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Abstract 11 

The conifer, Juniperus seravschanica is a keystone species within Oman, yet its decline is 12 

typical of other arid-adapted, montane tree species. This research aimed to identify causes of 13 

decline and subsequent viable conservation strategies; strategies that may have wider 14 

application for tree conservation. Decline in J. seravschanica is typified by foliar dieback and 15 

litt le regeneration via seed; traits most apparent at lower altitudes. The research evaluated the 16 

viability of seeds collected at three different altitudes: 2100-2220m (Low), 2300-2400m 17 

(Mid) and 2500-2570m above sea level (High). In addition, seeds and young trees were 18 

planted at these altitudes and maintained under differential irrigation. Results showed that 19 

trees grown at Low altitude produced fewer, less-viable seed. Transplanting young trees 20 

proved more successful than seed sowing in re-establishing plants in the wild. Age of 21 

transplant had an effect, however, with 5-year-old stock showing greater survival (> 97%) 22 

than 2-year-old trees. The younger trees only established well when planted at High altitude, 23 

or provided with irrigation at Mid/Low altitudes. Water availability did not entirely explain 24 

survival, and in some locations direct heat stress too may be limiting viability. Practical 25 

conservation measures include identifying genotypes with greater drought/heat tolerances and 26 

planting only more mature nursery trees.  27 

Highlights 28 

• Climate change is thought responsible for the decline of the conifer Juniperus 29 

seravschanica 30 

• Trees from lower altitude have greatest decline, and reduced reproductive 31 

potential 32 

• Conservation strategies are promoted by the planting of nursery-raised trees 33 

• Older specimens had greater establishment success than younger trees 34 

• Water stress and possibly heat stress are limiting the viability of J. seravschanica 35 

 36 

Key Words: Climate change, seed, young trees, drought, heat stress, plant 37 

establishment. 38 
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 41 

1. Introduction 42 

The coniferous tree, Juniperus seravschanica (Zeravschan juniper) is a keystone species 43 

within the montane habitat of Oman. This juniper was formally classified as J. excelsa subsp. 44 

polycarpos, but recent DNA analysis (Adams et al., 2014) has identified it as J. 45 

seravschanica, allying it to other populations of this species found further north in 46 

mountainous regions of Iran, Afghanistan, Pakistan, India, Turkmenistan, Tajikistan, 47 

Kyrgyzstan, Uzbekistan and Kazakhstan (Gardner and Fisher 1996; Breckle and Wucherer, 48 

2006; Adams, 2014). It is not yet clear if the Oman population is a relic from the Pleistocene 49 

epoch when the species may have been more widespread in the region or is a more recent 50 

population, established by long distance dispersal from Iran. The extent to which it is 51 

genetically distinct from other populations further north still requires clarification (Adams et 52 

al., 2014). As with other Juniperus species it is relatively slow growing and individual 53 

specimens of J. seravschanica are thought to be able to reach 1,500 years of age (Sass-54 

Klaasen et al., 2006). In Oman it is found at altitudes ≥ 2100 m above sea level (asl) and is 55 

the only native conifer (Fisher and Gardner, 1995), being restricted to the highest areas of the 56 

central massif of Al Jabal Al Akhdar and the outlying mountains of Jabal Qubal and Jabal 57 

Kawr. In such locations Juniperus trees not only play a vital ecological role, providing habitat 58 

and food for bird species, but also shade for endemic mammals and reptiles, including the 59 

nationally endemic geckos: Asaccus montanus, A. platyrhynchus and Pristurus gallagheri 60 

(Gardner, 1999). The trees also largely define the landscape character, and provide important 61 

ecosystem services ranging from land stabilization, wood fuel, shade for livestock, through to 62 

aspects of cultural symbolism with plant components being used in traditional ethnobotany 63 

(MacLaren, 2016).  64 

 65 

Juniperus seravschanica populations (Fisher and Gardner, 1995, Al Haddabi and Victor, 66 

2016; MacLaren, 2016), along with numerous other Juniperus species globally, are under 67 

pressure and often represent fragile ecosystems (Gauquelin et. al., 1999; Ciesla, 2002; Long 68 

and Williams, 2007). Degradation of other Juniperus species in arid / semi-arid environments 69 

has been cited for J. procera (Ethiopia – Aynekulu et al., 2009; Saudi Arabia (El-Juhany, 70 

2009), J. thurifera (Morocco and Spain - Gauquelin et al., 1999), J. communis (Spain - 71 

Garcia et al., 1999) and J. excelsa (Greece – Milios et al., 2007). Throughout history, 72 

Juniperus forests have been exploited for human use, especially for wood collection and 73 

animal grazing, but with rising human populations such activities are becoming 74 

unsustainable, corresponding with rapid forest degradation. Problems are exacerbated by the 75 

fact that natural Juniperus regeneration rates are very low, and more consideration needs to 76 

be given to the management and conservation of these forests. 77 

 78 

In Oman a number of studies have examined the status of Juniperus seravschanica woodland, 79 

(Fisher and Gardner 1995; Gardner and Fisher 1996; Matwani, 2011; Al Haddabi and Victor, 80 

2016; MacLaren, 2016). Degradation of woodlands within Oman have been associated with 81 

an increase in access to the mountains by tourists and other visitors, who use the wood for 82 

campfires, and through over-exploitation by local people, who may also use branches for fuel 83 

or medicinal purposes, as well as letting their goats and donkeys browse the foliage. In 84 

addition, woodland soils are sometimes mechanically stripped off for agricultural use or road 85 

construction, with negative consequences for tree stability, root viability and moisture 86 
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retention in the remaining soil. Removal of the top layer also denudes the existing seed bank 87 

held within the soil (Al Haddabi and Victor, 2016; MacLaren, 2016). Although significant, 88 

the extent to which these pressures are impacting on J. seravschanica depends on local 89 

conditions and the degree to which the forests are protected, and this protection being 90 

enforced, as destruction is often greater outside nature reserves (Matwani 2011; Al Haddabi 91 

and Victor, 2016). Nevertheless, even tree populations within protected areas are declining 92 

and a number of researchers have suggested that climate change is a primary factor 93 

undermining the viability of J. seravschanica in Oman (Al Haddabi and Victor, 2016; 94 

MacLaren, 2016).  95 

 96 

In recent surveys it was found that trees growing in xeric habitats showed poor health with 97 

low reproductive ability and fewer seedlings compared to junipers growing in mesic habitats. 98 

These mesic habitats included dry river valleys or ravines (wedian – plural or wadi - single) 99 

(Fisher and Gardner, 1995) or lower lying depressions, with deeper, and perhaps more moist, 100 

soils (MacLaren, 2016). Maclaren (2016) found that trees with less foliar dieback were 101 

associated with higher altitudes, or with locations towards the east of the mountain ranges 102 

