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HECKE MODULES FOR ARITHMETIC GROUPS VIA BIVARIANT K-THEORY

BRAM MESLAND AND MEHMET HALUK ŞENGÜN

Abstract. Let Γ be a lattice in a locally compact group G. In another work, we used KK-theory
to equip with Hecke operators the K-groups of any Γ-C∗-algebra on which the commensurator of
Γ acts. When Γ is arithmetic, this gives Hecke operators on the K-theory of certain C

∗-algebras
that are naturally associated with Γ. In this paper, we first study the topological K-theory of the
arithmetic manifold associated to Γ. We prove that the Chern character commutes with Hecke
operators. Afterwards, we show that the Shimura product of double cosets naturally corresponds
to the Kasparov product and thus that the KK-groups associated to an arithmetic group Γ become
true Hecke modules. We conclude by discussing Hecke equivariant maps in KK-theory in great
generality and apply this to the Borel-Serre compactification as well as various noncommutative
compactifications associated with Γ. Along the way we discuss the relation between the K-
theory and the integral cohomology of low-dimensional manifolds as Hecke modules.
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1. Introduction

Let Γ be a lattice in a locally compact group G with commensurator CG(Γ). Let S ⊂ CG(Γ)
be a group containing Γ. In [18], for g ∈ S and B a S-C∗-algebra (that is, a C∗-algebra on
which S acts via automorphisms), we constructed elements [Tg] ∈ KK0(B ⋊r Γ, B ⋊r Γ).
We introduced analytic Hecke operators on any module over KK0(B ⋊r Γ, B ⋊r Γ) as the
endomorphisms arising from the classes [Tg]. In the present paper we prove several structural
results about these Hecke operators, showing that they generalise the well-known cohomological
Hecke operators in a way that is compatible with the Chern character and the double-coset Hecke
ring of Shimura.

The double-coset Hecke ring of Shimura is well-known to number theorists. In the widely
studied case where Γ is an arithmetic group, the Hecke ring acts linearly on various spaces of
automorphic forms associated to Γ, providing a rich supply of symmetries ([23, Chapter 3]).
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2 B. MESLAND AND M.H. ŞENGÜN

Those automorphic forms that are simultaneous eigenvectors of these symmetries are conjec-
tured, and proven in many cases, to have deep connections to arithmetic ([5, 24]). The Hecke
ring also acts on the cohomology of the arithmetic manifold M associated to Γ and there is a
Hecke equivariant isomorphism between spaces of automorphic form associated to Γ and coho-
mology of M twisted with suitable local systems ([9, 23]). The passage to cohomology leads
to many fundamental results and new insights on the arithmetic of automorphic forms. The re-
sults of this paper, together with those of [18], offer an analytic habitat for the Hecke ring by
providing ring homomorphisms from the Hecke ring to suitable KK-groups. The passage to
KK-theory extends the scope of the action of the Hecke ring beyond cohomology and allows
for the possibility of using of tools from operator K-theory in the study of automorphic forms.

Let us describe the results of the paper more precisely. In Section 2, we consider the situation
where S acts on a locally compact Hausdorff space X. Assume that Γ acts freely and properly
on X and put M = Γ\X. It is well-known that the C∗-algebras C0(X) ⋊r Γ and C0(M) are
Morita equivalent, so

KK0(C0(X)⋊r Γ, C0(X)⋊r Γ) ≃ KK0(C0(M), C0(M)),

and thus for any g ∈ S we obtain a class [Tg] ∈ KK0(C0(M), C0(M)). The element g gives
rise to a cover Mg of M and a pair of covering maps, forming the Hecke correspondence M

s
←−

Mg
t
−→ M . In [18] it was shown that the class [Tg] corresponds to the class of this Hecke

correspondence, that is,

[Tg] = [M ←Mg →M ] ∈ KK0(C0(M), C0(M)).

This class induces a Hecke operator Tg : K∗(M) → K∗(M) on topological K-theory. In
this paper we show that the Chern character

Ch : K0(M)⊕K1(M)→ Hev(M,Q)⊕Hodd(M,Q),

is Hecke equivariant. Here we equip H∗(M,Q) with Hecke operators in the usual way using

the Hecke correspondence M
s
←−Mg

t
−→M (see, for example, [17]).

In Section 3, we specialize to non-compact arithmetic hyperbolic 3-manifolds M . Let M be
the Borel-Serre compactification of M . Consider the diagram

(1) K0(M)

��

× K0(M) // Z

H2(M,∂M,Z) × H2(M,∂M,Z)

OO

// Z

Here horizontal arrows are given by the standard pairings with respect to which the Hecke oper-
ators are adjoint. The vertical arrows are Hecke equivariant isomorphisms; we establish the one
on the left via the results of Section 2 and the one on the right was proven in [18]. Using the
relative index theorem, we show that the diagram commutes. Using very different techniques,
we proved a similar result in [18] where the K-groups of M were replaced with those of the
reduced group C∗-algebra C∗

r (Γ) of Γ.
In Section 4 we prove the main result of the paper. The double-coset Hecke ring Z[Γ, S] is

the free abelian group on the double cosets ΓgΓ, with g ∈ S, equipped with the Shimura product
([23]). We show that the map Γg−1Γ 7→ [Tg] extends to a ring homomorphism

Z[Γ, S]→ KK0(B ⋊r Γ, B ⋊r Γ),
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for any S-C∗-algebra B. As mentioned in the second paragraph of this introduction, this ho-
momorphism provides the Hecke ring Z[Γ, S] with a new habitat. The universality property of
KK-theory [10] implies that for any additive functor F on separable C∗-algebras that is homo-
topy invariant, split-exact and stable, the abelian groups F (B ⋊r Γ) are modules over Z[Γ, S].
For example, let Γ be an arithmetic group in a semi-simple real Lie group G. By taking F to
be local cyclic cohomology and B = C0(X) where X is the symmetric space of G, we recover
the action of the Hecke ring on the cohomology of the arithmetic manifold X/Γ. In [18], we
took F to be K-homology and worked with three different S-C∗-algebras B that were naturally
associated to Γ.

In Section 5, we show that a Γ-exact and S-equivariant extension,

0→ B → E → A→ 0,

of C∗-algebras induces Hecke equivariant long exact sequences relating the KK-groups of the
crossed products B⋊rΓ, E⋊rΓ and A⋊rΓ. In particular, suppose thatX is a free and proper Γ-
space on which S acts by homeomorphisms, X a partial S-compactification ofX with boundary
∂X := X \X. Then the extension

0→ C0(X)→ C0(X)→ C0(∂X)→ 0,

induces a Hecke equivariant exact sequence

K1(C0(X)⋊r Γ) // K1(C0(X)⋊r Γ) // K1(C0(∂X)⋊r Γ)

��
K0(C0(∂X) ⋊r Γ)

OO

K0(C0(X)⋊r Γ)oo K0(C0(X)⋊r Γ),oo

of Z[Γ, S]-modules. The results of Sections 4 and 5 hold for the full crossed product algebras as
well.

Let G be a reductive algebraic group and Γ ⊂ G(Q) an arithmetic group. Then the Borel-
Serre partial compactification X of the associated global symmetric space X is a proper G(Q)-
compactification. The associated Morita equivalences provide a Hecke equivariant isomorphism
of above six-term exact sequence with the topological K-theory exact sequence of the Borel-
Serre compactification of the arithmetic manifold X/Γ and its boundary.

