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The direct optical bandgap in ferroelectric KNbO3-Bi(Yb,Me)O3 (Me¼Fe or Mn) ceramics

fabricated by the solid state reaction method varies from 3.2 eV for KNbO3 down to 2.2 eV for

0.95KNbO3-0.05BiYbO3, as revealed by optical spectroscopic ellipsometry. This narrowing of

bandgap is accompanied by an apparent increase of the room-temperature relative permittivity

from 320 for KNbO3 to 900 for 0.95KNbO3-0.05BiYbO3. All compositions studied exhibit dielec-

tric anomalies associated with structural phase transitions, and their ferroelectric nature is corrobo-

rated by the presence of a sharp mixed mode (at �190 cm�1) and by a Fano-type resonant dip in

their Raman spectra. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4963699]

Solar energy is one of the most promising sources of

renewable, clean energy to replace our current dependence

on fossil fuels. In conventional solid-state photovoltaics (for

example, Si-based solar cells), electron-hole pairs are created

by light absorption and then separated using the potential

developed at a p-n junction or heterojunction. The maximum

photovoltage in these devices is equal to the semiconductor

electronic bandgap. In contrast, oxide ferroelectric (FE) per-

ovskites (ABO3) exhibit photovoltages exceeding several

times their bandgap values.1 This abnormal photovoltaic

effect in FE has been known for more than 50 years.

Nevertheless, it has been largely disregarded for technologi-

cal applications because in most oxide FE perovskites, the

optical bandgaps are usually greater than 3 eV, limiting their

light absorption primarily to the ultraviolet (UV) region, i.e.,

they are only able to capture �8% of the solar spectrum. The

wide optical bandgaps in oxide FE perovskites arise from

the nature of the bonding between O and B ions. Indeed, the

large differences in electronegativity between the O and

the B ions lead to the valence band to be formed by the 2p

O states and the conduction band by the d states of the B

transition metals sitting within the O octahedra. Until very

recently, BiFeO3 with a bandgap of 2.7 eV was known to

have the narrowest bandgap among the oxide FE perov-

skites.2 Nevertheless, BiFeO3 is only able to capture 20% of

the solar spectrum. BiFeO3 thin films were observed to

exhibit photovoltages that exceeded their bandgap by several

times.3 The bulk nature of this phenomenon has been ele-

gantly demonstrated by Bhatnagar et al.4 A comprehensive

study on how the crystal and defect chemistry influences the

bandgap trends in alkaline earth perovskites was carried out

by Lee et al.5 They found the optical bandgap to vary sys-

tematically with tolerance factor and lattice volume within

the limits defined by the chemistry of the octahedral site.

Recently, Grinberg et al.6 demonstrated that the direct

bandgap of ferroelectric (1-x)KNbO3-xBaNi0.5Nb0.5O3-d

(KBNNO) ceramics can be tailored to values as low as

1.1 eV. Their first principle calculations have shown the

valence band maximum to be composed of hybridized Ni 3d

and O 2p states, while the conduction band minimum to be

composed of Nb 4d states. Hence, they suggested that the

filled Ni 3d gap states in the KBNNO ceramics play a crucial

part in narrowing the bandgap. Bandgaps of vacancy-free

75%KNbO3-25%(Pb0.5Bi0.5)(Zn0.5Nb0.5)O3 and 75%KNbO3-

25%(Sr0.5La0.5)(Zn0.5Nb0.5)O3 were predicted from first

principle calculations as 2.92 eV and 2.11 eV, respectively.7

In this letter, we present the crystal structure, relative permit-

tivity, and bandgap of KNbO3 and self-compensated

95%KNbO3-5%BiYbO3, 95%KNbO3-5%BiYb0.5Fe0.5O3, and

95%KNbO3-5%BiYb0.5Mn0.5O3 ceramics. In relation to

undoped KNbO3 with a bandgap of 3.2 eV, the narrower

bandgap among the three doped compositions is 2.2 eV, and it

is observed for 95%KNbO3-5%BiYbO3. This result shows that

the presence of transition metals is not a necessary condition to

lower the bandgap. Moreover, it also shows the need to further

understand bandgap engineering of ferroelectrics.

