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Abstract  

Post-combustion CO2 capture (PCC) based on chemical absorption is one of the strategic 

technologies identified to reduce emission of greenhouse gases from various power plants. 

However, PCC based on chemical absorption incurs serious energy penalty due to the use of 

energy for solvent regeneration. Reducing the energy/exergy use in this process can reduce 

energy penalties. It is also important to increase the efficiency of the CO2 capture system. This 

study focuses on: steady state simulation of a closed-loop PCC plant integrated with 

supercritical coal-fired power plant (SCPP); conventional and advanced exergy analyses of the 

PCC; and case studies on strategies to reduce exergy destruction in the system components. 

The conventional exergy analysis evaluates the amount and location of exergy destruction 

within the whole system. The advanced exergetic analysis estimates the sources of the exergy 

destruction in individual component or the whole system and the potential for reducing it. The 

results show that the energy consumption and the efficiency of the PCC process can be 

improved by recovering the avoidable exergy destroyed in the system components. This is 

important because for every 1% reduction in the energy required for capture, costs can be 

lowered to between 0.7 - 1%. 

Keywords: Post-combustion CO2 capture; Chemical Absorption, Conventional Exergy Analysis; Advanced Exergy 
Analysis; Steady State simulation 

 

 

 

 

 

 



Nomenclature 

Symbol Description Units ࢥሶ ሶࢥ Exergy of component n MW  ሶࢥ Fuel Exergy of component n MW ǡࡲ ሶࢥ Product Exergy of component n MW ǡࡼ ሶࢥ Exergy destruction of component n MW ǡࡰ ࢛ǡࡰ  Unavoidable exergy destruction of n MW ࢥሶ ࢜ࢇǡࡰ  Avoidable exergy destruction of n MW ࢥሶ ࢋǡࡰ  Endogenous exergy destruction of n MW ࢥሶ ࢞ࢋǡࡰ  Exogenous exergy destruction of n MW ࢥሶ ሶࢥ Avoidable exogenous exergy destruction of n MW ࢞ࢋǡ࢜ࢇǡࡰ ሶࢥ Unavoidable exogenous exergy destruction of n MW ࢞ࢋǡ࢛ǡࡰ ሶࢥ Avoidable endogenous exergy destruction of n MW  ࢋǡ࢜ࢇǡࡰ  - Mole fraction ࢄ Heat flow J/s ࡽ - Exergy loss ratio ࢟ Temperature difference oC ࢀࢤ Unavoidable endogenous exergy destruction of n MW  ࢋǡ࢛ǡࡰ
Greek Symbol  ઽሶ  Exergetic efficiency % 
Subscript  
n Number of components  
F Fuel  
L Loss  
min minimum  
P product   
isent isentropic  ࡰ Component i in the distillate   Component i in the bottom  ࢙ࢇࡳ Component i in the gas phase   ࡰࡽࡸ Component i in the liquid phase  ࡲ െ ࡲ  Bottom and feed temperature difference ࢀDistillate and feed temperature difference  ο ࡰࢀDifference between the feed and the distillate  ο ࡰ െ   Component i in the liquid feed ࢌࡸ  Difference between the feed and the bottom 
Superscripts   ࡲ moles of component i in the feed  ࡰ moles of component i in the distillate   moles of component i in the bottom  ࢌࡸ moles of component i in the liquid feed  ࡸ moles of component i in the liquid phase  ࢌࡳ moles of component i in the gas feed  ࡳ moles of component i in the gas phase  
   
Acronyms  
SCPP Supercritical Coal-fired Power Plant  



LVR Lean Vapour Recompression  
AIC Absorber Inter-Cooling  
SF Split-Flow  
SIH Stripper Inter-Heating  
IAPWS International Association for the Properties of water and steam 
R Real   
U Unavoidable  
FGD Flue gas desulphurization  
HHV High heating value  
TH Theoretical   

 

1 Introduction 

1.1 Background 

CO2 is the largest and most important anthropogenic greenhouse gas (GHG) [1]. With growing 

concerns over the increasing atmospheric concentration of anthropogenic greenhouse gases, 

effective CO2 emission abatement strategies are required to combat this trend [2].  Several 

promising technologies have been investigated to reduce CO2 emission from the use of fossil 

fuels [2–4]. Post-combustion CO2 capture (PCC) is one of the strategic technologies identified 

to reduce emission of greenhouse gases in existing power plant [2]. PCC based on chemical 

absorption of monoethanolamine (MEA) is the most matured and preferred technology 

for capturing CO2 from the flue gases in existing power plant.  

