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Asymptotic formulas for the Lyapunov spectrum of fully developed shell model turbulence
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The scaling behavior of the Lyapunov spectrum of a chaotic shell model for three-dimensional turbulence is
studied in detail. First, we characterize the localization property of the Lyapunov vectors in wave-number
space by using numerical results. By combining this localization property with Kolmogorov’s dimensional
argument, we deduce explicitly the asymptotic scaling law for the Lyapunov spectrum, which in turn is shown
to agree well with the numerical results. This shell model is an example of high-dimensional chaotic systems
for which an asymptotic scaling law is obtained for the Lyapunov spectrum. Implications of the present results
for the Navier-Stokes turbulence are discussed. In particular, we conjecture that the distribution of Lyapunov
exponents isnot singular at null exponent.@S1063-651X~98!50206-1#

PACS number~s!: 47.27.Jv, 05.45.1b, 47.52.1i
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One of the most fundamental characterization of stra
attractors is given by the spectrum of Lyapunov expone
as it reflects instability of the trajectory in phase space. Ho
ever, some problems regarding the Lyapunov spectrum
turbulence are left unanswered@1#. For example, in conven
tional Fourier representation we can characterize fully de
oped turbulence by the inertial subrange extending with
creasing Reynolds numbers. But how can we characteriz
in terms of the Lyapunov spectrum, or what property do
the Lyapunov spectrum have in fluid turbulence? A simp
problem is to determine how the maximum Lyapunov exp
nent depends on the Reynolds numberR (51/n), wheren is
kinematic viscosity. This problem has been studied wit
some shell models and it was found that the maxim
Lyapunov exponent is proportional to the reciprocal of t
time scale associated with the smallest eddies. The result
the time scale of the smallest eddies is responsible to
maximum Lyapunov exponent is dimensionally consist
but physically counterintuitive, because the smallest edd
are believed to be characteristic of the dissipative structu

In this Rapid Communication we focus our attention on
shell model@2# for three-dimensional~3D! turbulence and
we investigated the scaling properties of its Lyapunov sp
trum in more detail than before@3,4# to discuss the above
mentioned issues. In this chaotic model, a set of comp
variablesuj , ( j 51,2, . . . ,N), which represents the velocit
in the shellkj5k02 j (k05224), is governed by the following
equations of motion:

S d

dt
1nkj

2Duj5 i @ajuj 11uj 121bjuj 21uj 111cjuj 21uj 22#*

1 f d j ,4 . ~1!

Here, * denotes complex conjugate and the coupling c
stants of the nonlinear terms are assumed asaj5kj , bj5

*Present address: Research Institute for Mathematical Scien
Kyoto University, Kyoto 606-8502, Japan.
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2kj21, cj521

2kj22 and b15c15c25aN215aN5bN50 to
ensure energy conservation.

A number of remarkable properties were revealed by
tensive numerical and analytical studies on this model.
particular, for large Reynolds numbers solutions to t
model are generally chaotic and that their time-averaged
ergy spectrum satisfies the same scaling law as Kolmo
ov’s for realistic turbulence@3,4#. Other aspects of this
model have been also discussed, such as the intermitt
effects, the probability distributions of the velocity variabl
@5–8#, the effects of extra helicitylike invariant@9,10# and
the stability problem of steady solutions@11,12#.

So far, little is known about the structure of strange
tractors associated with fully developed turbulence, and o
some conjectures have been given on the nature of
Lyapunov spectrum. In the shell model it has been found t
the distribution function of the Lyapunov exponentsl ap-
pears to diverge atl50 in the limit of large Reynolds num
ber @3#. The possibility of divergence in the case of Navie
Stokes turbulence was also pointed out before in@1# by an
eigenvalue calculation of the Schro¨dinger operator with the
use of theb model @13#. This suggested that the inertia
subrange was connected with a large number of~almost! null
exponents, and indeed, a correlation between the Fourier
the Lyapunov indices was observed in the long-time aver
of the squared components of Lyapunov vectors@4,14#.
However, neither its relation to the Kolmogorov scaling n
the mechanism of accumulation of null exponents was
plained so far. In this Rapid Communication, we will see th
how the characteristic Lyapunov spectrum is related to K
mogorov’s scaling through the localization of the Lyapun
vectors in wave number space and thereby obtain
asymptotic formula for the Lyapunov exponents.