(where precipitation is thought to be greater) and sites experiencing less direct solar 103 

irradiance. Surveys indicated that there was a measurable increase in tree height with 104 

increasing altitude or when trees were found growing in a wadi, compared to those located on 105 

open hillsides, where water is less likely to accumulate (Al Haddabi and Victor, 2016). Such 106 

data implies that soil moisture availability is a key factor affecting the distribution, growth 107 

potential and health status of J. seravschanica, but reports of direct correlations between 108 

growth and actual soil moisture availability remain rare.  109 

 110 

Reductions in tree health within J. seravschanica and the loss of population viabilities at 111 

lower altitudes is now a major concern (Gardner and Fisher 1996; Al Haddabi and Victor, 112 

2016, MacLaren, 2016). In 1996, Gardner and Fisher noted that trees found above 2400m 113 

were generally in better health and possessed a markedly better reproductive status than those 114 

living below this altitude. A similar trend was noted in the closely related J. procera in the 115 

Rayadh Reserve in Saudi Arabia, where unhealthy trees, relatively poor production of cones, 116 

and widespread tree death below 2400-2500m were reported (Fisher, 1997). More recent 117 

surveys confirm these trends for J. seravschanica (Matwani 2011; Al Haddabi and Victor, 118 

2016) with MacLaren (2016) concluding that the optimal habitat for J. seravschanica has 119 

shifted upwards by 250 m in the last 20 years. Such shifts are being noted in a wide range of 120 

other tree species where ranges are being restricted to higher altitudes as temperatures rise 121 

and the incidence of drought in montane locations increases (Allen et al., 2010).  122 

 123 

An active conservation plan is now in place for J. seravschanica in the mountains of Oman, 124 

but more information is required on precisely what is causing the decline of the native forest 125 

stands. Over-exploitation is one aspect and those areas that are protected from human use and 126 

livestock grazing show signs of improvement, but other areas without direct anthropogenic 127 

impact are also declining. This raises the question as to what other biotic and abiotic factors 128 

may be inducing decline of native stands of J. seravschanica. Trees under stress from climate 129 

change influences may be more susceptible to pest and disease pressures, but as yet, no 130 

pathogens or pests have been correlated with tree decline. The trend for trees located at the 131 

lower altitudes to show greater decline than those higher up indicates that direct climatic 132 

factors may be to blame for some of the forest degradation. Which climatic factors are 133 

primarily responsible, however, is not clear with 1. drought stress due to a lack of water and 134 

increasing evapo-transpirational demand, and 2. heat stress due to supra-optimal 135 

temperatures, both being likely candidates. Changes in temperature or water availability may 136 
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be affecting reproduction potential, by reducing the chances of any viable seeds being 137 

produced, and preventing those that are viable from germinating and establishing. In her 138 

study, MacLaren (2016) only found four seedlings across 86 survey sites. Such 139 

environmental changes also seem to be inducing higher mortality rates in mature trees. The 140 

aim of this research therefore, is to investigate how temperature and water availability affects 141 

development in J. seravschanica, and to test the primary hypothesis that altitudinal 142 

differences in plant viability relate to a lack of soil water availability and high evapo-143 

transpirational demand inducing drought stress. The research presented here focusses on seed 144 

viability and the early development / establishment success of young plants. Secondly, the 145 

research aims to identify practical ways of reviving the populations of J. seravschanica in the 146 

wild, and specific opportunities for enhancing the number of young progeny through nursery 147 

cultivation and subsequent transplantation. It is anticipated that information generated from 148 

this research will have application to the conservation of other tree species, showing similar 149 

trends in population viability across climatic and altitudinal ranges. 150 

 151 

2. Materials and Methods 152 

  153 

2.1. Plant Material 154 

Three natural populations of Juniperus seravschanica were identified, based on their 155 

altitudinal range within the Jabal Shams, part of the Al Jabal Al Akhdar mountain range in 156 

Oman. These populations were used to monitor plant viability at different altitudes within a 157 

wider project remit and as a source of seed (and derived seedling plants) for the individual 158 

experiments described here. The populations were selected were: 159 

Population 1 (Low altitude) at 2100-2220 m asl (N 23°17’07.76 and E 57°09’07.76). 160 

Population 2 (Mid altitude) at 2300-2400 m asl (N 23°18’06.22 and E 57°06’15.55) and  161 

Population 3 (High altitude) at 2500-2570 m asl (N 23°19’13.26 and E 57°06’16.02). 162 

 163 

Cones were collected by hand from each location and transferred to the seed bank in the 164 

Oman Botanic Garden (OBG). Cones were ground by hand in 2.24 mm steel sieves, air dried 165 

and a Vacuum separator (Kimseed, Wangara, Perth, Australia) used to separate seeds from 166 

the debris. Seeds were soaked in warm water and those that floated were retained (Scianna, 167 

2001). Seed was dried in the shade outdoors, counted and stored in paper envelopes at 12 ± 168 

4oC in the OBG seed bank. 169 

 170 

For trees propagated in the nursery (i.e. used in Experiments 4 and 5), seeds were collected 171 

from the one locational source, i.e. Al Jabal Al Akhdar region (at 2300-2350 m asl ‘Mid 172 

altitude’) both in 2007 and 2013. These were soaked in warm water for 24 h to help 173 

overcome dormancy and then sown in propagation trays (380 x 240 x 50 mm) using fine peat 174 

(Kekkila propagation peat, 0-6 mm). Trays were placed in air-conditioned glasshouses at 18-175 

25°C and irrigated from the base using shallow water baths every two weeks. After 176 

germination, seedlings were potted in 1 L air pots with a 1:1 peat / soil mix for approximately 177 

one year. Subsequently they were potted on into 10 L pots filled with 3:1 soil / peat mix. In 178 

October 2011 the older batch of saplings (‘5-year-old stock’) were potted in 45 L pots, using 179 

the same growing medium. Plants were maintained in controlled environment glasshouses at 180 

25-28°C throughout the growing-on period. 181 

 182 

2.2. Experiment 1. The effect of population location (altitude) on seed production and 183 

viability. 184 

For each altitude range, cones were collected from a population of 10 different trees and 185 

grouped as a replicate for a given altitude. This was done 3 times for each location during 186 
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spring 2015. A population of 9000 cones was selected in total (3 altitudes x 10 trees x 100 187 

cones x 3 reps). Seeds were extracted and cleaned (see above). Seeds with signs of insect 188 

damage were separated and counted. The total number of undamaged ‘healthy’ seeds per 100 189 

cones was counted and their viability determined by the presence of the white fleshy intact 190 

embryo (i.e. ‘filled’ seeds). Fresh weight was also measured by selecting batches of 50 seeds 191 

from each rep and weighing these.  192 

 193 

2.3. Experiment 2. The effect of seed source (altitude), stratification and temperature 194 

during germination, on germination percentage and rate under controlled conditions. 195 