Integrating PCC with Supercritical coal-fired power plant (SCPP) incurs a great deal of energy 

penalty. Improving the rational efficiency, reducing energy penalty and the costs of CO2 

capture can be achieved by reducing the irreversibility in the system. The different types of 

irreversibility in the system can be investigated by performing exergy analysis. A detailed 

exergy destruction analysis is performed in this study, both for the absorber and the desorber 

columns of the PCC process integrated to an SCPP. The main sources of exergy destruction in 

the absorber and stripper include: (i) mass transfer between phases (ii) heat transfer in reboiler 

and condenser for stripper (iii) heat transfer inside the columns (iv) heat losses through the 

surfaces (vi) heat of the reaction in the absorber etc. [5]. Exergy analyses can be used to identify 

the losses associated with this system, investigate strategies for improvement, and reduce the 

penalties due to the capture process. The analyses also allow for a better understanding of the 

exergy destruction due to a component’s own inefficiency (i.e. conventional exergy analysis) 

and/or due to the other components’ inefficiencies (advanced exergy analysis).  

 
 



1.2 Review of Exergy analysis of Post Combustion CO2 Capture 

Conventional exergy analysis of CO2 capture systems has been investigated in several studies. 

Geuzebroek et al [6], Amrollahi et al [7] and Olaleye et al [8] carry out conventional exergy 

analysis of MEA-Based PCC with chemical absorption, while exergy analysis of chilled 

ammonia process has also been studied by Valenti et al [10]. Table 1 shows a summary of 

some important researches on exergy analysis of standalone CO2 capture and exergy analysis 

of power plant integrated with CO2 capture. Advanced exergy analysis of post combustion CO2 

capture using chemical absorption integrated with power plant has not been investigated. This 

study intends to investigate the impact of advanced exergetic analysis of a capture plant 

integrated with SCPP to the overall system design improvement and energy penalty. 

Table 1: Review of Exergy Analysis of Power Plant with CO2 Capture 

Authors  Issues Contributions 
Geuzebroek et al 
[6] 
 
 
Valenti et al [10] 
 
 
 
 
Lara et al [11] 

MEA-based post 
combustion CO2 removal 
 
Chilled Ammonia-based 
CO2 Capture  
 
Comparative study of 
different CO2 capture 
systems’ exergetic losses  

Exergy Analysis of 
standalone CO2 
Capture Processes 

Kunze et al, [12] 
 
 
 
Hagi et al [13] 
 
 
 
Romeo et al [14] 
 
 
 
Amrollahi et al 
[7] 
 
 
 

Reduction of exergy loss 
of IGCC plant with CO2 
capture 
 
Exergy analysis of oxy-
fuel power plant through 
heat integration method 
 
 
Optimization of coal-fired 
plant with calcium 
looping CO2 capture via 
exergy analysis & heat 
integration  
 

Exergy Analysis of 
power plant 
integrated with CO2 
Capture 



 
Olaleye et al [8] 

Natural gas-fired power 
plant with post-
combustion CO2 capture 
 
Exergy analysis of 
supercritical coal-fired 
power plant integrated 
with post combustion 
CO2 capture 

 

1.3 Aim of this study and its novel contribution 

Conventional exergy analysis of PCC based on chemical absorption integrated with SCPP 

system was presented in Olaleye et al [8]. The study show that the boiler (~69%), the stripper 

& the absorber (~24%) have the largest exergy destruction while the turbine (~5%) shows very 

small exergy destruction [8]. However, the study in [8] does not include qualitatively the 

sources and potential for improvement of the exergy destruction in the PCC components.  

This current work is largely based on the thesis of Olaleye [9]. It focuses on addressing the 

limitations in [8] by performing advanced exergy analysis of MEA-based PCC with chemical 

absorption integrated with SCPP. Sensitivity analysis and several strategies/configurations for 

reducing the local exergy destructions from the absorbers and strippers in MEA-based PCC 

system were also considered. 

1.4 MEA-based PCC 

Solvent-based PCC is one of the strategic technologies identified to reduce emission of 

greenhouse gases in existing power plant [2]. PCC based on chemical absorption of 

monoethanolamine (MEA) is the most matured and preferred technology for CO2 capture from 

the flue gases in existing power plant. In this study, experimental data from a CO2 capture pilot 

facility is used for validation of the model.  

1.4.1 Chemistry of the MEA-H2O-CO2 System 

The solution chemistry for CO2 absorption with MEA includes water dissociation, CO2 

hydrolysis, bicarbonate dissociation, carbamate hydrolysis, and MEA protonation [8] thus: 

 2H2O ļ H3O+ + OH-               (1) 

 CO2 + 2H2O ļ HCO3
- + H3O+  (2) 

 HCO3
- + H2O ļ HCO3

2-+ H3O+  (3) 

 MEACOO- + H2O ļ MEA + HCO3
-             (4) 



 MEAH+ + H2O ļ MEA + H3O+   (5) 

In addition to the thermodynamic properties, the kinetics for carbamate formation (6 and 7) 

and the reaction for bicarbonate formation (8 and 9) were obtained from literature. Reaction 

rates are solved by power law expressions in Aspen Plus®. The equilibrium reactions (1–5) are 

modelled using data available in Aspen Plus®. 

