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Abstract 
 

Downs (1962) and Thomson (1977) suggested that highway capacity expansion may produce 

counterproductive effects on the two-mode (auto and transit) transport system (Downs-

Thomson Paradox). This paper investigates the occurrence of this paradox when transit 

authority can have different economic objectives (profit-maximizing or breakeven) and 

operating schemes (frequency, fare, or both frequency and fare). For various combinations of 

economic objectives and operating schemes, the interaction between highway expansion and 

transit service is explored, as well as its impact on travelers’ mode choices and travel utilities. 

Further, for each combination, the conditions for occurrence of the Downs-Thomson Paradox 

are established. We show that the paradox never occurs when transit authority is profit-

maximizing, but it is inevitable when the transit authority is running to maximize travelers’ 
utility while maintaining breakeven. This is because the former transit authority tends to 

enhance transit service (e.g., raise frequency or reduce fare) when facing an expanded highway; 

and on the contrary, the latter tends to compromise transit service (e.g., reduce frequency or 

raise fare). Both analytical and numerical examples are provided to verify the theoretical results. 

 

Keywords: Downs-Thomson Paradox; highway capacity expansion; frequency; fare; profit-

maximization; zero-profit. 

 

1. Introduction 
 

Traffic congestion is one of the major concerns in urban planning. Many countries extensively 

rely on supply-side policies to mitigate urban transportation congestion, such as improving 

network capacity provision. However, the arguments towards short-sighted capacity expansion 

are explosive after observing its implementation for about a century. Downs (1962) and 

Thomson (1977) first claimed that the expansion does not necessarily increase the travelers’ 
travel utility when the public transit serves as a substitute for the highway. This can be 

explained as follows. The direct consequence of the expansion is attracting more private drivers, 

and the responsive transit authority would adjust the service frequency and ticket price 

accordingly. Unfortunately, the adjustment of the transit authority is often to reduce the service 
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frequency, which unintentionally lead to even fewer passengers (Reinhold, 2008; Bar-Yosef et 

al., 2013), and even more congested highway. In the end, travelers of both modes would suffer 

from the highway expansion. Raising fares is another option for a transit authority to maintain 

the operation when faced with highway expansion, which may also induce a similar vicious 

cycle as reducing frequency. In fact, the transit authority may adjust the frequency and fare 

simultaneously, yet it is still possible that its decisions, together with the highway expansion, 

yield counterproductive results.  

 

The above phenomenon in which the generalized travel costs of both modes rise after highway 

improvement is named “the Downs-Thomson Paradox”, which is a substantial argument for 

people who are opposing arbitrary investment in highway systems. Many attempts have been 

made to investigate the paradox either empirically or theoretically (e.g., Holden, 1989; Arnott 

and Small, 1994; Abraham and Hunt, 2001; Denant-Boèmont and Hammiche, 2009; Liu et al., 

2010; Hsu and Zhang, 2014). Particularly, Mogridge (1997) showed that for highway 

expansion to reduce travelers’ average travel cost in the two-mode system, the public transport 

should also be improved. In the same spirit, Arnott and Yan (2000) suggested that if the transit 

authority fails to take the effects of its decision on highway travelers fully into account, then 

the travel cost increase due to mode shift would exceed the benefit generated by the highway 

expansion. Both of their results indicate the substantial role of the transit side in the occurrence 

of the paradox. Basso and Jara-Díaz (2012) took one step further. They concretely analyze the 

paradox mechanism by capturing the properties of the average/marginal costs of both travelers 

and the transit authority, and showed that the paradox survives for transit users in the first-best 

world. Meanwhile, Bell and Wichiensin (2012) examined the occurrence of the paradox with 

different transit operators. However, in their study, the transit travel cost was a linear function 

of patronage with a downward slope, and neither the specified transit operating schemes nor 

the operation cost was taken into account. 

 

However, when transit authority might have different economic objectives, e.g., profit-

maximizing and zero-profit, how it will respond to highway expansion is still not clear. 

Whether or not, in which cases and under what conditions the Downs-Thomson Paradox would 

occur is still unknown. This paper tries to fill this gap by comprehensively investigating the 

occurrence of the Downs-Thomson Paradox when transit authority can have different operating 

strategies, i.e., the unconstrained case with variable frequency and variable fare, and the 

constrained cases with variable frequency and fixed fare or fixed frequency and variable fare. 

The analysis is conducted in the contexts of different economic objectives, i.e., profit-

maximizing and zero-profit, which is the key factor for a transit authority in making decisions 

on its scheduling and pricing schemes. For various combinations of economic objectives and 

operating schemes, the interaction between highway expansion and transit service is explored, 

as well as its impact on travelers’ mode choices and travel utilities. 
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This study also benefits from the literature on the transit service problem (e.g. Mohring, 1972; 

Jansson, 1980; van Reeven, 2008; Savage and Small, 2010; Basso and Jara-Díaz, 2010; 

Karamychev and van Reeven, 2010). However, these models were built on the isolated transit 

system, rarely considering the two-mode interactions. For the two-mode problem, there is 

indeed a large pool of literature (e.g., Small, 1992; Kraus, 2003, 2012; Small and Verhoef, 

2007; Light, 2009; Yang et al., 2009; Ahn, 2009), which provides the theoretical framework 

for our study here on the Downs-Thomson Paradox. Yet, the existing papers do not focus on 

the transit responses to the highway expansion and the impacts on the system, which are what 

we intend to unveil here. 

 

The reminder of this paper is organized as follows. In Section 2, a two-mode transportation 

system and the concept of Downs-Thomson Paradox are introduced. Section 3 analyzes the 

impacts of highway expansion on both transit operating schemes and travelers’ mode choices 

with different economic objectives, and then investigates the occurrence of the paradox. 

Numerical results of each scenario are correspondingly presented in Section 4 to illustrate the 

essential merits of the proposed models. Conclusions are given in Section 5. 

 

 

2. Model Formulation 
 

2.1   Problem settings 

 

We consider the corridor with a congested highway running in parallel to an exclusive transit 

line, linking the residential area and the central business district (CBD), as shown in Figure 1. 

On a typical day, the total number of travelers commuting from home to the CBD is fixed at 

d . Travelers choose their travel modes fully based on the generalized travel costs of the two 

modes: transit and automobile. 

 

Insert Figure 1 here 

 

Transit users have to pay for the transit fare, spend time in the train and on platforms. Thus, the 

generalized travel cost of travelling by transit is: 

  t t tp w f t       , 

where f  and t  denote the transit frequency and uniform ticket price (transit fare), 

respectively, and   represents the value of time and tt  stands for the constant in-vehicle travel 

time.  w f  represents the waiting time at the platform, which is assumed to be a decreasing, 

convex and twice differentiable function of transit frequency. The operation cost of the single 

transit authority,  k f , is an increasing, convex and twice differentiable function of frequency. 
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Throughout the analysis in this paper, it is assumed that the combination of transit fleet size 

and service frequency is large enough to carry all the travelers waiting on the platform. 

