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INTRODUCTION

Survival analysis involves the consideration of the time between a
fixed starting point (e.g. diagnosis of cancer) and a terminating
event (e.g. death). The key feature that distinguishes such data
from other types is that the event will not necessarily have
occurred in all individuals by the time the study ends, and for
these patients, their full survival times are unknown. For instance,
in studies that measure the length of survival after diagnosis of
cancer, it is common for a proportion of individuals to remain
alive and disease-free at the end of the follow-up period, and for
these patients, we know only a lower limit on their actual time to
event. Thus, special methods are required for these type of data.
The explanation and demonstration of some of the methods
proposed to analyse such data are the basis of this series.

In the first paper of this series (Clark et al, 2003), we described
initial methods for analysing and summarising survival data
including the definition of hazard and survival functions, and
testing for a difference between two groups. We continue here by
considering various statistical models and, in particular, how to
estimate the effect of one or more factors that may predict survival.

THE NEED FOR MULTIVARIATE STATISTICAL
MODELLING

The previous paper demonstrated the construction of (Kaplan –
Meier) survival curves for different patient groups, and introduced
the logrank test to investigate differences between them. Both these
methods are examples of univariate analysis; they describe the
survival with respect to the factor under investigation, but
necessarily ignore the impact of any others. It is more common,
at least in clinical investigations, to have a situation where several
(known) quantities or covariates, potentially affect patient prog-
nosis. For example, suppose two groups of patients are compared:
those with and those without a specific genotype. If one of the
groups also contains older individuals, any difference in survival
may be attributable to genotype or age or indeed both. Hence,
when investigating survival in relation to any one factor, it is often
desirable to adjust for the impact of others. Moreover, while the
logrank test provides a P-value for the differences between the

groups, it offers no estimate of the actual effect size; in other
words, it offers a statistical, but not a clinical, assessment of the
factor’s impact. The use of a statistical model improves on these
methods by allowing survival to be assessed with respect to several
factors simultaneously, and in addition, offers estimates of the
strength of effect for each constituent factor. Therefore, statistical
models are important and frequently used tools which, when
constructed appropriately, offer valuable insight into the survival
process.

Several statistical methods have been proposed for modelling
survival analysis data. We will describe the most important models
and illustrate their application using example datasets described in
the previous paper (Clark et al, 2003). As before, we will assume
throughout that all survival times are independent of each other
and that censoring occurs solely as right-censoring and is
uninformative. The focus is on covariates that are measured at
the time of entry to the study, that may be continuous (e.g. the
patient age or tumour size), binary (e.g. gender), unordered
categorical (e.g. histology) or ordered categorical or ordinal (e.g.
performance status or FIGO stage). In the next paper in this series,
we will discuss the statistical assumptions made when using
statistical models, and provide advice on choosing the appropriate
model and covariates therein. We will also consider how to model
covariates that change values over time (called ‘time-dependent’ or
‘updated’ covariates).

The methods we present here may be divided into two broad
categories: proportional hazard approaches (including the semi-
parametric Cox model and fully parametric approaches) and
accelerated failure time models. These methods have different
properties and interpretations, but all may be used to summarise
survival data.

THE COX (‘SEMI-PARAMETRIC’) PROPORTIONAL
HAZARDS MODEL

The Cox (proportional hazards or PH) model (Cox, 1972) is the
most commonly used multivariate approach for analysing survival
time data in medical research. It is a survival analysis regression
model, which describes the relation between the event incidence,
as expressed by the hazard function and a set of covariates. A fuller
explanation of the hazard function was given in the previous
article (Clark et al, 2003). Put briefly, the hazard is the
instantaneous event probability at a given time, or the probabilityReceived 6 December 2002; accepted 30 April 2003
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that an individual under observation experiences the event in a
period centred around that point in time.

Mathematically, the Cox model is written as

hðtÞ ¼ h0ðtÞ� expfb1x1 þ b2x2 þ � � � þ bpxpg

where the hazard function h(t) is dependent on (or determined by)
a set of p covariates (x1, x2, y, xp), whose impact is measured by
the size of the respective coefficients (b1, b2, y, bp). The term h0 is
called the baseline hazard, and is the value of the hazard if all the xi

are equal to zero (the quantity exp(0) equals 1). The ‘t’ in h(t)
reminds us that the hazard may (and probably will) vary over time.
An appealing feature of the Cox model is that the baseline hazard
function is estimated nonparametrically, and so unlike most other
statistical models, the survival times are not assumed to follow a
particular statistical distribution.