 MEA + CO2 + H2O ĺ MEACOO- + H3O+    (6) 

 MEACOO- + H3O+ ĺ MEA + CO2 + H2O   (7) 

 CO2 + OH- ĺ HCO3
-                              (8) 

 HCO3
- ĺ CO2 + OH-          (9) 

2 Steady State Simulation 

2.1 Process Simulation – Reference Case 

Simulation of the SCPP and the carbon capture process requires the thermodynamic properties 

of the systems’ components to be properly defined for accurate representation of the reference 

case. Three property methods are used in the PCC simulation: Electrolyte NRTL for the 

electrolytes components, Ideal gas equation for air and flue gases, and the STEAMNBS steam 

table (which contains the IAPWS-F97 formulation for property of water and steam) for water 

and steam. The details of the Aspen Plus® process simulation and simulation basis for the SCPP 

and the PCC have been presented in Olaleye et al. [8]. Table 2 shows the design parameters of 

the PCC unit used in the simulation. The flue gas flowrate (603.4 kg/s) corresponds to emission 

from a 580 MWe Greenfield SCPP with flue gas desulphurisation (FGD) as described in 

Woods et al. [14]. Figure 1 is the flowsheet of the Aspen Plus® simulation of the PCC system.       

         Table 2: Design Parameters for the PCC unit [8] 

Description  Value 
Flue gas mass flow rate (kg/s) 603.4 
Flue gas composition (wt.% CO2) 0.2135 
Flue gas composition (wt.% N2) 0.7352 
Flue gas composition (wt.% H2O) 0.0513 
CO2 Capture level (%) 90.0 
flowrate of CO2 captured (kg/s) 128.83 
Required MEA flowrate (kg/s) 828.193 
Lean solvent flow rate (kg/s) 2967.9 
Rich solvent flow rate (kg/s) 3040.2 
Lean MEA mass fraction (wt. %) 30.48 
Lean loading (mol CO2/mol MEA) 0.29 



 
Figure 1: Simulation of MEA-based PCC process in Aspen Plus® 

 

 

 

3 Conventional and Advanced Exergy Analysis 

Exergy is the total useful work potential or available energy of a system, a stream of matter 

and/or heat interaction using the state of the environment as the datum [16]. Conventional 

exergy analysis identifies the location, magnitude, and sources of thermodynamic 

inefficiencies or irreversibility in a thermal system. The advanced exergy analysis on the other 

hand, evaluates the sources of these thermodynamic inefficiencies and the potential for 

improvement. Details of the theory used in developing the conventional exergy analysis in this 

work has already been describe in Olaleye et al [8].  

3.1 Conventional Exergy Analysis of SCPP-PCC Components 

In the MEA-based CO2 absorption process, the greater part of the irreversibility in the absorber 

(excessive driving force) is in the middle and bottom parts of the column [17]. Also, an analysis 

of the equilibrium and operating lines of the stripper shows that equilibrium can be reached at 

only one point of a stripper of conventional design (with a single feed of spent absorbent 

entering the top), even if it were of infinite height [17]. Thus, the driving force at other points 

in the stripper can never approach zero, resulting in excessive expenditure of exergy. These led 

to series of modifications to the conventional flowsheet for MEA-based PCC unit. 

Modifications to the conventional absorption and stripping sections of the MEA-Based PCC 

process has been studied widely in recent years [18, 19, 20, 21, 22]. 

 
The absorbers and strippers contribute the largest share of total exergy destruction in PCC 

system [8]. The main sources of exergy destruction in the absorber and stripper include: (i) 



mass transfer between phases (ii) heat transfer in reboiler and condenser for stripper (iii) heat 

transfer inside the columns (iv) heat losses through the surfaces (vi) heat of the reaction etc. 

[5]. The exergy destruction due to mass transfer in the columns is expressed in terms of the 

mixing exergy due to the change in concentration of the substances [5]. Table 3 shows the 

equations used to estimate the exergy destruction in the absorber and stripper. 

3.1.1 Absorber 

The local exergy destruction in the PCC absorber column is calculated based on the assumption 

that majority of the exergy destroyed is due to the absorption heat of reaction, the exergy 

destruction due to mass transfer in the column (accounted for by estimating the changes in 

concentration driving force), and due to the heat loss through the column wall (see Table 3).  

3.1.2 Stripper 

The local exergy destruction in the stripper is made up of the destructions due to the heat 

transfers in the reboiler and the condenser, heat flow through the column, mass transfer 

between the liquid and vapour streams, and heat losses through the column wall.  

3.1.3 SCPP integrated with PCC 

The integrated SCPP-PCC model described in [8] is used to estimate the exergetic performance 

of the entire system. The overall exergy destruction, the exergetic efficiency, and the energy 

penalties in the integrated system is calculated from the exergy properties set described in 

section 3. The exergy flows into and out of each stream in the SCPP-PCC system is first 

obtained from the Aspen Plus® simulation; then the exergy destruction and the exergetic 

efficiency for each component is then estimated in Microsoft Excel®. Further details can be 

found in [8]. 

