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Aim: To investigate the effects of semaglutide on fasting and postprandial glucose and lipid

responses, and on gastric emptying.

Materials and methods: This was a randomized, double-blind, placebo-controlled, 2-period,

crossover trial. Subjects with obesity (N = 30) received once-weekly subcutaneous semaglutide,

dose-escalated to 1.0 mg, or placebo. After each 12-week treatment period, glucose and lipid

metabolism were assessed before and after standardized meals. Gastric emptying (paracetamol

absorption test) and peptide YY (PYY) response were also assessed.

Results: Semaglutide treatment significantly lowered fasting concentrations of glucose and glu-

cagon, and increased insulin vs placebo (estimated treatment ratio: 0.95 [95% confidence inter-

val: 0.91, 0.98]; 0.86 [0.75, 0.98]; 1.45 [1.20, 1.75], respectively). Postprandial glucose

metabolism significantly improved with semaglutide vs placebo (incremental area under the

curve 0 to 5 hours [iAUC0-5h]; estimated treatment difference: glucose −1.34 mmol h/L [−2.42,

−0.27]; insulin −921 pmol h/L [−1461, −381]; C-peptide −1.42 nmol h/L [−2.33, −0.51]). Fast-

ing and postprandial lipid metabolism improved with semaglutide vs placebo. First-hour gastric

emptying after the meal was delayed with semaglutide vs placebo (AUC0-1h; estimated treat-

ment ratio: 0.73 [0.61, 0.87]); this may have contributed to the lower postprandial glucose

increase in semaglutide-treated subjects. Overall gastric emptying (AUC0-5h) was not statisti-

cally different between treatments. Fasting and postprandial PYY responses were significantly

lower with semaglutide vs placebo (P = .0397 and P = .0097, respectively).

Conclusion: Semaglutide improved fasting and postprandial glucose and lipid metabolism.

Overall gastric emptying was similar to that with placebo; however, the observed first-hour

delay with semaglutide may contribute to a slower entry of glucose into the circulation.
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1 | INTRODUCTION

Type 2 diabetes (T2D) is a progressive metabolic disease with

increasing prevalence.1 T2D is characterized by chronic hyperglycae-

mia caused by insulin resistance or reduced insulin secretion.1,2

Despite the availability of several anti-diabetic drugs, there remains

an unmet need for better therapies because a significant proportion

of individuals with T2D do not achieve recommended treatment tar-

gets for glycaemic control.3 Inadequately controlled T2D can result in

various complications, including an increased risk of cardiovascular
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disease.1 Hyperlipidaemia often co-exists with T2D and is a clear risk

factor for atherosclerotic cardiovascular disease.4 Controlling hyper-

lipidaemia is one of the central recommendations of the American

Heart Association to reduce the risk of cardiovascular disease.5

Glucagon-like peptide-1 (GLP-1) and peptide PYY (PYY) are gut hor-

mones, colocalized in intestinal L cells, that are released in response to

nutrient intake.6,7 GLP-1 stimulates insulin secretion and inhibits glucagon

secretion in a glucose-dependent manner.8 At physiological levels, GLP-1

is also associated with an inhibitory effect on gastric emptying and with

lowering of body weight, as the result of reduced appetite and decreased

energy intake.8–11 These properties have led to the development of GLP-

1 receptor agonists (GLP-1RAs) as a treatment option for individuals with

T2D, with one GLP-1RA also developed for the treatment of obesity.12

GLP-1RAs have been associated with improved beta-cell

function,13,14 and have been shown to lower postprandial glucose

levels and reduce lipid responses.15–18 In addition, GLP-1RAs have

the potential to affect gastric emptying,19 with an apparently dimin-

ished response over time with long-acting GLP-1RAs.20

Semaglutide is a human GLP-1 analogue currently in development

for once-weekly treatment of T2D. Semaglutide has 94% structural

homology with native human GLP-121,22 with 3 important modifications:

