
This is a repository copy of A subjective capacity evaluation model for single-track railway 
system with δ-balanced traffic and λ-tolerance level.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/121602/

Version: Accepted Version

Article:

Li, F, Gao, Z, Wang, D et al. (4 more authors) (2017) A subjective capacity evaluation 
model for single-track railway system with δ-balanced traffic and λ-tolerance level. 
Transportation Research Part B: Methodological, 105. pp. 43-66. ISSN 0191-2615 

https://doi.org/10.1016/j.trb.2017.08.020

© 2017, Elsevier. Licensed under the Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International 
http://creativecommons.org/licenses/by-nc-nd/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


1 

Please cite the paper as: 1 

Li F, Gao Z, Wang D, Liu, R., Tang, T., Wu, J. and Yang, L. (2017) A subjective capacity evaluation model for single-track railway 2 

system with į-balanced traffic and Ȝ-tolerance level. Transportation Research Part B: Methodological 105: pp. 43-66. 3 

https://publications.leeds.ac.uk/viewobject.html?cid=1&id=437179  4 

 5 

A subjective capacity evaluation model for single-track railway system with į-6 

balanced traffic and Ȝ-tolerance level 7 

Feng Li  8 

State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China, fengli0925@gmail.com  9 

Ziyou Gao  10 

Institute of Transportation System Science and Engineering, Beijing Jiaotong University, Beijing 100044, China, zygao@bjtu.edu.cn 11 

David Z.W. Wang 12 

 School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore, 13 

WangZhiwei@ntu.edu.sg 14 

Ronghui Liu 15 

Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, United Kingdom, R.Liu@its.leeds.ac.uk 16 

Tao Tang, Jianjun Wu, Lixing Yang  17 

State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China, tangtao@bjtu.edu.cn; 18 

jjwu1@bjtu.edu.cn; lxyang@bjtu.edu.cn 19 

Abstract: 20 

In this paper, we propose a method to measure the capacity of single-track railway corridors subject to a given 21 

degree of balance between the two directional traffic loads and a permitted overall delay level. We introduce the 22 

concepts of į-balance degree and Ȝ-tolerance level to reflect the subjective measures of the railway administrator 23 

for capacity evaluation. A train balance scheduling problem with initial departure time choice of trains is embedded 24 

into the measure of railway capacity. The combined scheduling and capacity evaluation method is formulated as a 25 

0-1 mixed integer programming model, and solved using a simple dichotomization-based heuristic method. A highly 26 

efficient heuristic procedure based on the concept of compaction pattern is developed to solve the train balance 27 

scheduling problem, and the numerical results demonstrate that the method yields high-quality solutions close to 28 

the optimal ones using the CPLEX solver. The two-way traffic loading capacity of a single-track railway corridor 29 

is analyzed in detail under different tolerance levels and balance degrees. The transition regions of traffic loading 30 

capacity are identified, and provide a useful decision support tool for the railway administrators in dealing with train 31 

rescheduling requests under disturbance or disruption scenarios. 32 

Key words: railway capacity; tolerance level; balance condition; compaction pattern; departure time choice.  33 

1. Introduction 34 

The capacity of a railway system is a key measure and is of significant importance to the railway industry. 35 

Whether it is to add more trains in an existing system (Burdett and Kozan, 2009) or to build new rail infrastructure 36 

(Burdett, 2016), it is crucial to know where the spare capacity lies or where the new capacity needs are. Krueger 37 
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(1999) defined the railway capacity as “a measure of the ability to move a specific amount of traffic over a defined 1 

rail line with a given set of resources under a specific service plan”. A more generally adopted definition is the 2 

maximum number of trains that can traverse the entire railway line in a given period of time (Burdett and Kozan, 3 

2006; Mussone and Calvo, 2013). Whilst these definitions seem to be self-explanatory, their quantification is not 4 

straight forward because it depends not only on the assortment of railway layouts, but also the proportions of 5 

different train types as well as the dispatching rules of trains in the railway system.  6 

Most of the existing studies focus on the capacity of double-tracks or multi-tracks railway system (Prinz, 2005; 7 

Alex Landex et al, 2006; Wahlborg, 2005; Melody and Preston, 2010; Lindner, 2011). However, single-track 8 

railroads still have important transportation roles to play in many countries. For example, single-track railroad in 9 

USA accounts for approximately 80% of the entire railway network (CS-I, 2007; Tolliver, 2010). Freight transport 10 

is usually undertaken along single-track railway corridors in some countries of Northern Europe, such as Sweden, 11 

Denmark and Norway (Landex, 2008). The famous Qing-Zang railway corridor, which links 89 stations and 12 

traverses the whole of the southwest of China at a length of 1956km, is single-track all the way. 13 

The distinct characteristic of the single-track railroad is that it carries two-way traffic, i.e., the segment between 14 

stations can be occupied by trains travelling in both directions. The meeting-crossing and overtaking among trains 15 

make single-track railroad more complicated to plan and manage than other railway system. As a consequence, the 16 

transport capacity of a single-track railroad is rarely able to achieve what is expected by the railway administrators. 17 

Part of the reason for that is the complication associated with assessing the actual capacity of the single-track system, 18 

and more specifically the lack of a clear definition that reflects explicitly the two-way traffic characteristic of single-19 

track railway. Compare with double- and multi-track railway system, two-way traffic in the single-track railway 20 

system results in more conflicts between train flows in different directions. It is insufficient to only focus on the line 21 

or station capacity. Additionally, an accurate capacity evaluation is closely related to how the trains are scheduled 22 

to run in the railway system, which is often unknown at the stage of exploring the capacity.  23 

There has been a rich literature on railway capacity (Frank, 1966; Petersen, 1974; Assad, 1980; Yokota, 1980; 24 

Petersen and Taylor, 1982; Welch and Gussow, 1986; De Kort et al, 2003; Kozan and Burdett, 2005; Lai and Barkan, 25 

2009; Bevrani et al, 2015; Burdett, 2015a, 2015b, 2016). Most of them however are focused on capacity of segments 26 

or stations, and these capacity analyses emphasize the influence of railway infrastructure layout only. Due to two-27 

way traffic characteristics and the strong dependence between segments and stations in the single-track railroad, it 28 

is essential to consider the single-track railway as a whole system. In addition to the needs to consider train types 29 

and schedule plans, it would also be interesting to evaluate capacity from the viewpoint of railway administrators, 30 

to take into account the constraints or flexibility they wish to put into the system. 31 

In this paper, we analyze single-track railway system capacity from the viewpoint of railway administrators: 32 

giving a set of objectives the administrators wish to achieve, what the railway capacity would be. More specifically, 33 

we set out to explore: if the average delay of trains is confined to a given range, what is the maximal number of 34 

trains that can be loaded onto the single-track railway system? Clearly, with increasing train numbers, more delays 35 

would be expected in order to accommodate the increased number of meet-crossings. Being able to accurately 36 

quantify the railway capacity under different delay tolerance levels provides decision support for the administrators 37 

to balance the trade-off between the demand and the service levels. In addition to delay considerations, the 38 

administrators usually aim to keep the balance between train flows in both directions. The relative balance of in- 39 

and out-bound train flows has a significant impact on the delays of trains and capacity of the single-tracks railway. 40 

So a new question can be proposed as: if the average delay of trains is confined to a certain range and a relative 41 

balance between the in- and out-bound train flows is maintained, what is the maximal number of trains that can 42 

be loaded onto the single-track railway system? 43 

To the best of our knowledge, the delay tolerance level and relative balance have not been jointly considered 44 

previously in the analysis of railway capacity of single-track system. In this paper, we set out to derive a two-way 45 

balanced traffic loading capacity for the single-track railway system subject to a given delay tolerance level. We 46 
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present an analytical formulation of the model and develop a highly efficient algorithm to derive the solutions. The 1 

outcomes of our results provide a useful decision support tool for the administrators. 2 

The major contributions of this paper are listed as follows. Firstly, the concept of a two-way balanced traffic 3 

loading capacity is explicitly expressed, in which a Ȝ-tolerance level is introduced to describe the control of the 4 

administrators on train delays, and a į-balance degree is defined to reflect the expectation of the administrators for 5 

the relative balance of in- and out-bound train flows. Secondly, a 0-1 mixed integer programming model is 6 

formulated to quantify this. The objective of the model peruses the maximal allowed number of train-pairs based 7 

on Ȝ-tolerance level of administrators in the single-track railway corridor. The deviation between the average travel 8 

times of in- and out-bound train flow is subject to į-balance condition. An important characteristic of the model is 9 

that the departure times of trains from their original stations can vary within a given hard time-window. Our third 10 

contribution is a simple dichotomization-based method proposed to solve the above model. But a key issue is how 11 

to solve efficiently train į-balance scheduling problem with initial departure choice. A heuristic procedure based on 12 

compaction pattern of time-distances is designed to search the optimal departure times of trains from their original 13 

stations. The optimal solution satisfying į-balance condition is identified during the search process. 14 

The outcomes include not only a method to evaluate capacity from the tactical level, but also a decision support 15 

tool for the railway administrators at the operation level. Since the train scheduling problem with departure choice 16 

is embedded into the capacity evaluation model, the proposed model and solution method can capture the optimal 17 

departure time of trains from the original stations. Additionally, the model and method proposed in this paper can 18 

be readily extended to double-tracks/multi-tracks railway system. Another important extension is to apply the 19 

proposed method to different disruption scenarios, and identify quantitatively the capacity loss from the viewpoint 20 

of railway administrators. 21 

This paper is organized as follows. Section 2 reviews the related literature. The definition of two-way į-balance 22 

traffic loading capacity in the single-track railway system is presented in Section 3. A 0-1 mixed integer 23 

programming model is represented in Section 4. The proposed solution method is introduced in Section 5, and 24 

experimental results are analyzed in Section 6. Finally, conclusions are presented in Section 7.  25 

2. Literature review  26 

Traditionally, railway capacity is defined as the maximal number of trains that can safely traverse the entire 27 

railway line in a given period of time. In Abril et al. (2008), the railway capacity can be classified as theoretical 28 

capacity, practical capacity, used capacity and available capacity depending on different objectives, and the 29 

capacity evaluation can be generalized into three methods: analytical, optimization and simulation. The analytical 30 

approach adopts mathematical equations or algebraic expressions to quantify railway capacity, and is often used to 31 

calculate theoretical capacity of railway lines. The earliest analytical model was developed by Frank (1966) for a 32 

single-track railway line. The number of possible trains on a given segment was estimated based on trains travelling 33 

at an average speed between two consecutive sidings. Extending on Frank’s method, Petersen (1974) considered 34 

trains with three different velocities run at a segment to reflect the influence of heterogonous trains on the capacity. 35 

