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In plant phenotyping, it has become important to be able to measure many features on large image sets in order to aid
genetic discovery. The size of the datasets, now often captured robotically, often precludes manual inspection, hence the
motivation for finding a fully automated approach. Deep learning is an emerging field that promises unparalleled results on
many data analysis problems. Building on artificial neural networks, deep approaches have many more hidden layers in the
network, and hence have greater discriminative and predictive power. We demonstrate the use of such approaches as part
of a plant phenotyping pipeline. We show the success offered by such techniques when applied to the challenging problem
of image-based plant phenotyping and demonstrate state-of-the-art results (>97% accuracy) for root and shoot feature
identification and localization. We use fully automated trait identification using deep learning to identify quantitative trait
loci in root architecture datasets. The majority (12 out of 14) of manually identified quantitative trait loci were also
discovered using our automated approach based on deep learning detection to locate plant features. We have shown deep
learning-based phenotyping to have very good detection and localization accuracy in validation and testing image sets. We
have shown that such features can be used to derive meaningful biological traits, which in turn can be used in quantitative
trait loci discovery pipelines. This process can be completely automated. We predict a paradigm shift in image-based
phenotyping bought about by such deep learning approaches, given sufficient training sets.
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ing workflows to bridge the increasing genotype-phenotype gap.
Image analysis has become a key component in these work-

The large increase in available genomic information in plant flows [1], where automated measurement and counting have

biology has led to a need for truly high-throughput phenotyp-
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allowed for increased throughput and unbiased, consistent
measurement systems. Machine learning has proven to be one
of the most flexible and powerful analysis techniques, with
approaches such as Support Vector Machines [2] and Random
Forests [3] achieving the highest success rates to date. Whilst
these techniques provide considerable success in many situa-
tions [4], their performance is saturating and often falls short of
the high accuracy required for fully automated systems. How-
ever, with careful crafting of features, these approaches can have
practical application still. What deep learning promises is the
learning of the features themselves; often, given sufficient train-
ing data, allowing for increases of accuracy.

Before introducing deep learning, it is helpful to first con-
sider traditional machine learning techniques applied to bioim-
age analysis. It is generally assumed that raw images will
contain too much information for a machine learning approach
to efficiently process. For this reason, much of the established re-
search in this field involves pre-computation of domain-specific
image features; hand-crafted, for example, to detect areas of high
contrast such as types of edges and corners. This pre-processing
is intended to capture enough information to represent classes
of objects but contain significantly fewer dimensions than the
full set of original image pixels [4]. The output of this feature
detection is passed into a classifier, where classes (here, pheno-
typic traits) can be efficiently separated. Crucially, the choice of
features is left to the designer and is often limited to existing
sets, popular in the literature. These hand-crafted features are
not guaranteed to provide the subsequent learning algorithm
with the optimal description of the data, which in turn will re-
duce its effectiveness. It is easy to accidentally limit the appli-
cation of the algorithm to specific tasks; an approach that per-
forms well in one task may fail to perform in a different task.
There is, therefore, a motivation to produce more general learn-
ing approaches.

Early general approaches include the biologically inspired ar-
tificial neural networks (ANNs), which use a set of simulated
neuron-like connections and transfer inputs via a set of learnt
functions to a series of outputs. These represent a set of acti-
vations propagating through a network structure, triggered by
input data, and resulting in an output activation pattern. ANNs
typically use three layers, one for input, a hidden internal layer,
and an output layer. Modern deep learning approaches extend
this concept and may contain many additional layers of artifi-
cial neurons (hence the term deep) and with increased complex-
ity bring significantly increased discriminative power [5]. Cutting
edge algorithms and computational hardware have bought the
training time for such networks down to practical levels achiev-
able in most labs. Convolutional neural networks (CNNs) special-
ize this representation further, replacing the neuron layers with

feature-detecting convolution layers (biologically inspired by the
organization of the visual field) [6], before finishing with tradi-
tional ANN layers to perform classification (Fig. 1). CNNs have
been quickly adopted by the computer vision community, but
have also recently been used successfully in the life sciences [7]
and medicine [8].