 

 



Table 3: Equation for Distribution of Exergy Destruction in Absorber and Stripper  

Driving Forces Stripper [5] Absorber 

Mass transfer due to 
mixing liquid and 
vapour streams 

ሶೌೞೞ̴ೝೌೞೝ߃  ൌ െ൫ ߃ሶௗ௦௧௧  ሶ௧௧൯߃    ሶௗ ൌ߃ ܴ ܶሾlnሺෑ ൫ܺிி൯ሺܺ כ  Xሻ
ୀଵ ሻሿ  ߃ሶೌೞೞ̴ೝ ൌ െ൫ ߃ሶீ  ሶ൯߃    ሶீ߃  ሶ ൌ߃ ܴ ܶሾlnሺෑ ൫ܺீீ כ ܺ൯ሺܺீ௦ீ כ  Xொሻ

ୀଵ ሻሿ 
Heat flow (transfer) 
through the column 

ሶೌǤೝೌೞೝ߃  ൌ ሶο்߃  ሶο்߃ ሶο்߃ ൌ ο݄ிି ቆͳ െ  ܶܶிିቇ  ǡ ሶο்߃ ൌ ο݄ிି ቆͳ െ ܶܶிିቇ 

Log mean temperature, ܶ ൌ ்ି்୪୬   

ሶೌǤೝೌೞೝ߃  ൌ ሶο̴்௧߃ ሶο்௧߃ ൌ ܳோ௧ ቆͳ െ ܶܶቇ 

Log mean temperature, ܶ ൌ ்ಽି்ಽ୪୬ ಽಽ  

Heat transfer in 
Condenser  ߃ሶ ൌ ܳ ൬ͳ െ ܶܶ௦௧௧൰ 

 

 
– 

Heat transfer in 
Reboiler  ߃ሶ ൌ ܳோ ൬ͳ െ  ܶܶ௧௧൰ 

 

 
– 

Heat losses through the 
column wall  ߃ሶ ൌ ܳ௦௦ ൬ͳ െ  ܶܶ௩൰ 

ܳ௦௦ ൌ ο ܶ௩σ ܴ௧ ൌ ۈۈۉ
ܶ ۇ െ ܶln ܮߨʹ݇௪ݎଵݎ  ln ܮߨଵʹ݇ݎݎ  ͳʹ݄ۋۋیܮߨ

ۊ
 

 

ሶ߃  ൌ ܳ௦௦ ൬ͳ െ  ܶܶ௩൰ 

ܳ௦௦ ൌ ο ܶ௩σ ܴ௧ ൌ ۈۈۉ
ܶ ۇ െ ܶln ܮߨʹ݇௪ݎଵݎ  ln ܮߨଵʹ݇ݎݎ  ͳʹ݄ۋۋیܮߨ

ۊ
 

 
  



3.2 Advanced Exergy Analysis of SCPP-PCC Components  

An advanced exergy analysis evaluates the interaction among components of a system and the 

real potential for improving the components or the overall system [23]. It can provide extra 

information to the conventional analysis for design improvement and operation of the SCPP–

PCC integrated system. In this study, the advanced exergy analysis was applied to reveal the 

sources (i.e. endogenous or exogenous) and the potential for reduction (i.e. avoidable or 

unavoidable) of the exergy destruction in the SCPP-PCC components. The mechanisms of the 

splitting of the exergy destruction of the SCPP components based on its sources and potential 

for reduction are detailed in Olaleye et al [8]. Section 3.2.1 presents the assumptions for 

splitting of the MEA-based PCC components. 

3.2.1 Assumptions for Splitting Exergy destruction in the PCC Components 
For splitting the exergy destruction in the PCC system into exogenous and endogenous parts, 

the assumption for theoretical (TH) conditions for different components is:  ߃ሶ ൌ Ͳ  or ߃ሶ ൌ݉݅݊. For the rich and lean MEA pumps and the flue gas blower, the isentropic efficiency 

 should be 100%. As for the heat exchanger, both (ߟ) and mechanical efficiency (௦௧ߟ)

pressure drops (ȟܲ) and minimum temperature difference at the pinch point (ȟ ܶ) should 

equal zero. For the absorber and stripper, the calculation of endogenous exergy destruction 

represents a problem because no ideal condition or theoretical conditions can be defined for 

the reaction process. In this case, the exergy destruction in the absorber is estimated from the 

minimum allowable liquid to gas ratio (L/G)min that corresponds to the least  or zero exergy 

destruction (i.e. ߃ሶ ൌ ݉݅݊ or  ߃ሶ ൌ Ͳ) at 90% capture level.   In the stripper, all the exergy 

destruction will be assumed endogenous, with the change in exergy destruction in the other 

components (i.e. the preceding and succeeding components) accounted for in the entire PCC 

system.   