Additional seed collected from Experiment 1 were used to determine germination percentage 196 

and rate. Three hundred seeds from individual trees at each altitudinal location were used and 197 

divided into two sub-batches: these were either placed in a refrigerator at 4°C for three 198 

months (Stratified) or stored in paper bags at an ambient room temperature of approximately 199 

20°C (Control). After three months, seeds were removed from their storage conditions and 200 

soaked in warm water for 24 h to help remove any inhibitors to germination. Batches of seed 201 

from each treatment combination were then planted in 90 mm dia. plastic pots filled with fine 202 

peat; 25 seeds being sown in each pot. Pots were placed in incubators at either 15°C or 25°C 203 

to determine how temperature interacted with the other factors to influence germination. 204 

These temperatures were selected to cover the spectrum of potentially optimum temperatures 205 

for the 3 altitudinal populations (Al Farsi, unpublished). Photoperiod was set at 12:12 h light / 206 

dark and chambers illuminated with white fluorescent lamps (Osram L20W / 640sa). Each 207 

treatment combination was represented by 3 pots (3 altitudes x 2 stratification x 2 growing 208 

temperature x 10 trees x 3 replications) giving a total population of 360 pots or 9000 seeds, 209 

mean values per 3 replications were used for analysis. Pots were sub-irrigated once every two 210 

weeks, with germination rates monitored weekly over 12 weeks. Germination date, number 211 

of days to germination and number of seeds germinating per week were recorded. At the end, 212 

germination percentages and mean germination time were calculated. The mean germination 213 

time was calculated using the following equation:  214 

 MGT = گ (n * t) / گ n 215 

Where n is the number of germinated seed at each recording time. t is the recording time in 216 

days. گ n is the sum of total germinated seeds (Tigabu et al. 2007).  217 

 218 

2.4. Experiment 3. Establishment of Juniperus seravschanica plants through seed sowing 219 

in situ.  220 

Secure sites suitable for seed and tree planting were selected within each of the altitudinal 221 

ranges under study and used to assess seed performance in situ. These were defined as Low 222 

altitude at 2220 m asl (N 23°17’33.4 and E 57°09’07.76); Mid altitude at 2300 m asl (N 223 

23°18’08.19 and E 57°06’14.25) and High altitude located at 2570 m asl (N 23°19’13.26 and 224 

E 57°06’16.02). Sowing plots at each altitude were replicated 3 times. In each of the 9 225 

selected field plots an area of 12 m2 was cleared of grasses and rocks and used to evaluate 226 

tree regeneration from field-sown seed. The cleared areas were divided into sub-plots (45 in 227 

total each 0.3 x 0.3 m and watered prior to sowing). The same source of seeds used for stock 228 

germination was used for field seed germination, i.e. from trees growing naturally at the Mid 229 

altitude (2300 m asl). A piece of flat wood was used to ensure seeds were sown at consistent 230 

spacing (50 mm apart) and depth (10 mm). Twenty-five seeds were sowed in each sub-plot at 231 

3 different times of year to increase the chances of successful germination and establishment, 232 

namely April (just after cone ripening on site and before onset of warmer, drier conditions of 233 
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summer), June (warmest period and before onset of July-August rain) and September 2014 234 

(end of summer and after July-August rain). Plots were irrigated once every week for one 235 

month and then 3 irrigation treatments were applied with 5 replicates per irrigation treatment. 236 

The 3 irrigation treatments applied were; ‘ Irrig.15d’ (2 L applied every 15 days), Irrig.30d (2 237 

L irrigation every 30 days) or Control with no artificial irrigation and where seeds were 238 

reliant on natural precipitation. Plots were irrigated via watering can with a ‘fine spray’ rose, 239 

ensuring good distribution of water over each plot.  240 

In addition to seed being placed in the soil, seed were also sown in pots (130 mm dia.) using 241 

either the parent soil from each location or a 1:1 peat:soil mix. Each growing media was 242 

represented by 5 pots per location and hosted 25 seeds per pot. The base of each pot was 243 

inserted into the ground (for stability and to encourage drainage / capillary movement of 244 

water between the pot and surrounding soil). Pots were watered at the same frequency as the 245 

highest rate of irrigation on the plots, i.e. every 15 days.  246 

 247 

2.5. Experiment 4. Establishment of 5-year-old trees in the field.  248 

Five-year-old trees previously grown-on at the OBG, seed were collected in April 2007 from 249 

Jabal Shams at 2,300-2,400 m asl, were transplanted to experimental field plots in each of 3 250 

altitudinal locations (see Exp. 3 above for locations and site preparation) in March 2014 251 

(Figure 1A), with 45 specimens being planted at each location. To help plants with their 252 

initial establishment, planting holes dug out from the soil were ‘back-filled’ with a medium 253 

comprising a 1:1 ratio of peat and parent soil; this helping roots to proliferate out from the 254 

established root ball they had previously been restricted to. After planting, the young trees 255 

were uniformly irrigated irrespective of altitude or designated treatment in an attempt to aid 256 

root establishment in the parent soil. The volume applied, however, was reduced 257 

progressively over time to encourage deeper rooting into the soil profile. Once plants were 258 

deemed to have become established with new root development into the parent soil (plants 259 

were gently pulled to ensure they were ‘secured’ to the ground) differential irrigation was 260 

imposed (November 2014). Treatments imposed were a higher irrigation regime (10 L 261 

applied every 15 days – Irrig.15d), or lower regime (10 L irrigation every 30 days – Irrig.30d) 262 

or a Control with no artificial irrigation and where plants were reliant on natural precipitation 263 

post establishment. At each of the three altitudes, trees were planted in 3 blocks with 5 264 

replications per water treatment. Plants were monitored for survival and growth until July 265 

2016. Physiological stress was determined by sampling foliage for chlorophyll fluorescence 266 

parameters at monthly intervals (data for Fv/Fm being presented). Chlorophyll fluorescence 267 

was measured on days with low cloud cover with a ‘pocket plant efficiency analyser’ , PEA 268 

(Hansatech Instrument, King’s Lynn, UK); leaves were dark adapted for 20 minutes with leaf 269 

clips before measurement. Soil moisture levels in plots were monitored throughout via 270 

capacitance soil moisture probes (Waterscout SM100, Spectrum Technology, Fort Worth, 271 

Texas, USA) and moisture conditions related to meteorological data from a weather station at 272 

each altitudinal site (WatchDog 2900ET, Spectrum Technologies, Fort Worth, Texas, USA). 273 