The generality of our methods allow to also consider various noncommutative compactifica-
tions. One family of examples are the Hecke equivariant Gysin exact sequences studied in [18]

coming from the geodesic compactification of hyperbolic n-space. Other examples of interest
come from the Floyd boundary of Γ, such as the the boundary of tree associated to SL(2,Z)
and the Bruhat-Tits building of a p-adic group and its boundary. In most of these cases not all of
the crossed products are Morita equivalent to a commutative C∗-algebra.

Acknowledgements. We gratefully acknowledge our debt to Heath Emerson for suggesting
Theorem 5.4, to John Greenlees and Dimitar Kodjabachev for their help with stable homotopy
theory, to Matthias Lesch for a discussion on relative index theory and to Paul Mitchener for a
discussion on the universal property of KK-theory. Finally we thank the anonymous referee for
helpful suggestions.
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Set-up and notation. The following set-up will hold for the whole paper. Let G be a locally
compact group and Γ ⊂ G a torsion-free discrete subgroup. Recall that two subgroups H,K of
G are called commensurable if H ∩K is of finite index in both H and K . The commensurator
CG(Γ) of Γ (in G) is the group of elements g ∈ G for which Γ and gΓg−1 are commensurable.
Moreover S will denote a subgroup of CG(Γ) containing Γ.

2. Hecke equivariance of the Chern character

In this section, we shall assume that S acts on a locally compact Hausdorff space X and
that the action of Γ on X is free and proper. Let M denote the Hausdorff space X/Γ. Given
an element g ∈ S, we put Mg := X/Γg and Mg := X/Γg where Γg := Γ ∩ g−1Γg and
Γg := Γ ∩ gΓg−1 = gΓgg−1. Note that s : Mg → M and s′ : Mg → M are finite sheeted
covers (of the same degree) and the map c : Mg → Mg defined by xΓg 7→ g−1xΓg is a
homeomorphism. We obtain a second finite covering t := s′ ◦ c :Mg →M .

We shall equip the topological K-theory of M with Hecke operators via two different con-
structions, one analytical, arising from a KK-class and the other topological, arising from a
correspondence. We will see that these two constructions give rise to the same Hecke opera-
tor. Afterwards, we will show that the Chern character between the K-theory and the ordinary
cohomology of M is Hecke equivariant.

2.1. Analytic Hecke operators. Let g ∈ S. As mentioned in the Introduction, thanks to a
Morita equivalence, the analytically constructed class [Tg] ∈ KK0(C0(X) ⋊ Γ, C0(X) ⋊ Γ)
gives rise to a class [TM

g ] ∈ KK0(C0(M), C0(M)). This latter class has a simpler description
which we now recall.

The conditional expectation

ρ : C0(Mg)→ C0(M), ρ(ψ)(m) =
∑

x∈t−1(m)

ψ(x),

and right module structure
ψ · f(x) := ψ(x)f(t(x))

give C0(Mg) a right C0(M)-module which we will denote by TM
g . Because the map s :Mg →

M is proper, there is a left action of C0(M) on TM
g by compact operators

C0(M)→ K(TM
g ), f · ψ(x) = f(s(x))ψ(x).

Then [TM
g ] ∈ KK0(C0(M), C0(M)) is the class of this bimodule.

Observe that M
s
←− Mg

t
−→ M defines a correspondence in the sense of [6]. Associated

to this correspondence, there exists a class [s∗] ⊗ [t!] ∈ KK0(C0(M), C0(M)) where t! is the
wrong-way cycle arising from t. As t is simply a finite covering of manifolds, it follows from
[6, Prop. 2.9] that t! acquires a simpler description and it is then not hard to see that [s∗] ⊗ [t!]
equals [TM

g ] above.

2.2. Definition. Let M = X/Γ as above. For any separable C∗-algebra C , the analytic Hecke

operators

Tg : KK∗(C0(M), C)→ KK∗(C0(M), C),

Tg : KK∗(C,C0(M))→ KK∗(C,C0(M)),

are defined to be the Kasparov product with the class [TM
g ] ∈ KK0(C0(M), C0(M)).
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An important case is when one takes C ≃ C. Then we obtain analytic Hecke operators on
the topological K-theory of M :

Tg : K
∗(M)→ K∗(M).

2.3. Topological Hecke operators. We now proceed to give an “elementary” description of
our Hecke operators in the special case of topological K-theory. To do this, we will follow the
description of Hecke operators on ordinary cohomology from correspondences (see, for exam-
ple, [18]). To this end, we shall introduce the “transfer map” machinery from stable homotopy
theory which will allow us to deal with generalized cohomology theories at no extra cost.

To a finite covering map p : (Y,B) → (X,A) of pairs of spaces (that is, a finite covering
p : Y → X with subspaces A ⊂ X and B ⊂ Y such that B = p−1(A)), there is a well-
known construction (see [1, Construction 4.1.1, Thm. 4.2.3]) and [11]) that associates to p
a map of suspension spectra p! : Σ∞(X/A) → Σ∞(Y/B). Via pre-composition with p!, for
any generalized cohomology theory h∗ with spectrum E, we obtain a homomorphism called the
transfer map

p! : hn(Y,B) = [Σ∞Sn ∧ Σ∞(Y/B), E] −→ hn(X,A) = [Σ∞Sn ∧ Σ∞(X/A), E].

This transfer map agrees with the usual one in the case of ordinary cohomology (see [11,

Props. 2.1]). In the case of topological K-theory, the transfer map is induced by the direct
image map of Atiyah [2] (see [11, Props. 2.3]). Recall that if f : Y → X is a finite covering
map and E → X is a vector bundle, then the direct image bundle f !E → Y has fiber (f !E)y at

y ∈ Y given by the direct sum
⊕

f(x)=y

Ex.

2.4. Definition. Given any generalized cohomology theory h∗ with spectrum E and g ∈ S, the
topological Hecke operator Tg on hn(M) is defined as the composition

hn(M)
s∗
−→ hn(Mg)

t!
−→ hn(M).

In the case of topological K-theory, these topological Hecke operator agree with the analytic
ones that we defined earlier.

2.5. Proposition. Let g ∈ S. The analytic Hecke operator Tg on K∗(M) agrees with the

topological Hecke operator Tg on K∗(M).

Proof. Let us prove the statement for K0 first. It suffices to show that, after we identify
K0(M) ≃ K0(C0(M)), the direct image map of Atiyah is induced by tensor product (from
the right) with the C0(M)-module TM

g defined above in Section 2.1. To that end, we need to
show that for any vector bundle E → Mg , there is a unitary isomorphism between the C0(M)-
modules of sections

α : Γ(E)⊗C0(Mg) C0(Mg)C0(M)
∼
−→ Γ(t!E).

This is achieved by choosing an open cover Ui of Mg for which the covering map t is homeo-
morphic. Let χ2

i be a partition of unity subordinate to the Ui. Define

α(ψ ⊗ f)(m) :=

(
∑

i

χi(x)ψ(x)f(x)

)

x∈t−1(m)

∈ t!E.
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It is straightforward to check that this induces the desired unitary isomorphism. Note that the
above is also observed in [21, Lemma 3.12].

To prove the claim for K1, we will descend to K0 and exploit, as we did above, the fact that
transfer is implemented by the direct image map. Consider the diagram below.

(2) K1(Mg)

t
!

��

≃ // K0(Mg ×R)

(t×Id)!

��
K1(M)

≃ // K0(M ×R)

The vertical arrows are the transfer maps arising from the finite coverings t : Mg → M and
t × Id : Mg ×R → M ×R. The horizontal isomorphisms follow from long exact sequences
in topological K-theory associated to suitable pairs of spaces. As the transfer map is natural
and commutes with connecting morphisms (see [1, p.123-124]), it follows that the diagram is
commutative.