an amino acid substitution at position 8 that makes it less susceptible to

degradation by dipeptidyl peptidase-4; lysine acylation of the peptide

backbone, with a spacer and C-18 fatty di-acid chain at position 26 that

provides strong, specific binding to albumin; and another amino acid

substitution at position 34, which prevents C-18 fatty di-acid binding at

the wrong site.21 These modifications give semaglutide an extended

half-life of approximately 1 week,21 making it suitable for once-weekly

administration,23,24 which has the potential for improving patient com-

pliance and quality of life,22 compared with first-generation GLP-1RAs

that require once- or twice-daily dosing.25 Semaglutide is associated

with dose-dependent reductions in glycated haemoglobin (HbA1c) levels

and body weight in individuals with diabetes.26

Previously, we reported that semaglutide, compared with pla-

cebo, reduced body weight and ad libitum energy intake after

12 weeks of treatment.27 This finding was supported by different

aspects of homeostatic and hedonic appetite parameters.27 Here, we

report data from the same study on the effects of semaglutide, com-

pared with placebo, on fasting and postprandial glucose and lipid

responses, as well as its effects on gastric emptying.

2 | MATERIALS AND METHODS

2.1 | Study design

Details of the study design have been described elsewhere.27 Briefly,

this was a single-centre, randomized, double-blind, 2-period, placebo-

controlled, crossover study (NCT02079870, EudraCT no. 2013-

000012-24). It was conducted in compliance with the International

Conference on Harmonisation Good Clinical Practice guidelines28 and

the Declaration of Helsinki.29

Subjects were randomized 1:1 to 1 of 2 treatment sequences,

semaglutide–placebo or placebo–semaglutide, and received either

semaglutide or volume-matched placebo, administered

subcutaneously once-weekly. The starting dose was 0.25 mg

(4 weeks), escalating to 0.5 mg (4 weeks) and thereafter to 1.0 mg

(4 weeks). Subjects received a 5th dose of 1.0 mg at the last visit

(an in-house stay) of each treatment period, when assessments were

conducted. The 2 treatment periods were separated by a washout

period of 5 to 7 weeks, to allow for elimination of semaglutide before

starting the second treatment period.

2.2 | Trial population

Eligible subjects were 18 years of age or older, with obesity, defined as a

body mass index (BMI) of 30 to 45 kg/m2, HbA1c <6.5% and a stable

body weight (<3 kg change during the 3 months prior to screening). Key

exclusion criteria included: diagnosis of type 1 or type 2 diabetes; antici-

pated change in lifestyle (eg, eating, exercise or sleeping pattern, includ-

ing excessive participation in strenuous exercise, as judged by the

investigator) during the trial period; history of chronic or idiopathic acute

pancreatitis; personal/family history of medullary thyroid carcinoma or

multiple endocrine neoplasia syndrome type 2; previous surgical treat-

ment for obesity; or use of any medication that could interfere with the

trial results. Written informed consent was obtained from all participants

before any study-related activities commenced.

2.3 | Assessments and endpoints

At the end of each 12-week treatment period, on Day 1 of the in-

house stay, subjects were standardized with regard to meals, physical

activity and sleep. The last dose of trial drug was administered in the

evening. On Day 2, a standardized carbohydrate-rich breakfast was

served at ~8:00 AM and assessments were performed over a 5-hour

postprandial period. The total energy content of the standardized

breakfast was 600 kcal (2.51 MJ, approximate macronutrient composi-

tion: energy percentage [E%] 55% carbohydrate, 30 E% fat and 15 E%

protein). The breakfast included yoghurt that contained 1500 mg para-

cetamol (Zentiva, Surrey, UK) to allow measurement of gastric empty-

ing.30 Before (fasting) and up to 5 hours after (postprandial) the start

of the breakfast, blood was sampled for measurement of glucose, insu-

lin, C-peptide, glucagon, paracetamol and PYY3–36 (referred to as PYY).

Gastric emptying was assessed by calculating the endpoints derived

from paracetamol concentration profiles. Additionally, endpoints were

derived from first-hour glucose, insulin, C-peptide, glucagon, paraceta-

mol and PYY concentration profiles.