The Cox model is essentially a multiple linear regression of the
logarithm of the hazard on the variables xi, with the baseline
hazard being an ‘intercept’ term that varies with time. The
covariates then act multiplicatively on the hazard at any point in
time, and this provides us with the key assumption of the PH
model: the hazard of the event in any group is a constant multiple
of the hazard in any other. This assumption implies that the hazard
curves for the groups should be proportional and cannot cross (see
Figure 1 for examples of each). Proportionality implies that the
quantities exp(bi) are called hazard ratios. A value of bi greater
than zero, or equivalently a hazard ratio greater than one, indicates
that as the value of the ith covariate increases, the event hazard
increases and thus the length of survival decreases. Put another
way, a hazard ratio above 1 indicates a covariate that is positively
associated with the event probability, and thus negatively
associated with the length of survival. This proportionality
assumption is often appropriate for survival time data but it is
important to verify that it holds. We discuss methods for assessing
proportionality in the next paper in this series.

The Cox PH model fitted to the ovarian cancer data

This large database, as described in the previous paper of this
series (Clark et al, 2003), was used to derive a prognostic index for
overall survival among ovarian cancer patients in Clark et al
(2001). Their analysis included 10 variables, but for simplicity we
will consider five, all of which were measured at diagnosis: FIGO

stage (an ordinal covariate taking values of 1, 2 3 or 4), histology
(one of seven subtypes), grade (1, 2 or 3), ascites (yes/no) and
patient age.

Table 1 shows the effect sizes (given as hazard ratios), 95%
confidence intervals (CI), regression coefficients and statistical
significance for each of these in relation to overall survival. Each
factor is assessed through separate univariate Cox regressions
(left-hand columns). However, the aim of the database is to
describe how the factors jointly impact on survival, and so all five
factors were incorporated into the multivariate model (right-hand
columns). It may be seen that higher FIGO stage, higher grade,
presence of ascites and increased age impaired survival to varying
(and statistically significant) degrees. The histology was also of
importance: the figures describe the survival of patients with each
histology type in comparison with the serous type. In principle,
any type with a reasonable number of patients could be chosen as
the baseline of comparison. On multivariate analysis Mucinous
and serous were the tumour types with the best prognosis, whereas
undifferentiated and mixed mesodermal were the worst. It is
possible to present P-values for the comparisons between each
type and serous, but we have given an overall likelihood ratio test
for the differences between the categories as a whole. The FIGO
stage could be modelled as a categorical variable in the same
manner as grade and histology, but assuming it is a continuous
variable with a linear trend across the four categories performed
sufficiently well.

PARAMETRIC PH MODELS

Parametric PH models are a class of models similar in concept and
interpretation to the Cox (PH) model. The key difference between
the two is that the hazard is assumed to follow a specific statistical
distribution when a fully parametric PH model is fitted to the data,
whereas the Cox model enforces no such constraint. Other than
this, the two model types are equivalent. Hazard ratios have the
same interpretation, whether derived from a Cox or a fully
parametric regression model, and the proportionality of hazards is
still assumed.

A number of different parametric PH models may be derived by
choosing different hazard functions. As shown previously, there is
a direct link between the survival and hazard, and the choice of
hazard distribution determines that of the survival. In fact, the
models commonly applied, such as the Exponential, Weibull or
Gompertz models, take their names from the distribution that the
survival times are assumed to follow, but the most distinguishing
features between them are in the hazard function. Examples of
survival and hazard functions derived from some of these
parametric models were presented in the previous paper (Clark
et al, 2003). Figure 1 shows increasing and decreasing Weibull
hazard functions, as well as two groups with the latter that are
proportional to each other.

Parametric models fitted to the ovarian cancer data

The estimated hazard function of the ovarian cancer data as
displayed in the previous paper (Clark et al, 2003) may be
consistent with that derived from a Weibull PH model with
decreasing hazard. Fitting this to the ovarian cancer database gives
similar results as the Cox model (see Table 2), and may be
interpreted in the same manner. Methods to check for the
appropriateness of the Weibull distribution will be discussed in
the next paper of this series.