In these earlier studies, the departure times of trains are uniformly distributed over a given time period. De Kort et 36 

al (2003) adopted a probabilistic (max, +) approach to evaluate theoretical capacity of a high-speed railway corridor 37 

under uncertainty in different demand levels. Burdett and Kozan (2006, 2009) analyzed the influence of mixed 38 

traffic, signal locations and dwell times of trains on theoretical capacity of a railway corridor. They developed 39 

analytical techniques based on the critical section and train proportions. An improved railway capacity analysis 40 

method (Burdett, 2015a) was devoted to schedule trains with return paths in the railway system. The proposed 41 

approach allowed planners to identify how many train paths are achievable and how many return paths are possible. 42 

Burdett (2015b) formulated and solved a comprehensive set of multi-objective models that perform a trade-off 43 

analysis of theoretical capacity. In particular, those models determined theoretical capacity as the most equitable 44 

solution, and also provided a set of non-dominated solutions for later analysis and comparison. 45 
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An enhanced parametric capacity evaluation was proposed by Lai and Barkan (2009) to assist railroad 1 

companies in capacity expansion projects. Based on an estimated future demand and available budget, the proposed 2 

model can generate possible expansion alternatives, and compute line capacity and investment costs. In Bevrani et 3 

al. (2015), an optimization approach was applied to a case study of the Iran national railway in order to identify its 4 

current theoretical capacity and to optimally expand it given a variety of technical conditions. It tentatively 5 

demonstrated how an analytical approach for capacity expansion is more efficient than a manual process. Burdett 6 

(2016) considered two capacity expansion possibilities, i.e., track duplications and section subdivisions. The case 7 

study showed that section subdivision is the best and cheapest option as the cost of track duplications is proportional 8 

to its length, whereas subdivision is a static cost. 9 

Most analytical models in the literature address the calculation of theoretical capacity, and are usually used to 10 

identify the bottlenecks of the railway lines. However, the analytical approaches ignored the effects of variations in 11 

traffic and operations that occur in reality. In practice, the actual railway capacity was far lower than the value 12 

obtained by the analytical approaches (Abril et al., 2008). 13 

Optimization methods for capacity evaluation are linked closely to the determination of saturated timetables. 14 

The UIC 406 (2004) is one such method, which is developed by the International Union of Railways in Europe to 15 

calculate the saturated capacity and is widely adopted in many Europe countries (Robert, 2005; Alex Landex et al, 16 

2006; Wahlborg, 2005; Melody and Preston, 2010; Lindner, 2011). The UIC 406 modifies a pre-determined 17 

timetable and reschedules the trains as close as possible to each other (Abril et al., 2008). If the compression 18 

indicates free capacity, more trains can be added to the railway system. Landex et al (2006) described in detail the 19 

application of UIC 406 in Denmark, while Lindner (2011) applied UIC 406 to evaluate the corridor and station 20 

capacity. However, Mussone and Calvo (2013) pointed out that UIC 406 was inadequate for capacity evaluation of 21 

railway junctions and station tracks. Additionally, the timetable compression method was designed primarily to 22 

analyze capacity of double- and multi-tracks railway system.  23 

Simulation techniques have often been used to model the movement of trains across a railway network. They 24 

allow a real world railway environment to be mimicked in great detail. It has already applied into train scheduling 25 

problem (Li et al., 2008, 2014; Xu et al., 2015; Mu and Dessouky, 2011, 2013; Liu et al., 2014). Because of its 26 

flexibility and high-efficiency, simulation can be used to evaluate practical capacity of railway system by combining 27 

with other optimization methods.  28 

Petersen (1974), Petersen and Taylor (1982) considered the combination technique for a single-track rail line, 29 

in which the dynamic programming and the branch-and-bound were embedded into the simulation process. Welch 30 

and Gussow (1986) developed two “what-if” simulation models to evaluate the relative effect of many factors 31 

influencing main line capacity in Canada. Kaas (1991) presented a general simulation model to evaluate railway 32 

network capacity at different levels. Dessouky and Leachman (1995) used a simulation framework to analyze the 33 

relationship between track capacity and train delay. Their simulation model considered important physical 34 

parameters such as train length, speed limits and train headways.  35 

Previous research has focused upon focused on factors affecting railway capacity, such as railway infrastructure 36 

layout, mixed traffic and operational parameters. Very few previous research works have ever considered the 37 

capacity analysis of single-track railway system from the viewpoint of the administrators. Furthermore, it is very 38 

difficult to evaluate the capacity of the single-track railroad as a whole system due to the strong coupling relationship 39 

between rail segments and stations. The following two sections discuss in detail the characteristics of railway 40 

capacity under the viewpoint of railway administrators, and present a 0-1 mixed integer programming model for 41 

capacity analysis of single-track railway corridor. 42 

3. Capacity of a single-track railway corridor with two-way balanced traffic  43 

3.1 Two-way traffic characteristic of the single-track railway 44 

A single-track railway corridor is made up by a series of single-track segments that link stations and sidings. 45 
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Frank (1966) was the first to characterize the distinct characteristics of two-way traffic in single-track railway 1 

systems, where a segment between stations can be used by the trains in different directions (though of course, only 2 

trains travelling in the same direction can occupy the segment at the same time). Here, we name the two travel 3 

directions as out- and in-bound. The number of outbound and inbound trains is set to be equal so as to impose 4 

quantity balance in two directions. We couple one outbound with one inbound train to form a train-pair. The 5 

capacity of a single-track railway corridor is defined as the maximal number of train-pairs that can travel along the 6 

corridor during a fixed time period. 7 

3.2 Average travel time of all trains: a Ȝ-tolerance factor 8 

The more train-pairs in a single-track system, the more interactions among trains (on track and segment 9 

occupancy by trains in different directions) there will be and hence longer travel time of trains. More meeting-10 

crossings between trains result also in more waiting time of trains at stations. An interesting problem discussed in 11 

this paper is to investigate railway capacity under a certain delay tolerance range. The acceptable maximal delay of 12 

trains is considered as an input parameter of the proposed model. However, due to unknown timetable, the value of 13 

the maximal delay is unbounded and cannot be estimated. And hence, the value of the free travel time of train is 14 

adopted as a benchmark of evaluating the acceptable delay. The question on single-track railway capacity can be 15 

better expressed as: what is the maximal number of train-pairs that can be loaded onto the single-track railway 16 

corridor if the average travel time of trains does not exceed a given level? 17 

We introduce a parameter Ȝ to describe the acceptable level of the administrators. Assume that the number of 18 

train-pairs to be loaded is N and the loaded train types are denoted as {1,2,..., ,...,| |}J j J , where | |J  is the 19 

number of train types. The average free travel time of trains is ,

1

2 u j j
u V j J

f f
N


 

  . Here, the binary parameter 20 

,u j  identifies whether train u  is of type j , while jf  is the free travel time of j-type train, which denotes the 21 

time required by train passing through railway system without unnecessary waiting. 22 

Administrators are interested in whether the average travel time of these loaded trains does not exceed f  , 23 

or what is the maximal number of loaded train-pairs when the average travel time of trains is within the acceptable 24 

tolerance level f  . Here, the parameter Ȝ is a real number ( 1  ), and we term it “the acceptable travel time 25 

factor (the Ȝ-tolerance factor)”. 26 

3.3 Travel times of trains in different directions: a į-balance factor 27 

The meeting and crossing of trains from different directions is a key feature of single track railway system. It 28 

must be carefully managed. When it happens, trains from one direction have to wait at stations to let the trains in 29 

the other direction pass. As well as to minimize total travel time of all trains, the administrators usually also hope 30 

that large deviation in travel times between train flows in different directions can be avoided as possible. 31 

The concept of relative balance is to represent the deviation between out- and in-bound travel time, and it 32 

reflects the subjective non-preference of the administrators. Let outf  and inf  denotes the average travel time of 33 

the out- and in-bound train flows, respectively. The relative balance is described as follows: 34 

max| |  out in Nf f   D                 (1)

 

35 

where, parameter į is called the balance degree and is a real number (0 1  ). Eq. (1) is called “į-balance 36 
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condition”. The other important parameter max
ND  in Eq. (1) is the maximal deviation between the outbound and 1 

inbound train flows. It should be emphasized that max
ND  is not an input parameter of the model; rather its value is 2 

dependent on the number of loaded train-pairs. The value of max
ND  is determined by the solution of a specific train 3 

scheduling process. Assume that the number of the loaded train-pairs is N and all outbound trains travel freely in 4 

the single-track railway corridor. When the meet-crossing between trains appears, all inbound trains must dwell on 5 

the stations to avoid the outbound trains. According to the waiting time of all inbound trains at stations, the maximal 6 

deviation can be obtained. It should be pointed out that, for the specific train scheduling process, the waiting time 7 

of all inbound trains is required to be minimal because of the flexibility of departure time of trains from the original 8 

station. In Appendix II-B, this specific train scheduling process is described in detail, and a pre-processing procedure 9 

is presented to obtain the value of max
ND .  10 

3.4 Initial departure-time choice of trains 11 

 12 

Figure 1 two examples for different departure time of trains: (a) one pair of trains (b) three pairs of trains 13 

The capacity analysis proposed in this paper takes into account different travel tolerance levels set by 14 

administrators. Minimizing the total travel times of trains is the basis of accurate capacity evaluation. In a train 15 

scheduling problem, the appropriate initial departure times of trains can reduce the travel times of trains in the 16 

railway system. Figure 1 shows that selecting the appropriate departure time can significantly reduce the 17 

unnecessary waiting time of trains at stations. Hence, the initial departure times of trains from their original stations 18 

should be regarded as the decision variables rather than the input parameters. It is emphasized that train scheduling 19 

problem with initial departure choice is an important element in the capacity evaluation model proposed in this 20 

paper. 21 

4. Model formulation: a 0-1 mixed integer programming  22 
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This section presents a 0-1 mixed-integer programming formulation for the two-way į-balance traffic loading 1 

capacity problem in a single-track railway corridor. A summary of the notations adopted in the model is presented 2 

in Appendix I. 3 

Model: 4 

Maximize  N
                   

  (2) 5 

Subject to: 6 

(a) flow conservation constraints: 7 

j jn N           1,2,...,| | 1j J               (3) 8 

j
j J

n N


                    (4) 9 

(b) train proportion conservation constraints: 10 

,
O

j u j
u V

n 


        1,2,...,| |j J           (5a) 11 

,
I

j u j
u V

n 


        1,2,...,| |j J           (5b) 12 

(c) Travel tolerance level constraints: 13 

, , ,
  

( ) [ ]
u u

O I O I

a d
u r u r u j j

j Ju V V u V V

t t f 
 

                   (6) 14 

(d) į-balance constraints: 15 

max
, , , ,| ( ) ( ) |  

u u v v
O I

a d a d
u r u r v r v r N

u V v V

t t t t N
 

       D             (7) 16 

(e) Departure time choice constraints: 17 

 ,0
u

d
u rt T 

      