On Day 4, a standardized fat-rich breakfast was served at

~8:00 AM and an 8-hour standardized fat-rich meal test was per-

formed. The standardized fat-rich breakfast had a total energy con-

tent of 1000 kcal (4.18 MJ, approximate macronutrient composition:

66 E% fat, 19 E% carbohydrate and 15 E% protein). Before (fasting)

and up to 8 hours after (postprandial) the start of the breakfast, blood

was sampled for measurement of parameters of lipid and glucose

metabolism. Low-density lipoprotein (LDL), high-density lipoprotein

(HDL) and total cholesterol were assessed in the fasted state only,

while glucose, insulin, C-peptide, glucagon, triglyceride (TG), free fatty

acid (FFA), very-low-density-lipoprotein (VLDL) cholesterol and apo-

lipoprotein B48 (ApoB-48) were assessed both in the fasted state

and postprandially.
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2.4 | Analytical and statistical methods

Blood samples were taken from subjects by venepuncture or cannula-

tion, and serum and plasma were prepared using standard proce-

dures. Plasma concentrations of glucagon and PYY were measured

using validated competitive radioimmunoassays (RIAs; GL-32K gluca-

gon RIA and PYY-67HK human PYY3–36-specific RIA) (both Millipore,

UK). Paracetamol was measured in plasma by liquid chromatography–

tandem mass spectrometry (LC-MS/MS). The following parameters

were measured in serum using standard validated methods: ApoB-48

(ApoB-48 Human ELISA; Biovendor Research and Diagnostic Prod-

ucts, UK), glucose, insulin and C-peptide (ADVIA Centaur CP Immu-

noassay System; Siemens Healthineers, UK), FFA (IL ILab

650 Chemistry Analyser; Diamond Diagnostics, UK), HDL, LDL, total

cholesterol, TG and VLDL by ELISA (automated methods: Pacific Bio-

markers Inc., USA; for further details see: https://pacbio.com).

Fasting values and paracetamol endpoints were analyzed using a

linear mixed model on log-transformed data, including treatment and

treatment period as fixed effects and subject as random effect. Incre-

mental area under the concentration–time curves (iAUC) of glycaemic

and lipid parameters were analyzed using a linear mixed model,

including treatment and treatment period as fixed effects, fasting

value as covariate and subject as random effect.

Four subjects did not complete the standardized carbohydrate-

rich breakfast during the second treatment period (17%–40% of

meals not eaten) and were excluded from the statistical analyses of

endpoints related to this meal test, with the exception of the data

points relating to gastric emptying, as all subjects consumed the

paracetamol-containing yoghurt. Two subjects did not complete the

standardized fat-rich breakfast and were excluded from the statistical

analyses of endpoints relating to this meal test. A sensitivity analysis

of gastric emptying was done for the 4 subjects who did not com-

plete the standardized breakfast but who consumed the paracetamol-

containing yoghurt, as well as for 1 subject who, on one occasion,

received placebo rather than semaglutide, and 1 subject who had a

measurable plasma paracetamol concentration at baseline. Further-

more, sensitivity analyses were performed for glucose and TG end-

points for the 1 subject who received placebo rather than

semaglutide on 1 occasion. Findings from the sensitivity analyses

supported the overall results.

The effects of gastric emptying on first-hour postprandial glucose

absorption were assessed in an exploratory analysis of glucose

results, from the same meal as when the paracetamol sampling was

performed. Glucose measured before and up to 1 hour after the stan-

dardized breakfast (AUC0-1h for glucose) was further analyzed, with

or without adjustment for the subject-mean-centred log-transformed

AUC0-1h for paracetamol concentration as covariate.

3 | RESULTS

3.1 | Subject characteristics

A total of 30 subjects were randomized to once-weekly semaglutide

or placebo. At baseline, mean (standard deviation) age, body weight,

height and BMI were 42 (11) years, 101.3 (10.5) kg, 1.73 (0.08) m

and 33.8 (2.5) kg/m2, respectively. Two-thirds of the study subjects

were male and 90% were Caucasian. Two subjects withdrew because

of gastrointestinal adverse events during the first treatment period

while receiving semaglutide, resulting in 28 subjects who completed

both treatment periods.