Moisture probes were installed vertically, 20 mm deep, around a sapling’s root ball. Data 274 

from the research sites were also correlated with longer-term climatic data from the Saiq 275 

Meteorological Station at 1993 m asl (N 23°04’26.58 and E 57°39’59.56); approximately 40 276 

km from the planting locations. 277 

 278 

2.6. Experiment 5. Establishment of 2-year-old trees in the field.  279 
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Seed used in this experiment were collected in May 2013 from Jabal Shams at 2,300-2,400 m 280 

asl. Procedures were similar to those of Experiment 4, with the exception that planting of 2-281 

year-old stock took place one year later (March 2015), with differential irrigation treatments 282 

commencing in November 2015 (ending July 2016). Planting was delayed by a year 283 

compared to 5-year-old specimens to allow the young trees to acquire sufficient biomass 284 

(Figure 1B) before transplanting; i.e. as 1-year-old stock in March 2014 plants were variable 285 

in size and some specimens were very small (< 100 mm high). These 2-year-old stock (2 L 286 

pots) were given a reduced volume of water (2 L on each occasion) compared to their older 287 

counterparts, due to their much reduced canopy size (Figure 1); the volume being applied 288 

being proportional to the water use ratios observed for the potted plants on the nursery site. 289 

As before, treatments imposed were a higher irrigation regime (2 L applied every 15 days – 290 

Irrig.15d), or lower regime (2 L irrigation every 30 days – Irrig.30d) or a Control with no 291 

artificial irrigation and where plants were reliant on natural precipitation post establishment. 292 

At each altitude, trees were planted in 3 blocks (adjacent to the 5-year-old blocks) with 5 293 

replications per water treatment.  294 

 295 

2.7. Data handing and statistics. 296 

Analysis of variance (ANOVA) was used to determine the significance of different 297 

experimental factors. Fisher’s protected least significant difference PLSD (Genstat) was used 298 

to denote significance between two means within multiple comparison post-hoc tests. If 299 

variance within data sets were non-homogenous, then data was transformed by square root, 300 

before commencing an ANOVA. Where data sets were non-parametric and ANOVA was not 301 

valid, then a Kruskal Wallis test was employed, with pairwise comparisons used to test 302 

significance between two means. Mean data are depicted with associated standard errors 303 

(S.E.), and letters denoting significant differences between means where appropriate.  304 

 305 

3. Results 306 

 307 

3.1. Experiment 1 The effect of population location (altitude) on seed production and 308 

viability. 309 

There was a significant difference in seed number per 100 cones between altitudes (P< 0.01). 310 

Trees at the High altitude produced significantly more seeds per 100 cones (approx. 462) than 311 

trees growing at Low (368) or Mid (358) altitudes (Table 1). The proportion of seeds 312 

damaged by insects was relatively small throughout (< 5%, Table 1) and a non-parametric, 313 

Kruskal-Wallis test, indicated no significant influence of altitude in the proportion of 314 

damaged seed (P= 0.83). There were no overall significant effects of altitude on percentage 315 

of viable seeds or seed weight (P= 0.1 and P = 0.06) (Table 1).  316 

 317 

3.2. Experiment 2. The effect of seed source (altitude), stratification and temperature 318 

during germination, on germination percentage and rate.  319 

Multi -factorial ANOVA indicated that germination was strongly influenced by altitude (P < 320 

0.01) and germination temperature (P < 0.01) but not stratification treatment (P= 0.20) 321 

(Figure 2); there were no significant interactions between factors (all P > 0.05). Seeds 322 

sourced from a High altitude had significantly higher germination percentage at 15oC than 323 

those sourced from Low and Mid altitudes (P< 0.01). With stratified seed derived from the 324 
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High altitude, 25oC suppressed germination significantly compared to the lower temperature 325 

of 15oC (Figure 2).  326 

Results indicated that there was no significant effect of altitude in mean germination rate (P= 327 

0.39), although the temperature seeds were exposed to during germination and pre-treatment 328 

were significant (P < 0.01, Figure 3). Seeds germinated under the lower temperature of 15°C, 329 

taking longer to germinate than those under 25°C and in both cases cold stratification delayed 330 

germination.  331 

 332 

3.3. Experiment 3. Establishment of Juniperus seravschanica plants through seed 333 

sowing in situ.  334 

No seeds germinated after either direct sowing in the ground or into pots. This was true of all 335 

3 altitudinal locations. Some, but not all field plots showed evidence of soil erosion (after 336 

periods of heavy precipitation) resulting in some seed being buried deeper than originally 337 

envisaged. There was no evidence of damage to the seeds from rodents or invertebrates.  338 

 339 

3.4. Experiment 4. Establishment of 5-year-old trees in the field. 340 

Tree survival of 5-year-old stock was high throughout with no significant differences 341 

observed between treatments (≥ 97% survival in all treatments and field sites, over the 21 342 

months of the study, data not shown). Plant height (Table 2), as assessed on transformed data 343 

was significantly affected by altitude (P< 0.01) and irrigation treatment (P< 0.05) but also by 344 

interactions (P< 0.05) between these two factors (Figure 4). These factors also influenced 345 

side branch growth (P< 0.01 for both), but in this case without significant interaction (P= 346 

0.27) (Table 2). Growth (height and branch increments) tended to be less at the High altitude 347 

(above 2500 m asl) than the Low altitude (Table 2, Figure 4). Irrigation at the Low altitude, 348 

however, further enhanced plant height (Figure 4) and branch growth (Table 2) significantly 349 

(P< 0.05). There was a positive effect of supplementary irrigation on branch growth at the 350 

Mid and High altitudes too (P< 0.05, Table 2) but there was no clear advantage, (i.e. non-351 

significant), in terms of plant height per se at these altitudes (Figure 4). 352 

Values for chlorophyll fluorescence Fv/Fm showed strong seasonal patterns, with most 353 

notable reductions associated with some treatments in mid-summer (selected data sets for 354 

2016 are depicted in Figure 5). For example, there were significant reductions in Fv/Fm 355 

during July 2016 based on altitude (P<0.01), with plants grown at the Mid and Low altitudes 356 

showing suppressed photosynthetic capacity (Figure 5). Irrigation had no overall effect on 357 

plant stress levels at each of the altitudes.  358 

Soil moisture levels throughout the experimental period were strongly associated with rainfall 359 

events (Figure 6), with greatest moisture retention being associated with Mid altitudinal 360 

location. Applying supplementary irrigation generally enhanced the moisture availability to 361 

plants, especially under Irrig.15d treatment (Figure 7), although actual recorded values could 362 

be low on occasions (e.g. December 2015). Irrigation was particularly important in 363 

maintaining higher moisture levels during the summer periods, e.g. July 2015 and July 2016 364 