 

For an auto commuter, the generalized travel cost consists of the travel time cost and the 

monetary cost, i.e., 

 ,a a ap t v c    , 

where  ,a at t v c  is the highway travel time and 
a  is the monetary cost. It is assumed that 

 ,at v c  is homogeneous of degree zero with respect to traffic volume v  and highway capacity 

c  , i.e.,    , ,a at v c t v c     for any 0   . It is also assumed that  , 0v at t v c v     , 

 , 0c at t v c c      , and  2 2, 0vv at t v c v      ,  2 , 0vc at t v c v c       . The highway 

capacity c  is subject to adjustment and is assumed to be a continuous variable1, with the current 
capacity equals 0c . We assume all the automobile commuters drive alone, and thus the traffic 

volume v  is equal to the number of auto commuters. 
 

The monetary cost a  is considered as a non-negative constant, which includes, e.g., fuel 

consumption costs and parking fees. Note that the focus here is on the transit authority’s 
scheduling and pricing responses to the highway capacity changes with different economic 

objectives, so the highway use is assumed to be free of toll charge (different from Basso and 

Jara-Díaz, 2012; Bell and Wichiensin, 2012). It is worth mentioning that future research may 

consider a  as a variable to incorporate the impact of highway toll charge on the discussed 

two-mode system here. 

 

Assumption. Interior Equilibrium. 

(i) A too congested highway if all choose to drive:    ,a a t tt d c w f t        ;  

(ii) A too congested transit if no one drives:    0,a a t tt c w f t        . 

 

Assumption (i) states that the transit mode becomes more attractive if all travelers choose to 

drive, thus there are at least some traveler choose transit. Similarly, Assumption (ii) means that 

the auto mode becomes more attractive if no one drives, thus there are at least some travelers 

choose to drive. The two assumptions, in together, ensure an interior equilibrium where both 

modes would be used, which is reasonable in reality and common in the literature (e.g. Light, 

2009; Nie and Liu, 2010). 

 

2.2   Deterministic mode choice and traffic equilibrium 

                                                           
1 The assumption of continuity is standard in the theoretical literature which covers highway capacity provision (e.g., Arnott 
and Yan, 2000; Light, 2009). To focus on the analysis of the impact of transit scheduling and pricing schemes, neither highway 
investment nor operation cost would be taken into account. 
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Deterministic user equilibrium is achieved when no one can reduce his or her travel cost by 
shifting to an alternative travel mode, given the choices of other travelers. Thus, at equilibrium, 
the generalized travel costs of both modes are identical. Let cp  denote the equilibrium travel 

cost when the highway capacity is c , and based on the interior equilibrium assumption, 
cp  is 

then determined by the following condition: 

 
c t ap p p  , i.e.,    ,c t t a ap w f t t v c           . (1) 

 

Lemma 1. Under the interior equilibrium assumption, for any given f  , t   and c  , the 

equilibrium is unique. 
 

Proof. According to Eq.(1), for any given f , t  and c , at equilibrium, v is pinned down by: 

  0h v  , where      ,a t a th v t v c w f t          , which monotonically increases with 

v  . From the interior equilibrium assumption, it is easy to see that  0 0h    and   0h d   . 

Hence v  is unique, as well as the equilibrium. 
 

Lemma 2. 0v

fE  , 0
t

vE    and 0v

cE  , where v

fE , 
t

vE and v

cE  are the elasticities2  of 

highway travel demand v  with respect to transit frequency f , transit fare 
t  and highway 

capacity c , respectively. 

 

Proof. According to Eq.(1) and Lemma 1, the highway volume v  can be regarded as a function 

of f , t  and c , i.e.,  , ,tv v f c  , and the partial derivatives of v  with respect to f , t  

and c  is given by 

 0
v

v w

f t


 


,  (2) 

 
1

0
t v

v

t


 

 
, (3) 

 0c

v

v t

c t


  


, (4) 

where 0vt    and 0ct    are the partial derivatives of highway travel time with respect to 

volume and capacity, respectively, and 0w   is the marginal waiting time with respect to 

transit frequency. Correspondingly, the sign of the elasticities can thus be determined: 0v

fE  , 

0
t

vE    and 0v

cE  . 

                                                           
2 The elasticity is defined by the notion of point elasticity.  
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2.3   Downs-Thomson Paradox (D-T Paradox) 

 

The D-T Paradox occurs in the sense that every individual traveler has to suffer from a higher 

generalized travel cost after the highway capacity expansion due to the direct and indirect 

effects of the volume shifting. As Downs (1962) and Thomson (1977) claimed, the direct 

consequence is attracting more private drivers. It is possible that the changes of transit 

scheduling and pricing schemes, together with the highway capacity expansion, yield a too 

congested highway and a lower level of transit service. Figure 2 shows the mechanism of the 

D-T Paradox, which follows Mogridge (1997) and Basso and Jara-Díaz (2012). 

 

Insert Figure 2 here 

 

In Figure 2, 0c  and 1c  are the road capacities before and after expansion (0 1c c ), 0v  and 1v  

are the equilibrium volumes of the highway traffic, respectively. tp  and ap  represent the 

generalized travel cost of the individual traveler taking transit or driving an automobile, 

respectively. cp  is the individual travel cost at equilibrium given a certain highway capacity. 

Undoubtedly, the generalized travel cost of driving a private car increases with the highway 

traffic volume due to the congestion effect, so the curve of  1ap c  is always lower than that of 

 0ap c .  

 

On the other hand, if the generalized travel cost by transit decreases with the total patronage, 

as shown by the upward dash curve of tp , then the new equilibrium 
1cp , with a greater capacity 

provision, is higher than 
0cp . Figure 2 shows that a sufficient condition for the occurrence of 

the D-T Paradox is that the generalized travel cost by transit increases when the number of 

transit users decreases. This highly depends on the transit authority’s responses to the passenger 

loss (e.g., the adjustments on frequency and fare). Before investigating these responses in 

different settings, we generally defines the occurrence of the D-T Paradox as follows: 

 

Definition. The Downs-Thomson Paradox is said to occur at the equilibrium point of 0c c , 

if there exists 1c  such that 

 
0 1c cp p , with 0 1c c ,  (5) 

where 
0cp  and 

1cp  are the equilibrium travel costs when the road capacity levels are at 0c  and 

1c , respectively. 

 

When the change in c , i.e., 1 0c c c   , is sufficiently small, the marginal effect of the change 

can be mathematically captured. The partial derivative of generalized travel cost with respect 
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to the road capacity is negative, i.e., 0cp

c
c



    , meaning that the direct effect of capacity 

expansion is to reduce the travel cost. To capture the total effect of the expansion, we evaluate 

the total derivative of the generalized travel costs of both modes at certain capacity levels 

(following Abraham and Hunt, 2001). When c  is sufficiently small, Eq.(5) is equivalent to 

 
0

0c

c c

dp

dc 

 . (6) 

 

The general notion of the D-T Paradox is represented by Eq.(5), which is a comparison of the 

travel costs between two disjoint equilibrium states; however, Eq.(6) describes occurrence of 

the D-T Paradox at a given equilibrium point for a small change of highway capacity. If Eq.(6) 

holds at any point  0 1,c c c , then the equilibrium travel cost monotonically increases with the 

road capacity, which implies continuous occurrence of the D-T Paradox in the interval 

concerned. In this case Eq.(5) holds as well. Evidently, Eq.(5) does not necessarily imply  

continuous occurrence of the D-T Paradox. As shown in Figure 3, Eq.(5) is valid for all the 

curves named  a -  d , but only the solid curve  c  corresponds to the continuous increase of 

cp  or Eq.(6) holds anywhere in the interval. For ease of examining the occurrence of the D-T 

Paradox, the following analysis is mainly in line with the definition given by Eq.(6). 