Note that K0(M ×R) ≃ K0(C0(M)⊗ C0(R)). Under the isomorphism

KK0(C0(M), C0(M))
≃
−→ KK0(C0(M)⊗ C0(R), C0(M)⊗ C0(R)),

our distinguished class [TM
g ] gets sent to [TM

g ⊗ C0(R)]. Now the same argument as in the
first paragraph of this proof shows that the direct image map of Atiyah, for the finite covering

Mg ×R
t×Id
−−−→M ×R, is induced by tensor product with the C0(M)⊗ C0(R)-module TM

g ⊗
C0(R). �

2.6. Given a pair of compact Hausdorff spaces (X,A), we have the Chern character (see [12,

V.3.26])
Ch : Ki(X,A) −→ PH i(X,A,Q), i = 0, 1

where PH0 (resp. PH1) is the periodic cohomology group given by the direct sum of the
even (resp. odd) degree ordinary cohomology groups. The Chern character commutes with
suspension and thus is a stable cohomology operation (of degree 0).

Now let M be a non-compact arithmetic manifold. For g ∈ CG(M), let M,Mg denote
the Borel-Serre compactification of M,Mg respectively (see [4] and also [18, 2.1.2]). It is
well-known that the finite covering maps s, t : Mg → M extend to finite coverings of pairs
of spaces s̄, t̄ : (Mg, ∂Mg) → (M,∂M). From these, we obtain Hecke operators Tg on the
relative groups K∗(M,∂M ) and H∗(M,∂M,Z). Notice that K∗(M,∂M ) ≃ K̃∗(M+) =
K∗(M) ≃ K∗(C0(M)) where M+ is the one-point compactification of M . Moreover, we have
that H∗(M,∂M,Z) ≃ H∗

c (M,Z) where H∗
c denotes compactly supported cohomology.

It follows that for a given arithmetic manifold M , by choosing (X,A) = (M, ∅) if M is
compact and (X,A) = (M,∂M ) if M is non-compact, we have the Chern character

Ch : Ki(M) −→ PH i
c(M,Q), i = 0, 1

and both sides are Hecke modules. A most natural question is whether the Chern character
commutes with the Hecke actions.

2.7. Proposition. Let M be an arithmetic manifold and g ∈ CG(M). The Chern character

Ch : Ki(M) −→ PH i
c(M,Q), i = 0, 1

commutes with the action of the Hecke operator Tg on both sides.
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Proof. Consider a cohomology operation Ψ : E∗(·) → F ∗(·) of degree 0 between two coho-
mology theories with spectra E,F . If Ψ is stable, there is in fact a map of spectra Ψ : E → F
and the the cohomology operation is simply the composition

En(X,A) = [Σ∞Sn∧Σ∞(A/X), E] −→ Fn(X,A) = [Σ∞Sn∧Σ∞(X/A), F ], f 7→ Ψ◦f.

It immediately follows that the transfer operator associated to a finite cover of pairs of spaces
p : (Y,B)→ (X,A) commutes with Ψ, that is, the following diagram commutes

En(Y,B)
Ψ //

p!

��

Fn(Y,B)

p!

��
En(X,A)

Ψ // Fn(X,A).

Now let us go back to our setting. Let us first assume that M is compact. Note that
H∗

c (M,Z) = H∗(M,Z) in this case. As it is a stable cohomology operation, the Chern char-
acter commutes with the natural map s∗ and also with the transfer map t!, giving rise to the
following commutative diagram:

K∗(M)

Ch
��

s∗ // K∗(Mg)

Ch
��

t! // K∗(M)

Ch
��

PH∗(M,Q)
s∗ // PH∗(Mg,Q)

t! // PH∗(M,Q)

showing that the Chern character map commutes with Hecke operators.
For the case M non-compact, the proof follows in the same way considering the diagram

K∗(M,∂M )

Ch
��

s̄∗ // K∗(Mg, ∂Mg)

Ch
��

t̄ !
// K∗(M,∂M)

Ch
��

PH∗(M,∂M,Q)
s̄∗ // PH∗(Mg, ∂Mg,Q)

t̄ !
// PH∗(M,∂M,Q)

where s̄, t̄ : (Mg, ∂Mg) → (M,∂M ) are the extensions of s, t : Mg → M mentioned earlier.
�

2.8. Remark. The transfer map used above is an example of what is known as a wrong way

map. In [6, Remark 2.10(a)], Connes and Skandalis remark that given a K-oriented map f :
X → Y between smooth manifolds, the wrong way maps f ! : K(X) → K(Y ), induced by
the Kasparov product with the class of the wrong way cycle [f !] ∈ KK∗(C0(X), C0(Y )), and
f ! : Hc(X,Q) → Hc(Y,Q) commute under the Chern character modulo an error term Td(f)
defined via the Todd genus of certain bundles that naturally arise. In our case, this error term
vanishes and we get that the transfer map commutes with the Chern character as we proved
above.

2.9. Remark. Using the universal property of KK-theory, the Chern character can be obtained
as the unique natural transformation

Ch : KK∗(A,B)→ HL∗(A,B),
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where HL∗ denotes bivariant local cyclic homology (see [19, 20]). For a locally compact space
X, the local cyclic homology of C0(X) recovers the compactly supported sheaf cohomology
of X ([20, Theorem 11.7]). Thus ordinary cohomology admits an action of analytic Hecke
operators via its structure as a module over KK-theory. It follows from the results of this
section that the topological Hecke operators on ordinary cohomology arise from the analytic
Hecke module structure.

3. Bianchi manifolds

In this section, we present a result about arithmetic non-compact hyperbolic 3-manifolds that
complements the results obtained in Section 5 of our previous paper [18]. In that paper, for
a Bianchi manifold M , we provided a Hecke equivariant isomorphism between K0(M) and
H2(M,∂M,Z) where M is the Borel-Serre compactification of M (see [4]). We show below
that H2(M,∂M,Z) and K0(M) are isomorphic as Hecke modules and further argue that the
cohomological pairing between H2 and H2 and the index pairing between K0 and K0 commute
under these isomorphisms.

Let O be the ring of integers of an imaginary quadratic field and Γ be a torsion-free finite index
subgroup of the Bianchi group PSL2(O). Then Γ acts freely and properly on the hyperbolic 3-
space H3. The associated hyperbolic 3-manifold M = H3/Γ is known as a Bianchi manifold.
It is well-known that any non-compact arithmetic hyperbolic 3-manifold is commensurable with
a Bianchi manifold.

3.1. For compact connected spaces X, denote by K̃0(X) the reduced K-theory of X, that is,
the kernel of the map K0(X) → Z induced by [E] 7→ dimC(E). Write [n] ∈ K0(X) the
class of the trivial bundle T n of rank n over X. For a vector bundle E, the top exterior power∧dimE E is called the determinant line bundle and denoted det E. Let Pic(X) denote the Picard

group of X, that is, the set of isomorphism classes of line bundles on X together with the tensor
product operation.

Let M+ denote the one-point compactification of the Bianchi manifold M . Since M+ is a
CW-complex of dimension 3, every complex vector bundle E → M+ splits as E ≃ detE ⊕
T dimC(E)−1 (see [26, Corollary 4.4.1]). It follows from [26, Corollary 2.6.2] that the map

dim⊕ det : K0(M+)→ Z⊕ Pic(M+), E 7→ (dimC(E), [detE]),

is an isomorphism. Noting that H0(M+,Z) ≃ Z and identifying Pic(M+) ≃ H2(M+,Z) via
the first Chern class c1, we obtain the isomorphism

K0(M+)→ H0(M+,Z)⊕H2(M+,Z)

induced by [E] 7→ dimC(E) + c1(detE). Note that this map agrees with the Chern character
since E ≃ T dimC(E)−1 ⊕ detE as mentioned above. By Prop. 2.7, this isomorphism is Hecke
equivariant.

