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Fossil and phylogenetic evidence indicates legume-rich modern tropical forests

replaced Late Cretaceous palm-dominated tropical forests across four continents

during the early Cenozoic (58–42 Ma). Tropical legume trees can transform eco-

systems via their ability to fix dinitrogen (N2) and higher leaf N compared with

non-legumes (35–65%), but it is unclear how their evolutionary rise contributed

to silicate weathering, the long-term sink for atmospheric carbon dioxide (CO2).

Here we hypothesize that the increasing abundance of N2-fixing legumes in tro-

pical forests amplified silicate weathering rates by increased input of fixed

nitrogen (N) to terrestrial ecosystems via interrelated mechanisms including

increasing microbial respiration and soil acidification, and stimulating forest

net primary productivity. We suggest the high CO2 early Cenozoic atmosphere

further amplified legume weathering. Evolution of legumes with high

weathering rates was probably driven by their high demand for phosphorus

and micronutrients required for N2-fixation and nodule formation.
1. Introduction
Biogeochemical weathering of silicate rocks (e.g. basalt, andesite, dunite) is a

key process in the carbon cycle that acts as a long-term sink of atmospheric

carbon dioxide (CO2) [1]. Consumption of CO2 by weathering is small

(0.10–0.12 Gt C yr21) on an annual basis [2] compared with carbon transfers

in photosynthesis or respiration. However, net CO2 consumption by weathering

is the dominant sink in the global carbon balance thus controlling atmospheric

CO2 and climate patterns at scales of millennia or longer [2].

Numerous field studies have shown that plants accelerate rock weathering

through a suite of increasingly well understood processes [3] (electronic sup-

plementary material, figure S1). By increasing the soil pools of Hþ ions, carbonic

(H2CO3, from plant or soil respiration) and chelating organic (RCOO2) acids,

plants and their symbiotic partners cause the weathering release of base cations

(electronic supplementary material, figure S1) that ultimately lead to the formation

of marine carbonates on the seafloor [2]. The rise of the first forests during the

Devonian (419–359 Ma) [4] probably accelerated silicate weathering, contributing

to the drawdown of atmospheric CO2 and establishing the basic features of the

modern land carbon cycle. Today, forests are thought to enhance rock weathering

by a factor of 2–10 compared with unvegetated catchments [5].

During the Cenozoic (past 65 Ma), the global biome transformation from

palm-dominated Late Cretaceous forests to the highly productive and carbon-

rich tropical forests that exist today, discussed in more detail in the next section,

included the rise of trees in the ecologically important legume family

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2017.0370&domain=pdf&date_stamp=2017-08-16
mailto:dzepihov1@sheffield.ac.uk
https://dx.doi.org/10.6084/m9.figshare.c.3832519
https://dx.doi.org/10.6084/m9.figshare.c.3832519
https://dx.doi.org/10.6084/m9.figshare.c.3832519
http://orcid.org/
http://orcid.org/0000-0001-5711-5480
http://orcid.org/0000-0002-7703-9873
http://orcid.org/0000-0003-2364-8187
http://orcid.org/0000-0003-1869-4314
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://rspb.royalsocietypublishing.org/


rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20170370

2

 on October 4, 2017http://rspb.royalsocietypublishing.org/Downloaded from 
(Leguminosae, or ‘legumes’). Legumes dominate large areas

of modern tropical forests in both total number of tree species

and in abundance within local forests [6].

Four lines of evidence suggest that the evolution of the

dinitrogen (N2)-fixing rhizobial symbiosis (in which dinitro-

gen-fixing rhizobial bacteria are housed within specialized

root nodules [7]) occurred as legumes radiated and spread in

the early Cenozoic [9]. First, a whole-genome duplication

event in the Papilionoideae clade, molecularly dated to

58 Ma, probably created the gene copies necessary for nodula-

tion and N2-fixation to evolve [10]. Second, many modern

rainforest -fixing legume trees are nodulated by b-rhizobia in

the Burkholderia group [11]. Horizontal transfer of symbiotic

nod genes between a-rhizobia and South American Burkhol-
deria is dated to 60–50 Ma [12], indicating that compatible

N2-fixing host trees may have appeared at that time. Third,

the presence of fossil legume genera recovered from early

Cenozoic deposits with present-day relatives capable of

N2-fixation also supports the view that this capacity was

developed in early members of the family, with our synthesis

indicating that the majority of fossil taxa identified at the

genus level of Palaeocene and Eocene age belong to N2-fixing

genera (25 taxa) relative to non-fixing (16 taxa; electronic

supplementary material, figure S2). Fourth, an increased pro-

portion of legume fossil leaves recovered from 56 Ma old

strata correlate with intensification of insect damage. This is a

pattern consistent with the influx of fresh, fixed nitrogen (N)

into the ecosystem [13].