 
Insert Figure 3 here 

 

Lemma 3. The D-T Paradox occurs if and only if there exists 0c   such that, for any f  

and t , 

 0
t

v v

f t

t

v v
E f E

f
      


  . (7) 

 

Proof. The highway travel time function,  ,a at t v c , is homogeneous of degree zero with 

respect to traffic volume, v , and highway capacity, c , i.e., 
    , ,a at v c t v c     (8) 

for any 0  . Take the derivative of both sides of Eq.(8) with respect to  : 

 
 
 

 
 

, ,
0a at v c t v c

v c
v c

     
 

   
. (9) 

Let 1   in Eq.(9), then 

 
   , ,a ac

v

t v c t v c vt

t c v c

 
  

  
. (10) 

Therefore, the elasticity of highway travel demand with respect to highway capacity is equal 

to unit, i.e., 
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 1v

c

v c
E

c v


  


. (11) 

An equivalent condition to the definition of the occurrence of the D-T Paradox at c  is 

    , ,c c c a a

v v v v
p p t v c t v v c c v c

c c c c


 
            

 
. (12) 

And as the outcome of enlarged highway capacity, the change of highway demand is given by 

 
t

v v v

f t c

t

v v v
v E f E E c

f c
         


    . (13) 

Therefore, Eqs.(11)-(13) ensure the validity of Eq.(7), which is the sufficient and necessary 

condition for the occurrence of the D-T Paradox.  

 

Lemma 4. With a fixed transit fare 0

t , the D-T Paradox occurs if and only if there exists 

0c   such that 0f  , i.e., 0f c   . 
 

Lemma 5. With a fixed transit frequency 
0f , the D-T Paradox would occur if and only if there 

exists 0c   such that 0t  , i.e., 0t c    . 

 

Lemma 4 and 5 are the direct results of Lemma 3, where 0t  , 0v

fE   and 0f  , 0
t

vE    

in Eq.(7) respectively. 
 

 

3. Paradox Conditions with Responsive Transit Service 
 

In this section, we explore the occurrence of the D-T Paradox with the responsive transit service 

in different settings. Two typical economic objectives are considered for the transit authority: 

profit-maximizing and zero-profit (breakeven). Service frequency and fare are the decision 

variables for the transit authority to achieve certain economic objectives. We first consider the 

case where the transit authority adjusts the frequency and fare at the same time, which is the 

unconstrained case. Then we look into the constrained cases where either the service frequency 

or fare is regulated by the government, and the authority’s choice is limited. 

 

3.1 The  profit-maximizing transit authority 

 

In this subsection, we look at a transit authority who maximizes its net profit, which is: 

    , ,t td v f c k f          (14) 

In Eq.(14), the first term gives the total fare revenue, which is the product of unit fare t  and 

patronage  d v , where  v   is the equilibrium highway volume yielded from Eq.(1). The 

second term is the operation cost associated with the frequency of transit service. 
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3.1.1 Unconstrained scheduling and pricing schemes 
 

We first consider the unconstrained case where the transit authority can adjust the frequency 
and fare simultaneously. For any given highway capacity, the optimal frequency and fare solves 
the following maximization problem with an equilibrium constraint: 
    

,
max  

t
t

f
d v k f


    

 (15)
 

subject to 

    ,t t a aw f t t v c            (16) 

For given c , the optimal  , tf    must satisfy the first-order optimality conditions: 

 
 

: 0t

d v
f k

f

  
  


 (17) 

 
 

: 0t t

t

d v
d v  

    


 (18) 

Eq.(17) states that at the optimum, marginal revenue equals marginal operation cost if there is 

a marginal increase in the frequency. Eq.(18) similarly shows that marginal fare revenue gain 

completely offsets the revenue loss caused by the marginal increase in fare at the optimum.  

 

The existence of the optimal solution is guaranteed by the continuity of the objective function 

and the compactness of the feasible region. Referring to the mathematical definition of the D-

T Paradox given by Eq.(6), one can see that we are interested in the marginal adjustments of 

frequency and fare of the transit authority facing the marginal expansion of highway, and 

correspondingly the marginal changes of equilibrium volume and the individual travel cost. 

Under this consideration, we have the following proposition: 

 

Proposition 1. If the profit-maximizing transit authority gradually adjusts the service 
frequency and fare in response to the continuous increase of highway capacity, then with 
respect to the highway capacity, 
(i) individual travel cost monotonically decreases, implying the D-T Paradox never occurs; 
(ii) transit authority’s profit monotonically decreases. 
 

Proof. The proof is given in Appendix A.1. 
 

Proposition 1 implies that under the profit-maximizing objective, the transit side is also 

improved after the highway expansion and thus the travelers’ generalized costs of both modes 
are reduced. This is because, if the transit authority’s major concern is its own profit rather than 

travelers’ utility, then the service originally provided by the authority is relatively unattractive 

to travelers, e.g., with low frequency or high fare, indicating travelers would experience 



- 10 - 

 

relatively large travel cost (refer to Figure 9 in Section 4, which shows the numerical 

comparison of individual travel cost between profit-maximizing and zero-profit cases). In this 

case, when the highway is improved, the profit-maximizing transit authority does not suffer 

too much by increasing frequency or decreasing fare a little bit, but benefits a lot from 

maintaining patronage. Therefore, transit service is improved, as well as performance of the 

overall two-mode system, and D-T Paradox is avoided. However, although the profit is 

maximized under the capacity after expansion, it is still less than that before the expansion, 

which means the transit authority would experience a profit loss. 

 

3.1.2 Constrained scheduling scheme (fixed fare) 
 

It is often the case that public transport has a relatively fixed charging structure, e.g., some 
local governments may set a standard fare scheme for the public transit service. This subsection 
examines such a situation where the fare is fixed, and the transit authority is only able to choose 
its service frequency in order to maximize its profit. Given highway capacity c  and the fixed 
fare 0

t , the optimal frequency solves the following problem:  

    0max  t
f

d v k f     (19) 

subject to 

    0 ,tt a aw f t t v c          (20) 

Based on Lemma 4, we have the following proposition: 
 

Proposition 2. If the transit fare is fixed and the profit-maximizing transit authority gradually 
adjusts the service frequency in response to the continuous increase of highway capacity, then 
with respect to highway capacity,  
(i) optimal frequency monotonically increases;  
(ii) individual travel cost monotonically decreases, implying that the D-T Paradox never occurs; 
(iii) transit authority’s profit monotonically decreases. 
 