(Figure 7). For example in July 2016, recorded moisture levels at the Low altitude plots were 365 

13.8 (Irrig.15d), 7.8 (Irrig.30d) and 4.2 m2 m-2 (Control).  366 

Meteorological data also tended to suggest that the High altitude plots experienced the lowest 367 

annual temperatures (data for maximum recorded temperatures for each altitude is depicted in 368 
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Figure 8, and comparison made to both the mean and actual maximum temperatures 369 

experience over the last two decades at the nearby Saiq Meteorological Station). This data 370 

indicates that the maximum monthly recorded temperatures tended to be lower at the High 371 

altitude than either the Mid or Low altitudes.  372 

 373 

3.5. Experiment 5. Establishment of 2-year-old trees in the field. 374 

Data for plant survival was non-parametric so a Kruskal-Wallis test was employed to 375 

determine significance levels. Altitude affected plant survival of 2-year old stock (P= 0.02, 376 

with mean values for 87% High, 63% Mid and 76% Low altitudes; the pairwise comparison 377 

showing a significant difference between High and Mid values. There was no overall 378 

significant effect (P= 0.52) associated with irrigation from Kruskal-Wallis, but restriction of 379 

the data to the Low altitude alone, showed that irrigation level here was significant (P= 0.05), 380 

with more frequent irrigation improving survival i.e. 60% for control, 73% for Irrig. 30d and 381 

93% for Irrig. 15d (Figure 9). Overall survival during the 16 months post-planting appeared 382 

to be favoured at High altitude, more variable at Mid altitude (note the relatively large S.E. 383 

values indicating plot differences) and strongly dependent on irrigation at the Low altitude. 384 

Branch extension was not measured on 2-year-old stock, due to the limited number of 385 

branches available per plant. There was no overall effect of altitude (P= 0.61) or irrigation 386 

(P= 0.32) on plant height extension (interaction P= 0.06) (Figure 10).  387 

Chlorophyll fluorescence values were generally lower throughout with 2-year-old plants 388 

(Figure 11) than 5-year-old plants (Figure 5). Values were significantly affected by altitude, 389 

but varied depending on season. Low altitude had higher values during winter and spring (P< 390 

0.01); whereas there were sharp reductions (P< 0.01) in values associated with the July 391 

readings for plants in the Low altitude (all values < 0.3) At this point, additional irrigation 392 

had no effect on relieving the stress being experienced by these plants. Values were greater 393 

for trees grown at High altitudes, although still below 0.7, which is often considered the 394 

threshold for when plants start experiencing stress (Fang-yuan and Guy, 2004). Of note was 395 

the fact that plants under the Irrig.15d regime at the High altitude had relatively low values 396 

compared to equivalent plants at other altitudes throughout the winter and spring periods, 397 

suggesting that these plants may have been experiencing other forms of abiotic stress (e.g. 398 

chilling), rather than just high temperature or water shortage.  399 

 400 

4. Discussion  401 

This research demonstrates that factors associated with altitude are influencing the viability 402 

of Juniperus seravschanica populations in the mountains of Oman. This confirms and re-403 

enforces previous observations on foliar die-back noted on mature trees and a lack of natural 404 

regeneration due to an absence of young trees and seedlings within the mature stands (Fisher 405 

and Gardner, 1995, Al Haddabi and Victor, 2016; MacLaren, 2016). The data presented here 406 

illustrates that trees grown at lower altitudes are producing less seed with reduced 407 

germination rates than seed derived from trees growing at a higher altitude. This has 408 

implications for the natural regeneration of tree stands at lower altitudes, but also is 409 

symptomatic of the health status of existing trees growing at these lower elevations in Oman. 410 

Such results are consistent with recent reports on other arid and semi-arid tree species. Here 411 

too, abiotic stress has been linked with negative effects on tree abundance and seed 412 

production, thus limiting new seedlings recruitment, e.g. Pinus ediuls in southwestern USA 413 
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(Redmond, et al., 2015), Moringa peregrine in the mountains around the Red Sea (Hegazy, et 414 

al. 2008) and J. procera and Olea europaea subsp. cuspidata in northern Ethiopia (Aynekulu, 415 

et al., 2011). 416 

The systematic approach taken here to observe plant development under semi-protected 417 

conditions confirms that loss of viability in some populations of J. seravschanica is climate 418 

related. Seed and tree material planted in the field was protected from human and livestock 419 

interference in these studies, thereby eliminating browsing pressure and biomass loss 420 

(collection of branches for fuel) as factors reducing the viability of these young trees. We 421 

therefore conclude that abiotic factors related to climatic conditions and perhaps regional 422 

climatic shifts are adding to the pressure on native populations of J. seravschanica.  423 

 424 

4.1. Environmental stress on young trees 425 

The ability to cope with these abiotic stress factors was influenced markedly by plant age, 426 

with older (5-year-old) pot-grown trees being more resilient and establishing better than 427 

younger, 2-year-old stock when planted out in the natural environment (‘field’). These 428 

plantings were carried out in different years (2014 for 5-year-old and 2015 for 2-year-old 429 

trees) and plants given different volumes of water (in proportion to their canopy sizes) so 430 

experience of stress factors may have varied slightly between the two age groups; hence some 431 

caution may be required in making direct comparisons. Nevertheless, the period after planting 432 

of the 5-year-old trees (Jan 2015-Jul 2015) was generally drier than the equivalent period 433 

after planting of the 2-year-old material (Jan 2016-Jul 2016; Figure 6), yet it was the older 5 434 

year old plants that established more successfully. Indeed, the 5-year-old plants had relatively 435 

high survival rates irrespective of altitudinal location or the irrigation regimes they were 436 

exposed to. Even plants that were not given any irrigation after initial establishment retained 437 

greater than 97% survival rates. In contrast, significant plant losses were experienced in 2-438 

year-old stock, especially when planted in the Mid altitude, or planted in the Low altitude and 439 

not provided with supplementary irrigation. The fact that survival improved for those young 440 

specimens grown at the Low altitude when supplementary irrigation was provided suggests 441 

strongly that moisture availability is a critical factor in improving tree viability, at least for 442 

the warmer, lower altitudes where evapo-transpirational demand may be greatest. This is re-443 

enforced by evidence from previous studies that least injury in the-lower altitude natural 444 

populations corresponds with more mesic soils, where drought may be less common 445 