Dried K2CO3 (>99.0%), Nb2O5 (>99.9%, Aldrich),

Bi2O3 (>99.9%, Aldrich), Yb2O3 (>99.9%, Aldrich), Fe2O3

(>99.0%, Aldrich), and MnO2 (>99.9%, Aldrich) powders

were weighed according to the KNbO3 formula and self-

compensated 95%KNbO3-5%BiYbO3, 95%KNbO3-5%

BiYb0.5Fe0.5O3, and 95%KNbO3-5%BiYb0.5Mn0.5O3 formu-

lae. These powders were placed into a 250 ml milling poly-

ethylene bottle together with �0.5 kg of yttrium-stabilized

zirconia milling media and �100 ml of propan-2-ol samples

and then mixed on a roller ball mill for �20 h. Mixed pow-

ders were dried and then passed through a 500 lm mesh

sieve. The sieved powders were pressed into pellets and

reacted between 500 and 1000 �C with intermittent re-

grinding and re-firing until no change on X-ray diffraction

(XRD) data was visible. The fully reacted powders were

pressed as 8 mm pellets and fired up to 1070 �C for 2 h. The

pellets were stacked on top of each other and sintered in a

closed alumina crucible to limit loss of K and Bi. Purity and

crystal structure analyses were carried out by XRD using a

Brucker diffractometer (model D8) set up in transmission

geometry and using monochromatic Cu Ka1 radiation. The
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XRD patterns were acquired in the 20–60 2h range, with a

step size of 0.02� with a scan length of 2 s per step. Raman

spectra were obtained with a Renishaw Raman microscope

(model InVia) using a 532 nm solid state (100 mW) laser,

in back-scattering geometry using a 50 cm�1 edge filter.

Temperature dependent Raman measurements were carried

out using a Linkam (THMS600) Temperature Controlled

Stage. Modes were assigned according to the literature data

obtained from single crystals.8 Platinum electrodes were

coated onto the faces of the sintered pellets for electrical

measurements. Capacitance measurements were carried out

with a Solartron impedance analyser (model 1260) coupled

with a computer-controlled furnace. Finally, samples were

finely polished with the colloidal silica for variable-angle

spectroscopic ellipsometry measurements, which was carried

out with a J. A. Woollam (model M2000) ellipsometer

equipped with the Glan–Taylor polarizers, a rotating compen-

sator, and deuterium and quartz halogen lamps for spectral

coverage. Bandgaps were estimated from the average of three

measurements at 40�, 55�, and 70�, and for each angle of inci-

dence, at least two measurements were taken. Data were fit-

ted using a blank model with a Tauc-Lorentz oscillator.

Direct optical bandgaps were estimated by taking the zero-

intercepts of the linear portion of the (aht)2 vs ht curves,

where a and ht are the absorption coefficient (in cm�1) and

the energy of the incident photon (in eV), respectively.6

Fig. 1 shows the room-temperature XRD data for

KNbO3 and self-compensated 95%KNbO3-5%BiYbO3,

95%KNbO3-5%BiYb0.5Fe0.5O3, and 95%KNbO3-5%

BiYb0.5Mn0.5O3 ceramics. Within the detection limits of the

technique, undoped KNbO3 ceramics appear to be single-

phase and the symmetry of their crystal structure to be well

described by the orthorhombic Amm2 space group. Residual

YbNbO4 (ICDD card # 00–023-1480) is detected in all doped

compositions, as indicated by asterisks in Fig. 1(a). Lattice

parameters for KN ceramics were calculated as a¼ 3.9728(1)