3.2 | Glucose metabolism

3.2.1 | Glucose

At the end of the 12-week treatment period, subjects receiving sema-

glutide had lower mean fasting concentrations of glucose, compared

with those receiving placebo (estimated treatment ratio [ETR]: 0.95

[95% confidence interval (CI): 0.91, 0.98]; P = .0079), prior to the stan-

dardized carbohydrate-rich breakfast (Table 1). Following the stan-

dardized carbohydrate-rich breakfast, postprandial increments (iAUC0-

5h) for glucose were 38.5% lower with semaglutide compared with pla-

cebo (estimated treatment difference [ETD]: −1.34 mmol h/L [95% CI:

−2.42, −0.27]; P = .0163) (Figure 1, Table 1). Before the fat-rich break-

fast, fasting concentrations of glucose were significantly lower for sub-

jects treated with semaglutide vs placebo (ETR: 0.95 [95% CI: 0.92,

0.98]; P .0036) (Table 1). Following the standardized fat-rich break-

fast, postprandial values (iAUC0-8h) of glucose were 32.0% lower

with semaglutide compared with placebo (ETD: −1.41 mmol h/L;

P = .0087) (Figure S1, Table 1).

3.2.2 | Insulin and C-peptide

At the end of the 12-week treatment period, subjects receiving

semaglutide had significantly higher mean fasting concentrations of

insulin and C-peptide compared with those receiving placebo (ETR:

1.45 [95% CI: 1.20, 1.75]; P = .0005; and ETR: 1.35 [95% CI: 1.20,

1.52]; P < .0001, respectively), prior to the standardized carbohydrate-

rich breakfast (Table 1). After the standardized carbohydrate-rich

breakfast, postprandial increments (iAUC0-5h) were 43.4% and 28.7%

lower for insulin and C-peptide, respectively, with semaglutide com-

pared with placebo (ETD: −921 pmol h/L [95% CI: −1461, −381];

P = .0018; and ETD: −1.42 nmol h/L [95% CI: −2.33, −0.51];

P = .0033, respectively) (Figure S1, Table 1).

Before the fat-rich breakfast, subjects treated with semaglutide

also had higher fasting concentrations of insulin and C-peptide,

although this was only borderline significant for insulin (ETR: 1.18

[95% CI: 0.99, 1.41]; P = .0569; and ETR: 1.23 [95% CI: 1.09, 1.38];

P = .0012, respectively, Table 1). After the standardized fat-rich

breakfast, postprandial values (iAUC0-8h) of insulin and C-peptide

were 35.7% and 30.6% lower for insulin and C-peptide, respectively,

with semaglutide compared with placebo (ETD: −1105 pmol h/L,

P = .0028; and ETD: −2.25 nmol h/L, P = .0005, respectively)

(Figure S1, Table 1).

3.2.3 | Glucagon

At the end of the 12-week treatment period, subjects receiving

semaglutide had lower mean fasting concentrations of glucagon com-

pared with placebo (ETR: 0.86 [95% CI: 0.75, 0.98]; P = .0224) prior

to the standardized carbohydrate-rich breakfast (Table 1). Following

the standardized carbohydrate-rich breakfast, there was no significant
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difference in postprandial increments (iAUC0-5h) for glucagon

between semaglutide and placebo (Figure 1, Table 1).

Before and following the standardized fat-rich breakfast, fasting

and postprandial values (iAUC0-8h) for glucagon tended to be lower

with semaglutide than with placebo (−13% and −27.3%, respectively)

(Figure S1, Table 1).

3.3 | Lipid metabolism

Fasting total cholesterol and HDL cholesterol were lower with sema-

glutide compared with placebo (ETR: 0.89 [95% CI: 0.86, 0.92];

P < .0001; and ETR: 0.92 [95% CI: 0.88, 0.96]; P = .0002, respec-

tively), whereas no difference was observed for fasting LDL choles-

terol (ETR: 0.95 [95% CI: 0.86, 1.06]; P = .3906). Fasting

concentrations of TG and VLDL were significantly lower (12% and

21%, respectively) with semaglutide compared with placebo (P < .02)

(Table 2). No difference in FFA and ApoB-48 was observed.

Following the fat-rich breakfast, postprandial values (iAUC0-8h)

were significantly lower for TG (−40.7%), VLDL (−42.8%) and ApoB-

48 (−49.6%) with semaglutide compared with placebo (ETD:

−4.51 mmol h/L, −1.17 mmol h/L and −0.046 g h/L, respectively;

P < .01 for all) (Figure 2; Table 2). No difference in FFA

was observed.

3.4 | Gastric emptying

As assessed by paracetamol concentrations, gastric emptying during

the first hour, following the standardized carbohydrate-rich breakfast,

was 27% lower with semaglutide, compared with placebo (AUC0–1h

ETR: 0.73 [95% CI: 0.61, 0.87]; P = .0012). There was no significant

difference between treatments for the overall postprandial gastric

emptying (AUC0–5h ETR: 0.94 [95% CI: 0.88; 1.01]) (Figure 3A).

