 → G0, (x ∈ H0, (g: y → x) ∈ G1) 7→ y

is a proper surjection. Then the inclusion of groupoids H ⊆ G induces an
equivalence of categories Ab(H) ≃ Ab(G).

Proof. Standard. (See [8] for details.)

Corollary 4.2.2 LetM be an orbifold, let G be an étale groupoid representing
M as in Theorem 4.1.1, and let H ⊆ G be any subgroupoid as constructed above.
Then there exists a natural spectral sequence

Ep,q
2 = HpHq(H•, A

(•)|H•)⇒ Hp+q(M,A).

(Here Hp ⊆ Gp = Nerve(G)p and A(p)|Hp is the restricted sheaf.)

Proof. This is proved in the same way as in Proposition 4.1.2, using that
the injective sheaves I(q)p on Gp restrict to soft sheaves on the closed subspace
Hp ⊆ Gp.

4.3 Proof of Theorem 2.1.1. Our purpose in this section is to construct
a specific subgroupoid H ⊂ G forM from a given triangulation. First, observe
the following method for constructing a groupoid H ⊆ G as in Lemma 4.2.1.
Let F = {Fi}i∈I be a locally finite cover of M by compact sets, which refines
the cover of charts, say Fi ⊂ Ui. Suppose there are chosen liftings F̃i ⊂ Ũi,
where the quotient map ϕi: Ũi → Ui of the chart maps F̃i homeomorphically to
Fi. Let H0 = {(x, F̃i)|x ∈ F̃i, i ∈ I} be the disjoint sum of these sets F̃i. Then
H0 is a closed subset of G0. The induced groupoid H , with H1 constructed as
the fibered product in (11), is denoted H(F).

Lemma 4.3.1 For any locally finite cover F as above, the map sπ2:H0 ×G0

G1 → G0 is a proper surjection, and hence the inclusion H(F) ⊆ G induces an
equivalence Ab(H) ≃ Ab(G) ≃ Ab(M).
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Proof. The second statement follows from the first by Lemma 4.2.1. It follows
immediately from the fact that the Fi cover M that sπ2:H0 ×G0 G1 → G0 is a
surjection. To check that sπ2 is also proper, it suffices to prove that each point
in G0 has a neighborhood Ṽ over which sπ2 is a proper map sπ−1

2 (Ṽ ) → Ṽ .
Choose (x̃, Ũj) ∈ G0 and let Ṽ ⊆ Ũj be a neighborhood of x̃ such that V =

ϕj(Ṽ ) ⊆ M meets only finitely many Fi, say Fi1 , · · · , Fin
. Then sπ−1

2 (Ṽ ) =
∑n

k=1 F̃ik
×G0G1×G0 Ṽ , and it suffices to show that each F̃ik

×G0G1×G0 Ṽ → Ṽ
is proper. Now (s, t):G1 → G0 ×G0 is proper (Theorem 4.1.1), hence so is its
pullback (π1, π3): F̃ik

×G0 G1 ×G0 Ṽ → Fik
× Ṽ . Since F̃ik

is compact, the map
F̃ik
×G0 G1 ×G0 Ṽ → Ṽ is also proper, as required.

Now fix a triangulation T adapted to U , so the conditions (i) and (ii) from
the beginning of Section 2.1 are satisfied. Consider the locally finite cover of M
by simplices σ ∈ T of maximal dimension n. Fix for each σ a chart Uσ ⊇ σ and
a lifting σ̃ ⊆ Ũσ as before. Let H(T ) ⊆ G be the full subgroupoid constructed
from this cover. Thus H(T )0 is the disjoint sum of the n-simplices in T , and
H(T )1 is constructed as the pullback. By Lemma 4.3.1, the inclusion H(T ) ⊆ G
induces an equivalence of categories of sheaves.