(MacLaren, 2016). 446 

Growth was also enhanced in some cases when artificial irrigation was supplied to trees. At 447 

the Low altitude, supplementary irrigation increased tree height and side-branch extension of 448 

the 5-year-old stock. This is likely to result in a greater foliar canopy area, and hence greater 449 

capacity to generate photosynthates. This in turn will promote subsequent root growth and 450 

can encourage root proliferation deeper down the soil profile (Grossnickle, 2005). Thus the 451 

development of roots growing vertically downwards can capitalise on natural moisture 452 

reserves found deeper in the soil profile, and is a common survival strategy adopted by plants 453 

in arid environments (Jackson et al., 1996; Canadell et al., 1996; Peek et al., 2006). The risk 454 

of artificial irrigation, however, is that if only the upper profiles of the soil are wetted, then 455 

root proliferation may only occur at the surface (Fernández et al., 1991; Sokalska et al., 456 

2009), rendering the tree more susceptible to drought stress should the artificial supply of 457 

irrigation ever cease (Gilman et al., 2003; Cameron and Hitchmough, 2016). Regular 458 

irrigation also limits the capacity of the tree to condition itself against any subsequent severe 459 
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drought it might experience after irrigation is withdrawn. This is because acclimation to 460 

severe drought is itself elicited by exposure to drying soil, or short periods of moderate, sub-461 

lethal, water stress (Cameron et al., 2008). If irri gation is sufficient and regular, then plants 462 

may never experience the moderate levels of stress that naturally induce the acclimation 463 

response.  464 

Access to water, however, may not entirely explain viability of Juniperus seravschanica 465 

populations. The Mid altitude was associated with greater rainfall and higher soil moisture 466 

content than other locations, but still experienced significant loss of 2-year-old trees. At this 467 

altitude, however air temperatures tended to mirror those of the Low altitudes (i.e. trees 468 

experienced greater maximum temperatures than those at High altitude). This raises the 469 

hypothesis that heat stress is acting as an independent limiting factor at these Mid and Low 470 

altitudes, and future research should aim to verify this. Low Fv/Fm values during summer (< 471 

0.7) despite supplementary irrigation, provides some support for this argument. 472 

If excessive heat is inducing a secondary stress on plant material, then the implication for the 473 

long term viability of the J. seravschanica populations is not positive, at least for those 474 

located at the Mid and Low altitudes. Our data collected over the last three years, suggests 475 

that the high temperatures experienced during this period are typically less than those 476 

documented for nearby locations over the last two decades (Figure 8). It is unclear how the 477 

trees planted here would respond to the higher temperatures that can occur in the region, and 478 

which may become more frequent as climate change impacts are realised. Despite our finding 479 

that tree viability is improved considerably if older stock is field-planted and given 480 

supplementary irrigation during establishment, this does not take account of the fact that 481 

temperatures higher than those experienced over the three years of the study period may still 482 

limit their potential in future; especially as an increase in a mean maximum temperature of 483 

2°C between 2011 to 2040 is projected for this area (Al -Charaabi and Al-Yahyai, 2013). 484 

Indeed, the dieback observed in natural populations of Juniperus at lower elevations could be 485 

caused by high temperature stress. Current research is underway to examine these 486 

populations more closely to determine if trees growing in cooler, shadier locations are 487 

proving more resilient than those in open areas exposed to greater solar radiation, and that 488 

this is not due solely to moisture availability (MacLaren, 2016). The reality is that although 489 

the 5-year-old trees have established well, they have not yet experienced the very high 490 

thermal pressures that could be typical of the region in future. 491 

Although the key stresses identified by the research were due to water deficits and high 492 

temperatures in summer, there was also some evidence that lower growth rates and some 493 

relatively low Fv/Fm values (see Figure 11- Feb.2016 High and Mid altitudes) could relate to 494 

lower winter temperatures in these locations (data not shown). The Mid location, for example 495 

was surrounded by montane ridges and could trap cold air as it flowed down the slopes of the 496 

mountain. There was no evidence of long term or significant damage, however, associated 497 

with colder winter temperatures.  498 

Previous research suggests that greater moisture availability and cooler temperatures (and 499 

hence, in practice, longer growing periods in summer) favour the development of taller trees 500 

further up the mountain profiles (Al Haddabi and Victor, 2016). The highest study plots 501 

(2350 m asl) in the Al Haddabi and Victor (2016) survey, however, are equivalent to our Mid 502 

altitude treatment, and these authors did not determine tree growth at altitudes represented by 503 

our High treatment (i.e. at 2570 m asl). In this present study, however, we generally found the 504 

opposite trend, in that extension growth was less in those trees planted at higher altitudes. It 505 

should be noted of course that our timeframe was very short relative to the species entire 506 
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lifespan and caution is required in interpreting such short-term growth trends. Nevertheless, 507 

our growth data combined with the winter chlorophyll fluorescence results suggest that 508 

growth potential at the top of the mountains may be impaired by cold, as well as by drought 509 

and heat at the lower altitudes during summer. Other factors, however, cannot be eliminated 510 

from explaining the variations in growth between the plot sites in this study, including factors 511 

due to soil nutrient levels or the rapidity by which the young plants became established (i.e. 512 

the degree to which they experienced a transplant shock at the different sites). 513 

 514 

4.2. Environmental stress on seeds 515 

Abiotic stress may have affected the ability of seeds to germinate and grow in the natural 516 

environment. This could be through the direct influence of climatic factors in reducing seed 517 

number and viability, e.g. drought decreased the proportion of filled seed in J. thurifera 518 

(Mezquida et al., 2016) and higher temperatures decreased seed production by 40% in Pinus 519 

edulis (Redmond et al., 2012). There may also be indirect effects, such as stress reducing the 520 

canopy density of adjacent mature trees, thereby altering the micro-climatic conditions that 521 

normally favour seedling development. (Redmond et al., 2015). An attempt to re-generate 522 

tree populations via direct sowing of seed into the ground (at all three altitudes) was 523 

unsuccessful. This may have been due to a variety of reasons: poor viability (although 524 

batches of the same seeds had up to 22% germination under controlled conditions), abiotic 525 

stress in the field, including periodic water stress (despite regular irrigation in some 526 

treatments) but also paradoxically, over-wetting during heavy precipitation and the allied 527 

difficulty for the hypocotyls to break through soils that had become capped after rain (i.e. 528 

where a crust forms on the soil surface and this impedes the movement of moisture and air to 529 

the seed, but also induces a physical barrier to the developing shoot and leaves). Sowing 530 

seeds in peat / soil media in pots placed in the natural environment proved no more 531 

successful, however, although again this could relate to oscillations in moisture availability 532 

within the pots. In contrast to the failure to germinate seeds in the field per se, germinating 533 

seeds and growing-on seedlings in a nursery before transplanting out in the field was more 534 

successful. In controlled conditions within the nursery, germination percentage of seed was 535 

promoted by lower temperatures (15oC compared to 25oC) for seed collected at High altitude. 536 