3.5 | Effect of gastric emptying on glucose response

Following the standardized carbohydrate-rich breakfast, the post-

prandial increment for glucose within the first hour (iAUC0-1h)

was 37.8% lower with semaglutide than with placebo (ETD:

−0.56 mmol h/L [95% CI: −0.88, −0.23]; P = .0018). When gastric

emptying during the first hour after the meal was included as a covari-

ate, treatment difference was less pronounced (ETD: −0.33 mmol h/L

[95% CI: −0.70, 0.05]; P = .0829), indicating that approximately

40% of the early glucose response may be explained by the rate of

gastric emptying.

3.6 | PYY response

At the end of the 12-week treatment period, subjects receiving sema-

glutide 1.0 mg had lower mean fasting PYY concentrations, compared

with those receiving placebo (ETR: 0.72 [95% CI: 0.53; 0.98];

P = .0397). Postprandial values (iAUC0–5h) for PYY concentrations, fol-

lowing the standardized carbohydrate-rich breakfast, were 46.3% lower

with semaglutide, compared with placebo (ETD: −46.10 pg h/mL;

P = .0097) (Figure 3B).
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4 | DISCUSSION

In this study we report that fasting and postprandial glucose and lipid

metabolism were improved with semaglutide treatment compared

with placebo.

Postprandial glucose and lipid metabolism are important aspects

when considering overall glycaemic and lipid control because most

individuals spend a significant amount of the day in a non-fasting

state.19,31

Following 12 weeks of treatment with semaglutide, there were

generally lower postprandial increments of glucose-related parameters,

including glucose, glucagon, insulin and C-peptide. However, the differ-

ences in glucose parameters were less pronounced between

treatments following the fat-rich breakfast, possibly as a result of the

expected reduction in glucose absorption associated with a high fat

intake,32 and/or the lower absolute amount of carbohydrate in the fat-

rich breakfast vs the carbohydrate-rich breakfast (50 g vs 83 g).33

Our findings in a population with obesity, but not T2D, are

in alignment with results from previous studies with GLP-

1RAs.15–17,34,35 Liraglutide has been shown to significantly reduce

mean postprandial glucose and glucagon (AUC0-5h) compared with

placebo, both in subjects with T2D,15 and in obese, non-diabetic

adults.35 Similarly, albiglutide and dulaglutide, both of which are

once-weekly GLP-1RAs, have been shown to lower fasting and post-

prandial glucose concentrations.17,34 In relation to glycaemic control,

GLP-1RAs increase insulin secretion in a glucose-dependent manner,

TABLE 2 Lipid metabolism parameters after 12 weeks of treatment with semaglutide vs placebo

Lipid metabolism
parameters

Fasting values Postprandial values (iAUC0–8h) following fat-rich breakfast

ETR 95% CI P ETD 95% CI P
Relative
difference (%)a

TGs 0.88b 0.80, 0.98 .0185 −4.51b mmol h/L −6.15, −2.87 <.0001 −40.7

VLDL 0.79b 0.66, 0.95 .0132 −1.17b mmol h/L −2.03, −0.32 .0093 −42.8

ApoB-48 1.02 0.86, 1.21 .8376 −0.046b g h/L −0.069, −0.022 .0003 −49.6

FFA 0.99 0.88, 1.11 .8008 0.052 mmol h/L −0.060, 0.163 .3480 15.6

Abbreviations: ApoB-48, apolipoprotein B48; CI, confidence interval; ETD, estimated treatment difference (semaglutide – placebo); ETR, estimated treat-
ment ratio (semaglutide/placebo); FFA, free fatty acids; iAUC0–8h, incremental area under the 0 to 8-hour curve; TG, triglyceride; VLDL, very-low-density
lipoprotein.
a Estimated treatment difference/estimated mean for placebo × 100%.
b P < .05.
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suppress glucagon and slow gastric emptying, which affects the post-

prandial glucose response.13,14,19 The observed reduction in post-

prandial insulin and C-peptide in this trial may be explained, in part,

by the reduction in glucose concentrations observed after 12 weeks

of treatment. It is conceivable that semaglutide may produce a

greater response in subjects with T2D with higher glycaemia.15,35,36

In another 12-week study with semaglutide in subjects with T2D, a

pronounced improvement of beta-cell function was shown, and the

impact on 24-hour glucose, insulin and C-peptide responses during a

test day with 3 standardized meals was similar to observations in

the current study.36 The effects of semaglutide on insulin and glu-

cose are interdependent. In the fasting state, the concentrations

of insulin and C-peptide are significantly increased. However, after

12 weeks of treatment, in the postprandial state the lower insulin

increments should be interpreted in light of the concurrent lower

glucose increments.

