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Introduction

A large majority (~75%) of breast cancers are oestrogen 
receptor positive (ER+),1 and therefore successful treatment 
of this group remains a key priority for improving breast can-
cer outcomes. Tamoxifen is established as the treatment of 
choice for many ER+ breast cancers (BCER+) in both pre- 
and post-menopausal patients.2 More recently, aromatase 
inhibitors (AIs) have become a preferred choice of treatment 
in cases with a worse prognosis, as defined by high lymph 
node involvement (four or more axillary lymph nodes 
involved) and high tumour grade (grade 3). In post-meno-
pausal cases, high Ki67 or human epidermal growth factor 
receptor 2 (HER2) positivity are also factors favouring the 
use of AIs over tamoxifen.3,4 Nevertheless, tamoxifen 
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remains an extremely common treatment. However, despite 
the well-established efficacy of tamoxifen in this setting,2 
14.5% of patients on 5 years or 13.1% of patients on 10 years 
of adjuvant tamoxifen experience recurrences within 10 years 
of diagnosis. Cumulative recurrence rates increase to 21.4% 
at 15 years from diagnosis if receiving tamoxifen for 10 years, 
accompanied by a death rate of 12.2%.5 Recurrences during 
treatment indicate resistance to therapy, which can be intrin-
sic or induced through various mechanisms namely, loss of 
ER, increased growth factor signalling, or inhibition of 
autophagy and apoptosis.6

CIP2A is an emerging oncoprotein known to drive the 
malignant phenotype through specific pathways. CIP2A has 
been described to be overexpressed in 39% of breast cancer 
cases7 and approximately 70% of de novo acute myeloid leu-
kaemia (AML) patients8 compared to normal tissue. 
Amplification/gain of CIP2A as well as overexpression of 
CIP2A is fairly common across various tumour types.9–11 
Various studies have associated higher CIP2A expression 
with grade, highly proliferative tumours, and stage in distinct 
tumour types such as prostate, gastric, colon, breast, head and 
neck squamous cell carcinoma, and ovarian cancer.7,9,12–17 
Our interest in CIP2A stems from its inhibitory activity on 
protein phosphatase 2A (PP2A), which results in protection 
of MYC from dephosphorylation thereby stabilising the 
oncogenic stimulation of MYC on cell proliferation.7,18,19

The mechanism of CIP2A-dependent inhibition of PP2A 
is not well understood, although some suggest that CIP2A 
binds to the PP2A catalytic subunit allosterically at the inter-
face where it binds the regulatory B subunit, thus altering 
substrate specificity and/or limiting activity.8,19–22 In a 
chronic myeloid leukaemia (CML) model, knockdown of 
CIP2A results in decreased BCR-ABL1 tyrosine kinase 
activity.16 Therapy-induced reduction of BCR-ABL1 activ-
ity (imatinib) in CML reduces the levels of SET, another 
PP2A inhibitor. Patients who still progress to blast crisis 
show elevated CIP2A levels showing that CIP2A maintains 
PP2A inhibition and leads to cancer progression.16

A CIP2A transcriptional signature suggests that CIP2A 
promotes MYC signalling pathway but also other pathways 
as the c-jun N-terminal kinase 2 (JNK2).7,18 CIP2A is involved 
in the regulation of a major group of genes that mediate cel-
lular migration. High CIP2A has been correlated with the 
mesenchymal phenotype in prostate cancer defined by low 
expression of E-cadherin and higher expression of N-cadherin 
and vimentin.23 However, depletion of this endogenous PP2A 
inhibitor caused a significant inhibition of migration which 

was rescued by okadaic acid (an inhibitor of PP2A), hence 
indicating that this process is mediated through the suppres-
sive interaction of CIP2A with PP2A. This may explain the 
correlation between CIP2A overexpression and more aggres-
sive tumour phenotypes and lymph node positivity.18,24

In light of the involvement of CIP2A in cellular migra-
tion and therapeutic resistance, we aimed to investigate 
CIP2A expression within BCER+ patients. In particular, 
we were interested to assess whether CIP2A had a role in 
tamoxifen resistance and therefore whether its expression 
levels could be used to improve prognostication or therapy 
prediction in breast cancer.