Å, b¼ 5.6880(1) Å, and c¼ 5.7111(1) Å, which are in broad

agreement with the ICDD card # 00-032-0822. The XRD data

for KN exhibits the typical peak splitting expected for a

perovskite with orthorhombic crystal symmetry, but within

the resolution of our measurements, only single peaks are visi-

ble for doped ceramics, as shown in Fig. 1(b). Nevertheless,

those single peaks are asymmetric, indicating a clear lattice

distortion away from the perfect cubic symmetry. A closer

inspection of the shoulders suggests the doped ceramics to still

show an average orthorhombic crystal symmetry. This is fur-

ther corroborated by the room-temperature Raman spectros-

copy data in Fig. 2. Indeed, the typical spectral features

exhibited by orthorhombic KNbO3 are also visible in the

Raman spectra of all doped ceramics. Basically, this spectral

similarity is sufficient to describe all ceramics in the ortho-

rhombic Amm2 space group, as explained later in more detail.

Finally, XRD reflections for doped compositions shift towards

lower 2h angles, indicating an increase in the unit cell volume.

It follows that 95%KNbO3-5%BiYbO3 possesses the largest

unit cell. This corroborates the Yb3þ B-site occupancy, as this

cation has a larger ionic radius in comparison with Nb5þ,

Fe3þ and Mn3þ. Comprehensive studies of the KNbO3-

BiYbO3 and KNbO3-BiYb0.5Fe0.5O3 systems will be pre-

sented elsewhere.

It can be anticipated that the simultaneous B-site occu-

pancy by cations of very dissimilar ionic radius combined by

the incorporation of Bi3þ in the A-site of the KNbO3 lattice

gives rise to local lattice distortions, which cannot be dis-

cerned from the XRD data. For example, in a previous letter,9

we have shown the XRD data for 80%KNbO3-20%BiYbO3

to be described by the cubic centrosymmetric Pm�3m space

group; however, Raman spectroscopy revealed both the

occurrence of local lattice distortions and the disruption of

the long-range FE order. Hence, Raman spectroscopy analy-

ses, Fig. 2, were employed to monitor the changes in the local

structure and to ascertain the FE nature of the materials, as

described below.

FIG. 1. Room-temperature XRD data in the (a) 20 to 60 (2h) and (b) 44 to 58

(2h) for KNbO3, 95%KNbO3-5%BiYbO3, 95%KNbO3-5%BiYb0.5Fe0.5O3, and

95%KNbO3-5%BiYb0.5Mn0.5O3 (from bottom to top). Asterisk indicates resid-

ual YbNbO4.

FIG. 2. Room-temperature Raman data for KNbO3, 95%KNbO3-5%BiYbO3,

95%KNbO3-5%BiYb0.5Fe0.5O3, and 95%KNbO3-5%BiYb0.5Mn0.5O3 (from

bottom to top).
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From group theory analysis, the following 12 optical

modes are expected for point group mm2: 4A1þ 4B1þ 3B2

þA2. All these modes are Raman active, but since in our

experiment the Raman spectra are unpolarized, modes of all

symmetry species are collected at the same time. Hence,

fewer modes are observed due to the overlapping and mixing

of the modes. Assignment of modes in the Raman spectrum

of KNbO3 was carried out according to the single-crystal

assignment by Shen et al.8 Hence, in the low- to mid-

wavenumber region, the Raman spectrum of KNbO3 is char-

acterised by (i) a broad A1 (TO) mode centered at 270 cm�1,

which is assigned to BO6 bending, (ii) a Fano-type interfer-

ence dip at 195 cm�1, and (iii) two sharp modes at 192 cm�1

and 296 cm�1, respectively. Both (ii) and (iii) features are

believed to be a fingerprint for the occurrence of long-range

polar order in KNbO3. The sharp mode at 192 cm�1 is actu-

ally a mixed mode due to B1(TO), A1(TO), A1(LO), and

B2(TO) modes, while the mode at 296 cm�1 is due to A1(LO)

and A1(TO), but because of the resolution limit of the instru-

ment, they appeared merged as a single peak. The high wave-

number region (>500 cm�1) of the Raman spectrum of

KNbO3 is characterized by a B1(TO) mode (at �532 cm�1), a

A1(TO) mode (at �596 cm�1), and a A1(LO) (at 834 cm�1)

mode. Those are associated with vibrations of the octahedra.