Equations~1! are integrated numerically by the fourth
order Runge-Kutta method, together with 2N linearized
equations. Numerical parametersN519,22,24,27 are used
for four different values of viscosity n
51026,1027,1028,1029, respectively. The forcing is fixed
as f 5531023(11 i ). The time step used isDt5531025

es,
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for N527. After a transient stage, the solution apparen
reaches a statistically stationary state. Below we will co
sider the long-time averages in this state. The energy s
trum shows six decades of the inertial subrange forn
51029. The Lyapunov dimensions are estimated asD
519.8,25.4,30.2,35.0 respectively forN519,22,24,27.

Let vn
( j ) be thenth Fourier mode of thej th Lyapunov

vector (j 51,2, . . . ,2N,n51,2, . . . ,N). We plot in Fig. 1 the
squared components of the Lyapunov vectors in its time
erage forN527

E~ j !~kn!5^uvn
~ j !u2&, ~2!

where the brackets denote the time average and e
Lyapunov vector is normalized so that(nuvn

( j )u251 for each
j . Several distinct features are noted from the numerical
sults:

~i! Each Lyapunov vector has a support localized aroun
wave number.

~ii ! The center of the support of the Lyapunov vector l
at n'D/2 for the largest Lyapunov exponent (j 51).

~iii ! The central wave number of the support decrea
with j , until the wave number reachesn'0. The correspond-
ing Lyapunov exponents are positive but those correspo
ing to n'0 are small.

~iv! For largerj , the central wave number increases aga
reachingn'D/2 at j 'D. The Lyapunov exponents for thes
are negative.

~v! For even largerj , the central wave number increas
beyondn>D/2. These Lyapunov exponents asymptotica
agree with2nkj

2 ; that is, the reciprocal of the viscous tim
scale of Eq.~1!.

To summarize, for eachn (0<n<D/2) there are two
Lyapunov vectors, one corresponding to a positive expon
and the other a negative one. All these features are consi
with the fact that the Lyapunov dimension measures
number of modes below the dissipation wave number
that there are two degrees of freedom for each wave num
the real and the imaginary parts of the velocity variables

FIG. 1. Time average of squared components of the Lyapu
vectors:^uvn

( j )u2&. Contour levels are 0.0489i ( i 51,2, . . .,10). Two
straight lines represent the correspondence assumed in~a! and~b! of
the hypotheses~2!.
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On the basis of the above observations we will introdu
the following set of hypotheses regarding the Lyapunov v
tors in the inertial subrangej <D for D@1:

~1! Lyapunov exponents are positive for 1< j <D/2 and
negative forj .D/2.

~2! Each Lyapunov vector in wave number space is loc
ized around a wave number. Letknj

5k02nj be the localized

wave number forj th Lyapunov vector, thennj is given by
~a! nj5D/22 j 11 for 1< j <D/2,
~b! nj5 j 2D/2 for D/211< j <D.
~3! In the inertial subrange, thej th Lyapunov exponent

( j <D) is inversely proportional to the Kolmogorov’s tim
scalee21/3knj

22/3.

The last hypothesis, a combination of the Kolmogorov
dimensional argument and the localization of the Lyapun
vectors in wave number space, is equivalent to assume
the Lyapunov exponents can be represented in terms of
energy dissipation ratee and wave numberk at which the
Lyapunov vectors are localized. From these hypotheses
deduce the following formulas for the Lyapunov exponen

l j;5
e1/3knj

2/35e1/3~2k0!2/32~D22 j !/3

for 1< j <D/2,

2e1/3knj

2/352e1/3~k0!2/32~2 j 2D !/3

for D/211< j &D.

~3!

We now rescale the Lyapunov exponent asl j /H, where
H5(l j .0l j is the Kolmogorov-Sinai entropy. This i

equivalent to choose timet5Ht such thatH is normalized
as unity. It should be remarked that this choice of time n
ther influences the geometric structure of the strange att
tors nor the invariant measure on them. Noting that

H5(
j 51

D/2

l j;e1/3~2k0!2/3
2D/321

22/321
~4!

we conclude that

l j

H
55 ~22/321!

2D/3

2D/321
222 j /3 for 1< j <D/2,

2
22~ j 2D/2!/3~22/321!

2D/321
for D/211< j &D.

~5!

Because these expressions are free from arbitrary pa
eters, we can compare this phenomenological theory with
results of numerical simulations. In Fig. 2 we plot the po
tive Lyapunov exponentsl j /H against j together with the
theoretical curve forD@1

l j

H
5~22/321!222 j /3, ~6!

which can be obtained from Eq.~5!. The numerical results
and the phenomenological theory agree well generally an
better agreement between them is obtained for largerN, that

v
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is, for larger Lyapunov dimensions. In Fig. 3, we also p
( i 51

j l i /H and compare it with the theoretical prediction

(
i 51

j
l i

H
512222 j /3. ~7!

