
This is a repository copy of Interplay between the Inverse Scattering Method and Fokas's 
Unified Transform with an Application.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/121682/

Version: Accepted Version

Article:

Caudrelier, V (2018) Interplay between the Inverse Scattering Method and Fokas's Unified 
Transform with an Application. Studies in Applied Mathematics, 140 (1). pp. 3-26. ISSN 
0022-2526 

https://doi.org/10.1111/sapm.12190

© 2017 Wiley Periodicals, Inc., A Wiley Company. This is the peer reviewed version of the 
following article: Caudrelier, V. (2017), Interplay between the Inverse Scattering Method 
and Fokas's Unified Transform with an Application. Studies in Applied Mathematics. doi: 
10.1111/sapm.12190, which has been published in final form at 
https://doi.org/10.1111/sapm.12190. This article may be used for non-commercial purposes
in accordance with Wiley Terms and Conditions for Self-Archiving.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Interplay between the Inverse Scattering Method and
Fokas’s Unified Transform with an Application

Vincent Caudrelier

School of Mathematics, University of Leeds, LS2 9JT LEEDS

Abstract

It is known that the initial-boundary value problem for certain integrable PDEs on the
half-line with integrable boundary conditions can be mapped to a special case of the Inverse
Scattering Method (ISM) on the full-line. This can also be established within the so-called
Unified Transform (UT) of Fokas for initial-boundary value problems with linearizable bound-
ary conditions. In this paper, we show a converse to this statement within the AKNS scheme:
the ISM on the full-line can be mapped to an initial-boundary value problem with linearizable
boundary conditions. To achieve this, we need a matrix version of the UT that was intro-
duced by the author to study integrable PDEs on star-graphs. As an application of the result,
we show that the new, nonlocal reduction of the AKNS scheme introduced by Ablowitz and
Musslimani to obtain the nonlocal Nonlinear Schrödinger (NLS) equation can be recast as an
old, local reduction, thus putting the nonlocal NLS and the NLS equations on equal footing
from the point of view of the reduction group theory of Mikhailov.

Keywords: Inverse scattering method, unified transform, Fokas method, nonlocal NLS, reduc-
tion group.
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1 Introduction

Soon after the discovery of the ISM [1, 2, 3], the question of solving initial-boundary value
problems for PDEs amenable to the ISM was raised. Initially, the problem on the half-line with
specific boundary conditions at the origin was studied and connected to a special case of the ISM
on the full line [4]. This point of view flourished over the years and took the form of a well-
established theory involving a very special use of Bäcklund transformation as a tool to implement
a nonlinear version of the method of images familiar for linear PDEs [5, 6, 7, 8, 9, 10, 11, 12]. This
method automatically produces so-called integrable boundary conditions [13] on the half-line.

If one ventures outside this well-defined arena, by considering for instance an initial-boundary
value problem for an integrable PDE on the interval, or on the half-line with non-integrable
boundary conditions or for an integrable PDE on the half-line with no natural mirror symmetry
(i.e. not invariant under the transformation x 7→ −x, like the KdV equation), then one is led to use
the so-called Unified Transform (UT) [14]. One can say that it is the appropriate generalization
of the ISM to initial-boundary value problems in that it reproduces naturally all known integrable
boundary conditions, called linearizable in this context. It extends naturally to problems on the
interval and to PDEs with no mirror symmetry. The fundamental new insight of the method is
to perform the spectral analysis of both parts of the Lax pair [15] defining the PDE of interest.

To better understand the connection between the ISM and the UT, it was shown in [16] how
the UT with linearizable boundary conditions is related to the mirror image approach whereby
one uses the ISM on the full line with certain symmetries on the scattering data to obtain solutions
of the PDE on the half-line which automatically satisfy the desired boundary conditions. This
was done on the example of the NLS equation, corresponding to the 2×2 AKNS scheme [3] with a
special reduction [17] yielding the original ZS scheme for NLS [2]. The result can be summarized
as follows: the UT with linearizable boundary conditions can be mapped to a special case of the
ISM on the full line1.

It is the object of this article to show a converse of this statement: the ISM on the full line
can be mapped to a particular case of the UT applied to an appropriate 4 × 4 Lax pair. This
provides further justification for the terminology “unified transform”: even the ISM for problems
on the full-line is just a special case of the (matrix) UT on the half-line. Note that this is a rather
nontrivial statement since the UT is designed entirely on the half-line and knows nothing about
the other half-line constituting the full-line. This is precisely what motivated the study in [16] and
the comparison with the mirror image method which does require the use of the “negative” half-
line. The key is to use our matrix version of the UT. In fact, this matrix generalization of the UT
was introduced in [18] in order to solve the open problem of formulating an ISM for integrable
PDEs on star-graphs. In turn, this had been originally motivated by the difficult question of
introducing local defects and impurities in classical (see e.g. [19, 20, 21, 22, 23] and references
therein) and quantum (see e.g. [24, 25, 26, 27] and references therein) integrable systems.

The main result of the paper can be worded as follows: the ISM on the full line can be mapped
to a special case of the matrix UT on the half-line with linearizable boundary conditions. This
is shown in Section 2 after reviewing the essential ingredients of the ISM and the UT. In all this
paper, we work in general with the unreduced AKNS scheme and make connections with results
in the reduced case producing NLS where applicable.

In Section 3, an application of our result to the nonlocal NLS equation is presented. This
important byproduct establishes a precise relation between the initial value problem for the
local and nonlocal NLS equation and a linearizable initial-boundary value problems for certain

1Although this was only studied explicitly for NLS, it seems reasonable that the arguments of [16] would extend
to other well-known integrable PDEs within the AKNS scheme, with appropriate changes of the technical details.