We will show (cf. Proposition 4.3.3 below), that the space H(T )1 is also a
disjoint sum of simplices. To be able to do that, we need a canonical way of
representing the arrows. We will use a refining atlas and a subdivision of the
triangulation T to achieve this. Let V < U be a good atlas refining U , and let T ′

be a subdivision of T which is good for V (cf. Section 1.2). Thus, each simplex
τ ∈ T ′ is contained in a contractible chart Vτ in V . Furthermore, since V is a
good atlas, these charts Vτ can be chosen in such a way, that Vτ ′ ⊆ Vτ whenever
τ ′ ⊆ τ . Moreover, we may assume Vτ ⊆ Uσ whenever the simplex τ ∈ T ′ is
contained in the n-simplex σ ∈ T . For each τ ∈ T ′, choose one n-simplex σ ∈ T
containing τ and an embedding λσ,τ : Ṽτ → Ũσ with the lifting of τ in σ̃ in its

image. Then let τ̃ = λ−1
σ,τ (τ ⊆ σ̃), be the lifting of τ in Ṽτ . Next, for every other

n-simplex σ ∈ T containing τ , choose an embedding

λσ,τ : Ṽτ → Ũσ with λσ,τ (τ̃ ) ⊆ σ̃. (12)

We need some explicit notation for these charts, and denote them by

(Ũσ, Gσ, ϕσ: Ũσ → Uσ) and (Ṽτ , Hτ , ψτ : Ṽτ → Vτ ).

Furthermore, we denote by H◦

τ
⊆ Hτ the isotropy group of the interior of τ (or

of τ̃).
Note that the space of arrows H(T )1 is the disjoint sum of spaces

H(T )(σ0, σ1) = {g ∈ G1| s(g) ∈ σ̃1 ⊆ Ũσ1 and t(g) ∈ σ̃0 ⊆ Ũσ0}

of arrows from σ̃1 to σ̃0. Consider one of these spaces.
By assumption on the triangulation T , there is a family of faces of ρ = σ0∩σ1,

ρ = ρk ⊇ ρk−1 ⊇ · · · ⊇ ρ0, (13)

such that the isotropy is constant on ρi − ρi−1. We may assume that ρ0 = v(ρ)
is the chosen vertex with maximal isotropy. By working with the liftings σ̃i (i =
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0, 1) and the associated liftings ρ̃i = ρ̃i
k ⊇ ρ̃i

k−1 ⊇ · · · ⊇ ρ̃i
0 contained in σ̃i, the

isotropy subgroups form an increasing family of subgroups of the groups Gσi
,

Gi
k ⊆ G

i
k−1 ⊆ · · · ⊆ G

i
0 ⊆ Gσi

, (14)

where Gi
0 = Gv(ρi) is the isotropy group of the lifted vertex ρ̃i

0 of σ̃i. The
filtration (13) yields a similar filtration of the space of arrows H(T )(σ0, σ1). To
see this, consider any arrow g: x̃1 → x̃0 in H(T )(σ0, σ1). Then in the underlying
space M we have x0 = x1 ∈ ρ, so x0 = x1 is contained in one of the simplices τ
of T ′. It follows that every arrow can be represented in the form

Ũσ0

λ0←− Ṽτ
λ1−→ Ũσ1 g = [λ0 ◦ ℓ, z̃, λ1] (15)

where λi = λσi,τ (i = 0, 1) are the chosen embeddings in (12), z̃ ∈ τ̃ ⊆ Ṽτ is
the unique point with λi(z̃) = x̃i, and l ∈ Hz̃ ⊆ Hτ fixes the interior of τ̃ , i.e.
l ∈ H◦

τ
. Let us say that an arrow g represented as in (15) has rank ≥ k if l ∈ H◦

τ
where τ ⊆ ρk.

For an arrow of rank at least k, the following lemma gives a criterion as to
whether the rank is strictly larger than k.

Lemma 4.3.2 Consider the open sets

Ñi = λ−1
i (ρ̃i

k+1 − ρ̃
i
k) (i = 0, 1)

where ρ̃i
k+1, ρ̃

i
k ⊆ σ̃i. An arrow g as in (15) of rank ≥ k is of rank ≥ k + 1 if

and only if there is an open neighborhood Wτ of τ̃ in Ñ1 ∪ τ̃ such that for every
ỹ1 ∈ (Wτ − τ), the image ỹ0 = ℓ · ỹ1 belongs to Ñ0.