Composing the Chern character with the projection map, we obtain a surjection K0(M+)→

H2(M+,Z) whose kernel is K̃0(M+) = K0(M). Noting thatH2(M+,Z) is isomorphic to the
compactly supported cohomology H2

c (M,Z) which in turn is isomorphic toH2(M,∂M,Z), we
obtain an isomorphism

(3) K0(M)
∼
−→ H2(M,∂M,Z)

that is Hecke equivariant.
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3.2. Given a line bundle L → M and any connection ∇ on L, let F∇ = Tr( −1
2πi∇

2) be the
curvature 2-form of ∇. Then it is well-known that F∇ is closed and its image in H2(M,R) is
in fact integral and equals the first Chern class c1(L) of L.

3.3. Proposition. Let (N, ∂N) ⊂ (M,∂M ) be an embedded surface, L → M a line bun-

dle that is trivial on ∂M and N be the closed subspace of N obtained by removing an open

neighborhood of ∂N over which L is trivial. View the interior N̊ of N as a spinc surface with

associated Dirac operator /D
N̊

(see [18, Section 5]). We have

〈[ /D
N̊
], [L] − [1]〉 =

∫

N

F∇

for any connection ∇ on L. Here 〈·, ·〉 is the index pairing.

Proof. It follows from the relative index theorem of [22, Theorem 4.6] that

〈[ /D
N̊
], [L]− [1]〉 =

∫

N

Â(N̊)Ch(L|
N̊
)−

∫

N

Â(N̊).

Here L|
N̊

is the restriction of L in to interior of N . Observe that Ch(L|
N̊
) = 1 + c1(L|N̊ ) =

1 + [F∇|N̊ ] where ∇ is any chosen connection on L and F∇|N̊ is the restriction of its curvature

to N̊ . The Â-genus Â(N̊ ) of N̊ equals 1 as it only has nonzero components in forms of degree
0 mod 4. The claim follows. �

The following is not necessary for the main result of this section, however we note it as it
quickly follows from the above and [3, Lemma 2.22].

3.4. Corollary. If N has finite volume, we have

〈[ /D
N̊
], [L]− [1]〉 =

∫

N̊

F∇,

for any connection ∇ on L.

3.5. Proposition. We have the equality

〈[ /D
N̊
], [L] − [1]〉 = 〈[(N, ∂N)], c1(L)〉

In particular, the isomorphisms

K0(M)
≃
−→ H2(M,∂M,Z), K0(M)

≃
←− H2(M,∂M,Z)

(see (3) and [18, Prop.5.6.]) are compatible with the index pairing

〈−,−〉 : K0(M)×K0(M)→ Z

and the integration pairing

〈−,−〉 : H2(M,∂M,Z)×H2(M,∂M,Z)→ Z.

In other words, diagram (1) of the Introduction is commutative.

Proof. It follows from our discussion in Section 3.1 that every element of K0(M) is of the form
[L] − [1] where 1 is the trivial line bundle and L→ M is a line bundle that is trivial at infinity.
Under isomorphism (3), the image of [L] − [1] is c1(L). Every class in H2(M,∂M,Z) is
represented by a properly embedded surface (N, ∂N) ⊂ (M,∂M ) (see [18, Section 5]). Then
the pairing 〈[(N, ∂N)], c1(L)〉 is given by the integral

∫
N
F∇ where ∇ is any connection on L
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and F∇ is the associated curvature 2-form as above. As L is trivial at infinity, we can choose
closed N ⊂ N̊ so that L is trivial outside N and it then follows that

∫
N
F∇ =

∫
N
F∇. Observe

that the image of [(N, ∂N)] in K0(M) under the isomorphism given in [18, Prop.5.6.]) is [ /D
N̊
].

Now by Prop. 3.3, we have the claim. �

4. The double-coset Hecke ring and KK-theory

We recall the construction of the Hecke operators via KK-theory as put forward in [18]. We
then show that the multiplication of double-cosets corresponds to the Kasparov product of the
associated KK-classes.

4.1. Bimodules over the reduced crossed product. For aΓ-C∗-algebraB, the reduced crossed

product B⋊r Γ is obtained as a completion of the convolution algebra Cc(Γ, B) (see, for exam-
ple, [15]). Let g ∈ CG(Γ) and d := [Γ : Γg]. The double coset Γg−1Γ admits a decomposition
as a disjoint union

(4) Γg−1Γ =

d⊔

i=1

giΓ, gi = δig
−1, Γ =

d⊔

i=1

δiΓ
g,

where δi ∈ Γ form a complete set of coset representatives for Γg. We choose to work with g−1

in order for our formulae to be in line with those in [18]. Consider the elements

ti(γ) = tgi (γ) := g−1
γ(i)γgi ∈ gΓg

−1,

where i 7→ γ(i) is induced by the permutation of the cosets in Equation (4). From [18, Lemma

2.3] we recall the relations

ti(γ1γ2) = tγ2(i)(γ1)ti(γ2), ti(γ
−1) = tγ−1(i)(γ)

−1,

which will be used in the sequel without further ado.

Let S ⊂ CG(Γ) be a subgroup containing Γ and B an S-C∗-algebra. The free right B ⋊r Γ
module TΓ

g ≃ (B ⋊r Γ)
d carries a left B ⋊r Γ module structure given by

(5) (tg(f)Ψ)i(δ) =
∑

γ

g−1
i f(γ)ti(γ

−1)−1Ψγ−1(i)(ti(γ
−1)δ).

Equivalently, we have the covariant representation

(6) (tg(b) ·Ψ)i(δ) := g−1
i (b)Ψi(δ), (tg(uγ)Ψ)i(δ) := ti(γ

−1)−1(Ψγ−1(i)(ti(γ
−1)δ)).

Details of the construction, as well as the following definition, can be found in [18, Section 2].

4.2. Definition. Let B be a separable S-C∗-algebra and C a separable C∗-algebra. The Hecke

operators

Tg : KK∗(B ⋊r Γ, C)→ KK∗(B ⋊r Γ, C), Tg : KK∗(C,B ⋊r Γ)→ KK∗(C,B ⋊r Γ).

are defined to be the Kasparov product with the class [TΓ
g ] ∈ KK0(B ⋊r Γ, B ⋊r Γ).

We now give an equivalent description of the bimodules TΓ
g . Consider the function space

Cc(Γg
−1Γ, B) = C[Γg−1Γ]⊗alg

C
B.
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The convolution product makes Cc(Γg
−1Γ, B) into a Cc(Γ, B)-bimodule:

f ∗Ψ(ξ) =
∑

γ∈Γ

f(γ)γ(Ψ(γ−1ξ)), Ψ ∗ f(ξ) :=
∑

γ∈Γ

Ψ(ξγ)ξf(γ−1), ξ ∈ Γg−1Γ.

Moreover we define the inner product

(7) 〈Φ,Ψ〉(δ) :=
∑

ξ∈Γg−1Γ

ξ−1(Φ(ξ)∗Ψ(ξδ)),

which makes Cc(Γg
−1Γ, B) into a pre-Hilbert-C∗-bimodule over Cc(Γ, B).

4.3. Lemma. For g ∈ S ⊂ CG(Γ) the map

α : Cc(Γg
−1Γ, B)→ Cc(Γ, B)d ⊂ TΓ

g , α(Ψ)i(δ) := g−1
i Ψ(giδ),

induces a unitary isomorphism of B ⋊r Γ-bimodules.