1



reductions of the matrix NLS equation. We show that our reformulation of the ISM in terms of
the UT allows one to cast the new nonlocal reduction of [28] into a standard local reduction as
has been studied for several decades since [17]. One of the motivation for such a reformulation is
that the question of classifying reduction groups for a given Lax pair is in general very difficult
but is far more developed in the local case than in any other situation. It led in particular to
the notion of automorphic Lie algebras [29, 30]. In view of the enormous interest that [28] has
attracted in only a few years (see e.g. [31, 32, 33, 34, 35, 36] and references therein2), establishing
some more systematic results about nonlocal reductions seems desirable.

2 The matrix UT and the ISM as a special case

For a detailed account of the UT originally designed as the generalization of the ISM to tackle
integrable PDEs on the half-line (and the interval), we refer the reader to the textbook [38]. For
our purposes, we need the extension of this method designed in [18] to tackle integrable PDEs
on a star-graph (a collection of N half-lines connected via a central vertex). There, the general
N case was considered in the case of the NLS reduction of the general AKNS scheme [3]. In the
present paper, we will only require N = 2 but without the NLS reduction. It turns out that all
the results of [18] go over to the unreduced AKNS case with minor modifications. The proofs are
completely parallel to those presented in [18] and are omitted in this paper. We collect here all
the results we need with the appropriate modifications to account for the unreduced context.

We start with the following 4× 4 AKNS Lax pair formulation

{
∂xµ+ ik[Σ3, µ] = W µ ,

∂tµ+ 2ik2[Σ3, µ] = P µ ,
(2.1)

where

Σ3 =

(
1I2 0
0 −1I2

)
, W (x, t) =

(
0 Q(x, t)

R(x, t) 0

)
, (2.2)

P (x, t, k) = 2kW − i∂xW Σ3 − iW 2Σ3 . (2.3)

and

Q(x, t) =

(
q(1)(x, t) 0

0 q(2)(x, t)

)
, R(x, t) =

(
r(1)(x, t) 0

0 r(2)(x, t)

)
. (2.4)

This gives rise to the following matrix AKNS equations

{
iQt +Qxx − 2QRQ = 0 ,

−iRt +Rxx − 2RQR = 0 .
(2.5)

The crucial differences between the ISM for problems on the line and the UT can be summarized
as follows

1. In the ISM, one only performs the spectral analysis of x-part of the Lax pair formulation
at some given fixed time t = 0 say, using the initial data, while in the UT one performs the
simultaneous spectral analysis of both the x and t-part of the Lax pair formulation.

2This is from the integrable systems point of view only but a large proportion of articles citing [28] is also related
to very active area of nonlinear PT -symmetric models, see e.g. [37].
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2. In practice, in ISM this is achieved by introducing two fundamental (Jost) solutions nor-
malised at x → ±∞, giving rise to one scattering matrix S(k). In the UT, one uses three
fundamental solutions normalised at three canonical spacetime points, giving rise to two
scattering matrices S(k), T (k) and a constraint on the scattering data known as the global
relation.

We denote the initial-boundary data by

Q0(x) = Q(x, 0) , R0(x) = R(x, 0) , x ≥ 0 (2.6)

G0(t) = Q(0, t) , G1(t) = Qx(0, t) , t ≥ 0 (2.7)

H0(t) = R(0, t) , H1(t) = Rx(0, t) , t ≥ 0 . (2.8)

The data is assumed to be such that the global relation holds (see (2.23)-(2.24) below) and with
appropriate smoothness conditions (e.g. Q0, R0 are in the Schwartz class over R

+, Gj , Hj are
smooth and with sufficient fast decay as t→∞).

Note that the global relation is the crux of the matter in the UT. The method uses both the
Dirichlet and Neumann data to construct the scattering matrix T (k) (see (2.11) below). However,
only one of these data can be given for a well-posed problem. Therefore, one has to eliminate
the other data from the general construction. The issue was addressed in [18] in the reduced
NLS case and for N half-lines (see Proposition 4.2 there). The generalization to the unreduced
case simply requires to repeat the arguments twice (for R0, H0 and H1 in addition to Q0, G0

and G1) and the present N = 2 unreduced case is then a particular case. Under fairly generic
assumptions, the main outcome is that the Neumann data G1 (H1) can be expressed in terms
of quantities involving only the initial condition Q0 (R0) and the Dirichlet data G0 (G1), in a
way that ensures the validity of the global relation. In this article, we will not need this result as
we will use certain linearizable boundary conditions which allow us to get rid of the need for the
scattering data T (k) altogether.

Define µ3(x, k), µ1(t, k) as the 4× 4 matrix-valued functions satisfying3

∂xµ3 + ik[Σ3, µ3] = W (x, 0)µ3 , 0 < x <∞ , (2.9a)

∂tµ1 + 2ik2[Σ3, µ1] = P (0, t, k)µ1 , 0 < t <∞ , (2.9b)

lim
x→∞

µ3(x, k) = 1I4 , lim
t→∞

µ1(t, k) = 1I4 . (2.9c)

The scattering matrices are defined by

S(k) = µ3(0, k) and T (k) = µ1(0, k) . (2.10)

S(k) depends on the initial data while T (k) depends on the boundary data. They have the form

S(k) =

(
ã(k) b(k)

b̃(k) a(k)

)
, T (k) =

(
Ã(k) B(k)

B̃(k) A(k)

)
, (2.11)

where all the elements shown explicitly are 2 × 2 diagonal matrices. This yields the direct part
of the method i.e. the map

{Q0(x), R0(x), G0(t), G1(t), H0(t), H1(t)} −→ {S(k), T (k)} (2.12)

3The notations µ1,3 may seem a bit ad hoc here but are in line with the standard notations used in the analysis
part of the UT under the assumption that a solution Q(x, t), R(x, t) exists.