Fossil genera, the symbiotic status of their nearest living rela-

tives (electronic supplementary material, figure S2), evidence of

increased insect damage in the fossil record in likely response to

high foliar N and molecular clock dating therefore appear to

indicate that N2-fixation and diverse mycorrhizal symbioses

had evolved in legumes by the early Cenozoic.

Here, we review the rise of N2-fixing legume-rich tropi-

cal forests early in the Cenozoic and propose a new

testable hypothesis for how the evolution of this biome may

have strengthened the long-term carbon cycle feedbacks that

helped shape Earth’s CO2 and climate history in the Cenozoic.

2. Global rise of nitrogen-fixing legume-rich
tropical forests

Late Cretaceous tropical floras were dominated by widely

distributed palm communities from Africa to South America,

a floristic region known as the Palmae Province [14–16].

Communities in both the Palaeo- and Neotropics contained

abundant palms, including those resembling extant Nypa
palms and suggestive of coastal intertidal habitats similar

to mangrove forests, while other areas harboured palm-

dominated dry forest communities. Unlike modern tropical

forests, both of these communities were deprived of abundant

dicot arboreal flora [14,15]. In Africa, leaf fossil and pollen

evidence indicate that the dominant palm lineages began to

decline around the Cretaceous–Palaeogene boundary [16]

and completely disappeared in the fossil record during the

Miocene [15]. Similarly, palm abundance in Neotropical

areas decreased in the early Cenozoic, although palms

remain an important element of these forests today [17]. The

Palmae Province was replaced in Africa and assimilated in

South America by the rise of modern tropical forests during

the early Cenozoic. The earliest record of modern

Neotropical forests—found in Colombia and dated to the
Late Palaeocene (58 Ma)—indicates that the flora resembled

the current day composition of plant families with abundant

fossilized dicot and palm leaves, including numerous legumes

[18]. Pollen records from Africa similarly show the rise of

modern families of dicot trees following the Palaeocene [15,16].

Pollen and leaf macrofossils indicate that legume taxa have

comprised a key component of tropical forests since the early

Cenozoic (figure 1a; electronic supplementary material,

figure S2). While it is difficult to translate a taxon’s abundance

in the fossil record to abundance in a forest, the persistent

recovery of legume pollen, leaves, flowers, fruits and wood

indicate that legume trees were present and widespread in

the flora of the Americas and Africa. The following observa-

tions can be drawn from early Cenozoic records: (i) legume

leaves made up 21–73% of all fossilized leaves in South

and North American forest assemblages [18,24]; (ii) legumes

comprised 14–33% of all recorded taxa across tropical forests

(figure 1) [25–27]; (iii) single legume tree species represented

up to 7% of all fossil leaves (greater than 200 leaves) in

species-diverse South American dry forests [28,29]; (iv) one

legume tree species (the non-fixing Cynometra) formed a

monodominant forest in Africa 46 Ma [26], with further mono-

dominance indicated by the presence of Eocene fossils that

belong to modern monodominant genera such as the non-

fixing Brachystegia and Julbernardia (Eurasian deposits) and

the non-fixing Peltogyne (South American formations) (elec-

tronic supplementary material, figure S2); (v) rainforests with

abundant presence of caesalpinioid and mimosoid (many

modern representatives of which are N2-fixing [7]) legumes

were recorded in central Africa [15]; and (vi) tropical and

temperate N2-fixing legume trees may have coexisted during

warm Eocene climates in higher latitude boreotropical forests

(England, Hungary, North America) [30].