COMPARISON OF THE TWO PH APPROACHES

The main drawback of parametric models is the need to specify the
distribution that most appropriately mirrors that of the actual
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Figure 1 Example of (non-) proportional hazards (groups (c) and (d)
only have proportional hazards) using the Weibull distribution. For the
Weibull survival model, the hazard function h(t)¼ ls(lt)s	1 for l, s40: (a)
increasing hazard (l¼ 0.5, s¼ 1.25); (b) decreasing hazard (l¼ 0.25,
s¼ 0.75); (c) decreasing hazard (l¼ 0.5, s¼ 0.5); (d) decreasing hazard
(l¼ 0.25, s¼ 0.5).
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survival times. This is an important requirement that needs
to be verified and an appropriate distribution may be difficult
to identify. Where a suitable distribution can be found,
however, the parametric model is more informative than the
Cox model. It is straightforward to derive the hazard function and
to obtain predicted survival times when using a parametric model,
which is not the case in the Cox framework (the use of such
quantities is discussed in the next section). Additionally, the
appropriate use of these models offers the advantage of being
slightly more efficient; they yield more precise estimates (i.e.
smaller standard errors).

The results from the Cox or parametric PH models may be
compared directly, as the model types are merely different
approaches to assessing the same quantity. For either method to
be valid: (a) the covariate effect needs to be at least approximately
constant throughout the duration of the study, and (b) the
proportionality assumption must hold. These important issues will
be addressed in the subsequent paper in this series.

INTERPRETING THE PH MODEL: BEYOND THE
HAZARD RATIO

In addition to the ratio of two hazards, it is possible to obtain other
information from a PH regression model. One simple (and
possibly underused) quantity that may be derived from a survival
model is the predicted survival proportion at any given point in
time for a particular risk group. The survival proportion for a
given risk group at any time, S(t), is equal to

SðtÞ ¼ S0ðtÞexpðgÞ

where S0(t) is the baseline survival (the survival proportion when
all covariates are equal to zero) and g is equal to
b1x1 þ b2x2 þ � � � � þbpxp. Once the value of the baseline survival
at a given time is derived, then the predicted survival probabilities
for patients with any specified covariate values xi are easily
obtained. This information could then be displayed via tabular or

Table 1 Hazard ratios from the Cox PH model for the ovarian dataset

Univariate analysis Multivariate analysis

Covariate Coefficient (bi) HR [exp(bi)] 95% CI P-value Coefficient (bi) HR [exp(bi)] 95% CI P-value

FIGO stage 0.809 2.24 (2.03–2.48) o0.001 0.731 2.08 (1.82–2.37) o0.001

Histology o0.001 o0.001
Serous (0.000) (1.00) (0.000) (1.00)
Mucinous 	0.727 0.48 (0.38–0.61) 	0.422 0.66 (0.50–0.85)
Endometroid 	1.162 0.31 (0.22–0.45) 0.198 1.22 (0.80–1.85)
Clear cell 	0.343 0.71 (0.52–0.97) 0.342 1.41 (0.99–2.00)
Adenocarcinoma 0.119 1.13 (0.74–1.72) 0.501 1.65 (0.91–2.99)
Undifferentiated 0.390 1.48 (0.81–2.70) 0.746 2.11 (1.03–4.29)
Mixed mesodermal 0.614 1.85 (1.28–2.66) 0.789 2.20 (1.45–3.35)

Grade o0.001 o0.001
1 (0.000) (1.00) (0.000) (1.00)
2 1.116 3.05 (1.90–4.91) 0.885 2.42 (1.40–4.19)
3 1.650 5.20 (3.31–8.18) 0.885 2.42 (1.40–4.18)

Absence of ascites 	0.798 0.45 (0.37–0.55) o0.001 	0.396 0.67 (0.54–0.84) o0.001
Age (per 5-year increase) 0.153 1.17 (1.12–1.21) o0.001 0.133 1.14 (1.09–1.19) o0.001

HR¼ hazard ratio, CI¼ confidence interval.

Table 2 Hazard ratios from the Weibull PH model for the ovarian dataset

Univariate analysis Multivariate analysis

Covariate Coefficient (bi) HR [exp(bi)] 95% CI P-value Coefficient (bi) HR [exp(bi)] 95% CI P-value

FIGO stage 0.862 2.37 (2.14–2.62) o0.001 0.768 2.16 (1.89–2.46) o0.001

Histology o0.001 o0.001
Serous (0.000) (1.00) (0.000) (1.00)
Mucinous 	0.804 0.45 (0.35–0.57) 	0.496 0.61 (0.47–0.79)
Endometroid 	1.276 0.28 (0.20–0.40) 0.120 1.13 (0.75–1.70)
Clear cell 	0.419 0.66 (0.48–0.90) 0.346 1.41 (0.99–2.02)
Adenocarcinoma 0.113 1.12 (0.73–1.71) 0.499 1.65 (0.91–2.97)
Undifferentiated 0.397 1.49 (0.82–2.71) 0.765 2.15 (1.06–4.37)
Mixed Mesodermal 0.638 1.89 (1.31–2.73) 0.804 2.23 (1.47–3.40)