3



The construction of the inverse map relies on the analytic properties of the scattering data as
functions of k ∈ C and has been shown to be most efficiently carried out by using a Riemann-
Hilbert formulation. Specifically, define Dj the j-th quadrant of the complex plane by

Dj = {z ∈ C, arg z ∈ ((j − 1)
π

2
, j

π

2
)} , j = 1, 2, 3, 4 . (2.13)

Then,

a(k) , b(k) defined and analytic for arg k ∈ (0, π) , (2.14)

ã(k) , b̃(k) defined and analytic for arg k ∈ (π, 2π) , (2.15)

A(k) , B(k) defined and analytic for k ∈ D1 ∪D3 , (2.16)

Ã(k) , B̃(k) defined and analytic for k ∈ D2 ∪D4 . (2.17)

Given the scattering coefficients in S(k) and T (k), define the matrix J by J(x, t, k) = Jℓ(x, t, k)
when arg k = ℓπ

2 , where

J1 =

(
1IN 0

Γ(k) e2iφ(x,t,k) 1IN

)
, J4 =

(
1IN −γ(k) e−2iφ(x,t,k)

γ̃(k) e2iφ(x,t,k) 1IN − γ(k)γ̃(k)

)
, (2.18)

J3 =

(
1IN −Γ̃(k) e−2iφ(x,t,k)

0 1IN

)
, J2 = J3J

−1
4 J1 , (2.19)

and

γ(k) = b(k) ã−1(k) , γ̃(k) = b̃(k) a−1(k) , (2.20)

Γ(k) = B̃(k)a−1(k)d−1(k) , Γ̃(k) = B(k)ã−1(k)d̃−1(k) , (2.21)

d(k) = a(k) Ã(k)− b(k) B̃(k) , d̃(k) = ã(k)A(k)− b̃(k)B(k) . (2.22)

For conciseness, in the rest of this paper, we do not consider the possibility of zeros in the
scattering data as this will lengthen the paper even more with technicalities that are not essential
for our results. The interested reader can refer to [18] for more details on such zeros in the
star-graph case (conditions (C1)− (C3) in that paper). Now, define the matrix Riemann-Hilbert
problem for M(x, t, k) as4

• M is analytic in k for k ∈ C \ {R ∪ iR};

• M−(x, t, k) = M+(x, t, k) J(x, t, k) , k ∈ R∪iR whereM = M− for k in the second or fourth
quadrant, M = M+ for k in the first or third quadrant and J is defined as in (2.18)-(2.22);

• M(x, t, k) = 1I4 +O
(
1
k

)
, k →∞;

The form of this Riemann-Hilbert problem is dictated by an analysis of the direct part under
the assumption that a solution Q(x, t), R(x, t) to the initial-boundary value problem exists. Of
particular importance in this analysis is the necessary condition on the scattering data known as
the global relation. In our case, it reads

a(k)B(k)− b(k)A(k) = 0 , k ∈ D1 , (2.23)

ã(k)B̃(k)− b̃(k)Ã(k) = 0 , k ∈ D4 . (2.24)

We assume that the initial-boundary data is such that the global relation is satisfied. The
following is a straightforward generalization to the present unreduced matrix case of the results
of [38, 18].

4Note that we do not need residue conditions here. Again, the interested reader can consult [18].
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Theorem 2.1 There exists a unique solution M(x, t, k) to the above Riemann-Hilbert problem.
Moreover, setting

W (x, t) =

(
0 Q(x, t)

R(x, t) 0

)
= i lim

k→∞
k[Σ3,M(x, t, k)] (2.25)

then Q(x, t), R(x, t) is the solution of the matrix AKNS equations (2.5) on the half-line with
initial condition Q(x, 0) = Q0(x), R(x, 0) = R0(x) and boundary conditions Q(0, t) = G0(t),
∂xQ(0, t) = G1(t), R(0, t) = H0(t), ∂xR(0, t) = H1(t).

2.1 Inverse scattering method within the UT

In this section, we show that the standard ISM for the first nontrivial equation of the 2×2 AKNS
hierarchy i.e.

{
iqt + qxx = 2qrq ,

−irt + rxx = 2rqr ,
(2.26)

with initial condition q(x, 0) = q0(x), r(x, 0) = r0(x) in the Schwartz class over R, can be seen
as a special case of our matrix version of the UT with linearizable initial-boundary data (see
(2.46)-(2.47) below). Note that this connection was already established for the reduced case of
NLS (r = ±q∗) in [18]. Eqs (2.26) are the compatibility conditions of the system

{
Φx = U Φ ,

Φt = V Φ ,
(2.27)

where

U(x, t, k) = −ikσ3 + w(x, t) , V (x, t, k) = −2ik2 + p(x, t, k) , (2.28)

p(x, t, k) = 2k w − i∂xw σ3 − iw2 σ3 , (2.29)

and

σ3 =

(
1 0
0 −1

)
, w(x, t) =

(
0 q(x, t)

r(x, t) 0

)
. (2.30)

Equivalently, we can use Ψ(x, t, k) = Φ(x, t, k)eikxσ3 which satisfies
{
Ψx + ik[σ3,Ψ] = wΨ ,

Ψt + 2ik2[σ3,Ψ] = pΨ .
(2.31)

To make the connection with the usual ISM

{q0(x), r0(x)} −→ {S(λ)}
↓

{q(x, t), r(x, t)} ←− {S(λ, t)}
(2.32)

we will use the Riemann-Hilbert approach to ISM instead of the historical Gelfan’d-Levitan-
Marchenko formulation. It is also very convenient to consider a 4× 4 Lax pair formulation

{
∂xΨ+ ik[Σ3,Ψ] = W lineΨ ,

∂tΨ+ 2ik2[Σ3,Ψ] = P lineΨ ,
(2.33)
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where

W line(x, t) =

(
0 Qline(x, t)

Rline(x, t) 0

)
. (2.34)

with

Qline(x, t) =

(
q(x, t) 0

0 −q(−x, t)

)
, Rline(x, t) =

(
r(x, t) 0

0 −r(−x, t)

)
, x ∈ R . (2.35)