Fossil evidence, therefore, indicates that early Cenozoic

tropical forests (wet, dry and boreotropical) had evolved

abundant legumes across continents (figure 1a). The timing

of the early Cenozoic assembly of legume-rich tropical forests

(58–42 Ma) as documented by the fossil record is similar to

the molecular clock-dated diversification events in the

legume clade (figure 1b; for recent changes in legume taxon-

omy, see [31]). Beneath these emerging tropical forests were

substantial areas of unweathered rocks in tropical India [32],

in South America, including the southeast part of the

Amazon basin, and in the Amazon deltaic area [22] coinciding

with peaks in terrestrial weathering (figure 1b) as evident from

the recovery of highly weathered palaeosols [20].
3. Mechanisms of N2-fixing legume-driven
enhanced weathering

Here, we propose that the rise of N2-fixing legume trees

enhanced weathering through a series of processes associated

with three abilities especially well developed in this group of

trees: (i) to fix atmospheric N2, (ii) to build disproportionately

N-rich leaf tissue, and (iii) to stimulate the primary production

in ecosystems by redistributing fixed N to the soil and to

neighbouring trees.

First, N2-fixing legumes have the ability to fix N at high

rates in natural ecosystems [33]. Over time, fixers bring in sub-

stantial quantities of N and can provide the largest natural

source of new N to ecosystems [34]. Soil N is high and nitrate

and denitrification losses large (exceeding or rivaling many
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Figure 1. Global rise of legume-rich tropical forests during the early Cenozoic (58 – 42 Ma). (a) Global map of the major legume fossil records plotted on the Eocene
continental configuration. Lines and their ball ends point to approximate locations. Caesalpinioids in the Wilcox flora are according the old pre-molecular taxonomy
with a family status. DTF, dry tropical forest; SubTF, sub-tropical forest; TRF, tropical rainforest, boreotropical or BTF, a forest with mixed tropical and temperate species
which is sometimes referred to as boreotropical. (b) Summary of the notable legume-rich fossil assemblages and all major molecular clock-dated crown nodes in the
Leguminosae marking the rise of the legume-rich forests in the Palaeocene – Eocene plotted against atmospheric CO2 records (light blue dots and red Loess curve) using
data from [19] and ocean bottom water temperature (orange semi-transparent curve) using data from [21]. Peaks in terrestrial weathering (WTs ¼ 55, 48, 35 Ma) are
estimated as levels of lateritization and bauxitization in [20]. Cjn, Cerrejon rainforest formation; Wlx, Wilcox boreotropical flora; Wy, Wyoming flora; Pat, Patagonia dry
forests; Mah, Mahenge dry tropical forest; Cyn, Cynometra-monodominant stands in Mwadui; Cam, Cameroon tropical rainforest; Bjm, putative Brachystegia-Julbernardia
miombo (macrofossils but not assemblage). Crown nodes include the divergence of L, Leguminosae; Pa, Papilionoideae; G, Genistoids; D, Dalbergioids; N, Senna clade;
U, Umtiza clade; A, Amherstieae tribe (contains the majority EM taxa) after [23]; S, Swartzia clade; R, Robinioids; B, Mirbelioids; I, Indigoferoids; Cl, Cladrastis clade;
M, Millettioids; Mi, Mimosoideae; O, Peltophorum clade; T, Trifolium (IRLC) clade; C, Cercis clade; P, Poeppigia clade; F, Fossil not supported Brachystegia clade (because
fossils of Brachystegia and Julbernardia found much earlier and new estimates show that this divergence occurred 52.1 Ma—here marked as clade Amherstieae). Clock
data references: all clade ages unless otherwise stated are after [9].

rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20170370

3

 on October 4, 2017http://rspb.royalsocietypublishing.org/Downloaded from 

http://rspb.royalsocietypublishing.org/


(d)

(b)(a) (c)