For the unavoidable conditions (UN), the best performance characteristics is derived based on 

the understanding and practical experience of the designer. In this study, the unavoidable 

conditions are selected arbitrarily based on limitations of technology such as the isentropic 

efficiency (ߟ௦௧) of between 96-98%, and mechanical efficiency (ߟ) of 100% for the 

blower and pumps. For the lean/rich MEA heat exchanger and the Trim-Cooler, the minimum 

approach temperature difference (ȟ ܶ) should not be equal to zero but based on the 

limitations of technology [24]. For the absorbers and strippers, since the exergy destruction is 

due to irreversible processes of heat & mass transfer, chemical reaction, and the mixing— 

which is directly related to entropy generation; the (UN) is selected based on the lowest 



meaningful value of temperature and concentration that provides the minimal irreversibility 

(i.e. ߃ሶ ൌ ݉݅݊). The calculations for advanced exergy analysis are conducted using standalone 

Aspen Plus® simulations for individual components and MS-Excel worksheet is used for the 

estimation. 

 

4 Results and discussions 

A detailed discussion on the conventional exergy analysis of SCPP integrated with PCC based 

on the spatial distribution of exergy destruction in the SCPP has already been presented in [8]. 

Table 4 shows an extract summary of the exergy destroyed, the exergetic efficiency from 

individual components of the PCC unit from [8]. The discussion in the present study will focus 

more on detail exergetic analysis of the PCC process.  

 4.1 Conventional Exergy Analysis of MEA-based PCC Process 

In the MEA-based PCC system, a larger part of the exergy destruction is associated with the 

absorber and stripper columns. The exergy destruction in the columns is largely due to effect 

of driving forces (i.e. simultaneous heat and mass transfers, heat transfers in the stripper 

reboiler and condenser, and heat loss through the column metal body) in the columns affect the 

overall exergy destruction in the system. In this study, the effect of each driving forces to 

overall column exergy destruction obtained from the Aspen Plus® simulation was estimated 

using the equations described in Ashrafizadeh et al [5] as summarised in Table 3. 

 4.1.1 Stripper 

Figure 2(a) shows the spatial distribution of exergy destruction in the stripper and the absorber 

respectively in relation to the driving forces. The results show that majority of exergy destroyed 

in the stripper is due to the reboiler (~57%), the condenser (30%) and the mass transfer between 

phases (8.4%). Exergy destruction due to heat loss to the environment is negligible (~1.6%) 

due to adequate insulation of the column.  

   

mass_tfr
8.39%

reboiler
56.51%

condenser
29.58%

heat_loss
1.55%heat_trf

3.97%

Distribution of Exergy Distruction in the Stripper

mass_tfr

reboiler

condenser

heat_loss

heat_trf

mass_tfr
42.80%

heat_loss
3.01%

heat_rxn
54.19%

Distribution of Exergy Destruction in the 
Absorber

mass_tfr

heat_loss

heat_rxn



                          (a)                              (b) 
Figure 2: Spatial Distribution of Exergy destruction in the (a) Stripper (b) Absorber 

Table 4: Conventional Exergy Analysis of MEA-based PCC [8] 

Components EF,n 

(MW) 
EP,n  

(MW) 
ED,n      

(MW) 
yD,n   

(%) 
οn        

(%) 
FGD Unit    
BGS Filter 41.39 40.83 0.56 0.04 98.65 
ID-FAN 37.91 34.43 3.48 0.24 90.82 
Desulphurizer 42.62 36.95 5.67 0.40 86.70 
MEA-Based PCC Unit    

FG-Cooler 70.19 36.82 33.37 2.33 52.46 
BLOWER 50.08 20.06 30.02 2.10 40.06 
ABSRBR 96.2 41.52 54.68 3.82 44.55 
DESRBR 235.64 153.57 82.07 5.74 65.17 
PUMP 11.89 11.63 0.26 0.02 97.81 
T-COOLER 36.82 30.89 5.93 0.41 83.89 
MHEX 48.81 36.83 11.98 0.84 75.46 
Loss (MEA)   5.15 0.36  

 

4.1.2 Absorber  

In the absorber, majority of the exergy destruction (~54%) is due to heat transfer through the 

exothermic absorption reaction. The mass transfer in the column (i.e. concentration gradient) 

also accounts for about 43%, while the heat loss accounts for ~2%. Figure 2(b) shows the 

spatial distribution of exergy destruction in the absorber. 

This implies that effort to reduce the exergy destruction in the columns should be focused 

towards principles/strategies that reduces energy consumption in the reboiler (for distillation 

column), exothermic heat of reaction (for the absorption column), and the mass transfer driving 

forces in both. 

 

 

4.1.3 The Closed loop MEA-based PCC System 

 Table 4 shows the exergy destruction and efficiency of the closed loop MEA-based PCC 

system. Figure 3 illustrates spatial distribution of the exergy destruction in the closed loop PCC 

systems [8]. The figure shows that the absorber (26%) and the desorber (36%) are the main 

sources of exergy destruction in the PCC. The feed cooler (18%) and the blower (16.5%) are 

also contributed strongly. The total exergy destruction is about 203 MW (1.58 MJ/kg CO2.). 

Process equipment such as the pump, and the solvent cooler are minor contributors to the 



exergy destruction. Using the chemical exergy of MEA in the liquid phase of 1,536 kJ/mol [6], 

the exergy loss due to the consumption of MEA was included in the overall exergy destruction.  