Proof. The decomposition (4) shows that the map α has dense range. Moreover α preserves the
inner product:

〈α(Ψ), α(Φ)〉(δ) =
∑

i

α(Ψ)∗iα(Φ)i(δ) =
∑

i

∑

γ

α(Ψ)∗i (γ)γα(Φ)i(γ
−1δ)

=
∑

i

∑

γ

γ(α(Ψ)i(γ
−1)∗α(Φ)i(γ

−1δ)) =
∑

i

∑

γ

γg−1
i (Ψ(giγ

−1)∗Φ(giγ
−1δ))

=
∑

ξ∈Γg−1Γ

ξ−1(Φ(ξ)∗Ψ(ξδ)) = 〈Ψ,Φ〉(δ),

from which it follows that α induces a unitary isomorphism on the C∗-module completions,
which is in particular a right module map.

For the left module structure we compute

α(f ∗Ψ)i(δ) = g−1
i (
∑

γ∈Γ

f(γ)γΨ(γ−1giδ)) =
∑

γ∈Γ

g−1
i f(γ)g−1

i γΨ(gγ−1(i)ti(γ
−1)δ))

=
∑

γ∈Γ

g−1
i f(γ)ti(γ

−1)−1g−1
γ−1(i)

Ψ(gγ−1(i)ti(γ
−1)δ)

=
∑

γ∈Γ

g−1
i f(γ)ti(γ

−1)−1α(Ψ)γ−1(i)(ti(γ
−1)δ) = (tg(f))(αΨ)i(δ),(8)

and we are done. �

Thus, the bimodules implementing the Hecke operators are completions of theB-valued func-
tions on the associated double coset.

4.4. The double-coset Hecke ring. Let S be a subgroup of CG(Γ) that contains Γ. Following
Shimura, we define the Hecke ring Z[Γ, S] as the free abelian group on the double cosets ΓgΓ
with g ∈ S, equipped with the product

(9) [Γg−1Γ] · [Γh−1Γ] :=

K∑

k=1

mk[Γgi(k)hj(k)Γ],
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where we have fixed finite sets I and J and coset representatives {gi : i ∈ I} and {hj : j ∈ J}
for Γg and Γh in Γ, respectively. Moreover mk, i(k) and j(k) are such that

(10) mk := #{(i, j) : gihjΓ = gi(k)hj(k)Γ} and Γg−1Γh−1Γ =

K⊔

k=1

Γgi(k)hj(k)Γ,

is a disjoint union. For well-definedness and other details of the construction we refer to [23,

Chapter 3]. We wish to show that, for an arbitrary S-C∗-algebra B, the map

(11) T : Z[Γ, S]→ KK0(B ⋊r Γ, B ⋊r Γ), [Γg−1Γ] 7→ TΓ
g ,

is a ring homomorphism. To this end, we introduce the following notions. By a bi-Γ-set we
mean a set V that carries both a left- and a right Γ-action, and the actions commute in the sense
that for all γ, δ ∈ Γ and v ∈ V we have γ(vδ) = (γv)δ.

The Γ-product of a pair (V,W ) of bi-Γ-sets is the quotient of the Cartesian product V ×W
by the equivalence relation

(v,w) ∼ (v′, w′)⇔ ∃γ ∈ Γ v′ = vγ, w′ = γ−1w,

and is denoted by V ×Γ W . The equivalence class of the pair (v,w) is denoted [v,w]. The
Γ-product is a bi-Γ-set via the induced left- and right Γ-actions

[v,w]γ := [v,wγ], γ[v,w] := [γv,w].

Let Γ ⊂ S ⊂ CG(Γ) be a subgroup and V a bi-Γ-set. We say that V is anchored in S if there is
given a map m : V → S such that m(γvδ) = γm(v)δ for all v ∈ V , γ, δ ∈ Γ. We refer to m as
the anchor. Of course any double coset ΓgΓ with g ∈ S is anchored in S via the inclusion map.

4.5. Lemma. Let V and W be bi-Γ-sets with anchor maps mV : V → S,mW : W → S. Then

their Γ-product V ×Γ W is anchored in S via the product anchor [v,w] 7→ mV (v)mW (w).

The proof of this is straightforward. Note that if V and W are double Γ-cosets in S, anchored
via their embeddings into S, then the product anchor of V ×Γ W need not be injective.

We wish to relate the anchored bi-Γ-sets Γg−1Γ×Γ Γh−1Γ and
⊔K

k=1

⊔mk

ℓ=1 ΓzkΓ. By virtue
of Equation (10) we fix, once and for all, for each zk and 1 6 ℓ 6 mk a choice of distinct indices
i(k, ℓ), j(k, ℓ) such that zkΓ = gi(k,ℓ)hj(k,ℓ)Γ. We thus write z(k,ℓ) = gi(k,ℓ)hj(k,ℓ). Consider the
left action of Γ on the finite set I × J given by

(12) γ(i, j) := (γ(i), tgi (γ)(j)).

4.6. Lemma. With the above choices, the map

ω :

K⊔

k=1

mk⊔

ℓ=1

Γz(k,ℓ)Γ→ Γg−1Γ×Γ Γh−1Γ

γz(k,ℓ)δ 7→ [γgi(k,ℓ), hj(k,ℓ)δ],

where i = i(k, ℓ), j = j(k, ℓ), is a Γ-bi-equivariant bijection of S-anchored bi-Γ-sets.
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Proof. By construction, ω is Γ-bi-equivariant and respects the anchors. We need only show that
it is bijective. This is achieved as follows: for each k choose

γk1 = 1, γk2 , · · · , γ
k
dk
∈ Γ, with ΓzkΓ =

dk⊔

n=1

γknzkΓ.

We thus have

(13)
K⊔

k=1

mk⊔

ℓ=1

Γz(k,ℓ)Γ =

K⊔

k=1

mk⊔

ℓ=1

dk⊔

n=1

γkngi(k,ℓ)hj(k,ℓ)Γ.

The identities
[giγ, hjδ] = [gi, γhjδ] = [gi, hγ(j)t

h
j (γ)δ],

show that every element in the Γ-product Γg−1Γ ×Γ Γh−1Γ has a representative of the form
[gi, hjγ] and such representatives are unique because gi and hj form a complete set of coset
representatives. We so obtain a set bijection

Γg−1Γ×Γ Γh−1Γ→
⊔

(i,j)∈I×J

{gi} × hjΓ, [giγ, hjδ] 7→ [gi, hγ(j)t
j
h(γ)δ].

It follows that ω restricts to bijections

ω : γkngi(k,ℓ)hj(k,ℓ)Γ→ {gγk
n(i(k,ℓ))

} × htg
i
(γk

n)(j(k,ℓ))
Γ.

Therefore it suffices to show that the map

N ×K × L→ I × J

(n, k, ℓ) 7→ γkn(i(k, ℓ), j(k, ℓ)),

is bijective. By [23, Proposition 3.2] it holds that

K∑

k=1

mkdk = |I||J | = |I × J |,

and thus we need only show that this map is injective, and then use a counting argument to obtain
surjectivity. To this end we will prove that the equality

(14) γkn(i(k, ℓ), j(k, ℓ)) = γk
′

n′(i(k′, ℓ′), j(k′, ℓ′))

implies that (n, k, ℓ) = (n′, k′, ℓ′). By (12), (14) implies that

γkngi(k,ℓ)hj(k,ℓ)Γ = γk
′

n′gi(k′,ℓ′)hj(k′,ℓ′)Γ and thus Γgi(k,ℓ)hj(k,ℓ)Γ = Γgi(k′,ℓ′)hj(k′,ℓ′)Γ.