Haw
aii

 2

Haw
aii

tro
pic

al 
Chin

a

se
co

nd
ary

 ra
inf

or
es

t A
maz

on

se
co

nd
ary

 ra
inf

or
es

t A
maz

on

matu
re 

rai
nf

or
es

t P
an

am
a

Pue
rto

 R
ico

Ecu
ad

or
ian

 A
maz

on

Eas
ter

n A
maz

on

matu
re 

rai
nf

or
es

t C
os

ta 
Rica

Tap
ajo

s, 
Braz

il

matu
re 

fo
res

t M
ara

ca
 Is

lan
d, 

Braz
il

Ja
maic

a

tro
pic

al 
Afri

ca

Tha
ila

nd

In
do

ne
sia

Sri 
Lan

ka

M
ala

ys
ia

Zim
ba

bw
e

va
rio

us
 tr

op
ica

l

Haw
aii

In
dia

tropical forestry
plantations

no
n-

fix
ing

 no
n-

leg
um

es

no
n-

fix
ing

 le
gu

mes

N 2
-fi

xin
g l

eg
um

es
10

20

30

40

c

b

a

n = 546 n = 32 n = 912.5

tropical forests

N
2-

fi
xi

ng
/n

on
-f

ix
in

g
fo

lia
r 

N

0.5

1.0

1.5

2.0

2.5

N
2-

fi
xi

ng
/n

on
-f

ix
in

g
fo

lia
r 

N

0.5

1.0

1.5

2.0

fo
lia

r 
N

 (
g 

kg
–1

 D
B

M
)

underground
C flux

litter production
(amount)

decomposition
and ammonification

microbial
respiration

CO2

(chelation)

(carbonation)

NO3
– + 2e– + 3H+

(acidolysis)

leaching
Ca2+, Mg2+ loss

NH3
+

nitrification

uptake

N-rich organic
matter

crude protein

(concentration)

N2-fixation

photosynthesizing
leaves

GPP
AM fungi

CO2(carbonation)

isoflavonoids
(chelation)

Figure 2. Foliar N ratios between N2-fixing and non-fixing non-legumes in (a) tropical forests, (b) tropical forestry plantations and (c) between the three functional
groups and (d ) pathways of the nitrogen-weathering feedback hypothesis. Red typeface depicts factors stimulating weathering with specific weathering reactions
associated with those factors in brackets. In tropical forests, N2-fixing legumes exhibit an average of 34.58% (s.e.m. ¼ 11.73%) higher leaf crude protein content
than non-fixing tree species. In forestry plantations, N2-fixing legume species reveal on average 64.50% (s.e.m. ¼ 11.57%) higher leaf crude protein content than
non-fixing trees. Raw data and references are available in the electronic supplementary material. In (c ), ‘n’ stands for number of species and DBM stands for dry biomass.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20170370

4

 on October 4, 2017http://rspb.royalsocietypublishing.org/Downloaded from 
temperate forests exposed to N deposition) in tropical forests

that harbour N fixers [33]. In a survey across 55 tropical forests,

these systems naturally sustained loss rates of 4–6 kg N ha21

nitrate, 6–10 kg N ha21 of total dissolved N and 4–5 kg N

denitrified; when corrected for low levels of atmospheric N

deposition, these rates could only be explained by fixation [35].

Second, N2-fixing legumes contain substantially higher

leaf N than non-fixing tree species [36]. We performed a

meta-analysis of 31 studies encompassing 561 tropical tree

species (n ¼ 680 measurements) to evaluate the N content of

N2-fixing and non-fixing trees in natural forests and planta-

tions across 22 different tropical regions (figure 2a,b). Our

analysis shows that, despite considerable variation across

sites, N2-fixers exhibit higher mean leaf N content than non-
fixers (by 35% in natural tropical forests and by 65% in tropical

forestry plantations) and non-fixing legumes (by 21%). These

findings are consistent with a study of leaf N across Amazonian

tropical forests that also reported N2-fixing legumes had higher

leaf N content than both non-fixers as a whole and non-fixing

legumes [37].

Third, this N-rich leaf tissue would cause increased input of

N-rich compounds including proteins and amino acids to soils

via litterfall. Such increased N input, in turn, would enrich soils

in N and probably cause higher rates of productivity for non-

fixing as well as N2-fixing trees. Evidence for such a major

ecosystem impact comes from recent field studies: N2-fixing

legumes provided approximately 50% of the N required for

early growth of Panamanian secondary rainforests, supported

http://rspb.royalsocietypublishing.org/
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rapid carbon accumulation in biomass of both fixers and

non-fixers [38] and enhanced soil N [39] during periods of N

limitation. Levels of N2-fixation in early Cenozoic fixers are

hard to establish empirically but indirect evidence of greater

insect damage from fossil leaves together with greater palata-

bility and protein content of N2-fixing trees [13] support the

assumption that ancient N2-fixers were capable of generating

high N foliage.