Loss of 5.15 MW (0.04 MJ/kg CO2) amounting to about 2.3 % of total exergy destroyed in the 

CO2 capture process was estimated.  

 
Figure 3: Distribution of Exergy Destruction in the closed loop PCC [8] 

 

4.2 Advanced Exergy Analysis 

4.2.1 Endogenous and Exogenous Exergy Destruction 

Table 5 shows the distribution of the sources (i.e. endogenous or exogenous) and the potential 

for improvement (i.e. avoidable or unavoidable) of the conventional PCC process. Figures 4(a) 

and 4(b) reveal that most of the exergy destruction in the PCC components is endogenous (i.e. 

due to the irreversibility in the components themselves). The stripper and absorber have largest 

absolute endogenous exergy destruction of about 75.5 MW and 50 MW respectively. Hence, 

their performances will be significantly affected by improving the exergy destructions within 

the components themselves. However, the potential for improvement is governed by the 

avoidability or unavoidability of the exergy destroyed. 

       

                         (a)               (b) 

Figure 4: Endogenous and Exogenous Exergy Destruction in the PCC 
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4.2.1 Avoidable and Unavoidable Exergy Destruction 

Figure 5(a) shows that majority of the exergy destruction within the PCC components is 

unavoidable (70%). However, the ratio of the avoidable part of the exergy destruction differs 

considerably from components to components. For the stripper, about 17% (13.83MW) of the 

overall exergy destroyed within it is avoidable (Figure 5(b)).  

The result also reveals that about 27% (16.23MW) of the exergy destructions in the absorber 

are avoidable.  In the heat exchanger, the blower, and the cooler, the avoidable exergy 

destroyed are 41% (5.01MW), 63% (5.01MW), and 65% (13.02MW) respectively as shown in 

Figure 5(b). It is important to know the sources (exogenous or endogenous) of the avoidable 

exergy destructions in the components. This will help focus attention on reducing the avoidable 

exergy destruction of a component based on its source. 

     
      (a)                 (b) 

Figure 5: Avoidable and Unavoidable Exergy Destruction in the PCC 
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Table 5:  Selected results of advanced exergy analysis of MEA-Based PCC  

Components ET,n
F,tot ET

D,n ER
D,n Eun

D,n Eav
D,n Een

D,n Eex
D,n Een

D,n   Eex
D,n   

                  Eun,en
D,n Eav,en

D,n Eav,ex
D,n Eun,ex

D,n 

FGD Unit            
BGS Filter 1407.25 0.38 0.62 0.41 0.21 0.56 0.06 0.48 0.08 0.13 -0.07 

ID-FAN  1405.90 0.00 4.21 2.86 1.35 3.67 0.54 2.87 0.80 0.55 -0.01 

Desulphurizer 1403.98 2.86 5.81 4.63 1.18 4.43 1.38 2.96 1.47 -0.29 1.67 

Conventional MEA-Based PCC Unit 
FG-Cooler 1406.34 22.84 33.37 20.35 13.02 22.84 10.53 12.62 10.22 2.80 7.73 

BLOWER 1405.10 22.51 30.02 11.12 18.90 22.51 7.51 9.79 12.72 6.18 1.33 

ABSRBR 1394.29 59.83 59.83 43.60 16.23 50.00 9.83 37.45 12.55 3.68 6.15 

DESRBR 1385.29 82.07 82.07 68.25 13.82 75.50 6.57 61.49 14.01 -0.19 6.76 

PUMP 1404.31 0.097 0.26 0.14 0.12 0.10 0.16 0.00 0.10 0.02 0.14 

T-COOLER 1406.78 0.41 5.93 5.56 0.37 0.41 5.52 0.07 0.33 0.03 5.49 

MHEX 1405.86 4.66 11.98 6.98 5.00 4.66 7.32 0.88 3.78 1.23 6.09 

  



 

4.2.3 Avoidable and Unavoidable Exogenous/Endogenous Exergy Destruction 

The real potential for improving a component or system is not fully revealed by its total exergy 

destruction, the sources or the potential for improvement alone; but by understanding the source 

of its avoidable part. As shown in Figure 6 for the conventional PCC, most of the avoidable 

exergy destructions within stripper (98%), the absorber (77%), the blower (67%), the cooler 

(78%) and the heat exchangers (65%) respectively are endogenous; hence, the improvement 

measures for these components should be concentrated on the components themselves. 