Of course, reconstructing q, r is equivalent to reconstructing Qline, Rline. The advantage of using
this redundant form for the standard 2×2 AKNS scheme on the full line is that we will deal with
scattering data and solutions of Riemann-Hilbert problems of the same size when we compare
the ISM on the full line with the matrix UT on the half-line of the previous section. Let us define
the following fundamental solution Ψ+(x, k) of

∂xΨ+ ik[Σ3,Ψ] = W line(x, 0)Ψ , (2.36)

with the normalisation
lim
x→∞

Ψ+(x, k) = 1I4 . (2.37)

The scattering data on the line is defined by

Sline(k) = lim
x→−∞

eikxΣ3Ψ+(x, k)e
−ikxΣ3 ≡

(
ãline(k) bline(k)

b̃line(k) aline(k)

)
(2.38)

where the four elements shown explicitly are diagonal 2 × 2 matrices. The following result is a
direct generalization to our (redundant) 4× 4 case of the well-known reconstruction formula for
the ISM on the line formulated via a Riemann-Hilbert problem.

Theorem 2.2 Let M line(x, t, k) be the unique solution of the following Riemann-Hilbert prob-
lem5:

1. M line(x, t, k) is an analytic function of k in the upper and lower half planes, continuous
from above and below the real line;

2. On the real line, it satisfies a jump condition

M line
− (x, t, k) = M line

+ (x, t, k)e−iφ(x,t,k)Σ3J line(k)eiφ(x,t,k)Σ3 , (2.39)

M line
± (x, t, k) = lim

ǫ→0+
M line(x, t, k ± iǫ) , k ∈ R ; (2.40)

where

J line(k) =

(
1I2 −ρline(k)

ρ̃line(k) 1I2 − ρline(k)ρ̃line(k)

)
, (2.41)

ρline(k) = bline(k)(ãline)−1(k) , ρ̃line(k) = b̃line(k)(aline)−1(k) ; (2.42)

3. It satisfies the normalisation condition

lim
k→∞

M line(x, t, k) = 1I4 . (2.43)

5Recall that we do not consider the possibility of a discrete spectrum for conciseness.
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Then, Qline, Rline defined by

W line(x, t) = lim
k→∞

ik[Σ3,M(x, t, k)] (2.44)

satisfies the matrix AKNS equations (2.5) with initial conditions

Qline
0 (x) =

(
q0(x) 0
0 −q0(−x)

)
, Rline

0 (x) =

(
r0(x) 0
0 −r0(−x)

)
. (2.45)

We now show that the the problem on the full line is a special case of the matrix problem on
the half-line by choosing the initial-boundary data of the latter as follows





q
(1)
0 (x) = q0(x) , x ≥ 0 ,

q
(2)
0 (x) = q0(−x) , x ≥ 0 ,

r
(1)
0 (x) = r0(x) , x ≥ 0 ,

r
(2)
0 (x) = r0(−x) , x ≥ 0 .

(2.46)

and
G0(t)− σG0(t)σ = 0 , G1(t) + σG1(t)σ = 0 , (2.47)

and similarly for H0 and H1, where

σ =

(
0 1
1 0

)
. (2.48)

We can now state the main result of this section

Theorem 2.3 Let M red(x, t, k) be the unique solution of the Riemann-Hilbert of the matrix UT
described in Section 2 with the particular initial-boundary data satisfying (2.46) and (2.47). Let
Qred, Rred be the corresponding solutions of the matrix AKNS equations on the half-line defined
by (2.65) with M replaced by M red. Define M̃ red(x, t, k) by

M̃ red(x, t, k) =





M red(x, t, k)J1(x, t, k) , k ∈ D1 ,

M red(x, t, k) , k ∈ D2 ∪D3 ,

M red(x, t, k)J−1
3 (x, t, k) , k ∈ D4

(2.49)

Then
M̃ red(x, t, k) = I3M

line(x, t, k) I3 , x ≥ 0, k ∈ C . (2.50)

In particular

Qline(x, t) = σ3Q
red(x, t) , Rline(x, t) = σ3R

red(x, t) , x ≥ 0 . (2.51)

Proof: First note that (2.46) and (2.47) imply the following relations on the initial-boundary
scattering data

I3 S(k) I3 = ΣI3 S(−k) I3ΣSline(k) , (2.52)

T (k) = Σ3Σ T (−k) ΣΣ3 , (2.53)

where Σ = 1I2 ⊗ σ and

I3 =

(
σ3 0
0 1I2

)
. (2.54)
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The proof is a straightforward generalisation to the present unreduced case of that of Lemma 5.1
in [18]. Next, we need to check that M̃ red is well-defined (same analyticity properties as M red).
We only need to check this in D1 and D4. From (2.18), we see that J1 only depends on Γ which
is analytic in D2 by construction. We can write

Γ(k) = B̃(k)Ã(k)−1 1

a(k)
(
a(k)− b(k)B̃(k)Ã(k)−1

) . (2.55)

The global relation yields
B̃(k)Ã(k)−1 = b̃(k)ã(k)−1 (2.56)

holding in D4, but showing that the domain of analyticity of B̃(k)Ã(k)−1 can be extended to D3.
Now (2.53) implies

B̃(k)Ã(k)−1 = −σB̃(−k)Ã(−k)−1σ (2.57)

which shows that B̃(k)Ã(k)−1 can be further extended analytically to D1. Therefore, Γ is analytic

in D1 and hence M̃ red is well-defined and has the same analyticity properties as M red in that
domain. The argument for D3, which involves J3, and hence Γ̃, is similar. Now, by a direct
calculation, we see that M̃ red is in fact continuous across iR and only has a jump across the real
axis given by

M̃ red
− (x, t, k) = M̃ red

+ (x, t, k)J−1
2 (x, t, k) , k ∈ R. (2.58)

Also, from its definition and the asymptotic behaviour of S(k) and T (k) as k → ∞, we see the

normalisation of M red to 1I4 as k → ∞ also holds for M̃ red. Finally, we show that the jump
matrix J−1