We suggest these three characteristics of N2-fixing legumes

probably entrain a suite of direct and indirect mechanisms that

can enhance rates of rock weathering, as discussed below.

(a) N2-fixing legume litter decomposition and microbial
respiration

Litterfall and the decomposition of protein-enriched biomass

would ultimately increase the flux of new fixed N into several

linked soil processes (soil respiration, ammonification, nitrifi-

cation) and pools (soil organic matter, dissolved organic N).

The input of new N would trigger several weathering-related

mechanisms (figure 2d ).

First, the low C/N ratio of N2-fixing legume litter implies

fast decomposition, greater microbial respiration and greater

CO2 production than non-legume litter [40,41]. During

decomposition, the majority of N-rich leaf tissue and its amino

acids, amino sugars and other N-rich monomers will undergo

ammonification and nitrification. Decomposition also generates

organic acids and faster decomposition rates may facilitate pas-

sing the organic acid concentration threshold necessary to drive

mineral weathering [42].

Second, N-rich organic matter can itself stimulate soil

microbial activity and respiration. Although C inputs would

have similar effects regardless of whether derived from

decomposition of leguminous N-rich or non-leguminous

N-poor litter, the lack of sufficient N can ultimately down-

regulate microbial respiration specifically under high CO2

regimes [43], such as those seen during the early Cenozoic

(figure 1b). Addition of N2-fixing legume-derived N-rich

litter may therefore have a dual function. First, it will fuel micro-

bial respiration with the energy stored in the carbon–hydrogen

(C–H) and carbon–carbon (C–C) bonds of its carbohydrate

component. Second, because of its abundance in N and protein,

it will promote microbial respiration by alleviating any existing

N-limitation on microbial metabolism. In situ studies in tropical

soils confirm augmented rates of microbial respiration in the

combined glucose and N treatment compared with the glucose

treatment alone [44].

Third, the dissolved CO2 generated by microbial respiration

forms carbonic acid (H2CO3) which, in turn, acts as a major

weathering agent [45] (electronic supplementary material,

figure S1). Increased microbial respiration also positively cor-

relates with the production of chelating organic acids, e.g.

gluconic acid, a secreted by-product of microbial catabolism [46].

(b) N2-fixing legume-driven soil acidification
Ammonia generated by ammonification during litter

decomposition can undergo nitrification. In the process, each

molecule of ammonia converted to nitrate generates three

by-product Hþ ions. Although these Hþ ions are typically

counterbalanced by plant secretion of anions (bicarbonate or

organic acids) for each acquired NO�3 , nitrate leaching can

uncouple this relationship and promote the build-up of Hþ
in the soil. High levels of N2-fixation can exceed the rates at

which N is immobilized within the system, resulting in

enhanced NO�3 leaching (as discussed above) and enhanced

transport of Hþ to deeper soil horizons (where contents of

unweathered minerals may be high). Tree ring data from tropi-

cal fossil woods indicate that climate seasonality was largely

similar between early Cenozoic and modern tropical forests

[47], supporting the view that nitrification patterns as affected

by soil moisture/dryness [48] probably were comparable.

During the leaching of NO�3 large amounts of counterbalan-

cing cations (Ca2þ, Mg2þ, Kþ) released by cation exchange

reactions with nitrification-generated Hþ are leached too, result-

ing in the decline of soil cation exchange capacity and soil

pH buffering capacities. This phenomenon has been recorded

for N2-fixing forests of Alnus rubra in which large inputs of

fixed N caused leaching, decreased cation concentration and

increased soil acidification [49].

Despite the tight Nbudget of most tropical forest systems, sub-

stantial levels of nitrate leaching still occurs [33], suggesting that

similar mechanisms probably operate in tropical forests rich in

N2-fixing legumes. In addition, because of their N2-fixation,

fixers tend to acquire lower relative amounts of negatively

charged ions and produce larger organic acid loads per unit N

resulting in the balancing Hþ extrusion into the rhizosphere [50].

Consequently, pronounced soil acidification has been

recorded in various N2-fixing species from herbs [50,51] to

trees and shrubs of temperate forest [52,53] and tropical rainfor-

est [39] areas. Recent analysis of tropical rainforests at four

Neotropical locations revealed that forests rich in N2-fixers

exhibited increased soil acidity (pH 4.1) and lower Ca2þ and

Mg2þ concentrations than forests poor in N2-fixing legumes

(pH 5.2) [54]. N2-fixing legume-driven acidification can promote

weathering not only by acid attack (acidolysis) of the mineral lat-

tice (electronic supplementary material, figure S1) but also by

depleting soil cations through cation exchange, thus shifting

the equilibrium towards further mineral dissolution.