This trend was less evident, however, for seed from the Low altitude, perhaps suggesting that 537 

seed derived from this warmer zone has some adaptation to higher temperatures during 538 

germination. 539 

Germinating seed on a nursery and raising seedlings under cultivation appeared to be a more 540 

effective approach to ensuring good numbers of young trees are made available to support 541 

existing populations. The procedures associated with protected cultivation, however, are 542 

likely to be more resource intensive in practice, especially in terms of labour, water, growing 543 

media and transport costs, but based on this research at least, they are a more viable way to 544 

re-establish tree populations in the wild.  545 

 546 

4.3. Procedures and recommendations to conserve J. seravschanica within Oman 547 

Collectively, our results support the hypothesis that the populations of J. seravschanica 548 

growing at the lower altitudinal ranges within the mountains of Oman are under stress, and 549 

that this stress is at least partially explained by climatic factors driving drier soils and higher 550 

temperatures. This is augmented by further pressure on tree populations (at all altitudes, but 551 
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again worst at the lower elevations) due to over-browsing by livestock and physical damage 552 

to trees through human activities. There was no evidence from this and allied studies to date 553 

that tree stocks are being impacted by plant pathogens per se, or regeneration limited by 554 

rodent activity or other pest species. Research is on-going with respect to the long-term 555 

viability of J. seravschanica and its associated ecosystem. Nevertheless, based on the 556 

research presented here and from recent literature, preliminary recommendations to conserve 557 

J. seravschanica in the mountains of Oman include: 558 

• Continue to minimise human and livestock activity in the remaining stands of J. 559 

seravschanica through effective fencing and sign-posting; priority being given to 560 

those trees currently growing in damper mesic zones (such as wadi or depression 561 

sites) or shaded areas.  562 

• Identify ‘superior’ trees growing in the wild which are demonstrating some degree of 563 

tolerance to water and heat stress, and harvest seeds from these on the basis that these 564 

may inherit some of these tolerance traits. 565 

• Re-introduce young trees through a cultivation programme based on nursery 566 

production, with a proportion of the trees being derived from parent trees designated 567 

as having superior stress tolerance. Plant older, larger trees (e.g. 5-year-old material) 568 

as these appear to establish better than younger stock. 569 

• Plant the young trees in a variety of sites and locations, but ensuring good numbers 570 

are planted in wadis, shaded north facing slopes, and within existing stands of mature 571 

trees (so called refugia sites, MacLaren, 2016).  572 

• Provide irrigation until young trees become established. A practical consequence of 573 

this is that irrigation needs to be managed to ensure trees are ‘weaned-off’ the 574 

artificial supplies of water. For example, progressively reducing the volume applied 575 

on each occasion, or increasing the periods between subsequent watering events.  576 

• Monitor the development of young trees across a range of contrasting sites and 577 

altitudes to help further identify potential problems or verify procedures that are 578 

aiding the recovery of the species.  579 

• Continue controlled studies to investigate more-fully heat stress and tolerance to it 580 

within J. seravschanica. Investigate the extent to which heat and water stress interact 581 

to affect the viability of young trees.  582 

• Establish additional protected sites for Juniper, particularly at high altitude.  583 

• Provide studies to assess the genetic status and variability of Juniperus trees to 584 

consider its viability in this geographically isolated location, and to avoid localised in-585 

breeding.  586 

 587 

4.4. Implications for the conservation and management of montane tree species within 588 

the context of a changing climate 589 

It is anticipated that information from this research will aid the practical conservation of J. 590 

seravschanica, but also highlights the influence of climate change on other montane plant 591 

species, and what practical measures should be considered in aiding their conservation. The 592 

research raises the controversial dilemma facing conservationists, in that some native plant 593 

populations may in the future only survive through active management (in this case, selecting 594 

stress-adapted superior progeny, growing trees in nurseries and irrigating them after 595 

planting). As well as the financial implications, this raises a range of ethical issues not least in 596 

that attempting to deal with anthropogenic climate change; humans will interfere with 597 

‘ecological processes’ such as natural vegetation succession through their desire to conserve 598 
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notable, iconic species. In the case of the Oman juniper, on the assumption it is sufficiently 599 

genetically distinct from other populations of J. seravschanica, then perhaps even more 600 

controversially the concept of assisted migration to other mountain ranges (out-with its 601 

natural distribution, e.g. western parts of the Zagros mountain range in Iran) where 602 

temperature and rainfall patterns are more conducive for survival should be considered. This 603 

species is unlikely to reach these areas through natural means, so an introductory programme 604 

would be required. The pros and cons of assisted migration are well documented (Ricciardi 605 

and Simberloff, 2009; Vitt et al., 2010; Williams and Dumroese, 2013; Koralewski et al., 606 

2015; Sansilvestri et al., 2015 ) and include ; the ability to conserve a plant species (and 607 

potentially a component of its linked ecosystem, as is the case with a keystone species such 608 

as J. seravschanica) balanced against the potential to introduce invasive alien plants to a new 609 

site, or damaging fauna or micro-organisms associated with the translocated species. Such 610 

factors can radically disrupt the ecosystem composition, development and functioning of the 611 

‘host’ site. So the potential impacts on the ecosystem processes and services of any host site, 612 

e.g. primary and secondary production, hydrology, nutrient cycles and existing food-webs 613 

need to be carefully considered before an assisted migration is undertaken. In light of this, we 614 

conclude that every attempt should be made to assist the retention of viable population of J. 615 

seravschanica in the mountains of Oman through the active management processes outlined 616 

here, whilst in the longer term evaluating whether assisted migration is appropriate / feasible 617 

for this species. Moreover, such active management processes are likely to aid the 618 

conservation of other montane tree species too, similarly under threat from increasingly arid 619 

soils and raised aerial temperatures. 620 

 621 

4.5. Conclusions 622 

This research demonstrates that abiotic stress, particularly drought stress and potentially heat 623 

stress affect the viability, growth potential and photochemical efficiency of young J. 624 

seravschanica trees in the field. Increases in these stress factors are compatible with the 625 

impacts of climate change in the region, with trends recorded here being demonstrated in 626 

other montane tree species (Allen et al., 2010). This is typified by a reduction in tree viability 627 

at lower altitudes and overall loss of habitat as tree populations shrink due to a lack of new 628 

land to colonise. Data here indicated that trees located at the Low altitudes experienced 629 

higher temperatures and presumably greater evapo-transpirational demand than those placed 630 

at the High altitude. Older pot-grown stock showed more resilience than younger trees, post 631 

transplanting. Within the current study, supplementary irrigation was required at the Low 632 

altitude to ensure the youngest (2-year-old) trees survived, although older specimens could 633 