Proof. The proof is given in Appendix A.2. 
 

Proposition 2 implies that the results in the unconstrained case (Proposition 1) sustains in the 
current case with a fixed fare. This is because, a profit-maximizing transit authority would 
originally provide relatively low frequent service to save the operation cost (note that fare is 
fixed). When highway is expanded by a small amount, the transit authority would not suffer 
too much by increasing frequency by a little bit, since  k f  is relatively small when f  is 

relatively small, but would benefit a lot from maintaining its patronage. This then leads to 
improvement of system performance (for the whole two-mode system), and the D-T Paradox 

is avoided. Moreover, with a higher frequency and lower patronage, the transit authority’s 
profit would evidently shrink when the highway is expanded. However, it is worth mentioning 
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that the constrained case is not a special case of the unconstrained one while the reasoning is 

similar. 

 

3.1.3 Constrained pricing scheme (fixed frequency) 
 

We now turn to the parallel case with a fixed frequency, where the transit authority can only 
adjust the fare according to the change of highway capacity. Given highway capacity c  and 
fixed frequency 

0f , the optimal fare solves: 

    0max  
t

t d v k f


      (21) 

subject to 
    0 ,t t a aw f t t v c           (22) 

Based on Lemma 5, we have the following proposition: 
 

Proposition 3. If the service frequency is fixed and the profit-maximizing transit authority 
gradually adjusts the fare in response to the continuous increase of highway capacity, then with 
respect to highway capacity,  
(i) optimal fare monotonically decreases;  
(ii) individual travel cost monotonically increases, implying that the D-T Paradox never occurs; 
(iii) transit authority’s profit monotonically decreases. 
 

Proof. The proof is given in Appendix A.3. 
 

Proposition 3 states that with a predetermined frequency, the transit fare is reduced when the 
highway is expanded. The reason is similar to that of the constrained case with a fixed fare. 
Originally, a profit-maximizing transit authority would charge a high fare to obtain a large 
revenue. When highway is expanded by a small amount, the transit authority would not suffer 
too much by reducing fare by a little bit, but would benefit a lot from maintaining its patronage. 
This then leads to improvement of system performance (for the whole two-mode system), and 

D-T Paradox is avoided. And with the lower fare and patronage, the transit authority inevitably 

experiences a profit loss. 

 

To summarize, the D-T Paradox never occurs under a profit-maximizing transit authority, no 
matter its decisions are constrained or not. As mentioned before, it is because the transit 
authority would always improve its service (e.g., lower fare or higher frequency), in order to 
compete with the improved highway and maintain patronage. Therefore, travelers will always 
benefit from highway expansion, while transit authority loses from that even if its profit is 

maximized after the expansion. 

 

3.2 The zero-profit transit authority 
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If the transit is operated by a revenue-neutral authority (e.g., publicly owned and not profit-
seeking), the transit service is then running to maintain breakeven:  

   , , 0t td v f c k f         . (23) 

where  , ,tv f c  is the equilibrium number of auto travelers. Now we examine the responses 

of such a transit authority to the highway expansion under both unconstrained and constrained 
cases. 
 

3.2.1 Unconstrained scheduling and pricing schemes 
 

In the unconstrained case, the transit authority is able to adjust the frequency and fare 

simultaneously. Evidently, for given c , f  and t  cannot be uniquely determined simply by 

the zero-profit condition Eq.(23). However, when the revenue-neutral transit authority takes 

the travelers’ utility into account, the combination  , tf


  that minimizes travelers’ travel cost 

and satisfies the zero-profit condition at the same time would be unique. This is shown in 

Appendix A.4. We would like to point out that social welfare is likely to be within the concerns 

of a revenue-neutral authority. Then it is reasonable to consider the situation where the zero-

profit transit authority chooses the  , tf


  combination to minimize travelers’ generalized 

travel cost. Under this consideration, for any given highway capacity c , the problem for the 

transit authority is: 

  
,

min   
t

c t t
f

p w f t


        (24) 

subject to 

    0 t d v k f     (25) 

   ,t t a aw f t t v c           (26) 

The objective (24) is to minimize the travelers’ generalized cost. The first constraint (25) 

ensures the transit authority maintains break-even, and the second constraint (26) corresponds 

to the equilibrium condition. The existence and uniqueness of the optimal  , tf


 are shown 

in Appendix A.4, and we have the following proposition: 

 

Proposition 4. If the zero-profit transit authority gradually adjusts the service frequency and 
fare in response to the continuous increase of highway capacity to minimize individual travel 
cost of travelers, then the individual travel cost monotonically increases with the highway 
capacity and the D-T Paradox occurs whenever the highway capacity increases. 
 

Proof. The proof is given in Appendix A.5. 
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Proposition 4 implies that, facing the highway expansion, the change in individual travel cost 
is disagreeable if the zero-profit transit authority minimizes the individual travel cost. When 
the highway is improved, the transit service loses passengers and the breakeven is no longer 
maintained under the current frequency and fare. Therefore, the transit authority has to 
compromise the service quality (reduce frequency or raise fare or both) to keep within budget. 
Even though the transit authority provides the best service for the travelers given the current 
highway capacity, the generalized travel cost increases compared with that before highway 
expansion, i.e., the D-T Paradox occurs. 
 

Recall in the scenario of the unconstrained profit-maximizing transit schemes in Section 3.1.1, 

the D-T Paradox is avoided. Our results here do not mean that a profit-maximizing transit 

authority is preferred in terms of social welfare. As shown in the numerical examples (Section 
4.2.1), zero-profit transit responses indeed generate more benefit for the travelers, because the 
absolute value of the individual travel cost produced in this scenario is lower than that with a 
profit-maximizing transit authority. 
 

However, if revenue-neutral authority is not going to minimize individual travel cost, there 

would be multiple combinations of f  and t  that solve Eq.(23). Figure 4 is employed to show 

a representative case3 where the generalized costs of all the feasible  , tf   combinations 

under a given c  constitute a circle, while the vertical ranges of different circles are inclusive 

of each other. Obviously, the point with the lowest generalized cost corresponds to the most 

socially preferable choice  , tf


 . If we could figure out the change of  , tf


  for different 

c , then the comparison of other  , tf   combinations is trivial but without too much insight, 

which is omitted. 

 

Insert Figure 4 here 

 

3.2.2 Constrained scheduling scheme (fixed fare) 
 

To maintain the breakeven with a fixed fare, transit frequency must satisfy 

    0 , 0t d v f c k f       , (27) 

where  ,v v f c  is derived from Eq.(1) with 0

t t   . Again, the solution of Eq.(27) may not 

be unique while the number of solutions is finite. For example, if the curves in Figure 4 are 
projected into the  , tf  -plane, then the projection would have two intersections with the line 

0

t t    , and each intersection corresponds to a zero-profit frequency. Firstly, for ease of 

presentation, we define the following function regarding highway capacity: 

                                                           
3 The function specifications and parameters used for this example are given in Table 1 and 2 in Section 4. 



- 14 - 

 

   0

1 t vI c k w t    . (28) 

According to Eq.(2), 
vw t    is v f   , which can be rearranged as  d v f     . Then, we 

immediately have     0

1 tI c k d v f      , which is the difference between the marginal 

operation cost and the marginal fare revenue, given the fixed fare 0

t . 