Upon doping, new modes emerge, which here have been

numerically labelled as 1 and 2; because at this stage, infor-

mation on their origin is merely speculative. The new mode 1

(�175 cm�1) appears as a shoulder to the sharp mixed mode

at 192 cm�1. This mode is fairly stationary as it only shifts

by �2 cm�1 over the composition range 0� x� 0.2, as it

will be shown elsewhere. In the past, this mode has been

associated with A-O vibrations, in particular, to nm-sized

clusters rich in either Bi3þ or Kþ cations. Mode 2 appears

around �820 cm�1, and it has been previously associated

with breathing of the octahedra, when occupied by different

B cations.

In semiconductive FE materials, Raman spectroscopy

analysis are more reliable to probe ferroelectricity than

polarization, P, vs electric field, E, measurements. Indeed,

often unsaturated PE loops can be observed for semiconduc-

tive non-FE materials. The two spectral features recognized

as the fingerprint for long-range FE order in KNbO3 are pre-

sent in the Raman spectra of all doped compositions reported

in this letter, as shown in Fig. 2. Nevertheless, it is worth to

mention that those two features are absent from the spectra

of (1-x)KNbO3-xBiYbO3 ceramics for x� 0.10, as it will be

presented elsewhere. Hence, long-range polar order is absent

in (1-x)KNbO3-xBiYbO3 ceramics for x� 0.10. In fact, we

have previously shown that long-range polar order in KNbO3

is replaced by short-range polar order in (1-x)KNbO3-

xBiYbO3 ceramics for x¼ 0.20 and 0.30.9 Those two com-

positions exhibit a so-called weak relaxor behaviour,9 which

can be more specifically regarded as a re-entrant dipole glass

behaviour.10

The temperature dependence of the relative permittivity

for KNbO3 and 95%KNbO3-5%BiYbO3, 95%KNbO3-5%

BiYb0.5Fe0.5O3, and 95%KNbO3-5%BiYb0.5Mn0.5O3 ceramics

measured at 100 kHz is illustrated in Fig. 3. KNbO3 shows two

clear dielectric anomalies at 398 �C and 223 �C, which can be

ascribed to the cubic-to-tetragonal and to the tetragonal-to-

orthorhombic structural phase transitions. On the single-

crystal, these transitions were reported to occur on heating at

420 �C and 220 �C.11 This difference may be caused by

the impurities present in the starting raw materials, in

particular, in K2CO3, which has the lowest purity. In

95%KNbO3-5%BiYbO3 ceramics, the tetragonal to cubic

transition occurs at 353 �C; however, the maximum permit-

tivity occurs at 231 �C. This composition shows the highest

relative permittivity over the entire temperature range

considered. 95%KNbO3-5%BiYb0.5Fe0.5O3 and 95%KNbO3-

5%BiYb0.5Mn0.5O3 ceramics show similar behaviour; the

only difference is the apparent larger permittivity of the Fe-

based ceramics.