O Iu V V                (8) 18 

(g) Constraints II-4~II-11 in Appendix II-A.               (9) 19 

The objective of the model is to maximize the number N  of train-pairs that can be loaded into the single-20 

track railway corridor. The input parameter of the model is the proportion of different types of trains, which is 21 

indicated by symbol j , and 1j
j J




 . According to the proportion coefficient j , the number ( jn ) of different 22 

types of trains in the out- and in-bound directions is deduced by the number of train-pairs (see constraints (3) and 23 

(4)). Because train number is always an integer, symbol “  ” denotes the integer part of jN  . Clearly, the 24 

number jn  is related to the decision variable N . Constraints (5) ensure that the loaded trains in the out- and in-25 

bound directions satisfy the proportion of different types of trains. These trains is recorded in set OV  and IV . 26 

As we described in Section 3.2, this study focuses on the maximal number of train-pairs when the average 27 

travel time of trains is confined to a given level. Constraint (6) ensures that the total travel time of the loaded trains 28 

does not exceed the expected value ( ,
 

[ ]
O I

u j j
j Ju V V

f 


   ), which is corresponding to Ȝ-tolerance level. Variable 29 

, u

d
u rt  is the departure time of train u

 
from its original station ur , and , u

a
u rt  is the arrival time of train u

 
at its 30 
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destination station ur . Clearly, the capacity evaluation investigated in this study is closely related to a train 1 

scheduling process. Different from the standard train scheduling problem, the specific scheduling process 2 

emphasizes the relative balance in travel times between train flows in different directions. Constraint (7), which is 3 

called as “į-balance condition”, ensures that the travel deviation between out- and in-bound train flows is confined 4 

to an expected range of railway administrators.  5 

Constraints (8) ensure that all loaded trains must depart from their original stations within the time window 6 

[0,  ]T , where T  is the minimum free-flow travel time of all loaded trains, i.e., min( | )jT f j J  . The time 7 

window ensures that no train can leave the system before all trains have been loaded onto the railway corridor.  8 

Similar to the standard train scheduling problem, certain additional constraints are necessary to reflect the 9 

travelling characteristic of trains in the single-track railway system, which include headway constraints, meeting-10 

crossing constraints, station capacity constraints, segment running time constraints and stopping/non-stopping 11 

constraints. These constraints have already been discussed in detail in our previous works (Li et al, 2014). And 12 

hence, we list these constraints in Appendix II.A (constraints (II-3) ~ (II-11)). 13 

5 Solution algorithm 14 

5.1 Model analysis and heuristic framework  15 

The model proposed above yields a 0-1 mixed integer programming formulation for the evaluation of two-way 16 

į-balance traffic loading capacity in the single-track railway corridor. Constraints (6) ~ (9) mean that capacity 17 

evaluation is related closely to a train schedule plan. Constraint (6) is an evaluation criterion, which identifies 18 

whether there is a feasible train schedule plan that satisfies the accepted tolerance level. If the maximal number of 19 

train-pairs is N , it is concluded that no feasible schedule plan can satisfy constraint (6) when the number of train-20 

pairs is 1N  . In other words, even the schedule plan with the minimal total travel time also exceeds the acceptable 21 

tolerance level set by the administrators. While constraints (7) and constraints (II-3 ~ II -11) in Appendix II.A reflect 22 

the travel process of trains loaded onto the single-track railway system. 23 

Assume that the number of trains loaded into the railway corridor is known. We formulate a specific train 24 

scheduling problem with initial departure choice, which is subject to the relative balance of train flows in different 25 

directions, and minimize the total travel times of all trains loaded onto the single-track railway corridor. This model 26 

is noted by symbol ( )NM , and is presented in Appendix II.A. From the solution of model( )NM , it is identified 27 

whether tolerance level constraint (6) is satisfied.  28 

A simple dichotomizing-based method is adopted to explore the maximal number of train-pairs in the single-29 

track railway corridor. Firstly, we set the initial lower bound lbñ  and upper bound ubñ  of the number of train-30 

pairs. The initial lower bound may be set to 1, and the initial upper bound is set to / ddT h  ; the latter is the 31 

possible maximal number of train-pairs in fixed time window [0,  ]T . Here, parameter ddh  is the safety headway 32 

between two trains departing from the original station. Moreover, we analyze whether the solution of model 33 

( ( ) / 2 )lb ub lb   ñ ñ ñM  satisfies travel tolerance condition (constraint (6)). If it is, ( ) / 2lb ub lb   ñ ñ ñ  is set to 34 

new lower bound; otherwise, it is regarded as the value of upper bound. Table 1 presents a detailed heuristic 35 

procedure. 36 

Table 1: Dichotomizing-based heuristic search 37 

Set initial values for lbñ  and ubñ ( 1lb ñ , / dd
ub T h  ñ  );  



9 

While lb ubñ ñ
 
do  

   Repeat 

      Set ( ) / 2lb ub lbN     ñ ñ ñ  

      Solve the train scheduling problem ( )NM ;  

Update train-pair numbers: 

         If , ,

1
( )

2 u u

a d
u r u r

u

f
N

   t t , then lb Nñ  

         If , ,

1
( )

2 u u

a d
u r u r

u

f
N

   t t  or no feasible solution is found, then ub Nñ  

End While 

Output the value of N  

The above dichotomizing-based heuristic is straightforward. However, a pivotal issue is how to solve model1 

( )NM  efficiently. The solution of model ( )NM  includes: the initial departure time of each train from their 2 

original stations, and their arrival and departure times at other stations. This can be expressed as ={ ( ), ( )}V VSS T , 3 

where ( )VT  records the departure times of trains from their original stations, i.e., ,( ) { | }
u

d
u rV u V tT , and 4 

( )VS  records the arrival and departure times of trains at stations, i.e., , ,( ) {( , ) | , }a d
u r u r uV u V r R  S t  t . Here,

 
5 

,
a
u rt

 
and ,

d
u rt  are the arrival and departure time of train u  at station r , respectively. 6 

It is well-known that the branch-and-bound algorithm is a precise method to solve the 0-1 mixed-integer 7 

programming problem. However, as a non-polynomial method, the branch-and-bound may be unable to obtain the 8 

optimal solution. For a large-scale problem, even a feasible solution can hardly be obtained within finite 9 

computational time. If the departure times of trains from their original stations are relaxed, solving train scheduling 10 

problem becomes even more difficult. Compared with train scheduling problem with expected initial departure time, 11 

the choice of train departure time and order in ( )NM  will result in a larger feasible region. 12 

We adopt symbol ( | ( ))N VM T  to denote train schedule problem with expected/fixed departure times. There 13 

are many excellent methods for train scheduling in the literature (e.g. Carey, 1994; Higgins et al., 1996, 1997; Cai 14 

et al., 1998; Zhou and Zhong, 2007; Burdett and Kozan, 2009a, 2009b, 2014a, 2014b)). In our previous works (Li 15 

et al, 2014), a Confliction-Distribution-Prediction method (CDP) was developed to solve ( | ( ))N VM T  efficiently. 16 

However, the CDP focused on train scheduling problem with expected departure times. Figure 1 provides two simple 17 

examples to demonstrate that proper initial departure times of trains can largely reduce unnecessary waiting times 18 

of trains at stations. In Figure 1 (a1), the waiting time of train v  at station is reduced only by changing the departure 19 

time of train u  or v  from the original station. The proper departure time of trains in Figure 1 (b1 and b2) make 20 

the waiting times of all trains at stations reduce three times approximately. Hence, how to determine the proper 21 

initial departure time for each train is the key issue to solve ( )NM . Based on the comparison between two optimal 22 

schedule plans, we develop an initial departure choice procedure based on “compaction pattern” to determine the 23 

optimal or suboptimal initial departure time of trains.  24 

5.2 Determine the initial departure time of trains at the original stations 25 

The initial departure choice of train is influenced by many factors, such as crew and rolling stock. However, in 26 
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this paper, the evaluation of two-way traffic loading capacity is based on the minimal total travel times of all trains. 1 

Hence, we only focus on how to determine the initial departure times of trains so as to minimize the total travel time 2 

of trains. 3 

5.2.1 The definition of compaction pattern 4 

Determining the optimal initial departure time of train is very difficult due to the unknown schedule plan. 5 

Different initial departure times of trains will result in the schedule plans with different structures. For instance, 6 

Figure 1 (b0) presents an optimal schedule plan, in which the initial departure times of trains are given in advance; 7 

while Figure 1 (b1) and (b2) show two schedule plans with optimal initial departure times of trains. In Figure 1 (b1 8 

and b2), a compaction pattern is developed where trains wait at the station for meet-crossing between trains. 9 

Compaction pattern denotes that the arrival or departure interval between trains at stations reach the minimal 10 

headway. In other words, the waiting times of trains in compaction pattern cannot be compressed any further. 11 

Compaction pattern provides a novel idea to seek the optimal or near-optimal departure times of trains. Assume 12 

we can obtain quickly a train schedule plan based on a given initial departure times of trains. According to the 13 

arrival and departure time distribution of trains at stations, the compressible time-distances among trains can be 14 

analyzed. By adjusting the initial departure times of trains, time-points distribution is gradually converged towards 15 

compaction pattern. We call the algorithm proposed for the optimal initial departure of trains as “the initial departure 16 

choice based on compaction pattern”, or simply “IDC_CP”. 17 

5.2.2 Descriptions of compaction pattern at station 18 

Let set D  denote the travel information of trains at stations given by a schedule plan, and it can be expressed 19 

as = { | }u u VD , where uD
 
records the travel information of train u  at each station, i.e., 20 

= { | }r
u u ur R D D . The information unit r

uD  contains three elements, and is expressed as 21 

, ,(( , ), ( ), ( ))r a d r r r r
u u r u r u u u u t  tD X V F V , where the first part denotes the time interval between ,

a
u rt  and ,

d
u rt , 22 

( )r r
u uX V  and ( )r r

u uF V  identify the arrival or departure characteristic and time-point distribution of trains in region 23 

, ,( , )a d
u r u rt  t . Here, set r

uV  records the trains which have arrived and/or departed during time interval , ,( , )a d
u r u rt  t , 24 

i.e., , , , , , ,,  and  or { |   }r a a d a d d
u v u r v r u r u r v r u rv V     V i t t t t t t , and vi

 
is the ID of train v . ( )r r

u uX V  and 25 

( )r r
u uF V can be expressed as ( ) { | }r r r r

u u v uv X V VX  and ( ) {r r r r
u u v uv F V | V }p , respectively. Their 26 

definitions are listed as follows:  27 

if arrives at station 

if   departes from station

1        time point indicates train  , and 

0     time point indicates train  ,  and 

r
ur

v r
u

v r v

v r v

  


X
V

V
       (10) 28 

,

,

if  1, and  

if  0, and  

a r r
v r v ur

v d r r
v r v u

v

v

   
 