 

Proposition 5. If the transit fare is fixed at 0

t  and the authority gradually adjusts the service 

frequency in response to the continuous increase of highway capacity c  to maintain zero-profit, 
then, 
(i) the D-T Paradox occurs if and only if  1 0I c  ; 

(ii) given  1 0 0I c   at 0c c ,  1I c  monotonically decreases with c , and the D-T Paradox 

occurs in and only in the interval of   0
ˆ,c c , where ĉ  is the solution to  1 0I c  ; 

(iii) particularly, if the authority provides the maximal frequency to minimize individual travel 
cost of travelers, then the individual travel cost monotonically increases with the highway 
capacity and the D-T Paradox occurs whenever the highway capacity increases. 
 
Proof. The proof is given in Appendix A.6. 
 

Proposition 5(i) establishes the sufficient and necessary condition for the occurrence of the D-
T Paradox for the case of a fixed transit fare and a zero-profit transit authority.  1 0I c   

implies that the marginal operation cost exceeds the marginal fare revenue if the transit 
authority increases frequency. Therefore, when there is a marginal increase in highway capacity, 
the transit authority would reduce, rather than increase, its service frequency to maintain zero-
profit. Furthermore, Proposition 5(ii) states that the D-T Paradox would continuously occur in 
the interval of  0

ˆ,c c  if it occurs at the initial point 0c . Otherwise, it would not occur.  

 

In addition, Proposition 5(iii) indicates the similar result of Proposition 4 can be extended to 
this case with a fixed fare constraint. Also it reflects the relativity of the D-T Paradox: since 
the zero-profit transit authority chooses the maximal frequency, the individual travel cost must 
be the lowest; however, it cannot be further reduced when the highway capacity is enlarged, 
i.e., the D-T Paradox is inevitable. 
 

3.2.3 Constrained pricing scheme (fixed frequency) 
 

In the parallel scenario with a predetermined frequency, the zero-profit transit authority chooses 
the fare that satisfies: 

    0, 0t td v c k f         , (29) 
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where  ,tv v c   is derived from Eq.(1) with 
0f f . For ease of presentation, we define the 

following function regarding highway capacity: 
   2 t vI c d v t     . (30) 

According to Eq.(3), 1 vt   is 
tv  , which can be rearranged as   td v    . Then, we 

immediately have      2 t tI c d v d v        , which is the marginal change in profit if 

there is a marginal increase in 
t . 

 

Proposition 6. If the frequency is fixed at 
0f  and the transit authority gradually adjusts the 

fare in response to the continuous increase of highway capacity c  to maintain zero-profit, then,  
(i) the D-T Paradox occurs if and only if  2 0I c  ; 

(ii) given  2 0 0I c   at 0c c ,  2I c  monotonically decreases with c , and the D-T Paradox 

would occur in and only in the interval of  0 ,  c c , where c  is the solution to  2 0I c  ; 

(iii) particularly, if the authority provides the minimal fare to minimize individual travel cost 
of travelers, then the individual travel cost monotonically increases with the highway capacity 
and the D-T Paradox occurs whenever the highway capacity increases. 
 
Proof. The proof is given in Appendix A.7. 
 

Proposition 6(i) establishes the sufficient and necessary condition for the occurrence of the D-
T Paradox for the case of a fixed transit frequency and a zero-profit transit authority.  2 0I c   

implies that the profit decreases if the transit authority reduces the fare. Therefore, when there 
is a marginal increase in highway capacity, the transit authority would increase, rather than 
reduce, the fare to maintain zero-profit. Furthermore, Proposition 6(ii) states that the D-T 
Paradox would continuously occur in the interval of  0 ,c c  if it occurs at the initial point 0c . 

Otherwise, it would not occur. Proposition 6(iii) indicates the similar results of Proposition 4 
and 5 can be extended to the case with a fixed frequency. 
 

 
4. An Illustrative Example 
 

To facilitate the presentation of the essential ideas, we employ specific functions to derive 

analytical solution of the paradox condition and occurrence region under each of the scenarios 

described in the last section. Consider the two-mode network described in Section 2 with 

function specifications given in Table 1 and parameter values in Table 2. 

 

Insert Table 1 here 
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Insert Table 2 here 

 

According to Eq.(1), for any given transit frequency, fare and highway capacity, the 

equilibrium highway volume is: 

 
 

1

0

0 1

1 2 t a tf t t
v c

t t

       
  

 
. (31) 

 

4.1 The  profit-maximizing transit authority 

 

4.1.1 Unconstrained scheduling and pricing schemes 
 

With function specifications, the profit-maximizing combination of  , tf    solves for: 

  
1 1

1
2 12

0 1 0 1

:   2 0
2

t c A
f k f k

t t f t t




  
   

  
, 

1 1 1

1 1

0 1 0 1 0 1

:   0t
t

cA A
d c

t t t t t t

 


    
      

   
. 

where  1 01 2 t a tA f t t        . With the parameters in Table 2, Figure 5(a) shows the 

transit authority’s adjustments on frequency and fare for profit maximization when the highway 
capacity is increased. It is observed that along with the increase of the highway capacity from 

2000veh/h to 6000veh/h, the transit fare (the dotted line) declines sharply compared to the 

decrease of the service frequency (the dash line): the drop of transit fare directly reduces the 

travel cost from 1200HK$ to nearly zero, while the slight decrement in the service frequency 

is only equivalent to increasing the waiting time cost from 2.47HK$ to 3.37HK$. Therefore, as 

the combined impact of highway capacity expansion and transit authority’s responses, the 
individual traveler’s generalized travel cost diminishes with the highway capacity as shown in 

Figure 5(b), which indicates the D-T Paradox is avoided. Meanwhile, the transit profit also 

decreases as shown by the dash-dotted line. 

 

Insert Figure 5 here 

 

4.1.2 Constrained scheduling scheme (fixed fare) 

 

If the transit fare is fixed at 0t , the first-order condition for the optimal f   becomes: 

 f  :   

1
1

2
2 12

0 1 0 1

0

2 0
2

t c A
k f k

t t f t t


 

   
  


, 

where  2 0

01 2 t a tA f t t       . The relation between f   and c  is captured by: 
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      

1

22
2 3 2 1 3 2 1

0 1

1
0 12 4 4 2 1 0t

dc A
k A f k k A k f k

df t t

 


 
              

 
, 

where  0

3 0at tA t t      . According to Lemma 4, this analytically indicates the 

nonexistence of the D-T Paradox. Numerically, Figure 6 presents the changes of frequency and 

individual travel cost when the fixed fare is 5HK$ (the dotted line) and the highway capacity 

increases from 2000veh/h to 6000veh/h. It is found that the frequency (the dash line) is 

increased, and both the equilibrium travel cost (the solid line) and the transit profit (the dash-

dotted line) are correspondingly reduced. It is easy to understand the phenomenon, because the 

profit-maximizing transit authority has to improve its service to compete with the improving 

highway. 