2 coincides with I3 J
line I3 under (2.52) and (2.53). We have

J−1
2 (x, t, k) =

(
1I2 −e−2iφ(x,t,k)(γ(k)− Γ̃(k))

e2iφ(x,t,k)(γ̃(k)− Γ(k)) 1I2 − (γ̃(k)− Γ(k))(γ(k)− Γ̃(k))

)
(2.59)

Using the global relation B̃(k)Ã−1(k) = b̃(k)ã−1(k) and the symmetry relation (2.53), we can
write B̃(k)Ã−1(k) = −σb̃(−k)ã−1(−k)σ. From this we get

Γ(k) = −σb̃(−k)σa−1(k)
[
a(k)σã(−k)σ + b(k)σb̃(−k)σ

]−1
. (2.60)

Using b̃(k)b(k) = ã(k)a(k)− 1I2, we derive

γ̃(k)− Γ(k) =
[
b̃(k)σã(−k)σ + ã(k)σb̃(−k)σ

] [
a(k)σã(−k)σ + b(k)σb̃(−k)σ

]−1
. (2.61)

It remains to note that (2.52) yields

b̃line(k) = σ3

[
b̃(k)σã(−k)σ + ã(k)σb̃(−k)σ

]
, (2.62)

aline(k) = a(k)σã(−k)σ + b(k)σb̃(−k)σ , (2.63)

to conclude that
γ̃(k)− Γ(k) = σ3ρ̃

line(k) . (2.64)

Similar calculations also give γ(k) − Γ̃(k) = σ3ρ
line(k). Therefore, M̃ red and I3M

line(x, t, k) I3
satisfy exactly the same Riemann-Hilbert problem, yielding (2.50) by uniqueness of the solution.
Finally, this entails (2.51) as required since

lim
k→∞

k[Σ3, M̃
red(x, t, k)] = lim

k→∞
k[Σ3,M

red(x, t, k)] . (2.65)
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Spelling out (2.51), we see that the problem on the full line has been entirely reconstructed as a
special case of the matrix problem on the half-line with the following very intuitive outcome





q(1)(x, t) = q(x, t) , x ≥ 0 ,

q(2)(x, t) = q(−x, t) , x ≥ 0 ,

r(1)(x, t) = r(x, t) , x ≥ 0 ,

r(2)(x, t) = r(−x, t) , x ≥ 0 .

(2.66)

One may worry about the smoothness of q and r at x = 0. Indeed, (2.47) only ensure that they
are C1 at this point. However, one can show that smoothness extends to higher orders by using
the equation of motion and (2.47).

Remarks:

• The strategy of the proof is very similar to that of [16]. The present proof is a lot neater and
more general than the argument presented in [18] in the reduced case which was a simple-minded
extension of the analysis of the linear case.
• Put in words, the result of [16] means that the (scalar) UT with linearizable boundary

conditions can always be seen as a special case of the ISM on the full line with special parity
conditions on the initial data. This point of view has a long history in the treatment of integrable
PDEs with integrable boundary conditions, before the advent of the UT, as explained in the
introduction. Here, we have established a converse statement: the ISM of the full line for AKNS
can be seen as a special case of the matrix UT with linearizable boundary conditions (the
conditions (2.47)).
• In practice, it looks like our result is not the most convenient way to approach the ISM

on the full line as we introduce extra scattering data (T (k)) only to eliminate it in the end,
using the relations (2.52)-(2.53). However, at the conceptual level, our point of view is rather
unifying. Firstly, it brings further justification for the use of the terminology “unified” transform.
The central idea of a simultaneous spectral analysis of the both half of the Lax pair now also
encompasses the historical ISM as a special case, in sharp contrast with the traditional spectral
analysis of only one half of the Lax pair. Secondly, as we illustrate in the rest of the paper on
the concept of reductions, it allows us to cast “new” (nonlocal) reductions as “old” (local) ones
(see below for what we mean by this). This produces a framework to tackle the classification of
nonlocal reductions, taking advantage of the huge amount of available results for the local case.
• We should justify the terminology “linearizable boundary conditions” for (2.47) in our

matrix problem and explain that, as is well-known in the scalar case, they allow us to eliminate
the unknown boundary data from the reconstruction of the solution. In fact, the second point is
contained in the proof of Theorem 2.3. Eq. (2.65) shows that the solution for the matrix half-line

problem with the conditions (2.47) can be reconstructed from the solution M̃ red(x, t, k) of the
Riemann-Hilbert problem (2.58). The latter only involves the initial data, through the scattering
matrix S(k), because of (2.61) (and the analogous relation for γ(k)− Γ̃(k).). Now, regarding the
first point, the generalization of the definition of linearizable boundary conditions to the present
unreduced matrix case is as follows: the boundary data H0 and H1, G0 and G1 is linearizable if
one can find a matrix K(k) such that

(−2ik2Σ3 + P (0, t,−k))K(k) = K(k)(−2ik2Σ3 + P (0, t, k)) , (2.67)

with P given in (2.3). Let us take the simplest case where K independent of k. Matching the
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coefficients of k on both side we find

K =

(
K1 0
0 K4

)
(2.68)

where K1 and K4 are 2× 2 matrices, and the following boundary conditions

G0(t)K4 = −K1G0(t) , H0(t)K1 = −K4H0(t) , G1(t)K4 = K1G1(t) , H1(t)K1 = K4H1(t) .

The boundary conditions (2.47) correspond to choosing K1 = σ = −K4 and are thus linearizable.