V

V

t

t

X

X

p               (11) 29 

According to ( )r r
u uF V , the time-points distribution is expressed as , ,={ } ( )r a d r r

u u r u r u u F Vt , t . Figure 2 (a) 30 

presents a simple example to explain intuitively the definitions of the above symbols. In the region , ,( , )a d
u r u rt  t , 31 
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three trains 1 2 3( ,  ,  )v v v  arrive at or depart from station r . It is concluded that,
1 3 1 2 3 2

{ , , , , , }r
u v v v v v vV i i i i i i ,1 

{1,  1,  0,  1,  0,  0}r
u X , 

1 3 1 2 3 2, , , , , ,{ , , , , , }r a a d a d d
u v r v r v r v r v r v rF t t t t t t  and

 1 3 1 2 3 2, , , , , , , ,={ }r a a a d a d d d
u u r v r v r v r v r v r v r u r t , t , t , t ,  t , t ,  t , t . 2 

 3 

 4 
Figure 2 Graphic descriptions of symbols adopted in compaction pattern (a) time-points distribution r

u  and (b) compaction pattern 5 

r
u  6 

 The compaction pattern formulation r
u  7 
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The aim of initial departure time choice of trains is to make r
u  closely to its compaction pattern 

r
u  as 1 

possible, and reduce the unnecessary waiting time of trains. Assume that a new arrival time of train u  at station 2 

r  is ,
a
u rt  after initial departure times of trains are adjusted. Based on ,

a
u rt , arrival or departure characteristic 3 

( )r r
u uX V  in set r

uV , and minimum headways between trains, an ideal compressed time-points distribution 4 

( )r r
u uF V can be reformulated by a mapping function ,( , ( ))a r r

u r u ut X V , i.e., ,( ) ( , ( ))r r a r r
u u u r u u tF V X V . The 5 

mapping rule of ,( , ( ))a r r
u r u ut X V  is presented in Table 2. We adopt the first time-point of the distribution 6 

presented in Figure 2 (a) to explain the mapping rule in Table 2. The first time-point is the arrival time of train 1v  7 

at station r . Because the direction of train 1v  is opposite to train u , the arrival-arrival safety headway (aag ) is 8 

considered as critical time interval in compaction pattern. And hence, the first time-point in compaction pattern can 9 

be written to ,
a aa
u r gt . 10 

Table 2: The mapping rule in 
,( , ( ))a r r

u r u ut X V  for ( )r r
u uF V  11 

The characteristic of 

train 

conditions r
vp
 

 

 

 

, r
uv v v V * 

1r
v X ; or,   ,O Iu v V u v V   ,

a aa
u r ht  

0r
v X ; or,   ,O Iu v V u v V   ,

a ad
u r ht  

1r
v X ; or,   ,O I O Iu V v V u V v V     ,

a aa
u r gt  

0r
v X ; or,   ,O I O Iu V v V u V v V     ,

a ad
u r gt  

 

 

 

 

 

 

, r
uv v v V  

v v
i i   r

bv
 p  

v vi i ; 1r

v
X , 1r

v X ; or,   ,O Iv v V v v V    
r aa

v
h p  

v vi i ; 1r

v
X , 0r

v X ; or,   ,O Iv v V v v V    
r ad

v
h p  

v vi i ; 0r

v
X , 0r

v X ; or,   ,O Iv v V v v V    
r dd

v
h p  

v vi i ; 0r

v
X , 1r

v X ; or,   ,O Iv v V v v V    
r da

v
h p  

v vi i ; 1r

v
X , 1r

v X ; or,   ,O I I Ov V v V v V v V      
r aa

v
g p  

v vi i ; 1r

v
X , 0r

v X ; or,   ,O I I Ov V v V v V v V      
r ad

v
g p  

v vi i , 0r

v
X , 0r

v X ; or,   ,O I I Ov V v V v V v V      
r dd

v
g p  
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*Note: v  is the first train in set r
uV ; v

 is the ahead train of train v  in set r
uV . 1 

Combined ( ,
a
u rt , ,

d
u rt ) with ( )r r

u uF V , the ideal compaction pattern ,( )r a
u u r t  is expressed as 2 

, , ,( ) { , } ( )r a a d r r
u u r u r u r u u t t t F V . Figure 2 (b) shows the compaction pattern of the example in Figure 2(a), which 3 

is expressed as 
1 3 1 2 3 2, , , , , , , , ,( ) { , , , , , , , }r a a a a d a d d d

u u r u r v r v r v r v r v r v r u r t t t t t t t t t , and 
1, ,
a a aa
v r u r g t t ; 4 

3 1, ,
a a aa
v r v r g t t ; 

1 3, ,
d a ad
v r v r g t t ;

2 1, ,
a d da
v r v r h t t ;

3 2, ,
d a ad
v r v r g t t ; 

2 3, ,
d d dd
v r v r g t t ; 5 

2, ,
d d dd
u r v r g t t . Clearly, in the compaction pattern, the time-distance between the neighboring time points is 6 

compressed to a critical value. 7 

 The compressible time interval between r
u  and r

u  8 

The difference between r
u  and r

u  can be measured by the compressible time interval r
ul , i.e., 9 

, , , ,( ) ( )r d a d a
u u r u r u r u r   l t t t t , which is an important evaluation criterion for designing the departure choice 10 

procedure of trains. 11 

5.2.3 The characteristic descriptions of compaction pattern at segment 12 

The behaviors of trains on a segment can also be included into the compaction pattern. The travel information 13 

of trains at segments are recorded in set = { | }u u VL . Here, uL  can be expressed as 14 

,{ | , }r r
u u ur r R

  L b , where ,r r
u



b  is the delay time of train u  at the segment between station r  and r  , 15 

i.e., +

, ,
, , ,,

( ) ( )r r a d r r r a r d
u u r u u u e u u eu r

p    
  

      t tb . If , 0r r
u



b , the travel of train u  at the segment 16 

between station r  and r   subjects to compaction pattern of segment.  17 

5.2.4 The initial departure choice of trains 18 

 The departure adjustment of trains based on compaction pattern 19 

As been depicted by Figure 1, the appropriate initial departure time can efficiently reduce unnecessary waiting 20 

time of trains at stations for the meeting and crossing between trains, and make the arrival and departure times of 21 

trains at stations closely to compaction pattern as possible. And hence, the aim of the initial departure choice is to 22 

reduce the difference between ru  and r
u .  23 

Let the departure times of trains in an initial schedule to be ,={ | }
u

d
u r u VtT . The mapping function 24 

( , , )r r
r u u T  is formulated to determine the new initial departure time of trains, i.e., ' ( , , )r r

r u u T = T . 25 

The mapping rule of rH (--)  is defined as follows: 26 
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, , ,

'
, ,

,

( )    if  

( )       if  

                          others

u

u u

u

d a a
v r v r v r

d d r r r
v r v r v v u

d
v r

v u

v

   
   



V

t t t

t t

t

p p               (12) 1 

Note that ( , , )r r
r u u T  not only focuses on the departure time choice of train u , but also emphasizes the 2 

departure adjustment of trains in set ruV . The mapping rule reflects a strong coupling relation among trains in the 3 

single-track railway system. 4 

A simple rule that applies delays to the initial departure time of trains is used to reduce train segment delay. 5 

Assume that the delay of train u  is ,r r
u



b at the segment between station r  and r 
 in an initial schedule plan. 6 

The new departure time of trains, 
' ,( , )r r

s u



T = T b , can be formulated by function ,( , )r r
s u



T b  as follows. 7 

,
,'

,

,

    if  

              others
u

u

u

d r r
v r ud

v r d
v r

v u
   



bt
t

t
                (13) 8 

 The feasibility analysis of train initial departure 9 

Constraints (9) ensure that the initial departure times of trains are restricted to time window [0, ]T . The 10 

departure-departure time headway must also be satisfied for the adjusted initial departure times. Hence, a feasible 11 

analysis is necessary for the new train departure sequence generated by rH (--)  and s .  12 

Consider a situation where train u  is scheduled to depart before train v , but their initial departure time 13 

interval does not satisfy the Departure-Departure headway. We examine the earlier extensible time space of train 14 

u  and the later extensible time space of train v . The train with more extensible space is selected, and its initial 15 

departure time is moved till the Departure-Departure headway is satisfied. Once no extensible time space is found, 16 

the examining range is extended to other trains before train u  and after train v . The bound analysis of time 17 

window is also similar. When the initial departure time of train is left or right bound of time window, the extensible 18 

space is set to zero. 19 

5.3 The uniformity apportionment mechanism for balance constraints 20 

According to the above initial departure choice and the CDP method (Li et.al, 2014), a schedule plan can be 21 

quickly obtained. However, the balance constraints are not considered in the CDP method. Hence, it is necessary to 22 

modify the CDP so that the balance constraints are satisfied. A specific characteristic in the CDP is the travel 23 

optimization mechanism, that the travel strategies of trains are analyzed based on the confliction distribution 24 

prediction achieved by the greedy method. We adopt a uniformity apportionment mechanism to ensure that the 25 

subsequent schedule plan obtained by the greedy method satisfies relative balance condition. 26 

Note that the hard time windows [0, T) in the proposed model can ensure that no train can leave before all 27 

trains have been loaded into the railway corridor. When a train travels at its last segment, all meeting-crossings 28 

between it and the trains in opposite direction have occurred. It is concluded that all trains travel freely at their last 29 

segment. And hence, the uniformity apportionment mechanism is to adjust the travel time of out- or in-bound train 30 

flows on their last segment of travel. 31 

In the schedule plan obtained by the greedy mechanism (Li et.al, 2014), total travel time of outbound and 32 

inbound train flow are presented as 
, , )

u u
O

O a d
u r u r

u V

T


  (t t  and 
, , )

u u
I

I a d
u r u r

u V

T


 (t t , respectively. If  33 
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max| |O I
NT T N   D , the balance constraint cannot be satisfied. Assume that O IT T , and the compensated 1 

difference between outbound and inbound train flows is maxO I
NT T N   D . The uniformity apportionment 2 

mechanism ensures that the compensated difference is assigned equally to all inbound trains. The travel times of all 3 

inbound trains at their last segment are delayed till the balance condition is satisfied. The uniformity apportionment 4 

mechanism is described as follows. 5 

max max
,

max max
, ,

max
,

( ) / ,    ,

( ) / ,    ,  

                                            | |

u

u u

u

a O I O I I
u r N N

a a I O I O O
u r u r N N

a O I
u r N

T T N if T T N u U

T T N if T T N u U

if T T N

 

 



         
         


   

D D

D D

D

t

t t

t

      (14) 6 

Based on the integration of uniformity apportionment and greedy mechanism, the modified optimization 7 

mechanism in the CDP can identify the satisfactory travel strategies of trains, and ensure that the obtained schedule 8 

plan satisfy the relative balance between outbound and inbound train flows.  9 

5.4 The algorithm procedure for solving ( )NM  10 

Table 3: Algorithm IDC_CP (The initial departure choice based on the compaction pattern) 11 

Initialization: Generate (0)( )VT  randomly, and solve (0)( | ( ))N VM T . And then obtain the solution

* * *={ ( ), ( )}V VSS  T , i.e., * initialz z , * (0)( ) ( )V VT T  and * * *
, ,( ) {( , ) | , }a d

u r u r uV u V r R  S t  t ; set up the initial set D  and L , 

i.e.,
 

= { | }u u VD  and = { | }u u VL . 