 

Insert Figure 6 here 

 

4.1.3 Constrained pricing scheme (fixed frequency) 

 

In parallel, with a fixed frequency 0f , the profit-maximizing t

  solves for: 

 t

 : 

1 1
1

4 4

0 1 0 1 0 1

0tA c A
d c

t t t t t t


    

     
   

 

where  4 0 01 2 t a tA f t t        . The relation between t
  and c  is captured by: 

 

2
2

4

0 1 4

1 1
1

0 04 4

2

0 1 0 1 4 0 1 4

1

1 21
         1

t

t

t at

dc A c
d

d t t A

c f t tA c A

t t t t A t t A

 



 

   
        

 
                        

 

which is strictly negative, so according to Lemma 5, it analytically indicates the nonexistence 

of the D-T Paradox. Figure 7 shows the numerical results when the frequency is fixed at 

0.5run/min (the dash line) and the highway capacity increases from 2000veh/h to 6000veh/h: 

the fare (the dotted line) drops, and both the equilibrium travel cost (the solid line) and the 

transit profit (the dash-dotted line) are correspondingly reduced. Similar to the action of service 

improvement, the reduction in transit fare is also implemented to attract passengers. 

 

Insert Figure 7 here 

 

4.2 The  zero-profit transit authority 

 

4.2.1 Unconstrained scheduling and pricing schemes 
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In the case of zero-profit operation, the transit frequency and fare should satisfy:  

      2 1

0 0 1 2 1 02 2 2 0t a t t tf f t t c t t f d k f k f k


                       , 

and obviously for any given capacity c , the combination of  ,f   is not unique. Figure 4 in 

Section 3.2.1 has shown the multiple choices at certain highway capacity. If the zero-profit 

transit authority chooses the  , tf   combination to minimize the generalized travel cost of 

travelers that solves problem (24)-(26), then it would reduce the frequency (the dash line) and 

raise the fare (the dotted line) in response to the highway expansion as shown in Figure 8. As 

a consequence, the individual travel cost (the solid line) goes upwards with the highway 

capacity, which indicates that the D-T Paradox continuously occurs. When compared with the 

results in Section 4.1.1, the absolute value of the individual travel cost in this the current case 

is much lower than that generated with the profit-maximizing transit authority, and Figure 9 

displays the comparison. Note that the dash-dot line is sharply and monotonically decreasing 

with the highway capacity in the whole range of  2000, 3000c (veh/h), but the absolute value 

is rather high compared to the normal range, so that part of the dash-dot is cut off from Figure 

9 without generality. In the zero-profit scenario, the highway volume reaches the upper-bound 

(the total demand) when the highway capacity approaches 5900veh/h. 

 

Insert Figure 8 here 

 

Insert Figure 9 here 

 

4.2.2 Constrained scheduling scheme (fixed fare) 

 

With a fixed fare 0

t , the relation between f  and c  derived from Eq.(27) is  

  
 
 

1

2

2 1

1

0

0

0

2 0

t

t

d k f k f k
c f

A t t 

 





, 

and the D-T Paradox occurs if and only if 

 
   

 

3 2

2 5 2 1 5 1 0

2 1
2 2 0 1

0

0

4 2 1 2 1
0

2

t

t

k A f k k A f k f k ddc

df A f A t t 

             


  


  

    3 2

2 5 2 1 5 1 0

04 2 1 2 1 0tk A f k k A f k f k d                (32) 

  ,f f    

where 5 01 2 a tA f t t      , and f  is the unique positive solution to the left-hand side of 

Eq.(32), which corresponds to the margin of the paradox region. Figure 10 presents the transit 

frequency response to the highway expansion and the resulting individual travel cost with a 

fixed fare 5HK$ and a zero-profit transit authority. When the highway capacity is less than 

5275veh/h, there are two feasible values of the frequency satisfying the zero-profit condition 
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(the solid and dash lines in Figure 10(a)), but the larger value decreases (the solid line) while 

the smaller value increases (the dash line) along with the increase of highway capacity. As a 

result, if the zero-profit authority chooses the higher frequency to minimize the traveler’s 
generalized cost, the individual travel cost would actually increase with the highway capacity 

(the solid line in Figure 10(b)), which induces the occurrence of the D-T Paradox. On the other 

hand, the lower but increasing frequency corresponds to the decreasing individual travel cost. 

However, one should note that the absolute value of the individual travel cost with the lower 

frequency is much higher than the one with higher frequency, even if it is decreasing and avoids 

the paradox. Note that when the highway capacity exceeds 5275veh/h, it is large enough to 

attract all the travelers and there is no feasible frequency that can maintain zero-profit. 

 

Insert Figure 10 here 

 

4.2.3 Constrained pricing scheme (fixed frequency) 

 

In parallel, the relation between t  and c  with a fixed 0f  is:  

  

1

4

0 1

t
t

t

d K A
c

t t


  

   
  

, 

where K  denotes the fixed transit operation cost with 0f , and the D-T Paradox occurs if and 

only if 

 
 

 
1

4

2

4 0 1

( )
0t t

t t

K d K Adc

d A t t 

    
 

 
  

  2

0 0( ) 1 2 0t t a td K f t t               (33) 

  0,t t     

where t  corresponds to the margin of the paradox region, and it is the only positive root of 

the left-hand side of Eq.(33): 

 
 2

0 0( ) ( ) 4 1 2

2

a t

t

K K d f t t

d

           
  . 

 

Figure 11 shows the numerical observations when the transit frequency is fixed at 0.5run/min. 

It is found that when highway capacity is less than 5671veh/h, there are two feasible values of 

the transit fare satisfying the zero-profit condition (the solid and dash lines in Figure 11(a)), 

and if the zero-profit authority chooses the lower fare to minimize the traveler’s generalized 

cost, the individual travel cost would actually increase with the highway capacity (the solid 

line in Figure 11(b)), which induces the occurrence of the D-T Paradox. However, the absolute 

travel cost with the larger fare is much higher than that with the lower fare. When the highway 

capacity exceeds 5671veh/h, it is large enough to attract all the demand and there is no feasible 
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fare that maintains zero-profit for the transit. 

 

Insert Figure 11 here 

 

 

5. Conclusions 
 

This study investigates the occurrence of the well-known “Downs-Thomson Paradox”, by 

taking into account the transit authority with different economic objectives in the two-mode 

system. In the context of highway expansion, the relation between modes share and transit 

polices is analysed, and the impact of highway capacity change on transit policies is explored. 

 

In both unconstrained and constrained (either fare or frequency is fixed) cases, it is found that 
the D-T Paradox never occurs with a profit-maximizing authority. This is because, the transit 
authority improves its service (e.g., raising frequency, reducing fare) to attract passengers when 
the highway is expanded. Thus, the overall performance of the two-mode system is improved 
once highway expands. However, for the transit authority, its profit decreases with the highway 
capacity, so it has to suffer from profit loss after the highway expansion. 
 