The CNN transforms feature maps from previous layers, cre-
ating a rich hierarchy of features that can be used for clas-
sification. For example, while the initial layer may compute
simple primitives such as edges and corners, deeper into the
network feature maps, based on these will highlight groups of
corners and edges. Deeper still, feature maps may contain com-
plex arrangements of features representing real-world objects
[9]. It is important to note that these features are learnt by the
CNN training algorithms and are not hand-coded.

Modern CNNs will typically use many layers, which makes
training the networks complex, often requiring hundreds, some-
times thousands, of images to train to the desired accuracy [10].
However, once trained, their accuracy is unrivaled, and they can
be transferred to other related domains by re-training using sig-
nificantly fewer images [11]. A CNN is trained by iteratively pass-
ing example images containing the objects to be detected into
the network and adjusting the network parameters based on
the results. The values of the convolutional filters are automat-
ically adjusted to improve the result the next time a similar im-
age is seen, a process that is repeated for as many images as
possible.

To demonstrate the effectiveness of this deep learning ap-
proach, we first trained 2 separate CNNs on 2 tasks central to
plant phenotyping, framed as classification problems. In the
first, we address the following question: given a small section of
a root system image, can a CNN identify if a root tip is present?
The architecture of a root system is an important aspect of its
physiological function; the root system’s structure allows it to
access different nutrients and water within the soil profile. In
phenotyping, particularly with high-throughput 2D approaches,
identifying features such as root tips represents the rate-limiting
step in data quantification. We prepared training image data in
which some images contained root tips and some did not. This
was derived from a dataset containing 2500 annotated images of
whole root systems, and automatically generated classification
images, by cropping at the annotated tip locations (See Fig. 2, left
side). This dataset is publically available in Pound et al. [12].

In the second classification problem, given an image of a sec-
tion of plant shoot, we ask: can a CNN identify biologically rel-
evant features such as leaf and ear tips, bases, etc.? This would
allow high-throughput phenotyping on an extremely large num-
ber of lines based on single images. It also allows 3D shoot
structure to be linked with physiological functioning: e.g., the

Leaf Tip

@ Leaf Base

o Ear Tip

o Ear Base
@ Nothing

Convolutions Convolutions Pooling

Feature Extraction Classification

Figure 1: A simplified example of a CNN architecture operating on a fixed size image of part of an ear of wheat. The network performs alternating convolution and
pooling operations (see the online methods for details). Each convolutional layer automatically extracts useful features, such as edges or corners, outputting a number
of feature maps. Pooling operations shrink the size of the feature maps to improve efficiency. The number of feature maps is increased deeper into the network to
improve classification accuracy. Finally, standard neural network layers comprise the classification layers, which output probabilities for each class.
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Figure 2: Example training and validation images from our root tip and shoot feature datasets. Positive samples were taken at locations annotated by a user. Negative
samples were generated on the root system and at random for the root images, and on computed feature points on the shoot images.

separation into individual leaves and organs allows us to place
biologically distinct plant parts within a useful functional con-
text (different leaves, reproductive organs). To do this, we hand-
annotated 1664 images of wheat plants, labelling leaf tips, leaf
bases, ear tips, and ear bases. Classification images were then
automatically extracted from these images as before (see Fig. 2,
right side). This dataset is also publically available in Pound et al.
[12].

We then quantify the accuracy of finding the features in the
2 image sets. We also show how it is possible to localize the fea-
tures within the image—answering questions such as, where are
the root tips located? The Methods section explains in detail the
process of preparing the networks and data and the training of
the CNNs, as well as the localization approach used.

A common goal of phenotyping studies is the use of map-
ping populations to investigate the genetic architecture of com-
plex traits by identifying quantitative trait loci (QTL; regions of
DNA that correlate with phenotypic variations). QTL analysis is
based on detecting an association between phenotype and geno-
typic markers; the markers are used to partition a population
into genotypic groups, whereupon trait differences between the
groups can be identified [13]. The collective effect of numerous
genes controls the genetic variation in a quantitative trait. Iden-
tifying such QTL is of agronomic importance and feeds into the
development of crop species. QTL discovery itself relies on the
statistical analysis of phenotypic traits and has been limited by
the lack of unbiased, high-throughput techniques to extract trait
values from image sets.

Finally, then, we demonstrate that it is possible to auto-
matically derive traits from images using these features, which
can be used to identify the underlying genetic architecture by
identifying QTL, a key goal of many phenotyping studies. The
output of the root CNN (the detected root tips) is then used to de-
rive simple descriptive traits automatically, which are then used
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in a QTL discovery process and compared to QTL discovery via a
more manual approach.