While | |u V
 
(initial

 
1u  )  do  

    Repeat 

        Detect new initial departure of trains and schedule plan based on sub-procedure1( uD ) and sub-

procedure2( uL ); 

        If a better solution is found, update *z , *
S , D  and L . Reset 1u  ; 

        Otherwise, 1u u  . 

End While 

Output the value of *
z , and *˄V˅S  . 

Sub-procedure 1 ( uD ): the detecting procedure based on = { | }r
u u ur R D D   

While | |ur R (initial
 

1r  )
 
do 

Repeat 

Based on
 , ,(( , ), ( ), ( ))r a d r r r r

u u r u r u u u uD F V X Vt  t , analyze the compressible time-distance r
ul . 

While  1
r

step uk t  l  (initial
 1 0k  ) do 
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Repeat 

Set , , 1= + a a
u r u r stepk tt t , and formulate r

u ; 

Determine the attempted departure initial departure of trains based on ' ( , , )r r
r u u T = T , and 

feasible analysis for '
T ; 

           Solve '( | ( ))N VM T  and analyze the results: 

                   If the better solution is found, then update*
S . 

1 1 1k k  ; 

  End while 

1r r  ; 

End while 

Sub-procedure 2 ( uL ): the detection algorithm for uL  ( ,{ | , }r r
u u ur r R

  L b ) 

While | | 1ur R  (initial
 

1r  )
 
do 

Repeat 

          Set ' ,( , )r r
s u



T = T b , and feasible analysis for '
T ; 

          Solve '( | ( ))N VM T  and analyze the results: 

                If the better solution is found, then update*
S . 

1r r  ;
 

End while 

Algorithm IDC_CP presented in Table 3 starts from an initial schedule plan obtained using the CDP method 1 

(Li et.al, 2014). Based on the travel information of each train at station and segment, i.e., D  and L , the departure 2 

choice procedure is executed for the compaction pattern. If  a better solution is found, the information in set D  and 3 

L  is reset. 4 

6. Numerical experiments 5 

Two important features are investigated through a series of numerical experiments: (1) the quality and 6 

computational efficiency of the proposed IDC_CP, and (2) the two-way traffic loading capacity characteristics under 7 

different tolerance levels and balance degrees. The algorithms proposed in Section 5 is implemented in C++ 8 

language and executed on a PC with Windows 7 operating system, equipped with an Intel E5-4620 2.2 GHz 9 

processor and 8G RAM. 10 

We consider a five-station and four-segment single track railway corridor. We randomly generate ten scenarios 11 

with small-scale variations in total length of the corridor and the lengths of the four segments. Table 4 lists the 12 

instances generated. 13 

Table 4: The list of fourteen examples generated randomly (unit: km) 
14 

Inst. Total length Segment 1 Segment 2 Segment 3 Segment 4 Inst. Total length Segment 1 Segment 2 Segment 3 Segment 4 
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1 156 32 46 38 40 6 158 35 40 45 38 

2 154 30 40 48 36 7 160 38 43 47 32 

3 160 40 36 46 38 8 158 32 41 38 47 

4 152 35 42 39 36 9 154 36 47 31 40 

5 158 42 36 43 37 10 160 33 42 47 38 

The segment lengths in each sample are uniformly distributed values between 30 and 50. The number of sidings 1 

at each station is set to 3. Small scale examples are adopted to evaluate the difference between the solution obtained 2 

by the IDC_CP method and the optimal solution. The optimal solutions are obtained by the branch-and-bound 3 

method, which is realized by the standard CPLEX MIP algorithm (version 12.6). 4 

6.1 The performance of IDC_CP for train balance scheduling with departure choice 5 

The initial departure choice of trains and the balance degree are two distinct characteristics of model ( )NM . 6 

In the following experiments, we focus on these two characteristics of the model ( )NM  and the performance of 7 

algorithm IDC_CP. 8 

6.1.1 The importance analysis of train initial departure choice 9 

Firstly, we identify the influence of flexible initial departure on the performance of train scheduling problem. 10 

Table 5 presents the results of model ( )NM  and ( | ( ))N VM T  obtained by the branch-and-bound and the 11 

proposed IDC_CP. The number of train-pairs is set to 4. In model ( | ( ))N VM T , the interval between initial 12 

departure times of trains is set to 20 min. The balance constraint is relaxed in the results presented in Table 5. 13 

The results show that the total travel time of all trains in ( )NM  is reduced by 0.1504 compared to that in 14 

( | ( ))N VM T . Three indictors, i.e., the number of the compressible interval (cn ), the total compressible time-15 

distance ( r
u l ) and the maximal compressible interval (max }r

u{l ), are indicated to identify the difference between 16 

the solutions of ( )NM  and ( | ( ))N VM T . These indictors reflect unnecessary waiting or delay times of trains at 17 

stations and segments. The average values of three indictors (cn
_

, r
u

—

l , max{ }r
u

—

l ) in ten examples for ( )NM  18 

and ( | ( ))N VM T  are (11.6, 65.5, 21.6) and (3.0, 3.3, 1.3), respectively. Clearly, it is proved that the rational initial 19 

departure times of trains can efficiently avoid the unnecessary delay of trains, and make the arrival or departure 20 

time distribution of trains at stations closely to the compaction pattern.  21 

However, when the branch-and-bound is applied, the average computational time for ( | ( ))N VM T  and 22 

( )NM  is about 0.142h and 1.363h respectively, i.e. significantly higher computation time for ( )NM  with branch-23 

and-bound. The flexibility of initial departure time makes model ( )NM  more complexity than ( | ( ))N VM T . 24 

Even with homogenous trains, the binary variables (,
,

r r
u v



, , ,
AD

u v r , , ,
DA
u v r  and ,

i
u r 1), which reflect the priority of 25 

trains with same direction at station and segment, still need be identified because of the unknown initial departure 26 

times of trains.  27 

With our proposed algorithm IDC_CP, however, we can see in Table 5 that the computation time is reduced by 28 

over a thousand times (from an average of 1.363 hours down to 3.653 sec). The quality of the solutions is compared 29 

to the optimal solutions, with an average optimality gap   of only 0.0018. The average value of three indicators 30 

( cn , r
u l

 

and max }r
u{l ) is 3.0, 3.0 and 1.0, respectively. It indicates that the solutions obtained by the IDC_CP 31 

have similar structure as the optimums, and proves the effectiveness of compaction-distribution based in IDC_CP.  32 

                                                             
1 See constraints (II-4) ~ (II-8) in Appendix II.A. 
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6.1.2 The influence of balance constraints 1 

As been shown in constraints (7), another important characteristic of model ( )NM
 
is to keep the relative 2 

balance between train flows in different directions. Table 6 presents the results of ( )NM  under different balance-3 

degrees į: 0.2, 0.4, … , 0.8. The computational time of CPLEX MIP algorithm is restricted within 24 hours.  4 

When the balance constraints are added, a distinct difference compared to those in Table 5 (without balance 5 

constraints) is that the computational time to reach the optimal solution is much higher. For instance, for the case of 6 

į=0.2, the optimal solution in six examples is not obtained within 24h, and the average computational time for other 7 

four examples also reaches 20.54h (see Table 6). Though the added balance constraints reduces the feasible region 8 

of model ( )NM , it results in large difficulty of pruning and bounding, and increases the computational complexity 9 

of the decision tree. 10 

Algorithm IDC_CP still has good performance when balance constraint is considered in model ( )NM . The 11 

results in Table 6 show the solutions obtained by algorithm IDC_CP are very close to the best solutions obtained by 12 

the branch-and-bound. For instance, for the cases of į=0.2, the optimality gap   between the IDC_CP and the 13 

branch-and-bound is about 0.0203. When į=0.8, the optimality gap is only 0.0035. With the gradual relaxation of 14 

balance constraints, algorithm IDC_CP can obtain the solution with better quality. In terms with computational 15 

efficiency, the average computational time is only about 9.498s when the IDC_CP is adopted. Obviously, compared 16 

with the branch-and-bound, algorithm IDC_CP can be applied to large scale cases in the real world. Algorithm 17 

IDC_CP is tested in the part of the Qing-Zang single-track corridor, which has the length of 830km and links 13 18 

stations. The numerical results (Table 7) show that, the feasible solution by the branch-and-bound is not obtained 19 

when the number of train pairs exceeds five. The computational time required by the IDC_CP is between 12.89s 20 

and 94.87s; while the optimal gap is between 0.0063 and 0.0118. 21 

 22 



19 

Table 5: Results of train scheduling problem with fixed and flexible departure time 1 

Inst. Fixed departure time Flexible departure time 

Branch-and-bound Branch-and-bound IDC_CP 

obj CPU /h cn  
r
u l  max }r

u{l  obj CPU /h cn  
r
u l  max }r

u{l  deviation obj CPU /s cn  
r
u l  max }r

u{l  gap 

1 827 0.209 12 63.0 19.5 723 0.391 3 3.0 1.0 0.1438 723 4.072 3 3.0 1.0 0.0000 

2 831 0.049 12 81.0 29.5 715 1.839 3 3.0 1.0 0.1622 715 8.444 3 3.0 1.0 0.0000 

3 847 0.079 12 58.0 17.5 737 0.593 3 5.0 3.0 0.1493 739 2.218 3 3.0 1.0 0.0027 

4 815 0.048 12 60.0 20.5 707 1.594 3 3.0 1.0 0.1528 707 1.299 3 3.0 1.0 0.0000 

5 833 0.481 12 61.0 17.5 727 1.067 3 3.0 1.0 0.1458 731 1.932 3 3.0 1.0 0.0055 

6 844 0.111 12 67.0 26.5 731 0.269 3 3.0 1.0 0.1546 731 2.023 3 3.0 1.0 0.0000 

7 851 0.307 10 64.0 24.5 739 0.471 3 3.0 1.0 0.1516 739 4.013 3 3.0 1.0 0.0000 

8 828 0.090 11 68.0 19.5 727 0.425 3 3.0 1.0 0.1389 730.8 9.462 3 3.0 1.0 0.0052 

9 817 0.009 11 55.0 12.5 712 5.370 3 4.0 2.0 0.1475 715 0.717 3 3.0 1.0 0.0042 

10 855 0.040 12 78.0 28.5 739 1.613 3 3.0 1.0 0.1570 739 2.350 3 3.0 1.0 0.0000 

Average  0.142h 11.6 65.5 21.6  1.363h 3 3.3 1.3 0.1504  3.653s 3.0 3.0 1.0 0.0018 