On the contrary, when the transit authority minimizes individual travel cost while maintains 

break-even, individual travel cost rises whenever highway capacity increases. This is because, 

transit service is already in relatively good quality (relatively low fare and high efficiency) with 

such a transit authority. Once the highway expands, it is impossible for the authority to maintain 

break-even while keeps or even improves service quality. In other words, highway expansion 

hurts the transit side, as well as the overall system performance. This calls for the 

comprehensive consideration for highway expansion and development in the multi-modal 

transportation system. Particularly, the public transit service side should be taken into account. 

 

However, our results do not mean that a profit-maximizing transit authority is preferred in 

terms of social welfare. As shown in the numerical examples, zero-profit transit responses 
indeed generate more benefit for the travelers, because the absolute value of the individual 
travel cost produced in this scenario is lower than that with a profit-maximizing transit authority. 
 

This study conceptually links the Downs-Thomson Paradox with the “Mohring Effect”. 
Mohring (1972) noted that normally the transit authority would provide less frequent service 

when the demand is lower, which is referred to as the “Mohring Effect”. This effect is due to 

the scale economies of the transit service4. In fact, if the transit authority reduces the service 

frequency when the patronage drops after the highway expansion, it would make all the 

                                                           
4 The “scale economies” of the transit service refers to the situation where the generalized cost by transit decreases if the 
number of passenger increases. 
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travelers suffer. This means that, in the presence of Mohring Effect of transit services, 

inappropriate actions such as expansion of highway capacity could result in the occurrence of 

the Downs-Thomson Paradox. 

 

Future research may conduct more elaborate analysis on the relation between the Mohring 
Effect and the Downs-Thomson Paradox. Besides, it is of our interest to investigate strategies 
that can effectively prevent the occurrence of the paradox (e.g., congestion pricing, transit 
subsidy, transit service regulations). Also, travelers’ heterogeneity in value of time could be 
incorporated into the current framework. In that case, the analysis of the paradox occurrence 
would be more challenging since the changes of the travel costs are no longer identical among 
travelers. 
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Appendix A.  
 
A.1. Proof for Proposition 1 

 
Problem (15)-(16) is equivalent to: 

   
,

max  , ,
t

t t
f

d v f c k f


          

where  , ,tv f c  is pinned down by Eq.(1). The necessary conditions for an interior optimal 

 , tf    are: 

FOC: : 0t vf w t k      , (34) 

  * : , , 0t v t tt d v f c         ; (35) 

SOC: 0
t

t t t

ff f

f



  

   
       

. 

The Hessian matrix   is negative semi-definite if and only if: 

 
2 2 3

3
0t v t v v

ff

v

w t w t k t

t

         
  


, 

 
2

2 3

2
0

t t

t v v

v

t t

t
 

   
  


, 
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   2 2 2 2

2

2 4

2
0

t t t

v t v t v v

ff f

vv

t t w k t t w

t
  

            
       


. 

Thus necessary condition for an interior optimal  , tf    are: 

 2 3 2 0t v v t vw t k t w t           

 22 0v t vt t      

    2 2 2 22 0v t v t v vt t w k t t w              . 

Given the first-order conditions of the optimal  , tf   , the local adjustments of  , tf    when 

there is a marginal change in c  can be captured by taking total derivative of the both sides of 

(34) and (35) with respect to c : 

 
 

   

2 2 2

2 2 2 2

2

2

c v t vt

v t v t v v

w t t td

dc t t w k t w t

       


            
 

 
 

   

2

2 2 2 22

c v t v

v t v t v v

w t t tdf

dc t t w k t w t

       


            
. 

Thus,  

  
   

* * * 3 2 2
*

2 2 2 2
0

2

c t v c

v t v t v v

dp d df w t t
w f

dc dc dc t t w k t w t

   
    

            
, 

and 

   0t t c c
t t t

v v v v

dd d

dc d

t tw f
d v

dc tc
k

t t t

       
               

 






. (36) 

Therefore, the individual travel cost determined by the optimal frequency and fare 

monotonically decreases with the highway capacity, and this means that the D-T Paradox 

would never occur no matter how much the highway capacity is expanded. However, the transit 

authority would suffer from profit loss. 

  
A.2. Proof for Proposition 2 

 

When the local adjustment of f   is implemented when there is a marginal change in c , the 

transit authority is actually optimizing the reaction function  f c  as the following:  

 
 

   0max ,t
f c

d v f c k f      , 

where  ,v f c  is drawn from the equilibrium constraint. By applying Hamilton method, the 

optimal  f c  can be derived by Euler equation: 

  0:  0f vf t

d
f c w k t

dc

         . 
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According to Lemma 4, to prove the non-existence of the D-T Paradox, it is equivalent to prove 

0
0

t v

df k

dc w k t

 
   

  
, 

where vv vct v c t        for all c  . Since 0k    and 0 0t vw k t      , it suffices to show that 

0  . Note that 0vvt    and 0vct   , and according to Eq.(10), 

 c

v

t v

t c


 


. 

Then we have 

 0v vc c vv c
vv vc v

v v

v t t t t t
t t t

c t v t

       
            

. 

Moreover, according to Eq.(36) 

 0c c
t t t

v v v

t tw f
k

t

d

c td t

d

dc

    
          





   

 
A.3. Proof for Proposition 3 
 

Problem (21)-(22) can be rewritten as  

 
   0max ,

t
t t

c
d v c k f


        , 

where  ,tv c  is drawn from the equilibrium constraint. By applying Hamilton method, the 

optimal  t c  can be derived by Euler equation: 

 
   :  , 0

t tt v t t

d
c t d v c

dc


 

             . 

According to Lemma 5, the non-existence of the D-T Paradox can be shown by 

 
   

0
1 2

vc v vc ct

v t

t t v c t td

dc t v

         
  

   
. 

Moreover, according to Eq.(36) 

  
1

0t c c
t t t

v v v

dd

dc d

t t
d

c
v

t t t

    
          

 
 




 . 

 
A.4. Proof for the existence and uniqueness of the optimal solution of Problem (24)-(26) 
 
Problem (24)-(26) can be reduced to: 

  
,

min  ,
t

t

k f

c a
f

p t d c
    (37) 

subject to 

     , 0
t

k f

t t a aw f t t d c             (38) 
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The existence of the optimal solution is ensured by the continuity of the objective function and 

the compactness of the feasible region. The uniqueness of the optimal solution can be shown 

by contradiction. Suppose there are two distinct optimal solutions  1 1, tf    and  2 2, tf   , such 

that 1 2f f   or 1 2t t

    . Evidently, the objective values of the two optimal solutions should 

be identical, i.e., 1 2c cp p   and    1 2

1 2

, ,
t t

k f k f

a at d c t d c
 

  

          
   

. Then it can be obviously 

concluded from the constraint that 1 2f f   must hold. The monotonicity of function 

  ,
t

k f

at d c  with respect to 
t  implies that the corresponding *

t  with identical *f  should 

also be equal, i.e., 1 2t t

    ; otherwise, the two optimal solutions would lead to distinct 

objective values. This contradicts with the assumption that the two optimal solution s are 

distinct. 