3 The nonlocal NLS as a standard local reduction

3.1 Generalities on reductions

We need to define what we mean by “standard” reduction as opposed to the “new” reduction
proposed in [28]. The original definition of a reduction group in [17] can be summarized as a
group GR acting on a Lax pair U, V by (local) gauge transformations of the form, for g ∈ GR,

(g · U)(x, t, k) = G(x, t, k)U(x, t, σg(k))
#G(x, t, k)−1 + ∂xG(x, t, k)G(x, t, k)−1 , (3.1)

(g · V )(x, t, k) = G(x, t, k)V (x, t, σg(k))
#G(x, t, k)−1 + ∂tG(x, t, k)G(x, t, k)−1 , (3.2)

together with an invariance requirement of the Lax pair

(g · U)(x, t, k) = U(x, t, k) , (g · V )(x, t, k) = V (x, t, k) , ∀g ∈ GR . (3.3)

The element G lives in the matrix Lie group associated to the Lie algebra of the Lax pair under
consideration and the map σg acts on the natural domain of the spectral parameter (C for us).
The operation # represents possible involutions like complex conjugation or transposition for
instance. The classification problem of reduction groups for a given Lax pair is barely tractable
in general but under some assumptions, one can obtain satisfying results. Such considerations
have deep Lie algebraic flavour and have led to the notion of automorphic Lie algebras [29, 30].

We note that the gauge action is allowed to operate on the spectral parameter (via σg) but
not on x and t. In this sense, the standard reductions that have been studied for decades are
local. The new, nonlocal reduction of [28], recently vastly extended in [31, 32], can be understood
as a generalisation of the above gauge action where one also allows for a nontrivial action of the
reduction group on the variables x and t

(g · U)(x, t, k) = G(x, t, k)U(αg(x), βg(t), σg(k))
#G(x, t, k)−1 + ∂xG(x, t, k)G(x, t, k)−1 ,(3.4)

(g · V )(x, t, k) = G(x, t, k)V (αg(x), βg(t), σg(k))
#G(x, t, k)−1 + ∂tG(x, t, k)G(x, t, k)−1 ,(3.5)

for some maps αg, βg. These maps are precisely the tools to introduce nonlocal reductions. For
our purposes, we now assume that G does not depend on x and t. This is the most studied case
of reduction groups. We also assume βg = id for all g ∈ GR. This corresponds to the original
nonlocal reduction which involved only x and reads explicitly as

r(x, t) = ǫq∗(−x, t) , ǫ = ±1 . (3.6)

When using the 2× 2 AKNS Lax matrix

U(x, t, k) =

(
−ik q(x, t)
r(x, t) ik

)
(3.7)
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it corresponds to the following nonlocal action of the Z2 group with generator s

(s · U)(x, t, k) = −GU †(−x, t, k∗)G−1 , G =

(
ǫ 0
0 −1

)
(3.8)

and similarly on V (x, t, k). So here, we see that αs = −id. The well-known NLS reduction

r(x, t) = ǫq∗(x, t) , ǫ = ±1 , (3.9)

corresponds to the local Z2 action

(s · U)(x, t, k) = −GU †(x, t, k∗)G−1 , G =

(
ǫ 0
0 −1

)
(3.10)

and similarly on V (x, t, k), with αs = id.

3.2 NLS and nonlocal NLS as local Z2 reductions

We want to show that the previous two reductions appear on equal footing as two different
representations of a local Z2 reduction, acting on the 4× 4 Lax pair of our matrix AKNS system
on the half-line. We take the action of the Z2 generator s on our 4× 4 Lax matrix U to be of the
form

(s · U)(x, t, k) = ǫBBU †(x, t, σs(k))B
−1 (3.11)

with ǫB = ±1, B an invertible matrix (independent of k) and σB a map on C. We present now
a classification of such representations of Z2 on U subject to additional requirements. The first
requirement is that the representation be compatible with the diagonal form of our potentials Q
and R in (2.4). It turns out that this is most conveniently implemented by viewing the diagonal
form (2.4) as resulting from a Z2 reduction as well. Define the following action of the generator
τ of another copy of Z2

(τ · U)(x, t, k) = (1I⊗ σ3)U(x, t, k)(1I⊗ σ3)
−1 . (3.12)

Requiring (τ ·U)(x, t, k) = U(x, t, k) simply amounts to requiring [σ3, Q] = 0 = [σ3, R] as desired.
Now, two reductions are compatible if their actions commute so one requirement is that s and τ

commute. The other requirement comes from the boundary conditions (2.47). They can also be
understood as an additional Z2 reduction which only hold at x = 0 and defined by the action

(u · U)(0, t, k) = ΣU(0, t, k)Σ−1 , Σ = 1I⊗ σ . (3.13)

In particular this action should be compatible with (3.11) for x = 0. Since the chosen represen-
tation of s is independent of x, we must therefore require that s and u also commute in general
when acting on U(x, t, k). Summarizing, the requirements on s are: it preserves the first order
matrix polynomial structure of U(x, t, k), it is an involution, it commutes with τ and it commutes
with u.

The first condition yields [B,Σ3] = 0 and σs(λ) = −
λ∗

ǫB
, so we can write

B =

(
B+ 0
0 B−

)
(3.14)

where B± are 2× 2 matrices. The involution property yields

B†B−1 = b1I , σ2
s = id , (3.15)
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for some b ∈ C. The involutivity of σs is automatically ensured by |ǫB|
2 = 1. For consistency, we

must also have |b|2 = 1 so we set
b = eiθ , θ ∈ R . (3.16)

Commutativity of s and τ entails

B(1I⊗ σ3) = γ(1I⊗ σ3)B , γ = ±1 . (3.17)

Then, commutativity of s and u yields

BΣ = µΣB

with |µ|2 = 1 for consistency with Σ† = Σ and B† = bB. The direct analysis of all these
constraints yields two classes of solutions for B: its blocks are either diagonal or off-diagonal
2× 2 matrices.