Data description

Two datasets have been used in this paper, each presenting a
unique challenge to deep learning. By presenting both, we wish
to highlight the wide applicability of the approach.

Root analysis

Bread wheat (Triticum aestivum L.) seeds were sieved to uniform
size, sterilized, and pre-germinated before transfer to growth
pouches in a controlled environment chamber (12-hour pho-
toperiod: 20°C day, 15°C night, with a light intensity of 400
pmol m-2 s-1 PAR), as per Atkinson et al. [14]. After 9 days
(two-leaf stage), individual pouches were transferred to a copy
stand for imaging using a Nikon D5100 DSLR camera con-
trolled using NKRemote software (Breeze Systems Ltd, Camber-
ley, UK). Root system architectural traits were extracted from
images of 2697 seedlings using the RootNav software (RootNav,
RRID:SCR-015584) [15] and used to produce the input images for
CNN training.

Shoot analysis

Wheat varieties were grown as detailed previously [16]. Plants
in pots were imaged according to the protocol of Pound et al.
[17]. The developmental stages of the plants in both years of
trial were the same. At anthesis, wheat plants (roots and shoots)
were removed from the field and taken to a photography studio
located close by to prevent wilting and damage to the shoots.
They were imaged using 3 fixed Canon 650D cameras, with a
minimum of 40 images per plant. Images were captured using a
revolving turntable, including a fixed size calibration target. This
target is used to facilitate 3D reconstruction, which does not fea-
ture in this work.


https://scicrunch.org/resolver/RRID:SCR_015584

Table 1: Classification results for both root and shoot datasets

Feature Correctly classified
Root tip 2904

Root tip negative 5687
Total/average 8591
Feature Correctly classified
Leaf tip 2225

Leaf base 2299

Ear tip 686

Ear base 765

Shoot negative 6110
Total/average 12 085

Misclassified Accuracy (%)
73 97.5
65 98.9
138 98.4
Misclassified Accuracy (%)
113 95.2
52 97.8
15 97.9
23 97.1
136 97.8
339 97.3

Leaf tips represent the hardest classification problem in the datasets, with large variations in orientation, size, shape, and colour. In all cases, the accuracy has remained
above 95%, with the average accuracy of both networks above 97%. The root tip network performs marginally better overall, perhaps to be expected due to the simpler
nature of the image data. Complete confusion matrices can be found in Additional file 3.

Further details on preparation of the image data for the net-
works can be found in the Methods section.

Classification

Once networks are built and training has been completed (see
the Methods section), the learned parameters of the network are
then stored and can be used to perform classification when re-
quired. The final accuracy of the networks described in this pa-
per is the result of a final evaluation over all validation images
once training was stopped. Our CNN models, learned parame-
ters, and all the related scripts for training and validation will
be made publically available [12].

For both the root and shoot data, we randomly separated 80%
of the data into a training set, and 20% remained for validation.
To evaluate the accuracy of each network, we ran each valida-
tion image through the network, obtaining the likelihood of each
class. These were then compared to the true label for each im-
age to ascertain whether the network had correctly classified
the image. Based on this, the accuracy of the root tip detection
network was found to be 98.4%. The shoot dataset, containing 4
classes of shoot features, along with numerous instances of clut-
tered, non-plant background, represents an even more challeng-
ing task. In this case, the shoot network successfully classified
97.3% of images. In both cases, CNNs here have out-performed
recent state-of-the-art systems (e.g., accuracies of 80-90% have
been typical) [2, 18]. Accuracy results for individual classes can
be seen in Table 1. Note also that both these scenarios are much
more challenging than typical successes seen to date as the im-
ages involved are much less constrained.

Localization

As well as identifying features by classifying image crops, it is
necessary in quantitative phenotyping to locate the features
within the larger image. For example, reliably identifying the
locations of root tips is a bottleneck in automated root system
analysis [15] and is often omitted from image analysis software
due to the challenges localization presents. As another example,
locating seed feature points must occur before automated trac-
ing in RootTrace (RootTrace, RRID:SCR_015585) [19]. Localization
of the different biological feature classes for a shoot is vital in
capturing the architecture of the plant, essential for phenotyp-
ing. We also later show that automated localization of such fea-

tures can be used to identify the underlying genetic architecture
of traits.