 
A.5. Proof for Proposition 4 
 

From the zero-profit constraint of problem (24)-(26) it is obvious that transit fare can be 

expressed as a function of frequency f  and highway capacity c , i.e.,  
 ,

k f

t d v f c
  . Substituting 

into the equilibrium constraint, we have  

         , , , 0t a ak f d v f c w f t t v f c c             , 

and the partial derivative of traffic volume  ,v f c with respect to frequency and capacity are: 

 
       

    

2

2

, ,

,v

k f d v f c w f d v f cv

f t d v f c k f

           
   

, 

and  

 
 

   

2

2

,

,

c

v

t d v f cv

c t d v f c k f

    
     

. 

Evidently, 0v c    is true by the monotonicity of function  ,at v c , then it is implied that: 

    
2

, 0vt d v f c k f        . 

Rewrite problem (24)-(26) as  

 
 

 
 
 

 min ,
,

t
f c

k f
H f c w f t

d v f c
     

, 

and apply Hamilton method, then the optimal  f c  can be derived by Euler equation: 

 

       

 
 2

,
,

0
,

ff

v
k f d v f c k f

dH f c f
H H w f

dc d v f c


     

    
  

. 
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It is equivalent to: 

      , 0k f w f d v f c         . (39) 

To find the relationship between the optimal  , tf    and c , we take total derivative of both 

sides of Eq.(39) with respect to c : 

 
   

22

1

,cw f t d v f cdf

dc F

       , 

 2

1

t cd t F

dc F

  
 


, 

where 

           1 , , 0F k f w f d v f c w f d v f c                   

 
            

              

22

2 , ,

      , ,

vF w f d v f c k f t d v f c k f w f

k f k f w f d v f c k f w f d v f c

             

                

 

 

According to Lemma 3, the sufficient and necessary condition of the D-T Paradox when both 

f  and t  are subject to change is given by  

 0v v

f t

t

v v
E f E c

f


 
        

 
   . (40) 

Note that in the current situation, the sufficient and necessary condition is equivalent to:  

  
* * *

3

1

0c t cdp df d t F
w f

dc dc dc F

 
      , 

where 

              3 , , 0F w f d v f c k f w f d v f c k f k f                 . 

Therefore, the individual travel cost determined by optimal frequency and fare monotonically 

increases with highway capacity, and this means that the D-T Paradox would occur whenever 

there is a capacity expansion. 

 
A.6. Proof for Proposition 5 

 
(i) Since   is strictly decreasing with c , according to Eq.(27), the relation between c  and f  

can be regarded as a function  c c f , where the derivative is 

 
0

tdc k v f

df v c

   
 

 
, 

where 0v f     and 0v c     is given by Eq.(2) and (4), and 0k    is the marginal 

operation cost. When both f  and c are small, 0f c    is equivalent to 0dc df  . Then 
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according to Lemma 4, the condition for the D-T Paradox is 0

tvt w k    . 

(ii) Let 0

1 tvI t w k    , and assume that the D-T Paradox condition is satisfied at the initial 

point, such that
01

0 0c c tvI t w k
     , and that 

0
0c cdc df   . The argument for the (ii) part 

of Proposition 5 can be shown by the fact that 
1I  is strictly decreasing with c : 

 
2

0

1 0vc t

df w k w k
I t

dc k

   
   


 .     

(iii) For given c , the transit authority’s problem is: 
m ax   

f
f  

subject to 

      0

0g , 0
t

k f

t a t af w f t t d c


            
 

Similar for problem (24)-(26), the optimal f   is unique for a given c  (refer to Appendix A. 

4). Then      0

0 0
t

t vg f w f t k f  


        , and  

 
   

0 *

*

*

*0
0

c

v

tc

t

dp

dc

w f t

w f t k f

 


  





. 

 

A.7.  Proof for Proposition 6 
 

(i) Since   is strictly decreasing with c , according to Eq.(29), the relationship between c  and 

t  can be regarded as a function  tc c  , where the derivative is 

 
  t t

t

d v vdc

d v c

    


  
, 

where 0tv    and 0v c    is given by Eq.(3) and (4). When both t  and c are small, 

0t c      is equivalent to 0tdc d   , and the condition for the D-T Paradox is 

  0t vd v t     . 

(ii) Let  2 t vI d v t       , and assume that the D-T Paradox condition is satisfied at the 

initial point, such that  
02 0c c t vI d v t

      , and that 
0

0t c cdc d   . The argument is 

immediate by noting that 2I  is strictly decreasing with c : 

  2 0t t
v vc

t

v v d d
I t t d v

c dc dc

    
          

  
. 

(iii) For given c , the transit authority chooses the minimal t  subject to the zero-profit and 

equilibrium constraints according to: 

m in  
t

t


  
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subject to 

      0

0 - - , - 0
t

k f

t t a t az w f t t d c
        
 

. 

Similar for problem (24)-(26), the optimal t

  is unique for a given c  (refer to Appendix A. 4). 

Then    1 0
t

t t vz t d v

  


          , and  

 

2*

0c tc

t v

dp

dc

t

t d v



 

 


   
 . 
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Figure 1. A simple two-mode network 
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Figure 2. The Downs-Thomson Paradox (equilibrium analysis) 
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Figure 3. The continuous occurrence of the Downs-Thomson Paradox 
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Figure 4. Generalized travel cost with unconstrained and zero-profit transit schemes 
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                                                                (a)                                                                                                         (b) 

Figure 5. Unconstrained frequency, fare and individual travel cost with the profit-maximizing transit authority 
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Figure 6. Transit frequency and individual travel cost with a fixed fare and profit-maximizing transit authority 
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Figure 7. Transit fare and individual travel cost with a fixed frequency and profit-maximizing transit authority 
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Figure 8. Unconstrained frequency, fare and individual travel cost with a zero-profit transit authority 
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Figure 9. Individual travel cost with unconstrained frequency and fare under different objectives 
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Figure 10. Transit frequency and individual travel cost with a fixed fare and zero-profit transit authority 
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Figure 11. Transit fare and individual travel cost with a fixed frequency and zero-profit transit authority 
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Table 1. Function specifications 
Function  Specification 

Highway travel time function 
0 1( ) 1 ( )at v c t t v c       

Transit operation cost function   2

2 1 0k f k f k f k    

Transit waiting time function    1 2w f f  
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Table 2. Value of parameter (quantity of one hour) 
Parameter   Value  

Total demand 10000 (person)d   

Value of time 1.5 (HK$/min)   

In-vehicle travel time of transit 40 (min)tt   

Monetary cost by auto 30 (HK$)a   

Original highway capacity 
0 2000 (vehicle/h)c   

Fixed fare (in the cases of constrained scheduling scheme)  0 5 HK$t   

Fixed frequency (in the cases of constrained pricing scheme)  0 0.5 run/minf   

Coefficients in operation cost function 
0 10000 (HK$)k   

1  (H K10 $/ )000 runk   

2

2 (HK$/10000 run )k   

Coefficients in highway travel time function 
0 10 ( min)t   

1 0.15t   

4    

 