(c) N2-fixing legume-driven stimulation of net primary
productivity

Ultimately, inorganic forms of fixed N are acquired from the

soil solution by roots stimulating the N input into biomass,

including that of neighbouring non-fixing trees. For instance,

the non-fixing tropical trees Peschiera, Psidium [55], Eucalyptus
[56] and Terminalia [57] all exhibited increased foliar N levels in

N2-fixing legume-rich neighbourhoods compared with

legume-poor settings. As foliar N correlates with increased

levels of crude leaf protein, including the photosynthetic

enzyme RUBISCO [58], the photosynthetic rates of individual

trees and the net primary production (NPP) of such mixed

fixer/non-fixer forests may be upregulated. Indeed, N2-fixing

legumes exhibit up to twofold greater photosynthetic rates

than the less N-rich leaves of non-fixing trees in Zimbabwe

[59]. Similarly, non-fertilized mixed non-fixer/N2-fixer forestry

plantations reveal augmented NPP rates compared with

non-fixing forests in Brazil and Puerto Rico [60,61].

Fossil evidence supports N2-fixing legume-driven

N-fertilization on productivity of tropical ecosystems. Presu-

med N2-fixing legume-dominated assemblages exhibited

insect damage (linked to higher leaf N content) spread across

fossil taxa relative to systems with fewer legumes in which

foliar damage was more concentrated on legume leaves [13].

This observation indicates that as legume domination was
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established, N redistribution triggered by the input of N-rich

litter increased N levels of neighbouring non-legumes (as

observed in modern systems). The source of this N buffering

effect is better explained by legumes capable of N2-fixation

than non-fixing legumes because the patterns are consistent

with the influx of new fixed N to the system.

Some canopy photosynthate from highly productive

N2-fixing legume-rich forests will be allocated to symbiotic

mycorrhizal fungi. The mycelial networks of these fungi

grow in intimate contact with mineral grains, thus driving

enhanced rock weathering and inorganic nutrient release via

chelation, carbonation and acidolysis (electronic supple-

mentary material, figure S1) [45]. Greater gross primary

production (GPP) and its related NPP rates also correlate

with greater root respiration (with associated production of

carbonic acid) and organic acid leaching, which promotes

further weathering [45] (electronic supplementary material,

figure S1). N2-fixing legume-enhanced forest NPP can also

increase the demand for nutrients and thus further necessitate

more extensive soil exploration via roots and mycorrhizal

fungi, and eventually enhanced rock weathering. Therefore,

increased N inputs could indirectly increase rock weathering

via stimulation of rainforest NPP in legume-rich communities

compared with Nypa and other Late Cretaceous palm forests

as well as to legume-poor early Cenozoic analogues.

(d) Accessory mechanisms of N2-fixing legume-driven
weathering

The unique ability of legumes (including many rainforest

N2-fixing legume trees [62,63]) to synthesize and exude

isoflavonoids [64] may also impact weathering rates. Isoflavo-

noids enhance phosphorus (P) and iron (Fe) solubilization

from the mineral vivianite by acting as soil chelators (electronic

supplementary material, figure S1) as well as by decreasing

organic acid decomposition [65]. Comparison between the

estimated low-molecular organic acid exudation by lowland

tropical rainforest trees (approx. 25 mg C g21 dry biomass

(DBM) root h21) [66] and isoflavonoid exudation of the

N2-fixer Lupinus albus (approx. 31 mg C g21 DBM root h21)

[67] (see the electronic supplementary material for detailed

calculations) suggests that isoflavonoids could contribute to

the pool of plant-derived chelating agents in legume-rich

forest soils.