Previously we reported an observed body weight reduction of

5.0 kg following 12 weeks of semaglutide treatment.27 Body weight

loss is known to improve insulin sensitivity.37 Improved insulin sensi-

tivity would result in a decrease in glucose concentrations and, thus,

less insulin demand. Therefore, weight loss reported in this study

may have affected the glucose and lipid responses. Similar findings

have been reported with liraglutide, which improved both postpran-

dial glycaemia and induced weight loss.35 The substantial reduction in

body weight reported in this study may, therefore, be the effect of

an indirect route by which semaglutide influences postprandial gly-

caemic and lipid parameters. The long-term effects of continuous

subcutaneous infusion of GLP-1 also showed decreases in both fast-

ing and postprandial glucose concentrations, as well as decreases in

HbA1c and body weight.38

Our study is the first to investigate the effect of semaglutide

treatment on postprandial lipid absorption and metabolism. Following

a standardized fat-rich breakfast, subjects treated with semaglutide

had lower postprandial TG, VLDL and ApoB-48 over 8 hours

(iAUC0–8h). Postprandial ApoB-48, a marker of TG uptake from the

gut, is known to be involved in the assembly of chylomicron particles

required for the absorption of TGs.39 Chylomicron production has

been shown to be increased in subjects with T2D and insulin resis-

tance.39 In this study the lower postprandial TG concentrations corre-

sponded well with lower postprandial ApoB-48 concentration profiles

for semaglutide vs placebo. It is plausible that, by reducing the serum

concentration of ApoB-48, semaglutide in turn reduces the
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postprandial absorption of serum TGs. In a series of studies in ham-

sters and mice, Hsieh and colleagues showed that the GLP-1 receptor

is essential for regulation of the intestinal lipid and lipoprotein metab-

olism, through control of intestinal lipoprotein synthesis and secre-

tion.40 This was confirmed in humans by Vergès and colleagues, who

recently reported on the effects of liraglutide on the metabolism of

ApoB-48.41 Treatment with liraglutide significantly decreased post-

prandial hyperlipidaemia in subjects with T2D via a mechanism of

reduced ApoB-48 production and increased ApoB-48 catabolism.41

The frequency of obesity is reported to be greater in consumers

of high-fat diets than in consumers of low-fat diets.42 Therefore, the

demonstrable effect of semaglutide on blood lipids during a high-fat

meal is highly relevant for subjects with obesity, who often consume

energy-dense, high-fat foods that contribute to hyperlipidaemia.

In our study, fasting concentrations of TG and VLDL were also

significantly lower with semaglutide than with placebo. In addition,

total cholesterol and HDL cholesterol were lower with semaglutide

than with placebo, whereas LDL cholesterol appeared to be compara-

ble between treatments. In longer-term studies with semaglutide,

1 to 2 years of treatment modestly improved various lipid parameters

in subjects with T2D compared with placebo or treatment with sita-

gliptin.43,44 These findings are consistent with those for other GLP-

1RAs, including liraglutide and exenatide.18,45,46

Hyperlipidaemia is a well-known risk factor for cardiovascular

diseases.47,48 Thus, lowering serum TGs may reduce the risk of

cardiovascular diseases such as atherosclerosis.5 In particular, lower-

ing of non-fasting TG could be of clinical importance as higher con-

centrations have been shown to be associated with an increased risk

of myocardial infarction, ischaemic heart disease and death.48 The

effect of semaglutide on cardiovascular outcomes in subjects with

T2D has been reported in the 2-year SUSTAIN 6 study.44 Results

from this study showed that, among subjects with T2D at high car-

diovascular risk, the rate of first occurrence of death from cardiovas-

cular causes, nonfatal myocardial infarction or nonfatal stroke was

significantly lower in those receiving semaglutide than in those

receiving placebo.44 The effect of semaglutide on postprandial glu-

cose and lipid metabolism may have contributed to these findings.