Proposition 3.1 If γ = 1 then

B± = e−i θ
2 ρ±

(
1 0
0 µ

)
, ρ± ∈ R

∗ , µ = ±1 . (3.18)

If γ = −1 then

B± = β±

(
0 1
µ 0

)
, β± ∈ R

∗ or β± ∈ iR∗ , µ = ±1 . (3.19)

Let us summarize our results. The action (3.11) induces the following reduction on the functions
Q(x, t) and R(x, t)

R(x, t) = ǫBB−Q
†(x, t)B−1

+ . (3.20)

In the case γ = 1, this yields

r(1)(x, t) = ǫB
ρ−

ρ+
q(1)∗(x, t) , r(2)(x, t) = ǫB

ρ−

ρ+
q(2)∗(x, t) , x ≥ 0 . (3.21)

In view of (2.66), this is

r(x, t) = ǫB
ρ−

ρ+
q∗(x, t) , x ∈ R . (3.22)

In the case γ = −1, we obtain

r(1)(x, t) = ǫB
β−

β+
q(2)∗(x, t) , r(2)(x, t) = ǫB

β−

β+
q(1)∗(x, t) , x ≥ 0 . (3.23)

In view of (2.66), this is

r(x, t) = ǫB
β−

β+
q∗(−x, t) , x ∈ R . (3.24)

As desired, we obtain both the local and nonlocal NLS reduction from the two allowed represen-
tations of the local reduction (3.11). We can now state the main result of this section.

Proposition 3.2 The NLS equation and the nonlocal NLS equation on the full line both arise
as the local Z2 reduction induced by (3.11) of our matrix AKNS initial-boundary value problem
(2.5) with (2.6)-(2.8) and (2.47) on the half-line. The NLS equation corresponds to γ = 1 in
Proposition 3.1 and the nonlocal NLS equation corresponds to γ = −1.

12



Proof: Inserting (3.20) in (2.5) yields

iQt(x, t) +Qxx(x, t)− 2ǫB(QB−Q
†B−1

+ Q)(x, t) = 0 (3.25)

which holds for x > 0 and t > 0 as we consider an initial-boundary value problem on the half-
line. By construction, the allowed reductions of Proposition 3.1 are compatible with the boundary
conditions (2.47). Therefore, Theorem 2.3 applies and we can use its consequence (2.66). Inserting
the latter in (3.25), we obtain, writing out the two components explicitly:

1. If γ = 1, for x > 0,

iqt(x, t) + qxx(x, t)− 2ǫB
ρ−

ρ+
(|q|2q)(x, t) = 0 , (3.26)

iqt(−x, t) + qxx(−x, t)− 2ǫB
ρ−

ρ+
(|q|2q)(−x, t) = 0 . (3.27)

Using the smoothness of q(x, t) at x = 0, these two equations can be combined into the
well-known NLS equation on the line

iqt(x, t) + qxx(x, t)− 2ǫB
ρ−

ρ+
(|q|2q)(x, t) = 0 , x ∈ R . (3.28)

The real constant ǫB
ρ−

ρ+
is the usual strength of the cubic nonlinearity which can be either

positive (defocusing case) or negative (focusing case). It is known that one can always
rescale q to work with the canonical nonlinearity ±2|q|2q.

2. If γ = −1, for x > 0,

iqt(x, t) + qxx(x, t)− 2ǫB
β−

β+
q(x, t)q∗(−x, t)q(x, t) = 0 , (3.29)

iqt(−x, t) + qxx(−x, t)− 2ǫB
β−

β+
q(−x, t)q∗(x, t)q(−x, t) = 0 . (3.30)

Using the smoothness of q(x, t) at x = 0, these two equations can be combined into the
nonlocal NLS equation on the line

iqt(x, t) + qxx(x, t)− 2ǫB
β−

β+
q(x, t)q∗(−x, t)q(x, t) = 0 , x ∈ R . (3.31)

Note that even when β± ∈ iR, the ratio is real and hence we get a real coupling for the
nonlocal nonlinearity. As before, it can be scaled away but its sign remains.

Remark: The parameters θ and µ of B± play no role in the equations in both cases.

3.3 Reduction symmetries on the scattering data

We have established that one can obtain both the NLS and nonlocal NLS as local Z2 reductions
applied to a matrix AKNS system on the half-line and compatible with appropriate boundary
conditions. It is known that the NLS reduction leads to a particular symmetry of the scattering
data (on the line). Similarly, it was shown in [28] that the nonlocal NLS scattering data (on the
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line) admits a particular symmetry which is very different from that of NLS. This is at the basis of
the important differences between the solutions of these two equations. To complete our picture,
we now show that these two distinct symmetries of the scattering data also emerge naturally from
our reduction applied to the matrix initial-boundary value problem on the half-line. Recall that
we do not consider discrete scattering data in this paper so we concentrate on the symmetries
of the continuous data only. Symmetries on the discrete data are a consequence of those of the
continuous data.

To derive symmetries of the scattering data on the line it is enough to consider reductions
the x-part of the Lax pair at some initial time. Compatibility with time evolution is guaranteed
by construction. In our case, we need to use the reductions on both parts of the Lax pair
simultaneously. We have a priori no less that 16 scattering coefficients (on the half-line) a, ã, b, b̃,
A, Ã, B, B̃, each of which contains 2 coefficients. We need to show that:

• For γ = 1 (NLS reduction), these reduce to an equivalent set of 2 scattering coefficients on
the line. Indeed, it is well known that the NLS scattering matrix is of the generic form

SNLS(k) =

(
α(k) β(k)

ǫβ∗(k∗) α∗(k∗)

)
, ǫ = ±1 . (3.32)

• For γ = −1 (nonlocal NLS reduction), these reduce to an equivalent set of 3 scattering
coefficients on the line with additional symmetry. Indeed, in [28], it was shown that the
nonlocal NLS scattering matrix is of the generic form

SnNLS(k) =

(
α(k) β(k)

ǫβ∗(−k∗) α(k)

)
, ǫ = ±1 , with α(k) = α∗(−k∗) , α(k) = α∗(−k∗) .