survive without irrigation after the initial establishment phase. It is unclear, however, how 634 

such plants will tolerate more extreme moisture deficits and higher temperatures that could be 635 

experienced in future. It is prudent that current conservation efforts concentrate on reducing 636 

the anthropological impact on wild populations of J. seravschanica and that the wild 637 

populations are supplemented with young trees derived from nursery grown stock. The 638 

planting of these should be concentrated in the cooler and damper locations throughout the 639 

mountain landscape, as well as at suitable habitat at higher altitudes, where natural 640 

colonisation is slow or inhibited by other factors (for example soil capping or erosion 641 

restricting the establishment of seedlings). Longer term strategies for this, and indeed other 642 

montane species / sub-populations within the context of a changing climate, is to consider 643 

assisted migration to more conducive environments, despite the risks this brings.  644 
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Figure 1. Five-year-old (A - left) compared to 2-year-old (B - right) specimens of Juniperus 765 

seravschanica planted in the field. 766 

A      B 767 
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Figure 2. Germination percentage of seed collected from different altitudes (High, Mid and 782 

Low) with two pre-treatments (Control, Stratified) and germinated under two temperature 783 

regimes (15 and 25°C). Data are mean ± SE. Bars with different lowercase letters indicate 784 

significant effect of germination temperature at same altitude whereas uppercase letters 785 

indicate significant effect of seed source (altitude) at same pre-treatment and growing 786 

temperature. The effect of pre-treatment is not indicated due to a non-significant effect.  787 

 788 
  789 



20 

 

Figure 3. Germination rate of seed as affected by two pre-treatments (Control, Stratified) and 790 

growing temperature (15 and 25°C). Data is pooled from three altitudes and represents means 791 

± SE. Bars with different lowercase letters indicate significant effect of pre-treatment at same 792 

germination temperature whereas uppercase letters indicate significant effect of growing 793 

temperature.  794 
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Figure 4. Plant height increment (mm. data square root transformed) in 5-year-old trees 798 

planted at different altitudes (High, Mid and Low) and watered under different irrigation 799 

regimes (every 15 days = Irrig.15d, every 30 days = Irrig.30d and no artificial irrigation = 800 

Control). Data are mean ± SE (n=15). Bars with different lowercase letters indicate 801 

significant effect of irrigation regimes at same altitude whereas uppercase letters indicate 802 

significant effect in different altitudes at same water treatment. 803 
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Figure 5. Chlorophyll fluorescence values (Fv/Fm) of 5-year-old trees during winter 808 

(February 2016), spring (May 2016) and summer (July 2016) when grown at different 809 

altitudes (High, Mid and Low) and under different irrigation regimes (every 15 days = 810 

Irrig.15d, every 30 days = Irrig.30d and no artificial irrigation = Control). Data are mean ± 811 

SE (n=15). Bars with different letters indicate significant effect of altitudes at each irrigation 812 

treatment. 813 
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Figure 6. Rainfall events over time and soil moisture content (m2 m-2) in non-irrigated plots 815 

containing 5-year-old-trees. Plots located at Low, Mid and High altitudes.  816 
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Figure 7. Soil moisture (m2 m-2) availability over time in the plots containing 5-year-old trees. 820 

Plots located at Low, Mid and High altitudes and irrigated at every 15 days = Irrig.15d, every 821 

30 days = Irrig.30d or with no artificial irrigation = Control.  822 
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Figure 8. Maximum monthly temperatures recorded at the three altitudes (High, Mid and 826 

Low) and data compared to that from weather station (depicting mean maximum 827 

temperatures and peak recorded temperature for the last two decades).  828 
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Figure 9. Survival rate of 2-year-old trees planted at different altitudes (High, Mid and Low) 833 

and watered under different irrigation regimes (every 15 days = Irrig.15d, every 30 days = 834 

Irrig.30d and no artificial irrigation = Control). Data are mean ± SE (n=3). Bars with different 835 

letters represent significant pairwise differences resulted from Kruskal-Wallis test of 836 

irrigation treatment at Low altitude. 837 
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Figure 10. Plant height increment (mm) in 2-year-old trees planted at different altitudes 840 

(High, Mid and Low) and watered under different irrigation regimes (every 15 days = 841 

Irrig.15d, every 30 days = Irrig.30d and no artificial irrigation = Control). Data are mean ± 842 

SE (n=14).  843 
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Figure 11. Chlorophyll fluorescence values (Fv/Fm) of 2-year-old trees during winter 849 

(February 2016), spring (May 2016) and summer (July 2016) when grown at different 850 

altitudes (High, Mid and Low) and under different irrigation regimes (every 15 days = 851 

Irrig.15d, every 30 days = Irrig.30d and no artificial irrigation = Control). Data are mean ± 852 

SE (n=14). Bars with different letters indicate significant effect of altitudes at same water 853 

treatment. 854 
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Table 1. Total seed number, percentage insect damaged and filled (viable) seed per 100 857 

cones; and fresh weight of 50 seeds from Juniperus cones collected from three different 858 

altitudes (High, Mid and Low). Data are mean ± SE (n=10). Different letters indicate 859 

significant effect of seed source (altitude).  860 

 Seed number / 
100 cones 

Insect 
damaged seed 
(%) 

Filled (viable) 
seed (%) 

Fresh weight / 
50 seeds (g) 

     
High altitude 462±16.4A 4.6±2.0* 15.3±1.8* 0.70±0.07* 
Mid altitude 358±23.2B 2.6±0.5* 13.3±2.1* 0.88±0.05* 
Low altitude 368±16.1B 4.9±1.8* 9.5±1.7* 0.89±0.05* 
     
* no multiple comparison was applied due to non-significant effect.  861 
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Table 2. Growth increments (plant height and branch extension [mm]) in 5- year-old trees 865 

planted at different altitudes (High, Mid and Low) and watered under different irrigation 866 

regimes (every 15 days = Irrig.15d, every 30 days = Irrig.30d and no artificial irrigation = 867 

Control). Data are mean ± SE (n=15). Lower-case letter indicates effect of irrigation 868 

treatment within altitude and upper-case letter indicates differences between altitudes. 869 

  Growth increment (mm) 
 Altitude Irrig.15d Irrig.30d Control 
     
Plant height*  High 24±1.7 25±2.0 24±2.6 
 Mid 34±3.7 45±7.5 38±4.3 
 Low 78±20.1 78±16.3 37±6.0 
     
Branch length High 23±2.5aA 19±1.3abA 15±1.1bA 
 Mid 29±2.7aB 29±2.7aB 22±1.5bB 
 Low 35±4.5aC 39±3.8aC 23±3.0bB 
     
*Significance tests performed on transformed data for plant height.  870 
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