This in turn implies that k = k′ and thus γknzkΓ = γkn′zkΓ, so it folllows that n = n′. Lastly, we
are left with γkn(i(k, ℓ)) = γkn(i(k, ℓ

′)), so i(k, ℓ) = i(k, ℓ′) which by construction implies that
ℓ = ℓ′. This shows that the map (n, k, ℓ) 7→ γkn(i(k, ℓ), j(k, ℓ)) is injective. �

Now let V be a Γ-set with anchor m : V → S and X a S-(A,B)-bimodule. We always
consider V as a discrete set. We equip Cc(V,X) with a Cc(Γ, B) valued inner product via

〈Φ,Ψ〉(δ) :=
∑

v∈V

m(v)−1〈Φ(v),Ψ(vδ)〉.
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and left and right module structures via the Γ-action:

f ∗Ψ(v) :=
∑

γ

f(γ)γΨ(γ−1v), Ψ ∗ f(v) :=
∑

γ

Ψ(vγ)m(vγ)f(γ−1).

Thus the completion gives a C∗-(A ⋊r Γ, B ⋊r Γ)-bimodule. Note that if u : X → Y is an
S-equivariant unitary bimodule isomorphism and ω : W → V an isomorphism of S-anchored
bi-Γ-sets, then

Cc(V,X)→ Cc(W,Y ), Ψ 7→ u ◦Ψ ◦ ω,

is a unitary bimodule isomorphism.
By Lemma 4.3, the bimodule TΓ

g for g ∈ S is isomorphic to the completion of Cc(Γg
−1Γ, B)

with anchor m : Γg−1Γ→ S the set inclusion, and is thus a special case of the above construc-
tion. The formalism of anchored bi-Γ-sets allows for an elegant description of tensor products
of their associated modules.

4.7. Proposition. Let S ⊂ CG(Γ) be a subgroup and A,B and C be S-C∗-algebras. Let V,W
be S-anchored bi-Γ-sets, X an (A,B)-S-bimodule, Y a (B,C)-S-bimodule. Then the map

α : Cc(V,X) ⊗alg
Cc(Γ,B) Cc(W,Y )→ Cc(V ×Γ W,X ⊗B Y ),

given by

α(Φ⊗Ψ)[v,w] :=
∑

γ

Φ(vγ)⊗m(v)γΨ(γ−1w),

is an inner product preserving map of (Cc(Γ, A), Cc(Γ, C))-bimodules with dense range. Con-

sequently their respective C∗-module completions are unitarily isomorphic (A ×r Γ, C ⋊r Γ)-
bimodules.

Proof. The following calculation shows that α is unitary:

〈α(Φ⊗Ψ), α(Φ ⊗Ψ)〉(δ) =
∑

[v,w]

m(w)−1m(v)−1〈α(Φ ⊗Ψ)(v,w), α(Φ ⊗Ψ)(v,wδ)〉

=
∑

[v,w]

∑

γ,ε

m(w)−1m(v)−1〈m(v)γΨ(γ−1w), 〈Φ(vγ),Φ(vε)〉m(v)εΨ(ε−1wδ)〉

=
∑

[v,w]

∑

γ,ε

m(w)−1〈γΨ(γ−1w),m(v)−1(〈Φ(vγ),Φ(vε)〉)εΨ(ε−1wδ)〉

=
∑

[v,w]

∑

γ,ε

m(γ−1w)−1〈Ψ(γ−1w),m(vγ)−1(〈Φ(vγ),Φ(vε)〉)γ−1εΨ(ε−1wδ)〉

=
∑

[v,w]

∑

γ,ε

m(γ−1w)−1〈Ψ(γ−1w),m(vγ)−1(〈Φ(vγ),Φ(vγε)〉)εΨ(ε−1γ−1wδ)〉,

and by virtue of the equivalence relation on V ×W we can replace the sum over equivalence
classes [v,w] ∈ V ×ΓW and elements γ ∈ Γ by a sum over (v,w) ∈ V ×W , and continue the
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calculation:

=
∑

v∈V

∑

w∈W

∑

ε

m(w)−1〈Ψ(w),m(v)−1(〈Φ(v),Φ(vε)〉)εΨ(ε−1wδ)〉

=
∑

w

∑

ε

m(w)−1〈Ψ(w), 〈Φ,Φ〉(ε)εΨ(ε−1wδ)〉

=
∑

w

m(w)−1〈Ψ(w), 〈Φ,Φ〉 ∗Ψ(wδ)〉

= 〈Ψ, 〈Φ,Φ〉Ψ〉(δ).

It is straightforward to establish that α is a bimodule map:

α(f ∗ Φ⊗Ψ)[v,w] =
∑

γ

(f ∗ Φ)(vγ)⊗m(v)γΨ(γ−1w)

=
∑

γ,ε

f(ε)εΦ(ε−1vγ)⊗m(v)γΨ(γ−1w)

=
∑

ε

f(ε)εα(Φ ⊗Ψ)[ε−1v,w] = f ∗ α(Φ⊗Ψ)[v,w]

α(Φ ⊗Ψ ∗ f)[v,w] =
∑

γ

Φ(vγ)⊗m(v)γ(Ψ ∗ f)(γ−1w)

=
∑

γ,ε

Φ(vγ)⊗m(v)γ(Ψ(γ−1wε)m(γ−1wε)f(ε−1))

=
∑

γ,ε

Φ(vγ)⊗m(v)γΨ(γ−1wε)m(wε)f(ε−1)

=
∑

ε

α(Φ⊗Ψ)[v,wε]m(wε)f(ε−1)

= α(Φ ⊗Ψ) ∗ f [v,w].

Lastly, to see that α has dense range, denote by δv : V → C the indicator function at the element
v ∈ V . The functions

χ
[v,w]
x⊗y (v

′, w′) := δv(v
′)δw(w

′)x⊗ y,

with v ∈ V , w ∈W , x ∈ X and y ∈ Y span a dense right Cc(Γ, C)-submodule. Now set

evx(v
′) := δv(v

′)x, f (v,w)
y (w′) := δw(w

′)m(v)−1(y).

Then it is easily verified that α(evi ⊗ f
(v,w)
y ) = χ

[v,w]
x⊗y , so α has dense range. This proves the

proposition. �

4.8. Theorem. For any g, h ∈ CG(Γ) there is a unitary isomorphism of bimodules

TΓ
g ⊗B⋊rΓ T

Γ
h

∼
−→

K⊕

k=1

(
TΓ
(gi(k)hj(k))−1

)⊕mk

.

Consequently, for any S-C∗-algebra B, the map T : [Γg−1Γ] 7→ [TΓ
g ] extends to a ring homo-

morphism

T : Z[Γ, S]→ KK0(B ⋊r Γ, B ⋊r Γ).
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Proof. By Lemma 4.3, the modules TΓ
g and TΓ

h are unitarily isomorphic to those associated to
the anchored bi-Γ-sets Γg−1Γ and Γh−1Γ. By Proposition 4.7, their tensor product is given by

Cc(Γg
−1Γ, B)⊗alg

Cc(Γ,B) Cc(Γh
−1Γ, B)

∼
−→ Cc(Γg

−1Γ×Γ Γh−1Γ, B ⊗B B).

Since B ⊗B B ≃ B as S-modules and by Lemma 4.6 there is an isomorphism of anchored
bi-Γ-sets

Γg−1Γ×Γ Γh−1Γ ≃
K⊔

k=1

mk⊔

ℓ=1

Γz(k,ℓ)Γ.