Grade o0.001
1 (0.000) (1.00) o0.001 (0.000) (1.00)
2 1.154 3.17 (1.97–5.10) 0.928 2.53 (1.47–4.36)
3 1.727 5.62 (3.58–8.84) 0.895 2.45 (1.43–4.20)

Absence of ascites 	0.840 0.43 (0.36–0.52) o0.001 	0.404 0.67 (0.54–0.83) o0.001
Age (per 5-year increase) 0.165 1.18 (1.14–1.22) o0.001 0.138 1.15 (1.10–1.20) o0.001

HR¼ hazard ratio, CI¼ confidence interval.
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graphical displays. Figure 2 illustrates this by giving predicted 5-
year survival according to patient age and FIGO stage. Further
examples are demonstrated by Christensen (1987) based on the
Cox model, but can also be used when fitting fully parametric
models. In a previous analysis that involved some of the patients in
the present data, Clark et al (2001) produced a nomogram to
summarise the impact of these and other covariates, and thus
allows the reader to predict the median survival and the 2- and 5-
year survival probabilities for patients with given prognostic
information.

The advantage of fitting a parametric survival model is that
predictions of the event survival, event hazard, mean and median
survival times are readily available. For FIGO stages I–IV, the
median survival times are estimated to be 7.8, 4.0, 2.0 and 1.0
years, respectively.

ACCELERATED FAILURE TIME MODELS

The accelerated failure time (AFT) model is a different type of
model that may be used for the analysis of survival time data. For a
group of patients with covariates (x1, x2, y xp), the model is
written mathematically as

SðtÞ ¼ S0ðjtÞ

where S0(t) is the baseline survivor function and j is an
‘acceleration factor’ that depends on the covariates according to
the formula

j ¼ expfðb1x1þb2x2 þ � � � þ bpxpÞg:

The principle here is that the effect of a covariate is to stretch or
shrink the survival curve along the time axis by a constant relative
amount j. Figure 3 demonstrates this for the case of a single
covariate (x1) with two levels, for example, x1¼ 0 for a placebo
group and x1¼ 1 for a new treatment group. The survival
probabilities, S(t), for the placebo and new treatment groups are
S0(t) and S0(jt), respectively. The proportion of patients who are
event-free in the placebo group at any time point t1 is the same as
the proportion of those who are event-free in the new treatment
group at a time t2¼jt1. Figure 3 shows the cases where j41 and
jo1, which represent situations where the length of survival is
increased and decreased in the new treatment group compared
with the placebo, respectively.

The AFT model is commonly rewritten as being log-linear with
respect to time, giving

logðTÞ ¼ b0 þ b1x1 þ b2x2 þ � � � þ bpxp þ e

where e is a measure of (residual) variability in the survival times.
Thus, the survival times can be seen to be multiplied by a constant
effect under this model specification, and the exponentiated
coefficients, exp(bi), are referred to as time ratios. A time ratio
above 1 for the covariate implies that this ‘slows down’, or
prolongs the time to the event, while a time ratio below 1 indicates
that an earlier event is more likely.

When the survival times follow a Weibull distribution, it can be
shown that the AFT and PH models are the same. However, the
AFT family of models differs crucially from the PH model types in
terms of their interpretation of effect sizes as time ratios as
opposed to hazard ratios.

The survival times are usually assumed to follow a specific
distributional form in the AFT framework. Distributions such as
the Log-Normal, Log-Logistic, Generalised Gamma and Weibull
may be used to represent such survival data. Alternative methods
include the method of Buckley and James (1979), which is
discussed by Stare et al (2000), and semiparametric AFT models,
in which the baseline survivor function is estimated nonparame-
trically (see Wei, 1992, for an overview), but have not yet been
widely implemented in statistical software.

As with the PH approach, other quantities such as projected
survival probabilities may be derived. Also in keeping with PH
models is the fact that AFT models make assumptions; the
appropriate choice of statistical distribution needs to be made, and
also the covariate effects are assumed to be constant and
multiplicative on the timescale, that is, that the covariate impacts
on survival by a constant factor.