We have extended our root and shoot classifiers to perform
localization by scanning over each original image, applying the
respective classifier over each image at regular pixel intervals
(often referred to as a stride). Selection of the stride is straight-
forward and is a compromise between pixel-wise accuracy of
the resulting classification map and computational efficiency.
A stride of 1 will produce sub-images centred on every pixel,
such that images will overlap with the majority of the previous
sub-image. This means that a feature visible in one image will
also be visible in a number of consecutive images around it. For
both the root and shoot system images, we chose a stride of 4,
which results in a single scan that takes under 2 minutes, and
yet will output a classification map showing each feature loca-
tion clearly. The scripts we used to perform this classification
and repeat this automatically over any number of images can be
downloaded alongside our models.

As the output of the network is a set of class probabilities,
pixels observed as above a likelihood threshold are marked as
belonging to a specific class (see Fig. 3).

Testing localization accuracy
We have tested the real-world accuracy of our localization step
by measuring the proportion of location windows containing
false-positives or -negatives. This testing was performed on
unseen test data, comprising 20 images for roots and 20 for
shoots. In both cases, no images, or parts of these images, had
been used in the training or validation of either network. Accu-
racy was measured as the percentage of pixels that were cor-
rectly classified as either true-positives or true-negatives. False-
positives were determined as those pixels that were classified as
a feature but were outside of a radius around any ground truth
features. This radius was set as half of the classification win-
dow size, in which any feature should be visible. False-negatives
were those pixels within the same radius of a ground truth fea-
ture that were not correctly classified as those features. Separate
results for roots and shoots, and for each class, can be seen in
Table 2; test images and output can be seen in Additional file 2.
The accuracy of the root tip location is 99.85% and the ac-
curacy of the shoot feature location is 99.07% when totalled
over all features. Accuracy that is higher than that of the base
classifiers presented earlier (Table 1) is not surprising. During
training of the networks, we generated particularly challeng-
ing negative examples of image features; these examples
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Figure 3: Localization examples. Images showing the response of our classifier using a sliding window over each input image. (a) Three examples of wheat root tip
localization. Regions of high response from the classifier are shown in yellow. (b) Two examples of wheat shoot feature localization. Regions of high response from
the classifier for leaf tips are highlighted in orange, leaf bases in yellow, ear tips in blue, and ear bases in pink. A portion of the second image has been zoomed and

shown with and without features highlighted. More images can be seen in Additional file 1.

Table 2: Testing results for our image scanning approach over 20 unseen root images and 20 unseen shoot images

Feature False positive (%) False negative (%) Feature accuracy (%)
Roots Root tip 0.03 0.12 99.85
Shoots Leaf tip 0.24 0.12 99.64
Leaf base 0.22 0.10 99.68
Ear tip 0.08 0.02 99.91
Ear base 0.11 0.05 99.85

Feature accuracy is the number of true-positive and true-negative pixels, divided by the total number of pixels over the 20 images. Actual testing images and results

can be seen in Additional file 2.

comprise only a very small fraction of each whole, real-world
image. The scripts used for testing will be made available along-
side our models [12].

Table 3: List of root traits derived from the tip-detection CNN output
and how they were computed

Name Description
Application to QTL discovery Tip count The sum of all connected components found
Hull area The area of the convex hull derived from the
So far we have demonstrated the success of the approach in centroids of all tips
locating features in images. Here, we wish to show the power Width/depth The width and depth of the bounding box
of a complete pipeline for phenotyping and discovery. We will surrounding all tips
use traits derived from features automatically discovered viaour ~ Width:depth Calculated as width divided by depth
deep learning approach to identify significant QTL for the root ratio
system, highlighting the power of the approach for genetic dis- Mean X/Y The mean X and Y positions of all tips
covery. As a baseline, using the semi-automated software pack- Standard The standard deviation of the X and Y positions
age RootNav [15], root traits were manually determined from deviation X/Y of all tips . .
1709 images of the seedling root systems of 92 members of a I(c))g/200/300 N ?Ogougoto()f;}:; r;g:)nbf;e?fstﬁs;%:?ze\::}?et};:e?p
wheat doubled haploid mapping population [14]. These traiF val- count P posi;ion c;alculate P zbove P
ues were then used to identify 29 root QTL [14], representing 5 Total length An estimate for the length of the root system,

classes of trait. This same image set formed part of the training
dataset for the root tip detection CNN. We will here consider only
traits related to root tips as this is the feature our network spe-
cializes in, but of course different and additional features could
be learned in the future.

