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Asymptotic formulas for the Lyapunov spectrum of fully developed shell model turbulence
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The scaling behavior of the Lyapunov spectrum of a chaotic shell model for three-dimensional turbulence is
studied in detail. First, we characterize the localization property of the Lyapunov vectors in wave-number
space by using numerical results. By combining this localization property with Kolmogorov's dimensional
argument, we deduce explicitly the asymptotic scaling law for the Lyapunov spectrum, which in turn is shown
to agree well with the numerical results. This shell model is an example of high-dimensional chaotic systems
for which an asymptotic scaling law is obtained for the Lyapunov spectrum. Implications of the present results
for the Navier-Stokes turbulence are discussed. In particular, we conjecture that the distribution of Lyapunov
exponents isiot singular at null exponenfS1063-651X98)50206-1

PACS numbe(s): 47.27.Jv, 05.45:b, 47.52:+i

One of the most fundamental characterization of strange—%kj_l, cj:—%kj_z andb;=c;=c,=ay_;=ay=by=0 to
attractors is given by the spectrum of Lyapunov exponentsgnsure energy conservation.
as it reflects instability of the trajectory in phase space. How- A number of remarkable properties were revealed by ex-
ever, some problems regarding the Lyapunov spectrum aknsive numerical and analytical studies on this model. In
turbulence are left unanswergtl]. For example, in conven- particular, for large Reynolds numbers solutions to this
tional Fourier representation we can characterize fully develmodel are generally chaotic and that their time-averaged en-
oped turbulence by the inertial subrange extending with inergy spectrum satisfies the same scaling law as Kolmogor-
creasing Reynolds numbers. But how can we characterize 8v's for realistic turbulence3,4]. Other aspects of this
in terms of the Lyapunov spectrum, or what property doesnodel have been also discussed, such as the intermittency
the Lyapunov spectrum have in fluid turbulence? A simplereffects, the probability distributions of the velocity variables
problem is to determine how the maximum Lyapunov expo{5-8g|, the effects of extra helicitylike invaria®,10] and
nent depends on the Reynolds numBer=1/v), wherevis  the stability problem of steady solutiof1,17.
kinematic viscosity. This problem has been studied within  So far, little is known about the structure of strange at-
some shell models and it was found that the maximumractors associated with fully developed turbulence, and only
Lyapunov exponent is proportional to the reciprocal of thesome conjectures have been given on the nature of the
time scale associated with the smallest eddies. The result theyapunov spectrum. In the shell model it has been found that
the time scale of the smallest eddies is responsible to thghe distribution function of the Lyapunov exponentsap-
maximum Lyapunov exponent is dimensionally consistenears to diverge at=0 in the limit of large Reynolds num-
but physically counterintuitive, because the smallest eddieger[3]. The possibility of divergence in the case of Navier-
are believed to be characteristic of the dissipative structureStokes turbulence was also pointed out befor¢linby an
In this Rapid Communication we focus our attention on aeigenvalue calculation of the Schtinger operator with the
shell model[2] for three-dimensiona(3D) turbulence and yse of the model [13]. This suggested that the inertial
we investigated the scaling properties of its Lyapunov specsubrange was connected with a large numbéathosi null
trum in more detail than befori3,4] to discuss the above- exponents, and indeed, a correlation between the Fourier and
mentioned issues. In this chaotic model, a set of complexhe Lyapunov indices was observed in the long-time average
variablesuj » (1=1,2,... N), which represents the velocity of the squared components of Lyapunov vectpdsld].
in the shellk; =ko2!(ko=2"7), is governed by the following However, neither its relation to the Kolmogorov scaling nor
equations of motion: the mechanism of accumulation of null exponents was ex-
plained so far. In this Rapid Communication, we will see that
Uj=1i[8)Uj 11U+ bjuj_ 1Uj 11+ Cjuj_1U;_5]* how the charaqteristic Lyapunov spectrum is related to Kol-
mogorov’s scaling through the localization of the Lyapunov
+16 4. (1) vectors i'n wave number space and thereby obtain an
b asymptotic formula for the Lyapunov exponents.
Here, * denotes complex conjugate and the coupling con- Equations(1) are integrated numerically by the fourth-
stants of the nonlinear terms are assumedjask;, b;= order Runge-Kutta method, together withN 2linearized
equations. Numerical parametess=19,22,24,27 are used
for  four different  values of  viscosity v
*Present address: Research Institute for Mathematical Sciences;10 6,10 7,1078,10°°, respectively. The forcing is fixed
Kyoto University, Kyoto 606-8502, Japan. asf=5x103(1+i). The time step used iAt=5x10"°
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o5 On the basis of the above observations we will introduce
the following set of hypotheses regarding the Lyapunov vec-
tors in the inertial subrange<D for D>1:
20 (1) Lyapunov exponents are positive forxj<D/2 and
negative forj>D/2.
15 (2) Each Lyapunov vector in wave number space is local-
n ized around a wave number. Uer{jzkoZ”i be the localized
10 wave number fofjth Lyapunov vector, then; is given by

(@ nj=D/2—j+1 for 1<j<D/2,
(b) nj=j—D/2 for D/2+1<j<D.