Isoflavonoids are crucial in establishing the N2-fixing

legume-rhizobial symbiosis by enabling both attraction and

priming of rhizobial partners [68]. They attract larger soil

rhizobial populations [69] of nodulation-competent strains of

Burkholderia, Rhizobium and Mesorhizobium—members of

all of these genera have been shown to exert strong chelating

activities [70]. Soil pH, C, N and C/N ratio are also important

determinants of microbial community structure [71]. Finally,

legume-mediated changes in soil chemistry may change

microbial community of the mineralosphere selecting for

nitrophilic and acidophilic bacterial taxa.
4. N2-fixing legume-rich forest responses to a
CO2-rich early Cenozoic atmosphere

The rise of N2-fixing legume-rich tropical forests during

the early Cenozoic coincides with elevated atmospheric

CO2 concentrations, with potential feedbacks on primary
production and weathering (figure 1b, figure 3). Evidence

for the mechanisms that may govern this potential feedback

comes from free air CO2-enrichment (FACE) experiments.

In the Oak Ridge, TN, USA, FACE experiment, the non-

fixing AM Liquidambar styraciflua trees showed a 24% increase

in NPP during the first 6 years of exposure to elevated

CO2 [72]. However, over the next 5 years the positive CO2-

enrichment effect decreased to þ9% in 11-year old stands

as ecosystem N stocks declined [72], suggesting progressive

soil N-limitation on tree NPP in the long-term under high

CO2 [72,73]. N2-fixing legumes may mitigate this N-limitation

mechanism under a high CO2 atmosphere because N-limit-

ation would favour recruitment of N2-fixing legumes and/

or upregulate their fixation rates [74,75]. Fossil evidence

suggests that N2-fixing legumes may increase in abundance

under such conditions. During the transient climate warming

event across the Palaeocene–Eocene thermal maximum

(PETM; 55.8 Ma) that is linked to a rise in atmospheric CO2

and continental weathering regimes [76], the abundance of

fossilized leguminous leaf specimens increased to 73% and

then declined to 21% post-PETM in the Bighorn Basin, USA

[23]. Further evidence from PETM sites dominated by legumes

corroborates extensive N2-fixation capacity increasing N

availability to the system (as discussed above) [13].

Physiologically, elevated CO2 can promote nodulation and

N2-fixation [77–79], mycorrhization [80] and photosynthetic

rates, and therefore may allow N2-fixing legume productivity

to increase proportionally more in response to CO2 than non-

legumes [77,79]. Furthermore, nodules represent additional

sinks exchanging the increased flux of assimilates for fixed N

thus curtailing the photosynthetic acclimation to elevated CO2

when unconstrained by other factors [81], allowing higher
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photosynthetic rates to persist. Those effects could promote N2-

fixer recruitment, upregulated N2-fixation rates and greater

dominance at high CO2 concentrations [82]. A FACE experiment

at Oak Ridge analysed the CO2 response of over 2000 seedlings

from 14 different temperate tree species. After 5 years, the

N2-fixing legume Robinia pseudoacacia exhibited an order of

magnitude higher biomass response than all of the non-fixing

angiosperm trees [83]. Controlled environment pot-based

CO2-enrichment experiments indicate that the photosynthesis

and growth responses of nodulated N2-fixing Leguminosae

rainforest trees were significantly greater than that of non-

leguminous species investigated [84]. Although there are clear

limitations in extrapolating from these studies to legumes of

early Cenozoic tropical forests, the mechanistic basis of the

CO2 response—linked to alleviation of N-limitation—would

still hold.

Based on these findings, we conceptualize that different

feedback loops operated between non-legume and N2-fixing

legume forests, atmospheric CO2 and climate in the Cenozoic

(figure 3). In non-fixing forests like those that existed prior to

legume evolution or in legume-poor tropical forests of the

early Cenozoic, increased atmospheric CO2 would stimulate

NPP until available soil resources—probably N and P in

many locations—are exhausted (figure 3a: feedbacks 1-2-3).