The output of the root tip CNN after scanning over an image
is a heatmap of high-likelihood tip locations. This was adapted
to produce individual co-ordinates for each identified root tip.
Mathematical morphology was used to erode the heat map with
a 3 x 3 structuring element using 3 iterations. This removes
small artefacts’ output as single pixels in the heat map and can
separate some root tips that are close together. This level of ero-
sion was chosen as a compromise between effectively removing
noise and removing root tips themselves in error. A connected
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Centre mass
X/Y

calculated as the sum of the distances from each
tip to the seed position
The mean X, Y position of all tips

The name is derived from the trait they can be seen to estimate or represent.

component algorithm was then used to find a single centroid of
each foreground region, representing the most likely root tip lo-
cations. Geometrical traits were then conceived, which were de-
rived from these recorded tip positions (listed in Table 3). Note
that if detecting more than just tips of roots (perhaps the seed
location or the roots themselves), much more complex and po-
tentially informative traits could be derived. However, here we



Table 4: QTL discovery results from user-supervised (RootNav, RN) and CNN-derived deep learning (DL) approaches

RN DL
Trait Chr Pos LOD CI Chr Pos LOD CI Additive effect Nearest marker
Centre of mass (x) 1A 70.3 2.5  47.7-163.6
Width/depth ratio 4D 4.8 2.7 0.8-67.6 4D 2.8 3.2 0.8-67.6 0.07 IAAV5065
Total root length 6D 44 240 2-53 6D 4.4 12.7 2-53 -2201 wsnp_Ex_c4789_8550135
Convex hull 6D 44 176 2-53 6D 4.4 17.3 2-53 -264 026 wsnp_Ex_c4789_8550135
Centre of mass (x) 6D 26 2.8 0-92.5 6D 5 17.1 2-53 -151 wsnp_Ex_c4789_8550135
Centre of mass (y) 6D 44 191 2-53 6D 44  10.0 0-53 -105 wsnp-Ex_c4789.8550135
Lateral count/tip count 6D 44 9.1 0-53 6D 4.4 10.2 0-53 -4.53 wsnp_Ex_c4789_8550135
Maximum depth 6D 44 227 2-53 6D 44 251 2-53 -388 wsnp_Ex_c4789_8550135
Maximum width 6D 4.4 6.4 0-53 6D 6 15.0 2-53 -241 wsnp_Ex_c4789_8550135
Total root length 7D 27 9.0 16-52 7D 30 34 16-52 -1122 Kukri_c48125.714
Lateral count/tip count 7D 29 24 16-101.8 7D 29 4.5 16-101.8 -2.76 wsnp_Ra_c8297_14095831
Centre of mass (x) 7D 19 2.7 16-38.8
Convex hull 7D 34 3.5 16-62.4 7D 34 4.4 16-62.4 -123 896 Kukri_c48125.714
Maximum depth 7D 30 5.8 16-52 7D 30 6.9 16-62.4 -155 wsnp_Ra_c8297_14095831

Note there are 2 QTL identified using RN that are missed by the DL approach; all others were identified by both methods. Chr: chromosome; CI: confidence interval

start and end positions; DL: deep learning; Pos: position; RN: RootNav.

demonstrate with simple tip-based traits and use these traits
to identify QTL via the same pipeline developed for the origi-
nal RootNav-derived images [14]. Here we make an estimate for
seed location derived from tips alone, taken as the mid-point of
the top of the bounding box surrounding all seed tips. This is an
estimate only, but is calculated consistently for all images.