Again, the theoretical prediction agrees well with the n
merical data and this agreement is better for largerN @15#.
For j .D/2, on the other hand, only a rough agreemen
seen between the theory and the numerical results, bu
present we do not know why the agreement is less clear

The agreement between Eq.~7! and numerical results sup
port validity of the working hypotheses introduced above
derive Eq.~5!. In particular, this shows that each wave nu
ber in the inertial subrange corresponds to two Lyapun
vectors, one is stable and the other unstable, adding m

FIG. 2. Distribution of the Lyapunov exponentsl j /H: circles
(N519), squares (N522), closed squares (N524), and closed
circles (N527). The dashed line denotes the theoretical predict
l j /H5(22/321)222 j /3.

FIG. 3. Cumulated distribution of the Lyapunov exponen
( i 51

j l i /H. Symbols are the same as in Fig. 2. The dashed
denotes the theoretical prediction:( i 51

j l i /H512222 j /3.
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support to the dual structure of the Lyapunov vectors
served previously@4#. The dual structure explains at lea
partially why the dissipative structures appear to be relev
to the maximum Lyapunov exponent; the largest wave nu
ber mode of the Lyapunov vectors in the inertial subrange
characteristic ofboth the most stable and unstable motion
We note that the localization of Lyapunov vectors in t
disspation range was observed in@4,5# during the burst-like
intermittent energy transfer. These bursts correspond to
branch of the V-shaped correlation observed in the long-t
average of the Lyapunov vectors.

Now we would like to consider what is predicted for r
alistic turbulence by assuming the localization of t
Lyapunov vectors. Suppose that the support of the Lyapu
vectors for the Navier-Stokes turbulence with high Reyno
number is localized in wave number space as in the cas
the shell model. This implies that the Lyapunov expone
are given by the reciprocal of the relevant Kolmogorov tim
scalel;e1/3k2/3, where k is the wave number associate
with the Lyapunov vector@16#. The number of Lyapunov
exponents which lie in@l,l1dl# is then proportional to
4pk2dk. Thus, the density distribution function of Lyapuno
exponentsP(l) satisfiesP(l)dl;4pk2dk, which leads to

P~l!;l7/2. ~8!

It should be noted that this distributionP(l) doesnot
diverge atl50, in a marked contrast to the case of the sh
model, whereP(l) has a singularity 1/l at l50. In retro-
spect, this divergence comes from the condensation of mo
at null wave number, which is attributed to an artifact of t
octave-discretization of wave numbers. As noted above,
divergence was conjectured by Ruelle for the Navier-Sto
turbulence@1#, but Ruelle’s argument employed theb model
@13#, in which the wave numbers are also discretized in
taves. We also note that the formula~9! is consistent with
results of Wang and Gaspard@17# for Kolmogorov-Sinai en-
tropy and Aurellet al. for the maximum Lyapunov exponen
@18#.

Here comparison to other theories on the properties of
Lyapunov spectrum may be in order. First, it was shown
@19# that for a class of dissipative dynamical systems with
simple dissipation term the Lyapunov spectrum is symme
with respect to a constant that depends on the dissipatio
the system. Unfortunately the shell model does not belon
this class because its dissipation term depends on the i
pendent variables~wave numbers!. Still, a pairing phenom-
enon of positive and negative exponents was predicted f
a nonequilibrium statistical mechanical formulation of turb
lence @20#. Also in the shell model the paring of th
Lyapunov exponents are clearly observed, especially in
inertial subrange where the dissipation is considered to
very small. Further investigation would be of interest on t
basis of this formulation. Apart from dissipative turbule
systems, we note that another approach to the property o
Lyapunov spectrum was given by Bohr, Grinstein, a
Jayaprakash@21# for a conservative system without casca
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process. They discussed a class of coupled maps~see also
@22,23#! with a particular choice of couplings, which permi
an analytical derivation ofP(l)}l21/2.

In the present paper, we have shown that the localiza
of the Lyapunov vectors permits us to relate the Lyapun
exponents to some conventional statistical quantities. The
.

D

n
v
o-

calization of the Lyapunov vectors are strongly related w
the scaling property in the present system, and we conjec
that the localization may be rather universal among a clas
high-dimensional chaotic systems with a scale invarian
Further study on the lo-calization of the Lyapunov vecto
will be reported elsewhere.
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