Materials and methods

Patients

Ethical approval was obtained from Leeds, UK (East; REC: 
06/Q1206/180). Formalin-fixed paraffin-embedded breast 
cancer tissue was obtained from the Leeds Tissue Bank. A 
cohort of 250 BCER+ patients was enrolled. ER staining 
was scored using the Allred scoring method, as previously 
described.25 All patients were treated with tamoxifen, and 
172/199 of the control group had a follow-up longer than 
5 years. In total, 51 patients experienced a recurrence or 
metastasis while on tamoxifen treatment; therefore, these 
tumours are considered to be tamoxifen resistant (TAMR).26 
Tumour tissue samples were constructed into tissue micro-
arrays (TMAs) with 0.6 mm triplicate cores for each case 
wherever available. Cases were annotated with histopatho-
logical and clinical information including survival, disease-
free survival (DFS), and treatment accompanied by 
metastasis or relapse information (Supplementary Table 1).

CIP2A immunohistochemistry

TMA sections were dewaxed prior to heat-induced antigen 
retrieval in citrate buffer (pH 6.0–6.2) using the PT-link 
(Dako, Santa Barbara, CA) set at 102°C for 20 min. 
Endogenous peroxidase was then blocked for 20 min by 
0.3% H2O2, followed by blocking with normal swine serum. 
TMAs were incubated with 1:200 anti-KIAA1524 (CIP2A; 
HPA039570; Atlas Antibodies, Sweden) at 4°C overnight in 
a humid chamber. Following a 1× Tris-buffered saline (TBS) 
wash, the sections were incubated for 1 h with biotinylated 
goat anti-rabbit antibody (Dako), followed by detection 
using the Avidin–Biotin Complex kit (VECTASTAIN; 

Table 1.  Membranous CIP2A expression in breast cancer with recurrence during tamoxifen treatment (TAMR group) as opposed 
to breast cancer with no recurrence during treatment (Control group).

Membranous CIP2A TAMR group
n = 48 (n (%))

Control group
n = 227 (n (%))

χ2 p Odds ratio

Positive 10 (20.8) 5 (2.5) 22.756 <0.000 10.21 (3.30–31.56)
Negative 38 (79.2) 194 (97.5)

http://journals.sagepub.com/doi/suppl/10.1177/1010428317722064
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Vector laboratories, Burlingame, CA). The antibody was 
validated by western blotting. Whole sections were included 
as negative (primary antibody omitted) and positive controls 
(previously determined CIP2A positive breast tissue sec-
tions) to assess batch staining. Strong positive vascular 
endothelium within sections and cores was used as a staining 
internal control. CIP2A staining could not be assessed for 
three TAMR cases due to no tumour present within cores or 
cores were lost during processing. Cores were scored for 
positivity by two individuals (S.B. and L.M.W.). L.M.W. 
scored 25% of cases, and correlations between scorers were 
assessed to confirm scoring reproducibility (Supplementary 
Table 2). The H-score method was used to score the level of 
immunohistochemical staining in the nuclear, cytoplasmic, 
and membranous compartments separately. The H-score was 
computed as the combinatorial result of the degree of inten-
sity multiplied by the percentage of cells at each intensity. 
The intensity is scored from 0, when no staining at all is seen 
through, to 3, when staining is very strong. Thus, if all cells 
(100%) staining strongly with intensity rated 3, the score 
would be 3 × 100, that is, 300.14,27,28

Statistical analysis

CIP2A staining in the cytoplasmic compartment was catego-
rised as negative (H-score ≤ 30), weakly positive (H-score > 30 
and ≤ 120), and strongly positive (H-score > 120). Membra 
nous and nuclear compartments were categorised as negative 

when H-score was 10 or less and positive when above 10. 
These thresholds have shown the best Kappa agreement 
measures between scorers and implied the best statistical sig-
nificance towards prediction of survival. The Kappa score 
was used to measure agreement between CIP2A categorised 
scores. When cytoplasmic CIP2A scores were categorised 
into negative, weak positive, and strong positive, a Kappa 
score of 0.697 (Supplementary Table 2) was obtained which 
is considered as substantial.29–31 The continuous H-scores of 
the two scorers showed a significant correlation for CIP2A 
expression (Pearson’s and Spearman correlations – 
Supplementary Table 2). This was confirmed by the two-way 
random effects model of intraclass correlation coefficient 
(ICC) which is used to estimate the agreement on continuous 
scores between observers where perfect agreement is denoted 
by 1 and 0 establishes no significant agreement under the 
null hypothesis (Supplementary Table 2).32–35 The ICC val-
ues obtained are above the 0.7 threshold for acceptable reli-
ability as defined for ICC for group comparisons by the 
ISPOR (International Society for Pharmacoeconomics and 
Outcomes Research) task force.36

Statistics were computed using the SPSS (IBM SPSS, 
Chicago, IL). Where two or more cores represented one 
case, the mean score was derived. The overall survival 
(OS) endpoint was taken to be deaths attributed to the 
breast cancer. Death from other causes, where known, was 
censored. Likewise, the endpoint for DFS was any relapse, 
metastasis, or death by breast cancer and any death by 

Table 2.  Cox multivariate analysis of variables associated with breast cancer recurrence (DFS).