 2 

Table 6: Performance results of train balance scheduling under different balance degrees. 3 

Balance Degree į=0.2 į=0.4 į=0.6 į=0.8 

Inst. Branch-and-bound IDC_CP  Branch-and-bound IDC_CP  Branch-and-bound IDC_CP  Branch-and-bound IDC_CP  

 Objup gap CPU/h Obj CPU/s   Objup gap CPU/h Obj CPU/s   Objup gap CPU/h Obj CPU/s   Objup gap CPU/h Obj CPU/s   

1 750.8 0.000 4.05 766.0 4.36 0.020 741.6 0.000 9.76 750.0 8.23 0.011 735.0 0.000 5.198 735.0 7.65 0.000 730.4 0.000 5.38 732.0 5.72 0.002 

2 742.8 0.000 14.15 758.0 11.52 0.020 733.6 0.000 11.35 742.0 11.78 0.011 727.0 0.120 24.0 727.0 14.28 0.000 722.4 0.000 6.69 726.0 3.34 0.005 

3 766.0 0.133 24.0 773.7 61.14 0.010 754.4 0.000 6.48 757.7 69.01 0.004 743.0 0.000 5.02 747.0 30.98 0.005 743 0.000 5.02 747.0 36.87 0.005 

4 737.0 0.000 22.5 764.2 1.17 0.037 734.0 0.000 7.78 748.2 1.24 0.019 726.0 0.114 24.0 733.4 1.29 0.010 714.4 0.000 11.20 717.5 1.23 0.004 

5 761.2 0.000 20.7 778.0 0.92 0.022 750.0 0.000 15.9 762.0 0.99 0.016 744.0 0.098 24.0 746.0 0.94 0.003 731.5 0.000 5.36 731.5 0.82 0.000 

6 762.0 0.037 24.0 776.8 0.31 0.019 753.2 0.000 12.3 760.7 0.28 0.010 750.0 0.096 24.0 757.4 0.32 0.010 738.4 0.000 4.18 741.4 0.30 0.004 

7 770.0 0.132 24.0 797.2 11.89 0.035 763.6 0.123 24.0 781.2 3.87 0.023 758.0 0.096 24.0 764.4 4.23 0.008 746.4 0.000 7.39 748.4 1.85 0.003 

8 761.0 0.106 24.0 767.4 1.40 0.008 758.0 0.135 24.0 758.0 1.42 0.000 744.0 0.071 24.0 745.0 0.67 0.001 731.5 0.000 5.31 740.0 0.67 0.012 

9 742.0 0.137 24.0 750.0 0.69 0.011 734.0 0.000 5.90 734.0 0.68 0.000 729.0 0.114 24.0 731.0 0.68 0.003 717.5 0.108 24.0 717.5 0.068 0.000 
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10 770.0 0.138 24.0 786.0 1.58 0.021 761.2 0.000 2.01 770.0 1.57 0.012 758.0 0.000 16.3 758.0 1.66 0.000 746.4 0.000 13.96 746.4 1.56 0.000 

Aver.  0.068 20.54h  9.498s 0.0203  0.026 11.95h  9.907s 0.0106  0.0709 19.45h  6.27s 0.0040  0.0108 8.85h  5.243s 0.0035 

*
_( ) /IDC CD up upObj Obj Obj   ; 1 

Table 7: Numerical results when the IDC_CP is applied into the part of Qing-Zang single-track railway corridor 2 

Balance Degree į=0.2 į=0.4 į=0.6 į=0.8 

Train pairs. Branch-and-bound IDC_CP   Branch-and-bound IDC_CP   Branch-and-bound IDC_CP   Branch-and-bound IDC_CP   

Obj/min CPU/h Obj/min CPU/s Obj/min CPU/h Obj/min CPU/s Obj/min CPU/h Obj/min CPU/s Obj/min CPU/h Obj/min CPU/s 

3 2540.0 24 2576.0 12.89 0.0142 2537.5 24 2560.6 28.82 0.0091 2527.4 24 2545.2 25.47 0.0071 2513.8 24 2529.8 27.49 0.0064 

4 3431.1 24 3457.1 32.76 0.0076 3410.8 24 3432.3 42.86 0.0063 3389.5 24 3407.5 53.65 0.0053 3366.7 24 3382.7 60.86 0.0048 

5 4314.2 24 4373.7 74.63 0.0138 4294.9 24 4341.3 82.58 0.0108 4266.1 24 4301.8 86.68 0.0084 4235.6 24 4267.6 94.76 0.0076 

Aver.     0.0118     0.0087     0.0069     0.0063 

3 
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6.2 Two-way balance traffic loading capacity evaluation 1 

The two-way balance traffic loading capacity proposed in this paper depends not only on the topological 2 

structure of single-track railway corridor, but also on the different tolerance levels and balance degrees. Intuitively, 3 

the set of tolerance level and balance degree restrain the allowed maximal number of train-pairs passing through the 4 

single-track railway system. 5 

 6 

Figure 3 Three-dimension graphical depictions of two-way balance traffic loading capacity under different travels and balance 7 

degrees (a) track number at stations is 3 (b) track number at stations is 4 8 

We take the first randomly generated instance in Table 4 to illustrate the influence of tolerance levels and 9 

balance degrees on the two-way balance traffic loading capacity. Figure 3 presents a three-dimensional depiction of 10 

the achieved traffic loading capacity under different tolerance levels and balance degrees. The two horizontal axes 11 

denote the tolerance level and balance degree, respectively, and the vertical axis is the maximal number of train-12 

pairs that can be scheduled to travel in the system. With increasing tolerance level and balance degree, the top of 13 

the two-way traffic loading capacity keeps at 6 train-pairs for the 3-track case (Figure 3 (a)). This top value is 14 

decided by the topology structure, i.e., the absolute two-way traffic loading capacity. It is influenced by the number 15 

of tracks (or sidings) of stations, and does not depend on the tolerance levels and balance degrees. For example, 16 

when track number in stations is set to 4, the absolute two-way traffic loading capacity increases to 8 train-pairs 17 

(Figure 3 (b)). 18 

 19 

Figure 4 Transition description of two-way balance traffic loading capacity under different delay tolerance levels and balance degrees 20 

Figure 4 presents the cross-section of three-dimension graph in Figure 3 (a). The results are divided into six 21 

regions, and the Arabic numerals denote the number of train-pairs in each region which satisfy the tolerance level 22 

and balance degree constraints. The results show that with more relaxed tolerance levels and less balanced train 23 
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flows in both directions, the more train-pairs can be scheduled to the system and greater system capacity. 1 

The results also show that, the capacity is restrained when the tolerance level is lower than 1.17. However, 2 

when tolerance level exceeds 1.30, the two-way loading capacity is not influenced by balance degree and tolerance 3 

level and reaches the absolute top value. Figure 4 also presents the transition regions (marked in different shades of 4 

grey) in capacity gains. For instance, when balance degree is kept at 0.10, the transition region of tolerance level is 5 

between 1.13 and 1.14, in which the loading capacity varies from 1 train-pair to 2 train-pairs. Other transition regions 6 

are also distributed at (1.17, 1.18), (1.19, 1.20), (1.25, 1.26), and (1.30, 1.31). These results can explore the relation 7 

between travel delay of train and capacity loss, and provide decision support for railway administrator dealing with 8 

train rescheduling under disturbance or disruption scenarios.  9 

Figure 5 further presents the average travel time of each train under different tolerance levels and balance 10 

degrees. The black grid surface represents the travel time front which is the allowed average travel time of train 11 

under the different tolerance levels, and the complicate zigzag structure below the front surface indicates the actual 12 

average travel time of train. It can be visually found that, with increasing the tolerance level and balance degree, the 13 

average travel time of trains gradually reduce. The complicated zigzag structures are developed with the variation 14 

of the tolerance level and balance degree. 15 

  16 

Figure 5 the average travel time of train under different travels and balance degrees 17 

The zigzag structures in the actual travel time is further depicted and explained by the results in Figure 6. Two 18 

black dashed lines are travel fronts corresponding with two tolerance levels 1.12   and 1.29  . There are four 19 

phases are emerging for the case of 1.12  . Only one train-pair is allowed to run when balance degree is between 20 

0.1 and 0.32. With the relaxation of balance degree, the average travel time of trains is gradually reduced. The 21 

transition occurs when balance degree loads the region between 0.32 and 0.33, in which the allowed number of 22 

train-pairs increases from one to two. Near the transition region, the average travel time of train is close to the travel 23 

front. Thus, the zigzag profiles are developed with a further relaxation of balance degree. However, for the case of 24 

1.29  , the absolute capacity is reached in the second phase. And hence, only a zigzag structure is developed. 25 

The information presented in Figure 5 and Figure 6 can be used to identify explicitly the difference between 26 

the actual travel time and travel front, and they provide an intuitive decision support for railway administrator to 27 

consider the trade-off between travel time of trains and relative balance of outbound and inbound train flows. 28 
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 1 

Figure 6 the average travel time of trains under different balance degrees 2 

7. Conclusions 3 

This paper addresses the issues of capacity evaluation of single-track railway corridor from the perspective of 4 

the railway administrators. A sophisticated 0-1 mixed-integer programming is formulated to obtain the maximum 5 

number of trains which can be scheduled along a single-track railway corridor subject to two constraints the 6 

administrators regularly face: the travel tolerance level and the relative balance between the two-way traffic loads. 7 

The initial departure times of the scheduled trains are allowed to vary within a specific time window to ensure the 8 

two constraints are met. A dichotomization based solution framework is proposed, which iteratively solve the initial 9 

departure time of the scheduled trains and adjust the number of trains that can be scheduled.  10 

The proposed solution framework relies upon solving a train scheduling problem with initial departure time 11 

decisions. A method based on the concept of compact distribution (IDC_CP) is developed to solve the optimal 12 

departure times of trains from original stations. We show that the solutions based on the IDC_CP method are 13 

comparable (with an optimality gap within 2%) to those based on traditional branch-and-bound method and solved 14 

using the standard CPLEX solver. Most significantly, however, our proposed IDC-CP solver is more efficient: a 15 

problem for case of į=0.6 taking 19.45 hours to solve using the traditional method is solved by ICD_CP method in 16 

just 6.27 seconds, with an optimality gap of 0.4%. The efficiency of the ICD-CP solver allows our proposed capacity 17 

evaluation method to be applied not only as a planning tool, but also during operations to maximize a single-track 18 

system capacity. 19 

We apply the proposed method to investigate the two-way traffic loading capacity of single-track railway 20 

corridor under the different travel tolerance levels and different balance degrees. We show that, with increasing 21 

tolerance level and balance degree, the two-way capacity tends to a top value (the absolute capacity), which is 22 

decided by the topology structure of railway system. We can identify explicitly the transition regions of traffic 23 

loading capacity, and average travel time of trains under different tolerance levels and balance degrees. These results 24 

can explore the relation between travel delay of train and capacity loss. 25 

The proposed method provides an efficient and subjective framework for capacity evaluation and initial 26 

departure-time rescheduling of a single-track railway system. We have assumed so far that all scheduled trains 27 

traverse along the corridor without interruptions. An important and natural extension of our research is to consider 28 

disruption (planned or un-planned), so as to provide a practical tool to the railway administrators to identify 29 

quantitatively the loss of capacity in the event of disruption. 30 
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Appendix I: Symbol Descriptions 1 