Parametric AFT models fitted to the lung cancer trial data

We use the non-small cell lung cancer dataset to illustrate the AFT
model, focusing on the relapse-free survival (i.e. , the time from
diagnosis to the reappearance of cancer, with patients censored at
time of death if no recurrence had appeared). Again, we present
both the univariate and multivariate effect sizes in Table 3. The
specific comparison of interest was the effect of adjuvant
(platinum-based) chemotherapy and radiotherapy compared with
radiotherapy alone. The unadjusted treatment effect may be
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summarised by a time ratio of 1.91 (95% CI: 1.21–3.01; P¼ 0.005),
which, having allowed for other covariates increased slightly to
2.05. Therefore, we can conclude that the time to recurrence was
significantly prolonged (approximately doubled) among patents
given adjuvant chemotherapy in comparison with those who were
not.

Again, we can derive model-based predictions: overall, patients
allocated to receive adjuvant chemotherapy had a predicted
median survival time of approximately 16 months, as opposed to
8 months among those treated with radiotherapy alone. Other
factors are also significant and would influence these times, but
these are of less importance in the context of the comparative trial.
We will return to this example in the next paper of this series.

WHICH MODEL SHOULD WE USE: PH OR AFT?

From a statistical viewpoint, an obvious way to choose between the
two model types is to fit a type that is in keeping with the data. If
the AFT model clearly fits the data better than the PH model, or
vice versa, this model may be adopted as being the more
appropriate. However, in some cases, either type of model may
appear to fit the data adequately. In such instances, the choice of
model may be influenced by other factors. For instance, if other
studies of a similar nature had all used the Cox regression and
reported the results as hazard ratios, one may be tempted to follow
suit to aid comparability. Against this, the parametric approach
offers more in the way of predictions, and the AFT formulation
allows the derivation of a time ratio, which is arguably more
interpretable than a ratio of two hazards. As yet, however, AFT
models are relatively unfamiliar and seen rarely in medical
research papers (see Kay and Kinnersley, 2002).

OTHER APPROACHES

Stratified survival analysis

A more straightforward way to incorporate covariates into a
survival analysis is to use a stratified survival analysis. For
example, suppose the covariate of primary interest is treatment,
but we wish to control for the clinical stage of the tumour when
making the comparison. Here, the survival in each treatment
group can be compared within each stage of disease (the ‘strata’)
by the logrank or some other method, and the differences within
each stratum are then combined to give an overall comparison of
treatments that has been adjusted for the stage.

The strength of this method is in its simplicity: as the logrank
test is nonparametric, few distributional assumptions are made,
and its interpretation is straightforward. Its main limitation is that
it is only applicable when the covariate is categorical (or with
continuous variables that have been arbitrarily categorised).
Further, this method does not perform well with several covariates,
as the number of individuals in each stratum quickly becomes too
small to allow reasonable comparisons. In addition, it does not
quantify the strength of effect of each variable, or even offer a P-
value for factors other than the one of primary interest. This
method is not generally regarded as a formal statistical model, but
is of use where a very small number of covariates are to be
considered, if only as an exploratory method of analysis.

Aalen’s additive model

Another approach to modelling the relationship between survival
and covariates is to assume that the covariates act additively on the
hazard. Aalen’s additive hazard model (Aalen, 1989) is one method
that has been suggested for this, but its properties are rather unlike
any other model described in this paper. The covariates are
assumed to impact additively upon a (unknown) baseline hazard,
but the effects are not constrained to be constant. The impact is
therefore allowed to vary freely over time according to the
underlying equation

hðtÞ ¼ h0ðtÞ þ b1ðtÞx1 þ b2ðtÞx2 þ � � � þ bpðtÞxp

where h(t) is the hazard, h0(t) is the baseline hazard and the bi(t)
are coefficients, which may change in magnitude and even sign
with time. Compare this with the Cox regression, where h0(t) is
also estimated nonparametrically, but the bi quantify the multi-
plicative effect of covariate i on the hazard and are assumed
constant at all times.