 

 
Figure 6: Avoidable and Unavoidable Endo/Exogenous Exergy Destruction in Conventional 

PCC  

5 Case Studies on Improving Exergy Destruction in PCC Integrated with SCPP 
 
5.1 Simulation of the Case Studies 

The results of the analyses of the energy consumption of the CO2 capture system and the overall 

exergy destruction in the integrated system presented in section 4 necessitated the development 

of several variations of the conventional PCC system to reduce the amount of exergy 

destruction and thereby improving its associated energy penalties. In this study, seven cases 

were compared; Case 1: SCPP with AIC, Case 2: SCPP with SF, Case 3: SCPP with (AIC + 

SF), Case 4: SCPP with SIH, Case 5: SCPP with (SIH + AIC), Case 6: SCPP with LVR, Case 

7: SCPP with (LVR+AIC). Case 1, Case 2 and Case 3 have been detailed in previous 

publication [8], and only a summary of the results is presented alongside Case 4 to Case 7. The 

parameters shown in Table 6 were kept constant for all the case studies for consistent 

comparison. 
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Table 6: Input Parameters fixed for the PCC Case Studies 

Parameter  Data 
MEA Concentrations (wt. %) 30.0 
CO2 Removal (%) 90.0 
Absorber Top Pressure (KPa) 101.325 
Outlet Temperature from Lean MEA Cooler (oC) 40.0 
Heat Exchanger Pressure Drop (KPa) 0.0 
Stripper Condenser Temperature (oC) 50.0 
Stripper Top Pressure (KPa) 161.2 
Minimum Approach Temperature in Rich/lean MEA HEX (oC) 5.0 

 

  

5.1.1 Case 4: Stripper Inter-heating (SIH) 

The stripper inter-heating (SIH) configuration shown in Figure 7, has the analogous effect of 

the absorber inter-cooling [8] but on the regeneration process. Stripping CO2 from the aqueous 

MEA solution is an endothermic process and the inter-heated stripper is a simpler 

approximation to the more theoretical internal exchange stripper described by Oyenekan & 

Rochelle [20] and Van Wagener & Rochelle [21]. In the SIH configuration, a column side 

stream of semi-lean solvent is heated by heat exchange with the hot lean MEA solution from 

the bottom of the stripper. The side stream is then returned to the stripper below its point of 

withdrawal while the hot lean MEA solvent maintains its conventional path to the rich-lean 

MEA heat exchanger. The energy performance of conventional and SIH configurations were 

studied by [21] on standalone stripper simulations using MEA and PZ. Their study reveals 

improvement of up to 7.8% and 4.6% at 0.48 and 0.52 rich loading respectively when compared 

to a conventional stripper. 10% of improvement was also observed when comparing the SIH 

configurations between the two solvents.  

 



Figure 7: Aspen Plus® simulation of Stripper Inter-heating (SIH) 

5.1.2 Case 5: Stripper Inter-heating and Absorber Inter-cooling (SIH + AIC) 

The (SIH+AIC) configuration illustrated in Figure 8 combines the effect of the AIC and the 

SIH configuration. The sensitivity analysis tool in Aspen Plus® was used in standalone SIH 

configuration to determine the effective flow-rate of the semi-lean MEA from the stripper that 

provided the most efficient parameter estimate for the (SIH+AIC) configuration. 

 
Figure 8: Aspen Plus® simulation of Stripper Inter-heating with Absorber Inter-cooling 

(SIH+AIC) 

5.1.3 Case 6: Lean Vapour Recompression (LVR) 

The concept of vapour recompression configuration (Figure 9) is to provide steam that is 

recovered from the stripping process as the heat source to the reboiler [7]. Jassim and Rochelle 

[22] presented the vapour recompression design in which the stripper bottom is used to inter-

cool the gaseous stream in a multistage compressor. The idea of the design is to recover the 

heat of condensation of the overhead water vapour and the heat of compression to re-boil the 

stripper. The vapour recovered in the flash separator is majorly 90 wt. % water and 10 wt. % 

CO2. The vapour is compressed and recycled to the stripper where it acts as auxiliary stripping 

steam and thus leading to lower reboiler duty. Some make-up water is added to the vapour 

stream to de-superheat it, to avoid the vapour temperature exceeding the recommended 

temperature of 120°C in the column.  



 
Figure 9: Aspen Plus® simulation of Lean vapour recompression (LVR) 

5.1.4 Case 7: Absorber Inter-cooling with Lean Vapour Recompression (AIC+LVR) 

The LVR+AIC configuration combines the effect of AIC and the LVR. The sensitivity analysis 

tool in Aspen Plus® was used to determine the optimal flow-rate of inter-cooled stream, the 

lean loading and the solvent circulation rate at 90% CO2 capture level. (Figure 10) shows the 

flowsheet of the LVR + AIC simulation in Aspen Plus®.  

 
Figure 10: Aspen Plus® simulation of Lean vapour recompression with absorber Inter-

cooling (LVR+AIC) configuration 

 

5.2 Analysis of the Case Studies 

5.2.1 SCPP-SIH Configuration 

Figure 11(a) illustrates the spatial distribution of exergy destruction in SCPP-SIH. The SIH 

inclusion reduces the local exergy destruction in the PCC by ~3.9% when compared to the 

conventional case.  Table 7 shows a summary of the system performance. The result shows 



about 1.6% reduction in overall exergy destruction when compared to the SCPP system with 

base case CO2 capture. The reboiler duty, energy penalty and the efficiency penalty were 

decreased by about 6.8%, 1.8% and 0.7% respectively. The exergetic efficiency of the SCPP-

SIH integrated system was also improved by about 2.4% when compared to the conventional 

case. 