τ

~
0

~
0

1
~

1
~

l

N

N

y

y
~

Wτ

Proof. Suppose that g as represented in (15) has rank ≥ k+1. Let τ ′ ⊇ τ be
any simplex in T ′ with τ ′ ⊆ ρk+1, and consider the following diagram

ṼτjJ
λ0

wwoooooooooooooo
� t

λ1

''OOOOOOOOOOOOOO� _

ν

��

Ũσ0
a0 a1 Ũσ1

Ṽτ ′

T4

λ0

ggOOOOOOOOOOOOOO * 

λ1

77oooooooooooooo

(16)

where λi = λσi,τ as above and λi = λσi,τ ′ , while ν is any embedding mapping

the chosen lifting τ̃ ⊆ Ṽτ into τ̃ ′. Furthermore, a0, a1 ∈ Hτ are group elements
such that

λi ◦ ai = λi ◦ ν. (17)
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Then by the equivalence relation defining G1, the arrow g = [λ0 ◦ ℓ, z̃, λ1] can
be represented as

g = [λ0 ◦ ℓ
′, ν(z̃), λ1] ℓ′ = ν(a−1

0 ℓa1), (18)

and ℓ′ ∈ H◦

τ′
by assumption. Let y ∈ (τ ′−τ)∩Uσ0∩Uσ1∩Vτ ⊆ (ρk+1−ρk) be any

point, and denote its liftings in σ̃i (i = 0, 1) by yi. Let ỹi = λ−1
i (yi) ∈ Ñi ⊂ Ṽτ .

We claim that
ℓ · ỹ1 = ỹ0 .

Indeed, λ̄iν(a
−1
i ỹi) = λi(ỹi) ∈ σ̃i, and hence ν(a−1

i ỹi) ∈ τ̃ ′ because λ̄i is chosen
to map τ̃ ′ into σ̃i. It then follows first that ν(a−1

0 ỹ0) = ν(a−1
1 ỹ1), since both

sides are liftings in τ̃ ′ of the same point y, and next that this point in τ̃ ′ is
fixed by ℓ′ since ℓ′ ∈ H◦

τ′
. Thus ℓ′ · ν(a−1

1 ỹ1) = ν(a−1
0 ỹ0); or, by definition of

ℓ′ in (15) above, ν(a−1
0 ℓỹ1) = ν(a−1

0 ỹ0). Since ν is an embedding, we conclude
that ℓỹ1 = ỹ0, as claimed. So for every τ ′ ⊇ τ with τ ′ ⊆ ρk+1 and every
y ∈ (τ ′ − τ) ∩ ϕτ (Ñ0) ∩ ϕτ (Ñ1) with liftings ỹi ∈ Ñi, we find that ℓ · ỹ1 = ỹ0.
Therefore

ϕ−1
τ







∐

τ⊆τ ′⊆ρk+1

(τ ′ ∩ ϕτ (Ñ0))







∩ Ñ1

satisfies the requirements forWτ . So we have shown that g satisfies the condition
formulated in this lemma.

Now assume that the arrow g is of rank ≥ k and satisfies this condition. Let
τ ′ ⊇ τ be a simplex in ρk+1. Then its inverse image in Ñ1 has a nonempty
intersection with Wτ , so its inverse images in Ñi contain points ỹi as in the
lemma. Use diagram (16) again to label all the embeddings and group elements
involved. Then g can again be represented as in (18) and we need to show that
ℓ′ in that presentation is an element of H◦

τ′
. Let ỹ0 and ỹ1 be as in the lemma,

such that ỹi ∈ ψ
−1
τ (

◦
τ ′). Then ℓ · ỹ1 = ỹ0, so ν(ℓa1) · (λ

−1

1 (λ1(ỹ1))) = ν(a−1
0 ) ·

(λ
−1

0 (λ0(ỹ0))) ∈ Ṽτ ′ , or ν(a−1
0 ℓa1) · (λ

−1

1 (λ1(ỹ1))) = λ
−1

0 (λ0(ỹ0)). However,

both λ
−1

1 (λ1(ỹ1)) and λ
−1

0 (λ0(ỹ0)) are liftings in τ̃ ′ of the same point in M ,
so they have to be the same in τ̃ ′ as well. We conclude that ℓ′ = ν(a−1

0 ℓa1) ∈
H

λ
−1
1 (λ1(ỹ1))

= H◦

τ′
(since the isotropy is constant on the interior of a simplex)

as required.

Now we are ready to prove:

Proposition 4.3.3 The space H(T )1 is (homeomorphic to) a disjoint sum of
simplices.