Taking completions we obtain the unitary bimodule isomorphism

TΓ
g ⊗B⋊rΓ T

Γ
h

∼
−→

K⊕

k=1

mk⊕

ℓ=1

(
TΓ
z−1
(k,ℓ)

)
.

The definition of addition in KK-theory then yields

T [Γg−1Γ]⊗ T [Γh−1Γ] = [TΓ
g ]⊗ [TΓ

h ] =
K∑

k=1

mk∑

ℓ=1

[TΓ
z−1
(k,ℓ)

] =
K∑

k=1

mk∑

ℓ=1

T [Γz(k,ℓ)Γ]

=

K∑

k=1

mkT [ΓzkΓ] = T

(
K∑

k=1

mk[ΓzkΓ]

)
= T ([Γg−1Γ] · [Γh−1Γ]),

showing that [Γg−1Γ] 7→ [TΓ
g ] is a ring homomorphism. �

We define HB(Γ, S) to be the subring of KK0(B ⋊r Γ, B ⋊r Γ) generated by TΓ
g for g ∈

CG(Γ). We obviously have

4.9. Corollary. If Z[Γ, S] is commutative, then HΓ(B,S) is commutative.

Similarly write HM (S) for the subring of KK0(C0(M), C0(M)) generated by the classes

of the correspondences M
s
←−Mg

t
−→M with g ∈ S.

4.10. Corollary. Let X be an S-space on which Γ acts freely and properly with quotient M :=

X/Γ. The map [Γg−1Γ] 7→ [M
t
←−Mg

s
−→M ] defines a ring homomorphism

Z[Γ, S]→ KK0(C0(M), C0(M)).

In particular, the double-coset product [Γg−1Γ] · [Γh−1Γ] corresponds to the class of the com-

position of correspondences [M
sg
←− Mg tg ×sh Mh

th−→ M ] and there is an isomorphism

HM (S) ≃HΓ(C0(X), S).

Proof. By [18, Proposition 3.8] the Morita equivalence isomorphism

KK0(C0(X) ⋊ Γ, C0(X) ⋊ Γ)→ KK0(C0(M), C0(M))

maps TΓ
g to TM

g = [M
sg
←−Mg

tg
−→M ]. Thus the above map is the composition

Z[Γ, S]→ KK0(C0(X)⋊ Γ, C0(X)⋊ Γ)→ KK0(C0(M), C0(M)),

whence a homomorphism. The last statement follows from [6, Theorem 3.2]. Clearly HM (S) ≃
HΓ(C0(X), S) under this isomorphism. �
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4.11. Remark. Corollary 4.10 is the KK-theoretic analogue of the well-known fact (see [23,

Chapter 7]) that the double-coset Hecke ring can be interpreted in terms of (topological) cor-
respondences where the double-coset multiplication simply becomes composition of correspon-
dences.

5. Hecke equivariant exact sequences

As before, let S be a group such that Γ ⊂ S ⊂ CG(Γ). In this section we prove the following
general result. For S-algebras A and B, and any element [x] ∈ KKS

i (A,B) we have that

[TA⋊rΓ
g ]⊗ jΓ([x]) = jΓ([x])⊗ [TB⋊rΓ

g ] ∈ KKi(A⋊r Γ, B ⋊r Γ).

Here jΓ denotes the Kasparov descent map (see [14, 15])

jΓ : KKS
∗ (A,B)→ KKΓ

∗ (A,B)→ KK∗(A⋊r Γ, B ⋊r Γ),

and we have written TA⋊rΓ
g for TΓ

g to emphasize the change of coefficient algebra. This result
implies that for any S-equivariant semisplit extension

0→ I → A→ B → 0,

of C∗-algebras that is Γ-exact in the sense that

0→ I ⋊r Γ→ A⋊r Γ→ B ⋊r Γ→ 0,

is exact, the long exact sequences in both variables of the KK-bifunctor are Hecke equivariant.
In particular we obtain Hecke equivariant exact sequences in K-theory and K-homology for
various compactifications associated with locally symmetric spaces.

5.1. The descent theorem. Kasparov’s descent construction associates to a Γ-equivariant C∗-
B-module X a C∗-module X ⋊r Γ over B ⋊r Γ (see [13, 14, 15]). To an S-equivariant C∗-
module X and a double coset Γg−1Γ, with g ∈ S, we associate the (Cc(Γ, A), Cc(Γ, B))-
bimodule

Cc(Γg
−1Γ,X) = C[Γg−1Γ]⊗alg

C
X.

cf. Section 4.1. We denote the C∗-module completion so obtained by TX⋊rΓ
g . The following

Lemma is an application of Proposition 4.7.

5.2. Lemma. Let A and B be S-C∗-algebras. Suppose that X is an S-equivariant right C∗-

module over B and π : A→ End∗B(X) an S-equivariant essential ∗-homomorphism. For every

g ∈ S, there are inner product preserving bimodule homomorphisms

(15)
Cc(Γg

−1Γ, A)⊗alg
Cc(Γ,A) Cc(Γ,X)

∼
−→ Cc(Γg

−1Γ,X)
∼
←− Cc(Γ,X) ⊗alg

Cc(Γ,B) Cc(Γg
−1Γ, B),

of (Cc(Γ, A), Cc(Γ, B))-bimodules with dense range. Consequently the respective C∗-module

completions are unitarily isomorphic (A⋊r Γ, B ⋊r Γ)-bimodules.

From the identifications

Γg−1Γ×Γ Γ ≃ Γg−1Γ ≃ Γ×Γ Γg−1Γ,

given by the multiplication maps and the S-equivariant isomorphisms

X ≃ A⊗A X ≃ X ⊗B B,
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coming from the bimodule structure we obtain the explicit from of the isomorphisms in (15):

α : Cc(Γg
−1Γ, A)⊗alg

Cc(Γ,A) Cc(Γ,X)→ Cc(Γg
−1Γ,X)

α(Ψ ⊗ Φ)(ξ) :=
∑

γ∈Γ

Ψ(ξγ) · ξγΦ(γ−1)

β : Cc(Γ,X)⊗alg
Cc(Γ,B) Cc(Γg

−1Γ, B)→ Cc(Γg
−1Γ,X)

β(Φ ⊗Ψ)(ξ) :=
∑

γ∈Γ

Φ(γ) · γΨ(γ−1ξ).

As before the elements gi are such that Γg−1Γ =
⊔d

i=1 giΓ. We construct from them the follow-
ing operators.

5.3. Lemma. The operator

vi : Cc(Γ,X)→ Cc(giΓ,X) ⊂ Cc(Γg
−1Γ,X), (viΦ)(giξ) := giΦ(ξ),

extends to an adjointable isometry X ⋊r Γ→ TX⋊Γ
g with adjoint given by

(vi)
∗Ψ(ξ) := g−1

i Ψ(giξ).

Proof. The formula for the adjoint is easily verified. It follows that (vi)∗vi = 1 on Cc(Γ,X), so
vi is isometric. The composition viv∗i = pi, the projection onto Cc(giΓ,X), which is bounded
as well. �

5.4. Theorem. Let (X,D) be an S-equivariant left-essential unbounded Kasparov module of

parity j and let g ∈ S. Then we have an equality

jΓ([(X,D)]) ⊗ [Tg] = [Tg]⊗ jΓ([(X,D)]) ∈ KKj(A⋊r Γ, B ⋊r Γ).

Proof. By Lemma 5.2 we have bimodule isomorphisms

(X ⋊r Γ)⊗B⋊rΓ T
B⋊rΓ
g

β
−→ TX⋊rΓ

g
α
←− TA⋊rΓ

g ⊗A⋊rΓ (X ⋊r Γ).