1. Symbols description in the model: 2 

1.1 Index and Set 3 

j :   Train type index. 4 

J :  The set of train types, and {1,2,...,| |}J J , | |J  is the number of train types. 5 

,u v :  Train index. 6 

OV :  Set of all outbound trains, and | |OV  is the number of outbound trains. 7 

IV :  Set of all inbound trains, and | |IV  is the number of inbound trains. 8 

V :  Set of all trains, where O IV V V . 9 

,r r  : Station index. 10 

ur :   The origin (i.e. station) of train u . 11 

ur :   The destination (i.e. station) of train u . 12 

uR :  The stations visited by train u . 13 

,u rI :  Feasible tracks set of train u  at station r  ( ur R ). 14 

1.2 Parameter 15 

 :  The balance degree. 16 

 :  The tolerance level. 17 

j :  The proportion of j-type train in the loaded train set. 18 

max
ND : The maximal average deviation between the outbound and inbound train flows. 19 

jf :  The free travel time of j  type train in the single-track railway corridor. 20 

T :  The time window, where min( | )jT f j J  . 21 

,u j : 0-1 parameter, if train u is of type j, then it is 1, otherwise 0. 22 

,r r
up



:  The free running time for train u  on the segment between station r  and its next station r 
 23 

( ur r R ǃ ). 24 

aah , ddh , dah and adh : The time headway between two trains at a station travelling in the same direction, 25 
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where the superscripts represents the status of the trains as respectively: arrival-arrival, departure-1 

departure, departure-arrival, and arrival-departure. 2 

aag , ddg , dag and adg : The time headway between two trains at a station travelling in opposite directions; 3 

the superscripts represent the same as above. 4 

b :   The traversing time of train at station. 5 

,
a
u e ( ,

d
u e ): The time required by train u  when acceleration from a station (or deceleration to stop at a station). 6 

M :     A large number. 7 

1.3 Decision Variable 8 

N :  The number of train-pairs loading the single-track railway corridor. 9 

jn :  The number of j-type train loading the single-track railway corridor. 10 

,
a
u rt / ,

d
u rt : The arrival/departure time of train u  at station r . 11 

outf :  The average travel time of outbound train flows. 12 

inf :  The average travel time of inbound train flows. 13 

,
,

r r
u v



: 0-1 binary variable. If train u  has prior to occupy the segment between station r  and station r   14 

than train v ,, then 
,
, 1r r

u v


 , otherwise 
,
, 0r r

u v


 . 15 

, ,
AD

u v r ( , ,
DA
u v r ): 0-1 binary variable. If train u  arrives at (departs from) station r  before train v  departs 16 

from (arrives at) station r , then , , 1AD
u v r  ( , , 1DA

u v r  ), otherwise , , 0AD
u v r  ( , , 0DA

u v r  ). 17 

,
,

r r
u v



: same as ,
,

r r
u v



, but for trains travelling in opposite direction. 18 

, ,
AA

u v r ( , ,
DD
u v r ): 0-1 binary variable. If train u  arrives (departs) earlier at station r  than train v , then 19 

, , 1AA
u v r  ( , , 1DD

u v r  ), otherwise , , 0AA
u v r  ( , , 0DD

u v r  ). 20 

, ,
DA
u v r ( , ,

AD
u v r ):  0-1 binary variable. If train u  departs from (arrives at) station r  before train v  arrives at 21 

(departs from) station r , then , , 1DA
u v r  ( , , 1AD

u v r  ), otherwise , , 0DA
u v r  ( , , 0AD

u v r  ). 22 

,
i
u r : 0-1 binary variable. If train u  occupies track i  at station r , then , 1i

u r  , otherwise , 0i
u r  . 23 

r
u : 0-1 binary variable. If train u  stops at station r , then 1r

u  , otherwise 0r
u  . 24 

OI : 0-1 binary variable. If all outbound trains travel through the railway system without any delay, then25 
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1OI  ; otherwise, if all inbound trains are not delayed, then 0OI  . 1 

2. Symbols description in the algorithm: 2 

lbñ : The low bound of the number of train-pairs passing through the single-track railway corridor. 3 

ubñ : The up bound of the number of train-pairs passing through the single-track railway corridor. 4 

,
a
u rt :  The arrival time of train u  at station r  in a given schedule plan. 5 

,
d
u rt :  The departure time of train u  from station r  in a given schedule plan.  6 

( )VS : The set that records the arrival and departure times of each train at stations, i.e., 7 

, ,( ) {( , ) | , }a d
u r u r uV u V r R  S t  t . 8 

, u

d
v rt : The initial departure time of train u  at its original station ur  in a known schedule plan. 9 

( )VT : The set that records the initial departure time of each train, i.e., ,( ) { | }
u

d
u rV u V tT . 10 

S :   The solution of model ( )iNM , which can be expressed by ={ ( ), ( )}V VSS T .   11 

D : The set that records the travel information of trains at stations in a known schedule plan, and is 12 

expressed by = { | }u u VD , and = { | }r
u u ur R D D . 13 

r
uD : The information set which includes the arrival and departure time of train u  at station r , and the 14 

meet-crossing or overtaking between train u  and other trains. And it is expressed by 15 

, ,(( , ), ( ), ( ))r a d r r r r
u u r u r u u u u t  tD X V F V . 16 

r
uV : The set that records the ID of trains that meet train u  at station r , i.e., 17 

, , , , , ,,  and  or { |   }r a a d a d d
u v u r v r u r u r v r u rv V     V i t t t t t t . And vi

 
is the ID of train v . 18 

( )r r
u uX V : The set that records the arrival and departure characteristic of trains in set r

uV , and is expressed by 19 

( ) { | }r r r r
u u v uv X V VX . If train v ( r

uvV ) is an arrival train at station r , then 1r
v X ; 20 

otherwise if it is a departure train, then 0r
v X . 21 

( )r r
u uF V : The set that records the time-points distribution of trains in set r

uV
 
at station r , and is expressed 22 

by ( ) {r r r r
u u v uv F V | V }p . If 1r

v X ( r
uvV ), then ,

r a
v v rp t ; otherwise if 0r

v X ( r
uvV ), 23 

then ,
r d
v v rp t . 24 
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r
u : The time-points distribution resulted

 
by the arrival and departure of train u  at station r ,

 
and it is 1 

expressed as , ,={ } ( )r a d r r
u u r u r u u F Vt , t . 2 

r
u :  The compaction pattern corresponding with r

u .  3 

r
ul : The compressible time distance, which reflects the difference between the original time-points 4 

distribution and its compaction pattern. And it can be deduced by , , , ,( ) ( )r d a d a
u u r u r u r u r   l t t t t . 5 

:    The set that records the travel information of trains at segments in a obtained schedule plan, and is 6 

expressed by = { | }u u VL , and ,{ | , }r r
u u ur r R

  L b ; ,r r
u



b  is the delay time of train u  7 

at the segment between station r  and r  , i.e., 8 

+

, ,
, , ,,

( ) ( )r r a d r r r a r d
u u r u u u e u u eu r

p    
  

      t tb . 9 

( , , )r r
r u u T : A mapping function, which determine new initial departure of trains based on r

u  and r
u , 10 

i.e., ' ( , , )r r
r u u T = T . 11 

,( , )r r
s u



T b :  A mapping function, which determine new initial departure of trains based on the delay of train 12 

u  at the segment between station r  and r  , i.e., ' ,( , )r r
s u



T = T b . 13 

 14 

Appendix II:  15 

II.A The formulation of train balance scheduling problem with initial departure choice ( ( )NM ) 16 

, ,
|

Minimize ( )
u u

a d
u r u r

u u V

t t


                (II -1) 17 

Subject to: 18 

Ⱦ-balance constraints: 19 

max
, , , ,| ( ) ( ) |  

u u v v
O I

a d a d
u r u r v r v r N

u V v V

t t t t N
 

       D            (II -2) 20 

Departure time choice constraints: 21 

,0
u

d
u rt T        

O Iu V V            (II -3) 22 

Departure-Departure and Arrival-Arrival headway constraints between the trains with same direction: 23 

,
, , ,(1 )d dd d r r

u r v r u vt h t M


    
   

 ,  o r  , ,  ;  ,O I
u vu v V u v V u v r r R R             (II -4a) 24 

,
,, ,

(1 )a aa a r r
u vu r v r

t h t M


         ,  o r  , ,  ;  ,O I
u vu v V u v V u v r r R R    

        
(II -4b) 25 

, ,
, , 1r r r r

u v v u 
 

 
      

 ,  o r  , ,  ;  ,O I
u vu v V u v V u v r r R R    

            
(II -4c) 26 

Arrival-Departure and Departure-Arrival headway constraints between the trains with same direction:  27 
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, , , ,(1 )a ad d AD
u r v r u v rt h t M          ,  o r  , ,  ;  ,  ,O I

u v u v u vu v V u v V u v r R R r r r r r           (II -5a) 1 

, , , , 1AD AD
u v r v u r             ,  o r  , ,  ;  ,  ,O I

u v u v u vu v V u v V u v r R R r r r r r     
     

(II -5b) 2 

, , , ,(1 )d da a DA
u r v r u v rt h t M    

       
 ,  o r  , ,  ;  ,  ,O I

u v u v u vu v V u v V u v r R R r r r r r     
     

(II -5c) 3 

, , , , 1DA DA
u v r v u r             ,  o r  , ,  ;  ,  ,O I

u v u v u vu v V u v V u v r R R r r r r r     
     

(II -5d) 4 

Meeting-crossing constraints between trains with opposite direction: 5 

,
,, ,

(1 )a ad d r r
u vu r v r

t g t M


         ,  o r  , ;  , ,  O I O I
u v uu V v V u V v V r r R R r                  (II -6a) 6 

, ,
, , 1r r r r

u v v u 
 

 
      

 ,  o r  , ;  , ,  O I O I
u v uu V v V u V v V r r R R r      

           
(II -6b) 7 

Departure-Departure and Arrival-Arrival headway constraints between the trains with opposite direction: 8 