The traits in Table 3 were then used in subsequent QTL anal-
ysis. QTL calculation and plotting of logarithm of odds (LOD)
scores were conducted using R package “qtl” on best linear pre-
dictors in the first step as a single QTL model employing the ex-
tended Haley-Knott method on imputed genotypes. Significant
thresholds for the QTLs were calculated from the data distri-
bution. Final QTL LOD scores and effects were received from a
multiple QTL model using the QTL detected in the initial scan.
The high-density Savannah x Rialto iSelect map [20] was used,
with redundant markers and those markers closer than 0.5 cM
stripped out. Outputs of the analysis program R/qtl [21] are sum-
marized in Table 4. Many of the QTL found in the original Root-
Nav study were based on measurements of root angle and thus
would not be expected to be found using parameters computable
from tip positions alone; thus, these were not considered in
these analyses (please see original paper for the full list) [14].
However, as can be seen in Table 3, nearly all traits related to tip
location that the semi-automated RootNav approach returned
were also picked up by deep learning.

Traits derived from the CNN resulted in the detection of 12
QTL; all of these coincide with loci discovered using the manual
RootNav approach. The QTL on chromosome 1A for one trait,
“Centre of mass (x),” was not detected using the deep learning
approach but was found using trait values from RootNav. This
trait represents the centre of mass of the root system in the hor-
izontal direction and only varies by 11 mm across the mapping
population in the RootNav data. By here estimating the seed po-
sition, this small amount of variation is not captured using the
root tip positions alone, and thus the QTL is not detected. Addi-
tionally, the trait itself is likely to be of little biological relevance
although it is significant in the RootNav analysis, so we include
it here for completeness. Finally, it is worth noting though that a
second QTL for the same trait was detected on chromosome 6D
using both systems.

Extraction of phenotypic information using RootNav requires
a skilled user and a considerable investment of time (the most
experienced users take on average 2 minutes to process an im-

age). The CNN-derived tip detection pipeline runs completely
unattended, is free from operator bias, and successfully found
86% of the tip-related QTL previously identified using trait val-
ues extracted via the semi-automated RootNav pipeline. This
highlights the potential for deep learning in delivering the auto-
mated, high-throughput extraction of useful data from images
required for phenotyping studies.

Of course, the benefits of deep learning are only possible
given sufficient quantities of representative training data. The
deeper the network, the more data are required. Quality of train-
ing data and the training protocol can affect final results. Tra-
ditional machine learning may work with smaller quantities of
training data due to fewer parameters having to be learnt in the
models. For comparison, the root architecture dataset presented
in this study has also been used with a crafted feature set and
Random Forest classification in a similar phenotyping pipeline;
we refer the reader to Atkinson et al. [22] for more details.

CNNss offer unparalleled discriminative performance in classifi-
cation of images and localization tasks. Here, we have demon-
strated their efficacy of not only the classification, but also
localization of plant root and shoot features, significantly im-
proving upon the state of the art. To our knowledge, this is the
first demonstration of deep learning applied in the localization
of plant features. The success here parallels the success of deep
learning in related image analysis tasks such as leaf segmenta-
tion [23]. We have also demonstrated the ability to derive mean-
ingful traits from simple feature detection as a demonstrator,
from which we successfully identify significant QTL, corrobo-
rated by manual methods. The successful application of deep
learning in QTL analysis parallels the application of traditional
machine learning on a similar task [22]. To improve our own
methods in future work, we will explore the application of so-
called fully convolutional networks, performing segmentation
directly, rather than via a scanning approach. We also hope to
apply feature localization to other datasets, and in particular ex-
amine the efficacy of these techniques in field images.

Deep learning is a very general technique; CNNs can be eas-
ily applied to other challenging problems and determine use-
ful features for classification automatically during training. Mi-
croscopy, x-ray, ultrasound, magnetic resonance imaging, or
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other forms of medicinal and structural imaging are all targets
where deep learning will yield excellent results. Areas involv-
ing challenging, unstructured images—such as those from the
field—are of particular interest for future work.

Training of CNN methods of course depends on high-quality
annotations on which to train. Despite skilled biological ex-
perts performing the annotation, even here we should expect
some error in the annotations, over the hundreds of images
and many thousands of features. Whilst we have not quanti-
fied this error on our data, it is worth keeping in mind that we
must minimize such occurrences when using CNNs and that
any claim to accuracy depends on “correct” annotation—what
if the network is right, and the annotator wrong? These are
questions that deep learning will force us to address. Annota-
tion is also a time-consuming process, and existing datasets will
perform a key role in boot strapping new techniques and ap-
plications of deep learning. This will likely drive a renewed ef-
fort in large, publicly available datasets, including high-quality
annotations.