5 (3) In the inertial subrange, thgth Lyapunov exponent
(j=D) is inversely proportional to the Kolmogorov’s time
0 scalee*1’3krjj2’3.

The last hypothesis, a combination of the Kolmogorov's
dimensional argument and the localization of the Lyapunov
vectors in wave number space, is equivalent to assume that

FIG. 1. Time average of squared components of the Lyapuno¥N€ Lyapunov exponents can be represented in terms of the
vectors:(|v’[2). Contour levels are 0.0489=1,2, ...,10). Two  €nergy dissipation rate and wave numbek at which the
straight lines represent the correspondence assuniapand(b) of Lyapunov vectors are localized. From these hypotheses, we

the hypothesef2). deduce the following formulas for the Lyapunov exponents
for N=27. After a transient stage, the solution apparently fllskﬁgsz €'/3(2ko)#%2(P 2113
reaches a statistically stationary state. Below we will con- .
- . ; . for 1<j<D/2,
sider the long-time averages in this state. The energy spec- i~

. > S - ©)
trum shows six decades of the inertial subrange for ! —61/3k§§3=—61/3(k0)2/32(ZJ D)3

=10° The Lyapunov dimensions are estimated Bs for
=19.8,25.4,30.2,35.0 respectively fr=19,22,24,27.

Let v{)) be thenth Fourier mode of thgth Lyapunov We now rescale the Lyapunov exponent\ggH, where

vector =1,2,...,N,n=1,2,... N). We plot in.Fi.g. 1_the H=3, -o\; is the Kolmogorov-Sinai entropy. This is
squared components of the Lyapunov vectors in its time av- . ! L . .

_ equivalent to choose time=Ht such thatH is normalized
erage forN=27

as unity. It should be remarked that this choice of time nei-
EW(k ):<|U(J)|2> 2) ther influences the geometric structure of the strange attrac-
" : tors nor the invariant measure on them. Noting that

where the brackets denote the time average and each

D/2+1<j=D.

D/2 D/3

Lyapunov vector is normalized so thag|v{’|?=1 for each HeS h~ el 2k )2,32 -1 @
j. Several distinct features are noted from the numerical re- = ! o7 23
sults:
(i) Each Lyapunov vector has a support localized around ave conclude that
wave number.
(ii) The center of the support of the Lyapunov vector lies
at n~D/2 for the largest Lyapunov exponerjt=1). 23 bI3 —2i13 i
(iii) The central wave number of the support decreases (27°=1) 5pm—72 for 1<j<D/2,
with j, until the wave number reachas=0. The correspond- = . (5)
. . H 22(]7D/2)/3 22/3_1
ing Lyapunov exponents are positive but those correspond- ( ) ;
. - for D/2+1<j=<D.
ing ton~0 are small. 2Di3_q

(iv) For largerj, the central wave number increases again,
reachingn~D/2 atj~D. The Lyapunov exponents for these
are negative. Because these expressions are free from arbitrary param-
(v) For even largej, the central wave number increases eters, we can compare this phenomenological theory with the
beyondn=D/2. These Lyapunov exponents asymptoticallyresults of numerical simulations. In Fig. 2 we plot the posi-
agree with— vk?; that is, the reciprocal of the viscous time tive Lyapunov exponents; /H against]j together with the

scale of Eq.(2). theoretical curve foD>1

To summarize, for eaclm (0sn<D/2) there are two
Lyapunov vectors, one corresponding to a positive exponent h—(22’3— 1)2-2i18 ®)
and the other a negative one. All these features are consistent H ’

with the fact that the Lyapunov dimension measures the

number of modes below the dissipation wave number angvhich can be obtained from E@5). The numerical results
that there are two degrees of freedom for each wave numbeand the phenomenological theory agree well generally and a
the real and the imaginary parts of the velocity variables. better agreement between them is obtained for lakgehat
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1 . . . . . . . support to the dual structure of the Lyapunov vectors ob-
served previouslyf4]. The dual structure explains at least
partially why the dissipative structures appear to be relevant
to the maximum Lyapunov exponent; the largest wave num-
ber mode of the Lyapunov vectors in the inertial subrange is
characteristic oboth the most stable and unstable motions.
We note that the localization of Lyapunov vectors in the
disspation range was observed[#5] during the burst-like
intermittent energy transfer. These bursts correspond to one
branch of the V-shaped correlation observed in the long-time
average of the Lyapunov vectors.