Proof. Let σ0 and σ1 be n-simplices in T and suppose that σ0∩σ1 6= ∅. As we
remarked before, it is sufficient to prove that H(T )(σ0, σ1) consists of a disjoint
sum of simplices. Let ρj be a part of the filtration (13) above. Write

ρj = τ1 ∪ · · · ∪ τm, (19)

where τi are simplices in T ′ of the same dimension as ρj . Consider all arrows
of the form (15),

Ũσ0

λ0,i

←− Ṽτi

λ1,i

−→ Ũσ1 g = [λ0,i ◦ l, z̃, λ1,i]
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where λε,i = λσε,τi
ε = 0, 1; (i = 1, · · · ,m) are the chosen embeddings as in

(12), and g has rank exactly j. For fixed i and ℓ, these arrows form a copy
τi(ℓ) of the simplex τi. Moreover, if θ = τi ∩ τi′ is a nonempty face not in the
boundary of ρj then this copy τi(ℓ) is glued (along θ) to exactly one copy τi′ (ℓ

′)
in the space H(T )(σ0, σ1), as follows.

Since T ′ is a good triangulation, there are embeddings ν: Ṽθ → Ṽτi
and

ν′: Ṽθ → Ṽτi′
, mapping θ̃ to τ̃i and τ̃i′ , respectively. Thus there are a0, a1, b0, b1 ∈

Hθ such that

λσj ,θaj = λj,iν (j = 0, 1)

λσj ,θbj = λj,i′ν
′

Let ℓ′ and ℓ′′ be such that ℓ = ν(ℓ′′) and ℓ′ = ν′(b−1
0 a0ℓ

′′a−1
1 b1). Then τi(ℓ) is

glued to τi′(ℓ
′). (Notice that g = [λ0,i ◦ ℓ, z̃, λ1,i] has rank exactly j if and only

if g′ = [λ0,i′ ◦ ℓ
′, z̃′, λ1,i′ ] does. This follows from Lemma 4.3.2, since every pair

of open neighborhoods of τi and τi′ have a non-empty intersection. )
Thus, the subspace of all H(T )(σ0, σ1) of all these copies τi(ℓ) is a covering

projection of ρj , hence a disjoint sum of copies of ρj .
Finally every arrow g ∈ H(T )(σ0, σ1) occurs in this way, i.e. is represented

in the form (15) where τi ⊆ ρj is one of the simplices in (19) and g has rank
exactly j. (This follows easily from considerations as in the proof of Lemma
4.3.2.)

Lemma 4.3.4 Each space H(T )n in the nerve of the groupoid H(T ) is a dis-
joint sum of simplices.

Proof This is clear from the fact that H(T )0 andH(T )1 are sums of simplices,
while H(T )n is constructed as an iterated fibered product along the source and
target maps, which are embeddings on every component of H(T )1.

Now consider the spectral sequence of Corollary 4.2.2. Let A be any locally
constant sheaf on M, and let A be the associated H-sheaf. Each sheaf A(p) on
Hp is again locally constant, hence constant on each connected component. So
in fact A(•) corresponds to a local system of coefficients on the simplicial set
π0(H(T )•), obtained by taking the connected components of the space H(T )n

in the nerve. Since each such connected component is a simplex, the spectral
sequence of Corollary 4.2.2 collapses, to give the following isomorphism.

Lemma 4.3.5 For any locally constant sheaf A on M there is a natural iso-
morphism

Hp(π0(H(T )•), A) = Hp(M,A),

where A is the local system of coefficients on the simplicial set π0(H(T )•) in-
duced by A.

The proof of Theorem 2.1.1 is now completed by the observation that this
simplicial set is exactly the simplicial set S described in Section 2.

Lemma 4.3.6 There is a natural isomorphism of simplicial sets

π0(H(T )•)
∼
−→ S.
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Proof. By definition, π0(H(T )0) = S0 in case n = 0. For n > 0 the identity
follows from the fact that the definition of µ is related to the equivalence relation
on H(T )1 ⊆ G1 in the following way. Let σ0 and σ1 be n-simplices as before
and let v and w be vertices in σ0 ∩ σ1, connected by a 1-simplex θ and suppose
that w = v(θ). Then [λσ0,v ◦ g, ṽ, λσ1,v] and [λσ0,w ◦ h, w̃, λσ1,w] are in the same
connected component of H(T )1 if an only if h = µ(g).

As said, this completes the proof of Theorem 2.1.1.
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pp.70-97.

[6] J.L. Koszul, Sur certains groupes de transformations de Lie. Géometrie
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