As it is not straightforward to estimate h0(t) nonparametrically,
the cumulative baseline hazard is used and the regression
coefficients that are actually estimated from the data are also the
cumulative (additional) hazard

BiðtÞ ¼
Zt

0

biðuÞdu

The usual method of representing these effects is to graph them
against time. The further Bi(t) is from zero at time t, the greater the
effect the covariate has had on the hazard over the course of the
study up to t. The values of bi(t), the absolute increase in hazard at

Table 3 Time ratios from the generalised gamma AFT model for the lung cancer trial

Univariate analysis Multivariate analysis

Covariate Coefficient (bi) TR exp(bi) 95% CI P-value Coefficient (bi) TR exp(bi) 95% CI P-value

Treatment (RT+CAP vs RT alone) 0.648 1.91 (1.21–3.01) 0.005 0.718 2.05 (1.29–3.23) 0.002
Cell type (Sq vs non-Sq) 0.506 1.66 (1.01–2.71) 0.04 0.511 1.67 (1.04–2.68) 0.03
Performance status (8–10 vs 5–7) 0.767 2.15 (1.11–4.19) 0.02 0.729 2.07 (1.00–4.29) 0.05
Tumour status 0.59 0.60

1 (0.000) (1.00) — (0.000) (1.00) —
2 	0.189 0.83 (0.40–1.70) 	0.353 0.70 (0.35–1.41)
3 	0.388 0.68 (0.31–1.48) 	0.378 0.69 (0.31–1.53)

Nodal involvement 0.87 0.97
None (0.000) (1.00) — (0.000) (1.00) —
Limited 0.122 1.13 (0.46–2.79) 	0.059 0.94 (0.36–2.48)
Extensive 0.206 1.23 (0.55–2.73) 0.029 1.03 (0.42–2.54)

Age at diagnosis (/years) 	0.013 0.99 (0.96–1.01) 0.34 	0.011 0.99 (0.96–1.01) 0.41
Gender (male vs female) 0.032 1.03 (0.62–1.71) 0.90 	0.007 0.99 (0.59–1.67) 0.98
Weight loss (X10 vs o10%) 	0.477 0.62 (0.29–1.33) 0.22 	0.337 0.71 (0.34–1.51) 0.38
Race (white vs non-white) 0.440 1.55 (0.81–2.98) 0.19 0.202 1.22 (0.61–2.46) 0.57

TR¼ time ratio, CI¼ confidence interval, RT¼ radiotherapy, CAP¼ cytoxan, doxorubicin and platinum-based chemotherapy, Sq¼ squamous.
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time t, are not actually observed, but their relative size may be
inferred from the slope of the line. These plots are sometimes
called Aalen plots, and they are also used to provide an informal
assessment of the adequacy of the proportional hazards assump-
tion in the Cox model, although Aalen considered its primary role
as an alternative model in its own right (Aalen, 1993).

The flexibility of this approach is tempered by the lack of an
easy interpretation. The Bi(t) coefficients are not easy to under-
stand, and as they change repeatedly over time, can offer no single
quantifiable effect size. Formal tests of statistically significant
covariate effects may be carried out, but Aalen plots are essentially
the only manner with which to interpret the effect sizes. These
reasons, together with the relative lack of statistical software, are
probably the deciding factors in the relatively minimal use of
Aalen’s model.

Classification trees and artificial neural networks

Two relatively recent developments are classification trees and
artificial neural networks. These methods differ substantially in
their complexity and interpretation to the methods presented here
and to each other. Both approaches are described in more detail in
a later paper of this series.

DISCUSSION

The principal strength of statistical models is their ability to assess
several covariates simultaneously. The strengths of the stratified
logrank test and other such methods are their obvious simplicity
and the fact that they make fewer parametric assumptions of the
data. Although these reasons are usually insufficient to suggest that
the stratified method be used more widely, this second feature is a

relevant one, because it needs to be kept in mind that all the
models introduced here make certain distributional assumptions
of the survival times that will not always be met.

We have focused on the Cox model, the class of parametric PH
models and AFT models as tools with which to analyse survival
time data. Other models exist (see, e.g., Collett (1994) for a more
practical demonstration of some alternatives and Bagdonavičius
and Nikulin (2001) for the theoretical background), but many are
similar to, if not extensions of, the approaches we have discussed.
The use of the Cox model offers greater flexibility than parametric
alternatives and, in particular, does not require the direct
estimation of the baseline hazard function (i.e. it avoids the need
to specify the distribution of the survival times). However, the
assumption of proportional hazards is a crucial one that needs to
be fulfilled for the results to be meaningful, and will not always be
satisfied. Further, while the Cox PH model may be valid, other
parametric models will produce more precise estimates where the
distribution is specified correctly.

A further concern is that the choice of covariates to include is
also far from simple. In the third paper of this series, we will
consider ways to choose between the various model types, to
identify and assess the importance of covariates, and to verify that
the final model is adequate.
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