Progressive N-limitation could therefore uncouple the ‘stan-

dard’ relationship between NPP, CO2 and weathering [85]

in legume poor forests (figure 3b). By contrast, however, in

legume-rich forests, progressive N-limitation would probably

further promote recruitment of N2-fixers and the up-regu-

lation of N2-fixation rates (figure 3a: feedbacks 1-2-3-4-5), as

observed in modern N-limited rainforests [38]. This could

allow NPP to respond to increasing CO2 and help promote

continued weathering (figure 3b). Additionally, biological

weathering processes are strengthened by inputs of N-rich

legume litter and associated downstream processes. Com-

bined, this evidence indicates that in CO2-rich conditions,

the significant role of legumes in maintaining enhanced

weathering regimes in early tropical forests may be amplified.
5. Evolutionary drivers of enhanced weathering
by N2-fixing legumes

Central to our feedback analyses (figure 3) is the idea that

N2-fixing legumes are associated with higher weathering

rates than non-legume trees. This effect, in turn, may have

evolved in response to a disproportionately high demand

for P, molybdenum (Mo) and Fe across legume taxa. P and

Mo have been identified as potentially limiting factors of

N2-fixation within tropical forests [86–88]. These limitations

may occur because the most common type of nitrogenases

involved in symbiotic N2-fixation requires an Fe/Mo complex

acting as a cofactor [86] while high P intake accommodates

for enhanced production of energy-rich metabolites (e.g.

ATP) and membranes during nodule organogenesis [89].

Linked to the probable greater P demand driven by higher

rates of growth, some but not all N2-fixing legumes may

have higher foliar P levels than non-fixing trees (electronic

supplementary material, table S1). Fe is also required for pro-

duction of leghaemoglobin in nodules for oxygen binding

[90]. Fe is very abundant in tropical soils but it is highly inso-

luble. Most P in soils is also insoluble in complexes with

aluminium (Al)- and Fe-bearing secondary minerals, and
fresh Mo and P inputs originate from weathering of other-

wise plant-unavailable mineral sources. Both the dissolution

of insoluble P and Fe and the release of mineral-bound Mo

rely upon the same weathering mechanisms that include

chelation and acidolysis [91] (electronic supplementary

material, figure S1). Al and iron phosphate minerals such

as variscite and vivianite, respectively, dissolve faster at

pH , 6, a process exacerbated by organic acids [91,92].

Overall, the processes of N2-fixation and nodule formation

require an array of sparingly soluble (P, Fe) or scarce soil min-

erals (Mo). This observation suggests that the mechanisms of

enhanced weathering overlap with those driving acquisition

of elements essential for N2-fixing legumes. It provides a mech-

anism that would promote the evolution of adaptive strategies

in tropical legumes leading to enhanced weathering and

thereby unlocking sparingly soluble limiting nutrients.

Our hypothesized mechanisms that relate N2-fixing legume

functioning to weathering rates are suitable for direct investi-

gation in the field and laboratory, and future studies will

hopefully further elucidate the relative importance of each of

the mechanisms of the hereby proposed hypothesis.
6. Conclusion
Fossils and molecular dating suggest that a worldwide shift

from palm-dominated communities to ‘modern’ tropical forests

occurred early in the Cenozoic and involved the development

of N2-fixing legume-rich and symbiotically diverse commu-

nities. Based on our analyses of potential effects on forest

ecosystem biogeochemical C and N cycling, we propose that

the increasing abundance of N2-fixing legumes in tropical

forests amplified weathering rates through several intercon-

nected pathways. Firstly, N2-fixing legumes increased soil

inputs of N-rich organic matter (by an estimated 35–65%

based on modern analogues) which can promote microbial res-

piration and carbonation as well as progressive soil acidification

resulting from leaching and compensatory Hþ extrusion. Sub-

sequently, increased N inputs may have fuelled greater

N-availability stimulating forest NPP, thus driving further car-

bonation, organic acid chelation and rhizospheric weathering

activities. Lastly, exudation of N-costly isoflavonoids unique

to legumes could have provided an additional source of chelat-

ing activities that cause rock weathering. Together with soil

acidification and decreasing C/N ratios these effects could

have indirectly driven shifts in the weathering potential of the

soil microbial community.

We suggest the global evolution of tropical forests rich in

N2-fixing legumes in the early Cenozoic in concert with abiotic

drivers, including reduced subduction of oceanic crust and the

rise of the Himalayas/Tibetan plateau [32,93], could have con-

tributed to regimes of enhanced weathering over pantropical

areas with consequent feedbacks on global climate. Further-

more, N2-fixing legumes help maintain the NPP response to

atmospheric CO2 concentration. In an evolutionary context, tro-

pical N2-fixing legumes appear to enhance rock weathering as a

possible adaptation to unlock previously unavailable P, Mo and

Fe mineral sources, thus alleviating limitations on N2-fixation

processes.
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