Now we would like to consider what is predicted for re-

@ alistic turbulence by assuming the localization of the
001 . . . . ) . . Lyapunov vectors. Suppose that the support of the Lyapunov
) I 2 3 4 3 6 7 8 9 vectors for the Navier-Stokes turbulence with high Reynolds

number is localized in wave number space as in the case of

FIG. 2. Distribution of the Lyapunov exponents/H: circles  the shell model. This implies that the Lyapunov exponents
(N=19), squares N=22), closed squaresN(=24), and closed @are given by the reciprocal of the relevant Kolmogorov time
circles (N=27). The dashed line denotes the theoretical predictionfs(?a'e)\”61/3k2/3, wherek is the wave number associated
N IH=(222-1)27 %", with the Lyapunov vectof16]. The number of Lyapunov

exponents which lie if\,A\+d\] is then proportional to
is, for larger Lyapunov dimensions. In Fig. 3, we also plot47k?*dk. Thus, the density distributionzfunctior) of Lyapunov
>I_;\i/H and compare it with the theoretical prediction ~ exponentsP()) satisfiesP(N)d\~47kdk, which leads to

j

>

i=1

—1-27218 (7) P()\)"“)\m- 8

Iz

Again, the theoretical prediction agrees well with the nu- It should be _noted that this distributioR()) doesnot
merical data and this agreement is better for langeiL5]. diverge at\=0, in a markeql contrgst to the case of the shell
For j>D/2, on the other hand, only a rough agreement igN°del, whereP(x) has a singularity  atA=0. In retro-
seen between the theory and the numerical results, but spect, this divergence comes from_ the condensatl_on of modes
present we do not know why the agreement is less clear. at null wave nymt_)er, which is attributed to an artifact of the
The agreement between Hg) and numerical results sup- optave-d|scret|zat|on of wave numbers. As noted gbove, the
port validity of the working hypotheses introduced above todivergence was COHJeCtL’JI’ed by Ruelle for the Navier-Stokes
derive Eq.(5). In particular, this shows that each wave num-turbulence 1], but Ruelle’s argument employed tjgemodel
ber in the inertial subrange corresponds to two Lyapunm[l3]' in which the wave numbers are also discretized in oc-

vectors, one is stable and the other unstable, adding mof@ves- We also note that the formul@ is consistent with
results of Wang and Gaspa[ii7] for Kolmogorov-Sinai en-

tropy and Aurellet al. for the maximum Lyapunov exponent
[18].

Here comparison to other theories on the properties of the
Lyapunov spectrum may be in order. First, it was shown in
[19] that for a class of dissipative dynamical systems with a
simple dissipation term the Lyapunov spectrum is symmetric
with respect to a constant that depends on the dissipation of
the system. Unfortunately the shell model does not belong to
this class because its dissipation term depends on the inde-
pendent variableswave numberns Still, a pairing phenom-
enon of positive and negative exponents was predicted from
a nonequilibrium statistical mechanical formulation of turbu-
lence [20]. Also in the shell model the paring of the
Lyapunov exponents are clearly observed, especially in the
Sl 5 70 75 30 inertial subrange where the dissipation is considered to be

J very small. Further investigation would be of interest on the
basis of this formulation. Apart from dissipative turbulent

FIG. 3. Cumulated distribution of the Lyapunov exponentsSystems, we note that another approach to the property of the
=/_,\{/H. Symbols are the same as in Fig. 2. The dashed lind-yapunov spectrum was given by Bohr, Grinstein, and
denotes the theoretical predictioB!_,\;/H=1—2"2"3, Jayaprakash21] for a conservative system without cascade
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process. They discussed a class of coupled nisgs also calization of the Lyapunov vectors are strongly related with
[22,23) with a particular choice of couplings, which permits the scaling property in the present system, and we conjecture
an analytical derivation oP(\)o\ ~ Y2 that the localization may be rather universal among a class of

In the present paper, we have shown that the localizatiohigh-dimensional chaotic systems with a scale invariance.
of the Lyapunov vectors permits us to relate the LyapunovFurther study on the lo-calization of the Lyapunov vectors
exponents to some conventional statistical quantities. The lowill be reported elsewhere.
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