Variable Estimated coefficient (B) p

Grade
  Low 0.106
  Moderate 2.944 0.035*
  High 3.193 0.080
Lymph node involvement 2.136 0.120
Size (cm) 1.419 0.010*
NPI Risk
  Low 0.021*
  Moderate 0.254 0.016*
  High 0.397 0.257
Age at diagnosis 1.046 0.000*
Membranous CIP2A 5.449 0.002*
Nuclear CIP2A 1.557 0.519
Cytoplasmic CIP2A
  Negative 0.264
  Weak 0.743 0.398
  Strong 0.195 0.136
Histological type
  Ductal 0.147
  Lobular 0.288 0.052
  Other 1.125 0.887

DFS: disease-free survival; NPI: Nottingham prognostic index.
Grade, positive lymph nodes, NPI, CIP2A staining (membranous, nuclear, and cytoplasmic), and histological type were considered as categorical 
indicators. Control group n = 163; Study group n = 24.
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unknown or other causes was censored. Cox multivariate 
analysis was performed using the Enter method. Tests per-
formed were two-tailed and considered significant when 
p < 0.05.

Results

Membranous CIP2A expression predicts a 
worse survival in BCER+

CIP2A was weakly (H-score = 30–120) expressed in the cyto-
plasm in 40.0% of cases and strongly (H-score > 120) in 2.4%. 
Any positive expression in the nuclear and membranous 

compartments was less common, with positivity (H-score > 10) 
in only 2.8% and 6.1%, respectively (Figure 1(a)–(d)). 
Typical weak staining in normal tissue is illustrated in Figure 
1(e). Nuclear and membranous staining were both associated 
with cytoplasmic staining (χ2 = 12.05, p = 0.002; χ2 = 12.04, 
p = 0.002, respectively). Conversely, there was no significant 
association between nuclear and membranous staining 
(χ2 = 0.85, p = 0.359).

There was no association of cytoplasmic or nuclear CIP2A 
with histopathological features or survival (data not shown). 
Conversely, membranous CIP2A was found to be signifi-
cantly associated with recurrence or metastasis during tamox-
ifen treatment (Table 1). CIP2A expression in the tumour cell 

Figure 1.  Immunohistochemistry staining patterns of CIP2A in (a-d) breast cancer and (e) normal breast ducts. (a) Nuclear 
staining, (b) membrane staining, (c) weak cytoplasmic staining, and (d) intense and prevalent cytoplasmic staining are presented. (e) 
Normal breast ducts show negative to weak cytoplasmic staining.
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membrane was detected in 20.8% of breast cancer that 
recurred while on tamoxifen treatment (TAMR) as opposed to 
2.5% occurrence in the control group. In fact, membranous 
CIP2A was found to predict strongly a worse OS and worse 
DFS regardless of continued tamoxifen use (Figure 2). Breast 
tumours with no evidence of membranous CIP2A expression 
have an 85% and 77% 5-year and 10-year cumulative sur-
vival rate, respectively, while cases with membrane expres-
sion of CIP2A showed substantially lower survival rates of 
60% and 39% at 5-years and 10-years, respectively.

Membranous CIP2A is an independent 
predictor of recurrence

Cox multivariate analysis of available factors indicates 
that membranous CIP2A along with other histopathologi-
cal factors is significant independent predictor of DFS 
(Table 2). Interestingly, there was no association between 
membrane CIP2A staining and Nottingham prognostic 
index (NPI), lymph node involvement, tumour size, grade, 
and histological type (χ2 test, respective p values: 0.353, 
0.151, 0.614, 0.265, and 0.760). Membranous CIP2A 
shows the highest risk across all categorical variables.