, , , ,(1 )a aa a AA
u r v r u v rt g t M    

       
 ,  or , ;  , , , ,O I O I

u v u v u vu V v V u V v V r R R r r r r r      
      

(II -7a) 9 

, , , , 1AA AA
u v r v u r  

         
 ,  o r  , ;  ,  ,O I O I

u v u v uu V v V u V v V r R R r r      
      

(II -7b) 10 

, , , ,(1 )d dd d DD
u r v r u v rt g t M    

       
 ,  o r  , ;  ,  ,O I O I

u v u v uu V v V u V v V r R R r r         
    

(II -7c) 11 

, , , , 1DD DD
u v r v u r  

         
 ,  o r  , ;  ,  ,O I O I

u v u v uu V v V u V v V r R R r r      
      

(II -7d) 12 

Station capacity constraints: 13 

,
|

1
ur

i
u r

i i I




            ; uu V r R  
                  

(II -8a) 14 

, , , , , ,(1 ) (1 ) (1 )d da a DA i i
u r v r u v r u r v rt h t M M M         

 
15 

        
, o r , , ; ;O I

u v ur vru v V u v V u v r R R i I I     
        

(II -8b) 16 

, , , , , ,(1 ) (1 ) (1 )d da a DA i i
u r v r u v r u r v rt g t M M M           17 

, or , ; ;O I O I
u v ur vru V v V u V v V r R R i I I      

           
(II -8c) 18 

Segment running time constraints̟ 19 

,
, , , ,

d r r r a r d a
u r u u u e u u e u r
t p t   

 

     
   

; , uu V r r R                  (II -9) 20 

Stopping/non-stopping constraints: 21 

, ,
a d r
u r b u r ut t M    

       
; uu V r R  

                  
(II -10a)

 
22 

, ,
d a r
u r u r b ut t M    

       
; uu V r R  

                  
(II -10b) 23 

, , (1 )a d r
u r b u r ut t M     

     
; uu V r R  

                  
(II -10c) 24 

Binary variables: 25 
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, ,
, , , , , , , , , , ,, , , , , , , {0,1}r r AD DA r r AA DD i r

u v u v r u v r u v u v r u v r u r u       
 

                       (II -11) 1 

The model’ purpose is to minimize the total travel times of all trains loaded in the single-track railway corridor. 2 

Constraint (II -2) denotes that the travel average deviation between out- and in-bound train flows is confined to a 3 

certain range ( max
N D ).Constraints (II -3) ensure that all trains must depart from their original stations at a given 4 

time windows, and their initial departure time is free. 5 

Moving block signal system has been widely discussed in the railway operation. The block is defined in real 6 

time by computers as safe zones around each train. Moving block allows trains to run closer together, while 7 

maintaining required safety margins. Constraints (II -4) emphasize the Departure-Departure headway ddh  and 8 

Arrival-Arrival headway aah  when two trains with same direction depart from and arrive at the same station. The 9 

binary variable ,
,

r r
u v



describes the priority of train u  and v  depart from station r  and arrive at station r  , 10 

which also is the priority of train u  and v  occupy the segment between station r  and r  . Specially, if ur r  11 

and vr r , constraints (II -4a) also reflect the departure order of two trains from the same original station.  12 

In the single-track railway system, when a train is entering into the station and the other train with the same 13 

direction is ready to depart from the same station, a safety time interval must be guaranteed so that station 14 

dispatchers have enough time to switch signals to arrange routes for different trains. Constraints (II -5a) and (II -5b) 15 

ensure that the Arrival-Departure headway adh  is satisfied between the arrival and departure trains with the same 16 

direction. The binary variable , ,
AD

u v r  presents the arrival and departure priority of train u  and v  at station r . 17 

Similarly, the Departure-Arrival headway dah  is ensured by constraints (II -5c) and (II -5d). It should be pointed 18 

out, theses headways are not considered at the original and destination stations. In this paper, the original and 19 

destination stations are assumed to be the yard stations. Different to the intermediate stations, the yard stations have 20 

sufficient track number and signal equipment, and may pull in and out trains at the same time. When a train arrives 21 

at a destination station, it is moved from railway system immediately. A train may departure from the original station 22 

when its departure time is satisfied and no trains with opposite direction travel on its next segment. 23 

Constraints (II -6) specify the meet-crossing behavior between two trains in opposite directions, which is a 24 

distinct characteristic of single-track railway system. If two trains in opposite directions need to occupy the same 25 

segment at the same time, one train must wait at station so that the other train can meet and cross. The binary 26 

variable ,
,

r r
u v



 is introduced to describe the priority of train u  and v  for the segment between station r  and 27 

r  . Similar to constraints (II -4), constraints (II -7) ensure the safety headway when two trains with opposite 28 

directions arrive at and depart from the same station. The binary variable , ,
AA

u v r  and  , ,
DD
u v r  describe the arrival 29 

and departure priority of train u  and v  at station r , respectively. And parameters aag  and ddg  denote the 30 

Arrival-Arrival and Departure-Departure headway between the trains in opposite directions, respectively. 31 

Constraints (II -8) focus on the finite track number in the stations. Typically, the station capacity is related to 32 

the number of tracks or platforms at station. In this paper, it is assumed that one track (or one siding) in a station 33 
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only provides service for at most one train. And hence, at any time, the number of trains dwelling on the station 1 

cannot exceed the number of tracks. We adopt the track choices of trains at stations to reflect the finite station 2 

capacity. Binary variable ,
i
u r

 
represents whether train u  select the track i  in station r ( ur R ). If it is true, 3 

then , 1i
u r  , otherwise , 0i

u r  . Constraints (II -8a) state that one train can only hold one track in a station. If 4 

two trains select the same track in a station, one train can only arrive at a station after the other train has departed 5 

from the station, and the Departure-Arrival headway between them is guaranteed. Clearly, constraints (II -8b) and 6 

(II -8c) ensure that one track in station can only provide service for at most one train at a time, and moreover 7 

guarantee that the number of trains at station does not exceed the station capacity at any moment. 8 

Additionally, constraints (II -9) link the entering and leaving times of each train on a segment. Parameter ,r r
up



 
9 

is the free running time of train u  at the segment between station r  and r  . If the train stops at station r  or 10 

r  , two extra time loss ,
a
u e  and

 ,
d
u e  are taken into account due to the acceleration of train departing from station 11 

and deceleration of train arriving at station, respectively. Here, the binary variable r
u  is introduced to reflect 12 

whether train u  stop at station r , and its identification is presented by constraints (II -10). Obviously, if 0r
u  , 13 

constraints (10) ensure , ,
a d
u r b u rt t  ; otherwise, , ,

a d
u r b u rt t  . Note that parameter b  is the basic running 14 

time of train at station. Finally, constraints (II -11) model the binary characteristic of the variables. 15 

II.B The model formulation and solution method for identifying the maximal average deviation parameter 16 

( max
ND ) between in- and out-bound train flows 17 

Model formulation: 18 

The model for identifying parameter max
ND  is described as follows. Firstly, the objective of the model is to 19 

minimize the total travel time of the loaded trains in the single-track railway system (Eq. (II -1)). Constraints (II -3)-20 

(II -11) are included to ensure that the travel paths of trains satisfy the characteristic of single-track railway system. 21 

A class of specific constraints, which are expressed by (II -12a) and (II -12b), are required for ensuring that either 22 

outbound or inbound trains is free flow. The binary variable OI  is introduced to identify whether outbound or 23 

inbound train flow is free. If 1OI  , constraints (II -11a) indicate that the travels of all outbound trains are free; 24 

while constraints (II -12b) are redundant. If 0OI  , constraints (II -12b) ensure inbound trains are free flow.  25 

, , ,( )
u u

a d
OI u r u r u j j

j J

t t f 


        
Ou V                         (II -12a) 26 

, , ,(1 ) ( )
u u

a d
OI u r u r u j j

j J

t t f 


       
Iu V                      (II -12b) 27 

{0,1}OI                               (II -13) 28 

Based on the departure and arrival time of in- and out- bound trains at their original and destination stations, 29 
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the value of the maximal average deviation between in- and out- bound train flows is easily calculated by Eq. (II -1 

14). 2 

max
, , , ,| ( ) ( ) | /

u u u u
O I

a d a d
N u r u r u r u r

u V u V

t t t t N
 

    D                      (II -14) 3 

Solution method: 4 

The above model indicates that the value of parameter max
ND  is related to the number of loaded train-pairs 5 

and dispatch rule of in- and out- bound trains. We adopts a simple scheduling rule to estimate the value of max
ND . 6 

Assume the number of the loaded train-pairs is N , and the out-bound train flow is free. The simple rule is described 7 

in Table AII-1. 8 

Table AII-1: A simple rule for calculating the value of 
max
ND   9 

Step 1: Select a random time, and adopt the successive departure pattern to schedule the free 

outbound train flow. 

Step 2: According to the arrival time of outbound train flow at their first station, determine the 

initial time of the first inbound train 1v , which is regarded as the left bound of time 

windows. Moreover, the right bound of time windows is also decided, i.e., 

1 1
, min( | )

v

d
v r jf j J t . 

Step 3: Based on the track number at the intermediate stations, schedule gradually all inbound 

trains. 

Step 4: 
According to the obtained schedule plan, the value of max

ND is calculated. 

The “successive departure pattern” in Step 1 is that all outbound trains or inbound trains depart sequentially 10 

from the same original station, and their departure time interval from the origin is the Departure-Departure headway 11 

( ddh ). For the case of heterogonous trains, the train with higher speed has priority to depart from the original station 12 

for avoiding the delay of trains resulted by the overtaking behavior. In step 3, the number of inbound trains allowed 13 

to successive depart is decided by the track number in the intermediate station. Additionally, the departure times of 14 

inbound trains are also constrained by time windows.  15 

We adopt a simple example to illustrate the above method for calculating max
ND , which is depicted in Figure 16 

AII-1. The track number of the intermediate stations is set to 3, and the number of the loaded train-pairs is 4. 17 

Firstly, outbound trains (1u , 2u , 3u  and 4u ) are freely scheduled in the single-track railway system based 18 

on the successive departure pattern. According to the arrival time of train 1u  at its first station ( 1R ) and idle track 19 

number of the station, the departure time of the first inbound train (1v ) can be deduced. The initial departure time 20 

of train 1v  is set to the left bound of time windows, and moreover the whole time windows ([0, T]) can be 21 

developed. All inbound trains must depart from the original station in this time window.  22 

According to the idle track number of station 1R (p.s., a track of the station has been occupied by outbound 23 
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train flows), the trajectories of two inbound trains with successive departure pattern can be determined based on the 1 

arrival-arrival and arrival-departure headway (aah  and adg ). Similarly, other inbound trains can be scheduled in 2 

the single-track railway system based on the idle track number of next station 2R . 3 

 4 

Figure AII-1 An sample for calculating the value of max
ND  5 