Define an operator D̂ on the dense submodule

Cc(Γg
−1Γ,Dom D) ⊂ TX⋊rΓ

g ,

via

(D̂Υ)(ξ) := D(Υ(ξ)).

Then D̂β = β(D ⊗ 1) and hence D̂ is essentially self-adjoint and regular, and has locally
compact resolvent. We wish to show that D̂ represents the Kasparov product of TA⋊rΓ

g and
(X,D), under the isomorphism α. To this end we need to verify conditions 1-3 of [16, Theorem

13]. Because the module TA⋊rΓ
g carries the zero operator, only the connection condition 1 needs

argument.
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Let A denote the dense subalgebra of A for such that [D, a] is bounded for a ∈ A . Then, for
Ψ ∈ Cc(Γg

−1Γ,A ), ξ ∈ Γ and a fixed element gi we have

D̂α(Ψ ⊗ Φ)(giξ)− α(Ψ⊗DΦ)(giξ)

=
∑

γ∈Γ

DΨ(giγ) · giγΦ(γ
−1ξ)−Ψ(giγ)giγDΦ(γ−1ξ)

=
∑

γ∈Γ

([D,Ψ(giγ)]−Ψ(giγ)(D − giγDγ
−1g−1

i ))giγΦ(γ
−1ξ)

= gi


∑

γ∈Γ

g−1
i ([D,Ψ(giγ)]−Ψ(giγ)(D − giγDγ

−1g−1
i )γΦ(γ−1ξ)




= vi(C
i
Ψ ∗ Φ)(giξ).

Here Ci
Ψ denotes the map

Ci
Ψ : Γ→ End∗B(X)

γ 7→ g−1
i ([D,Ψ(giγ)]−Ψ(giγ)(D − giγDγ

−1g−1
i )),

which is of finite support since Ψ is. Such maps define adjointable operators on Cc(Γ,X) via
the convolution action. Writing |Ψ〉 : Φ→ Ψ⊗ Φ we have

D̂α|Ψ〉 − α|Ψ〉D =

d∑

i=1

vi ◦ Ci
Ψ : X ⋊r Γ→ TX⋊rΓ

g .

which defines a bounded adjointable operator. Thus D̂ satisfies Kucerovsky’s connection condi-
tion as desired. �

5.5. Corollary. For any α ∈ KKS
j (A,B) and any separable C∗-algebra C , the induced maps

α∗ : KKi(C,A⋊r Γ)→ KKi+j(C,B⋊r Γ), α∗ : KKi(B⋊r Γ, C)→ KKi+j(A⋊r Γ, C),

are Hecke equivariant. In fact we can replace KK(C,−) and KK(−, C) by any co- resp.

contravariant functor which is homotopy invariant, split exact and stable.

5.6. Extensions and Hecke equivariant exact sequences. The paper [25] establishes, for any
locally compact group G, an isomorphism

KKG
1 (A,B)

∼
−→ ExtG(A⊗KG, B ⊗KG),

where KG ≃ K(L2(G×N)). A G-equivariant semi-split extension

0→ B → E → A→ 0,

induces a G-equivariant semi-split extension

0→ B ⊗KG → E ⊗KG → A⊗KG → 0,

and thus an element in KKG
1 (A,B).

5.7. Theorem. Let G be a locally compact group, Γ ⊂ G a discrete subgroup, CG(Γ) ⊂ G
its commensurator and S a group with Γ ⊂ S ⊂ CG(Γ). For any Γ-exact and S-equivariant

semi-split extension

0→ B → E → A→ 0,
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of seperable S-algebras and any separable C∗-algebra C , the exact sequences

(16) · · · → KKi(C,B ⋊r Γ)→ KKi(C,E ⋊r Γ)→ KKi(C,A ⋊r Γ)→ · · ·

(17) · · · → KKi(A⋊r Γ, C)→ KKi(E ⋊r Γ, C)→ KKi(B ⋊r Γ, C)→ · · · ,

are Z[Γ, S]-equivariant.

Proof. Exactness of Γ implies that we obtain a semi-split extension

(18) 0→ B ⋊r Γ→ E ⋊r Γ→ A⋊r Γ→ 0,

yielding the exact sequences (16) and (17). By Theorem 4.8 all groups in these exact sequences
are Hecke modules. In sequence (16), the maps

KKi(C,B ⋊r Γ)→ KKi(C,E ⋊r Γ), KKi(C,E ⋊r Γ)→ KKi(C,A ⋊r Γ),

are induced by elements in KK0(B ⋊r Γ, E ⋊r Γ) and KK0(A ⋊r Γ, E ⋊r Γ), respectively.
These elements are in the image of the descent maps

KKS
0 (B,E)→ KKΓ

0 (B,E)→ KK0(B ⋊r Γ, E ⋊r Γ),

KKS
0 (E,A)→ KKΓ

0 (E,A)→ KK0(E ⋊r Γ, A⋊r Γ),

and thus are Hecke equivariant by Theorem 5.4. Since the extension (18) is semi-split it defines
a class [Ext] ∈ KKS

1 (A,B). The boundary maps in the exact sequence (16) are implemented
by an element ∂ ∈ KK1(A ⋊r Γ, B ⋊r Γ), and this element is the image of [Ext] under the
composition

KKS
1 (A,B)→ KKΓ

1 (A,B)→ KK1(A⋊r Γ, B ⋊r Γ).

Thus by Theorem 5.4 the boundary maps in the sequence (16) are Hecke equivariant. The
argument for sequence (17) is similar. �

Interesting examples of S-equivariant extensions come from partial compactifications of G-
spaces. Let X be a locally compact space with a G-action. A partial S-compactification is a
S-space X which contains X as an open dense subset. We write ∂X := X \X and we obtain
the S-equivariant exact sequence

0→ C0(X)→ C0(X)→ C0(∂X)→ 0.

5.8. Example. Let G = Isom(H) where H is the real hyperbolic n-space. The geodesic com-
pactification H of H is a G-compactification and thus, it is an S-compactification for any lattice
Γ ⊂ G and subgroup Γ ⊂ S ⊂ CG(Γ). The associated Hecke equivariant exact sequence in
K-homology has been studied extensively in [18]. For torsion free Γ and M := X/Γ, there is a
Morita equivalence C0(M) ∼ C0(X)⋊r Γ, and a KK-equivalence C(H)⋊r Γ ∼ C

∗
r (Γ). The

exact sequence takes the form

· · · → K∗(C0(M))→ K∗(C
∗
r (Γ))→ K∗(C(∂H)⋊r Γ)→ · · · ,

as in [7, 8].

5.9. Example. Let G be the group of real points of a reductive algebraic group G over Q and
let X be its associated global symmetric space. The Borel-Serre partial compactification X of
X is a G(Q)-compactification but not a G-compactification (see [4]). However if Γ ⊂ G(Q) is
an arithmetic subgroup, then CG(Γ) = G(Q). So X is a CG(Γ)-compactification. The action
of Γ on X is cocompact and continues to be proper. Writing M := X/Γ for torsion free Γ ,
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we obtain the Borel-Serre compactification M := X/Γ of M and its boundary ∂M := ∂X/Γ.
There are Morita equivalences

C0(X)⋊r Γ ∼ C0(M), C0(X)⋊r Γ ∼ C0(M), C0(∂X) ⋊r Γ ∼ C0(∂M ).

The exact sequence thus reduces to the topological K-theory sequence

· · · → K∗(M)→ K∗(M)→ K∗(∂M )→ · · ·

of the pair (M,∂M ).
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