We believe that the substantial increase in throughput offered
by deep learning will lead to an improvement in the under-
standing of biological function akin to other high-throughput
improvements in biology, such as expression arrays [24] and
next-generation sequencing [25], and anticipate numerous
paradigm-shifting breakthroughs over the coming years.

Convolutional neural networks using traditional neural network
layers for classification can be applied to images of any rea-
sonable size, but once trained at a certain size, this must re-
main consistent. We chose input sizes of 32 x 32 pixels for
root tip images and 64 x 64 pixels for shoot feature images. In
the root domain, a 32 x 32 image was found to be adequate to
capture a root tip feature, along with enough context from the
surrounding image. The 64 x 64 resolution of shoot features was
chosen as a compromise between efficiency and the higher res-
olution necessary to handle the more complex features seen in
these images. Choosing a size appropriate to the feature of inter-
est whilst maintaining a balance with computational efficiency
is key here.

For root images, we obtained root tip positions from an exist-
ing database of manually annotated root systems, paired with
the captured input images. For each source image, we created
cropped training images centred on each recorded root tip posi-
tion. This resulted in a variable number of training images per
source image, depending on how many root tips had been an-
notated by the user. We restricted root tip images to primary
and lateral roots that were longer than half the window size (16
pixels). Avoiding extremely short lateral roots avoids ambiguity
with root hairs, which appear frequently on many of the images.
For all training images in the root dataset, we cropped source im-
ages at 42 x 42 pixels, and then performed an additional crop to
32 x 32 randomly during training. This approach, known as data
augmentation, is akin to producing many more training images
with variation in the location of the tips within the cropped win-
dows, such that the root tips do not appear in the exact centre of
each training image every time. This approach has been shown
to produce improved accuracy when the classification target is

not necessarily in the centre of each image, as may be the case
when we use our scanning localization approach.

We additionally generated negative training images, which
do not contain the features of interest, with two times more
negative images than positive ones. We increased the number
of negative images in order to adequately capture the wide vari-
ety of different negative images that are possible on in this data.
Half of the negative data was generated at random points on the
source image, but limited to areas that contained no root tips.
The remaining negative data were generated at random posi-
tions on the known root system, again avoiding root tips. This
is a form of hard negative mining, where negative data are gen-
erated on regions that appear similar to the positive data. We
want the network to learn that we are only interested in tips of
roots, not other structures on the root. This has been shown to
improve the accuracy of machine learning algorithms over neg-
ative data produced entirely at random [26]. The total number of
images produced was 43 641, which was split at random into a
training set of 34 912 and a validation set of 8729.

A similar approach was used for the preparation of shoot fea-
ture images. For each source image, we selected cropped images
at each manually annotated location, as with the root tips. The
shoot images are higher resolution than the root images, so we
found that we obtained better accuracy if we cropped 128 x 128
images, then scaled to 64 x 64 for use in the network. This sim-
ply includes more of each image within the field of view of the
smaller windows; i.e., we retain more contextual information.
Each type of feature (e.g., leaf tip, ear tip) was summed to pro-
duce an overall positive image count, and we then generated
an equal number of negative images per source image. Unlike
the root system data, where information on the position of the
remaining root system (derived from the manual annotations)
could be used to generate hard negative data, the shoot annota-
tions only included the specific features to be classified. In order
to generate hard negative data, we used a Harris feature detector
[27] to generate candidate points of interest, then selected from
this set at random (discounting areas around positive features).
This ensured that the negative data contained large amounts
of clutter and other plant material, rather than just plain back-
ground regions. Finally, we generated a small number of addi-
tional images from truly random locations to ensure that ar-
eas such as the white background were represented sufficiently.
The resulting dataset contained 62 118 images, of which 49 694
were training images, and the remaining 12 424 were used for
validation.

At this point, we have constructed suitable training sets of
images derived from manual annotations. The next task is to
develop the network architecture itself and train the subsequent
networks.

We used the Caffe deep learning library [28] to develop each net-
work. In Caffe, networks are described using a series of struc-
tured files, along with information on training and validation,
such as how frequently to perform validation when training it-
erations, and so-called hyperparameters, such as the learning
rate, which will be described below.