5.2.2 SCPP-(SIH+AIC) Configuration 

Figure 11(b) illustrates the spatial distribution of exergy destruction in SCPP-(SIH+AIC). The 

(SIH+AIC) inclusion reduces the local exergy destruction in the PCC by 5.7% when compared 

to the conventional case.  Table 7 shows a summary of the system performance. The result 

shows 3.8% reduction in overall exergy destruction when compared to the SCPP system with 

base case CO2 capture. The reboiler duty, the energy penalty, and the efficiency penalty 

decreased by about 11.03%, 4.3% and 1.7% respectively. The exergetic efficiency of the SCPP-

(SIH+AIC) integrated system was also improved by about 5.7% when compared to the 

conventional case. 

   
   (a)       (b) 

   
   (c)       (d) 

Figure 11: Case Studies of Exergy Destruction in SCPP Integrated with PCC 
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5.2.3 SCPP-LVR Configuration 

Figure 11(c) illustrates the spatial distribution of exergy destruction in SCPP-LVR. The LVR 

inclusion reduces the local exergy destruction in the PCC by 4.8% when compared to the 

conventional case.  Table 7 shows a summary of the system performance. The result shows 

5.6% reduction in overall exergy destruction when compared to the SCPP system with base 

case CO2 capture. The reboiler duty, the energy penalty, and the efficiency penalty decreased 

by 17.5%, 5.3% and 2.1% respectively. The exergetic efficiency of the SCPP-LVR integrated 

system was also improved by about 6.2% when compared to the conventional case. 

 

5.2.4 SCPP-(LVR+AIC) Configuration 

Error! Reference source not found.(d) illustrates the spatial distribution of exergy destruction 

in SCPP-(LVR+AIC). The (LVR+AIC) inclusion reduces the local exergy destruction in the 

PCC by about 7.3% when compared to the conventional case.  Table 7 shows a summary of 

the system performance. The result shows about 6.6% reduction in overall exergy destruction 

when compared to the SCPP system with base case CO2 capture. The reboiler duty, the energy 

penalty, and the efficiency penalty decreased by 19.7%, 6.9% and 2.6% respectively. The 

exergetic efficiency of the SCPP-(LVR+AIC) integrated system was also improved by about 

7.3% when compared to the conventional case. 

  



Table 7: System Performance Indicator of the SCPP with the CO2 Capture Scenarios 

Description Reference 
SCPP 

SCPP + PCC 
Base Case 

 
Case 1[8] 

 
Case 2[8] 

 
Case 3[8] 

 
Case 4 

 
Case 5 

 
Case 6 

 
Case 7 

Performance Summary  
Total (steam turbine) power (MWe) 580.26 482.28 484.52 486.42 488.58 490.04 502.80 508.39 514.21 
Auxiliary load (MW) 28.28 52.04 51.95 48.45 42.8 49.87 49.02 49.06 47.97 
Gross plant power (MW) 551.98 430.24 432.57 437.97 445.78 440.17 453.78 459.33 466.24 
Generator loss (MW) 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 
Net power output (MWe) 550.15 428.41 430.74 436.14 443.95 438.34 451.95 457.50 464.41 
Unit efficiency, HHV (%) 39.10 30.45 30.61 31.00 31.55 31.15 32.12 32.51 33.01 
CO2 Capture Performance Summary         

Reboiler Duty (MW) - 528.78 511.81 492.02 466.57 492.77 470.45 436.24 424.61 
Energy penalty (%) - 22.13 21.70 20.72 19.30 20.32 17.85 16.84 15.25 
Efficiency penalty (%) - 8.65 8.49 8.10 7.55 7.95 6.98 6.59 6.09 
Exergetic Performance Summary          
Exergy Destruction, yD (%) 52.61 46.27 46.15 45.81 43.19 44.69 42.44 40.69 39.65 

Exergy Losses, EL (%) 8.34 5.03 4.62 4.37 3.58 4.23 3.29 2.86 2.15 
Exergetic efficiency, 56.04 54.87 54.36 51.09 53.23 49.82 49.23 48.7 39.05 (%) ڙ 

   



6 Conclusions 

This study investigates the methods of reducing energy consumption in PCC process integrated 

with SCPP. Conventional and advanced exergy analyses was used to estimate the magnitude, 

the location, the sources, and the potential for improvement of energy consumed/exergy 

destroyed. Seven modifications to the conventional MEA-Based PCC were analysed for their 

potential to reducing exergy destruction: AIC, SF, AIC+SF, SIH, SIH+AIC, LVR, and 

LVR+AIC.  

The SIH, SIH+AIC, LVR, and LVR+AIC configuration shows approximately 2%, 4%, 5%, 

and 7% reduction energy penalty respectively when compared to the conventional MEA-based 

approach. The results show that the energy consumption and the efficiency of the PCC process 

can be improved by recovering the avoidable exergy destruction in system components. This 

is important because for every 1% reduction in the energy required for capture, costs can be 

lowered to between 0.7 - 1% [25].  
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