Discussion

Various studies have shown a preferential overexpression of 
CIP2A RNA in basal and HER2-enriched breast cancer 
when compared to BCER+.9,11,18 Of note, CIP2A is weakly 
expressed in normal breast tissue as protein and transcript.7,15 
Similar to the study of Tseng et al. (2012)37 and Choi et al.,38 
in this study the H-score was used to obtain more informa-
tion on the distribution of CIP2A scores and intensities. 
Although the H-score provides more information, there is a 
lack of consensus about the method used to score CIP2A 

immunohistochemical staining. Most studies score only the 
cytoplasmic compartment and/or only record intensity 
scores.12,39–41 Nuclear staining was scored independently 
from the cytoplasmic compartment in the study of Böckelman 
et al.42 as positive or negative. Another study considered 
only the percentage of cells that were stained without consid-
ering localisation and intensity.15 Harmonisation is required 
to allow multivariate analysis taking studies together to 
increase the power to characterise prognostic and therapeutic 
outcomes.

Overall, CIP2A expression has been correlated with 
aggressive breast cancer and also predicts a worse progno-
sis at 5-year follow-up.7,15 Oestradiol has been shown to 
promote CIP2A expression while in the absence of CIP2A, 
oestradiol-enhanced proliferation was compromised.38 A 
study by Liu and colleagues,43,44 showed that tamoxifen-
induced apoptosis was associated with downregulation of 
CIP2A and p-AKT in tamoxifen-sensitive breast cancer 
cells including the ER+ MCF7. Interestingly, we found 
that membranous expression of CIP2A was significantly 
higher in patients with tamoxifen resistance.

The biological mechanism of nuclear and membranous 
CIP2A expression still needs to be elucidated. Both stain-
ing patterns have been previously observed.42,45 Despite a 
correlation between nuclear and cytoplasmic staining, we 
expect CIP2A to have distinct roles in the different cellular 
compartments. Cytoplasmic CIP2A is available for PP2A 
regulation and therefore subsequent MYC activation, 
while nuclear CIP2A might be involved in transcription 
regulation or is transported into the nucleus while in com-
plex with other protein subunits. Nuclear CIP2A staining 
significantly predicts a better survival in ovarian cancer,13 
although in this study the incidence of nuclear staining was 
too low to allow robust analysis of correlations with histo-
pathological factors or prognosis.

Figure 2.  Kaplan–Meier survival curves for membrane CIP2A expression in breast cancer.
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Localisation of CIP2A to the cellular membrane might be 
caused by interaction with membrane receptors. CIP2A has 
been described to interact with cell surface receptors like 
UNC5H. Interaction of CIP2A with UNC5H in the presence 
of netrin-1 inhibits PP2A-mediated dephosphorylation of 
death-associated protein kinase (DAPk) thus evading apop-
tosis.46 Transforming growth factor beta (TGFB) has also 
been known to interact with PP2A, which might contribute 
to the contradictory regulation of p-AKT and MYC.47–49 In 
metastatic breast cancer (MDA-MB-231), the transition of 
tumour-suppressive role to tumour-promoting role of TGFB 
has been attributed to the nuclear factor of activated T-cells 
(NFAT), which is shown to drive epithelial-to-mesenchymal 
transition (EMT) and c-MYC expression.50 Here, we suggest 
another potential mechanism for this transition. Binding of 
PP2A to TGFB will promote tumour-suppressive effects 
which can be reversed if CIP2A also complexes with PP2A 
leading to c-MYC protection as well as upregulation of 
p-AKT. Interestingly, downregulation of AKT through 
expression of the TGFB growth factor was described as an 
off-target effect of tamoxifen.49,51

Of importance, Liu et al.44 showed an induced sensi-
tivity to tamoxifen in the triple-negative breast cancer 
cell line HCC-1937, when re-activating PP2A using for-
skolin. This suggests the potential for use of combina-
tory therapy for BCER+ with membranous CIP2A 
staining.

Concluding remarks and further 
recommendations

Membranous CIP2A is an indicator for resistance to 
tamoxifen within the hormone receptor–positive breast 
cancer setting. Membranous CIP2A might prove to be use-
ful in selecting ER+ patients with risk of developing 
tamoxifen resistance for closer monitoring or even for 
assisting treatment decisions. Further investigation of the 
function of CIP2A in the cellular membrane might identify 
malignant mechanisms that are independent of ER signal-
ling. In addition, CIP2A protein expression and cellular 
distribution need further investigation to assess clinical 
significance in tamoxifen resistance.
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