We designed separate CNN architectures for each problem.
These architectures are shown in Fig. 4; they adopt a common
approach to CNN design, utilizing multiple convolutional layers
using 3 x 3 kernels prior to each pooling layer [29]. The shoot
CNN contains more layers to accommodate the larger input im-
age size. It also includes increased feature counts in deeper
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Fully Connected, 2 Fully Connected, 5

Figure 4: The architecture of both convolutional neural networks (left: root, right:
shoot). In each case, convolution and pooling layers reduce the spatial resolu-
tion to 1 x 1, while increasing the feature resolution. All convolutional layers
used kernels size 3 x 3 pixels, and the number of different filters is shown at the
right of each layer. Following the convolution and pooling layers, the fully con-
nected (neural network) layers perform classification of the images. We included
rectified linear unit (ReLu) layers between all convolutional and fully connected
layers, and dropout layers between each fully connected layer.

layers to address the more challenging classification task posed
by the shoot images. Both networks end in neural network
classification layers (often referred to as fully connected lay-
ers) that reduce the output sizes to 2 and 5, respectively. Once
trained, these final neurons represent the likelihood that the
network has observed each class (e.g., root tip or not root tip)
and can be read to determine which class the network has
identified.

The root CNN contained two groups of two convolutional lay-
ers, and one max pooling layer. Following these, two final con-
volutional layers performed further feature extraction, before
three standard neural network layers performed the classifica-

Downl oaded from https://academn c. oup. conl gi gasci ence/ articl e-abstract/6/10/ 1/ 4091592
by Edward Boyl e Library user
on 21 March 2018

tion. The feature size of the convolutional layers was increased
after each pooling layer, beginning at 64 convolutional filters,
up to 256 filters. Finally, the neural network layers gradually re-
duced the feature size back down to two, representing the sep-
arate “root tip” and “root negative” classes.

The shoot CNN contains three groups of convolutions and
pooling layers. The number of convolutional layers between
pooling layers varied slightly throughout the architecture in or-
der to ensure that the spatial resolution of the data was always
a multiple of two. A single final convolution is followed by three
neural network layers performing the classification. The feature
sizes of the convolutional and neural network layers were also
increased beyond that of the root CNN. Feature sizes started at
64 filters, up to a maximum of 512 filters. The neural network
layers decrease this feature size back down to 5, representing
the 5 classes being detected.

Recent developments in CNNs have proposed additional
components that improve performance. Neural networks re-
quire non-linear functions between layers in order to capture
the complex non-linearity of the classification tasks. Tradition-
ally, sigmoid or tanh functions have been used, where the re-
sult of each convolutional filter at each position is passed into a
nonlinear function before being passed to the next layer. More
recent work [10] proposed an alternative function, the rectified
linear unit (“Relu”), which has been shown to improve the speed
of training deep networks. We utilized Relu layers between all
convolutional layers and between all fully connected neural net-
work layers. Other work [30] proposed an approach whereby a
percentage of fully connected neurons is randomly deactivated
during each iteration of training; this has been shown to avoid
the overfitting problem, in which the classification of the train-
ing data improves, but at the expense of generality on the un-
seen data. By deactivating neurons some of the time, the fully
connected layers are forced to learn from all parts of the net-
work, rather than become focused on a few key neurons. We in-
cluded dropout layers with a 50% dropout rate between the fully
connected layers.

The Caffe library is built to perform iterative training and vali-
dation for as long as is required. Periodically, the accuracy of the
networks was measured using the separate validation data, and
learning was halted after a steady state was reached, where no
further improvement was seen if the network was left training.
The learning rate specifies how quickly the network attempts to
improve based upon the current set of images it is examining.
This is an important feature of network learning; a low learn-
ing rate will mean the network does not adapt sufficiently fast
to correctly classify the images it sees. A learning rate that is
too high may cause the network to wildly over-adapt, meaning
it will improve on the current set of images, but at the expense
of all the images it has seen previously. As with most modern
CNN approaches, we chose a higher learning rate to begin train-
ing, then periodically decreased this rate to “refine” the network
to higher and higher accuracies. We began with a learning rate
of 0.1, then decreased the learning rate by a factor of 10 every
20 000 iterations. In practice, we found that our networks were
robust to changes in this learning rate, but that we stopped see-
ing any real improvement in accuracy when the learning rate fell
below 1 x 10-3. Before entry into the network, the mean image
colour for each dataset was subtracted from each image in order
to centre pixel values around 0.
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