(3.33)

Lemma 3.3 The reduction (3.11) with ǫB = −1 has the following consequence on the initial-
boundary scattering data (2.11)

S−1(k) = B S†(k∗)B−1 , T −1(k) = B T †(k∗)B−1 (3.34)

Proof: If µ is a solution of (2.1), then the reduction

W (x, t) = −BW †(x, t)B−1 (3.35)

implies that both µ−1(x, t, k) and Bµ†(x, t, k∗)B−1 satisfies the same system

{
∂xM + ik[Σ3,M ] = −M W ,

∂tM + 2ik2[Σ3,M ] = −M P .
(3.36)

Applying this to µ3(x, 0, k) and using uniqueness of a normalised solution, we obtain the required
symmetry for S. Similarly, applying this to µ1(0, t, k) yields the required symmetry for T .

Proposition 3.4 Under the reduction (3.11) with B as in Proposition 3.1, the initial-boundary
data S(k) and T (k) in (2.11) reduces to 2 independent scattering coefficients for NLS and to 3
scattering coefficients with the additional symmetry (3.33) for nonlocal NLS.
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Proof: We can use (2.52) from the proof of Theorem 2.3 and the previous lemma simultaneously.
The former implies

(Sline)−1(k) = ΣSline(−k) Σ , (3.37)

while the symmetry of S in Lemma 3.3 lifts to

(Sline)−1(k) = B (Sline)†(k∗)B−1 . (3.38)

Analysing the consequences of these relations on the scattering coefficients we obtain:

• For γ = 1:

Sline(k) =




aline
∗
(k∗) 0 bline(k) 0

0 aline(−k) 0 −bline(−k)

−ρ−

ρ+
bline

∗
(k∗) 0 aline(k) 0

0 ρ−

ρ+
bline

∗
(−k∗) 0 aline

∗
(−k∗)


 (3.39)

It depends only on aline(k) and bline(k) as required. From the structure of (2.35), we extract
from this redundant 4× 4 matrix the required 2× 2 matrix

SNLS(k) =

(
aline

∗
(k∗) bline(k)

−ρ−

ρ+
bline

∗

(k∗) aline(k)

)
. (3.40)

The coefficient −ρ−

ρ+
can be rescaled to a sign as explained before.

• For γ = −1:

Sline(k) =




ãline(k) 0 bline(k) 0
0 aline(−k) 0 −bline(−k)

β−

β+ b
line∗(−k∗) 0 aline(k) 0

0 −β−

β+ b
line∗(k∗) 0 ãline(−k)


 , (3.41)

with
aline(k) = aline

∗
(−k∗) , ãline(k) = ãline

∗

(−k∗) . (3.42)

So we have only three coefficients aline(k), ãline(k) and bline(k) with the extra symmetry
(3.42), as required for nonlocal NLS. From the structure of (2.35), we extract from this
redundant 4× 4 matrix the required 2× 2 matrix

SnNLS(k) =

(
ãline(k) bline(k)

β−

β+ b
line∗(−k∗) aline(k)

)
. (3.43)

The coefficient β−

β+ can be rescaled to a sign as explained before.
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4 Conclusion and outlook

We have established that our matrix generalization of the UT encompasses the traditional ISM
as a particular case, for the AKNS system. This is a nontrivial converse to the result obtained
in [16] (in the NLS reduction there but it would extend easily to the unreduced AKNS system).
We have not included the case of discrete data (relevant for soliton solutions) to avoid lengthy
technicalities and emphasise the important points. The discrete data could be incorporated with
no essential difficulty in all our considerations, under the usual assumptions of finite number and
finite order. In particular, the symmetries of the discrete data follows from the symmetries of the
continuous data which we discussed here in detail.

Some comments should be made in order to fully appreciate our result. From the technical
point of view, it seems like one is going through a lot of unnecessary work when using the UT
with the particular symmetry (2.47) to describe the ISM of a problem on the full line. However,
from the conceptual point of view, what this shows is that the UT is indeed a universal version of
the ISM, not only as a generalisation of the latter for problems on the half-line or on the interval,
but also as a genuine generalization of the ISM on the full line itself. We note that to see this, we
had to use the N = 2 case of the star-graph version of the UT first introduced in [18]. It is not
possible to see it within the original UT which would correspond to N = 1 in the conventions of
[18].

The same universal character of our matrix UT is supported by the fact that the nonlocal
reduction introduced in [28] as a new, and indeed not seen before, reduction of the standard 2×2
AKNS scheme appears simply as a standard local Z2 reduction in our approach, provided we
interpret the ISM on the line as a special case of our matrix UT on the half-line. This will allow
us to establish a precise relation between initial value problem for the local and nonlocal NLS
equation within a common framework of linearizable initial-boundary value problems and their
connection with the mirror image method. This is left for future investigation.

An interesting question arises concerning the possibility of using the matrix UT to tackle the
“time” and “space-time” nonlocal reductions introduced more recently in [31, 32]. We believe
this should be possible as the UT naturally treats space and time parts of the Lax pair on equal
footing. This is left for future work.

The fact that one can treat local and nonlocal reductions on equal footing, using appropriate
higher dimensional matrix versions of traditional local reductions opens the way to a more sys-
tematic study of nonlocal reductions for various kind of multicomponent generalizations of the
AKNS hierarchy, using the vast amount of knowledge accumulated on local reductions for these
systems (see e.g. [39, 40]). In principle, one “only” has to apply the strategy of the present
paper to these more general situations: pick a reduction group, double the size of the representa-
tions and retain only those compatible with appropriate extra reductions analogous to (3.12) and
(3.13). Recent results like those in [41, 42] should emerge as particular cases of this approach.
A related open direction would be the adaptation of the present ideas to other members of the
AKNS hierarchy. For instance, it is known that the next equation in the hierarchy yields the
modified KdV equation under a standard Z2 reduction. It would be interesting to see how the
nonlocal reductions for the mKdV equation introduced in [31] fit into a local reformulation for a
matrix problem on the half-line, if at all possible.

Acknowledgments. It is a pleasure to acknowledge discussions with A. Mikhailov on the
reduction group.
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