GLP-1RAs have the capacity to slow gastric emptying in a vari-

able but marked manner, when administered acutely, which may rep-

resent a key mechanism contributing to their glucose-lowering

effect.19 However, some investigations indicate that this phenome-

non is transient and the effect on gastric emptying diminishes over

time.49,50 The differing durations of action of GLP-1RAs seem to

influence gastric emptying with continued dosing. The slowing of gas-

tric emptying induced by several long-acting GLP-1 agonists49,51

(although not by exenatide twice daily or lixisenatide) lessens with

time, perhaps indicative of adaptation over time.19 In our study, after

12 weeks of treatment, there was no statistically significant differ-

ence between semaglutide and placebo for the overall rate of post-

prandial gastric emptying. A delayed gastric emptying response was

detected during the first hour after the standardized breakfast com-

pared with placebo. This finding is consistent with previous findings

for liraglutide.18,19 Gastric emptying during the first hour was a signif-

icant covariate in the statistical analysis of postprandial glucose

response following the standardized breakfast, indicating that

approximately 40% of the initial glucose response could be explained

by the rate of gastric emptying, and that gastric emptying contributed

to the lower postprandial increase in glucose response observed

when subjects were treated with semaglutide.

We used the paracetamol absorption test to measure the rate of

gastric emptying. Although it provides an indirect estimation of gas-

tric emptying, this technique is reported to correlate generally well

with scintigraphy.52 A limitation with all gastric emptying tests is the

considerable inter-individual variation;52 however, this was counter-

acted by intra-subject comparisons in this study. Despite claimed limi-

tations in drawing conclusions about solids from paracetamol

studies,52 it should be noted that paracetamol in this study was

added to the semi-solid part of the meal (yoghurt). In a previous study

investigating the effect of liraglutide on gastric emptying,18 a compa-

rable set-up was used and similar results were observed with the

paracetamol test and the octanoate breath test (labelling the solid

part of the meal) during the same meal. Furthermore, the results on

gastric emptying obtained in the current study agree with observa-

tions in other long-acting GLP-1RA studies.53,54

The lower PYY response observed with semaglutide is in align-

ment with a previous study in which GLP-1 infusions appeared to

have an inhibitory effect on PYY release, suggesting possible feed-

back (suppression) of GLP-1 on L-cell function in the acute setting.55

GLP-1RAs have also been reported to reduce postprandial endoge-

nous GLP-1 and PYY concentrations.56 As with GLP-1, PYY

responses correlate with nutrient exposure in the gut. For the stan-

dardized breakfast, the amount consumed was the same for those

receiving semaglutide and those receiving placebo, but a lower post-

prandial PYY response was expected with semaglutide treatment,

because of the lower initial gastric emptying. The lower fasting level

of PYY may further be explained by a semaglutide-induced lower

food intake during the treatment period, reported from the same

study.27 Therefore, it is not clear if the reduced PYY response in this

study is the result of the semaglutide-induced direct suppression of

L-cell secretion, or is an indirect result of lower postprandial stimula-

tion of L-cells caused by delayed gastric emptying or by longer-term

lower food intake because of the documented impact of semaglutide

on appetite regulation.27

The strengths of this study include the crossover design, with

subjects serving as their own control, the high degree of standardiza-

tion, and the frequency of sampling, up to 5 and 8 hours after the

standardized meals. A potential weakness is that, of those subjects

receiving semaglutide, 4 did not ingest all of the standardized break-

fast meal (consuming approximately 60%-83%) and, likewise, 2 sub-

jects consumed only part of the standardized fat-rich breakfast.

Therefore, related data derived from these subjects were excluded

from the glucose and TG results. Nevertheless, sensitivity analyses

confirmed the results from the primary analyses.

To conclude, fasting and postprandial glucose and lipid metabo-

lism were improved after 12 weeks of treatment with semaglutide

compared with placebo. Overall, 5 hours postprandial gastric emp-

tying was similar for semaglutide and placebo; with semaglutide,

however, a delay was observed during the first hour after a

meal, possibly contributing to a slower entry of glucose into

the circulation.
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