In order to further evaluate the evolution of structural

phase transitions and to assert the presence of long-range

polar order, in-situ Raman spectroscopy analyses were car-

ried out in the temperature range of �180 to 280 �C. In

Fig. 4, for the sake of simplicity, data are only presented for

three different temperatures (�180 �C, 120 �C, and 270 �C),

which are representative of the three ferroelectric polymor-

phic structures exhibited by KNbO3. In Fig. 4(a), the spectra

collected at 270 �C are consistent with the ferroelectric

tetragonal polymorph. On cooling, the clear separation of the

B1(TO) and A1(TO) modes in the 500–650 cm�1 region is

consistent with the ferroelectric orthorhombic polymorph, as

shown in Fig. 4(b) for the data collected at 120 �C. Finally,

at �180 �C, spectra in the 150–300 cm�1 region show the

spectral signature typical for the ferroelectric rhombohedral

polymorph. It is noteworthy that the aforementioned modes

1 and 2 are present at all temperatures. Hence, based on both

permittivity measurements and Raman spectroscopy analy-

sis, all studied ceramics exhibit dielectric anomalies associ-

ated with structural phase transitions, and their ferroelectric

nature is corroborated by the presence of a sharp mixed

mode (at �190 cm�1) and by a Fano-type resonant dip in

their Raman spectra. Basically, all studied ceramics are fer-

roelectric in a wide temperature range.

Finally, the compositional dependence of the bandgap

values for KNbO3 and self-compensated 95%KNbO3-

5%BiYbO3, 95%KNbO3-5%BiYb0.5Fe0.5O3, and 95%

KNbO3-5%BiYb0.5Mn0.5O3 ceramics is listed in Table I.

FIG. 3. Temperature dependence of the relative permittivity of KNbO3,

95%KNbO3-5%BiYb0.5Mn0.5O3, 95%KNbO3-5%BiYb0.5Fe0.5O3, and

95%KNbO3-5%BiYbO3 (from bottom to top).
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These values were extrapolated from the Tauc’s plot illus-

trated in Fig. 5. The direct bandgap for KNbO3 is �3.2 eV.

This is very close to the values reported elsewhere.12 The

narrowest direct bandgap for the three doped compositions is

2.2 eV and is observed for 95%KNbO3-5%BiYbO3. This

shows that the presence of transition metals is not a necessary

condition to narrow the bandgap of KNbO3. The general

broadening of the Raman modes for doped ceramics, Fig. 4,

results from the increased lattice disorder, which

manifests itself by the emergence of Urbach tails in the Tauc

plots, Fig. 5.

It is also worth to mention that the apparent increase

of the relative permittivity, Fig. 3, appears to follow the

narrowing of the bandgaps, Fig. 5. A correlation between

the dielectric response and optical behavior of other

KNbO3-based solid solutions will be reported elsewhere.

Narrower bandgaps (as low as 1.1 eV) are achievable for

(1-x)KNbO3-xBaNi0.5Nb0.5O3-d (KBNNO) ceramics;6 how-

ever, oxygen vacancies may play a significant role on both

the conduction and valence band energies, as postulated by

Qi et al.,13 and in some cases, it may narrow the bandgap by

�0.5 eV. Unfortunately, the presence of oxygen vacancies is

detrimental not only to polarization switching but can also

trap the photogenerated carriers and increase the charge

recombination rate as discussed by Wang et al.,7 who used

first principle calculations to estimate the bandgaps for

vacancy-free KNbO3 co-doped with Zn and two different

A-sites (A2þ
1 ¼Pb2þ, Ba2þ, Sr2þ and A3þ

2 ¼La3þ, Bi3þ) in

order to achieve charge neutrality. The predicted bandgaps

for those systems range between 2.92 eV and 2.11 eV. In our

study, the experimental values of the optical bandgaps for

self-compensated doped KNbO3 lie broadly within this range

as shown in Fig. 5 and Table I. The minute amount of

YNbO4 is unlike to have any measurable impact on the

dielectric properties and on bandgap narrowing.

In summary, it was demonstrated that the bandgap of

KNbO3 can be narrowed by 1 eV (i.e., a� 30% reduction)

using dopants other than transition metals. Remarkably,

bandgap narrowing was achieved while maintaining long-

range polar order over a wide temperature range.
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Luisman is acknowledged for sample preparation and the

performance of some measurements and Professor A. Nabok

for sharing his expertise on ellipsometry. This work was

partially supported by Christian Doppler Research Association

in collaboration with EPCOS OHG (a TDK group company).
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