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Abstract 

 

Recently, some studies examined how downtown parking space limitation re-shapes the 

morning commute in the case of a single origin-destination network. This paper further 

formulates and analyses the commuting equilibrium problem of both mode and departure time 

choices in a bi-modal (auto and public transit) many-to-one network. Several properties of the 

equilibrium under parking space constraints and the proposed parking reservation system are 

discussed. Procedures for computing the dynamic user equilibrium with a parking space 

constraint (either trading of reservations is allowed or not) have been developed. We show that 

parking reservation can help reduce deadweight loss due to parking competition and roadway 

congestion. We also found that assigning more reservations to travelers from a specific origin 

does not necessarily reduce total travel cost of them, while doing so might raise the total travel 

cost of travelers from other origins. When parking supply is less than the potential demand but 

is relatively large, it is socially preferred to retain some parking spaces open for competition. 

However, when the total parking supply is relatively small, all parking spaces should be 

reserved to travelers. Besides, we show trading of reservations among travelers would yield an 

efficiency loss. This loss can be fairly large thus trading should be prohibited. 

 

Keywords: many-to-one network, parking space constraints, parking reservation, dynamic 

user equilibrium, reservation trading. 

 

 

1. Introduction 
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Parking limitation in downtown areas is a growing problem for both commuters and traffic 

managers in large cities. Finding a parking space often constitutes an appreciable fraction of 

the total travel time (Shoup, 2006). Glazer and Niskanen (1992) modelled the congestion 

caused by through-traffic and by traffic destined for the area where consumers park. Bifulco 

(1993) introduced parking fees and parking searching time in a stochastic user equilibrium 

assignment model for evaluation of different parking policies. Researchers have conducted a 

series of studies to analyze the interactions between cruising or searching for parking and traffic 

congestion (e.g., Arnott and Inci, 2010; Arnott and Rowse, 2009). 

 

Arnott et al. (1991) embedded the parking problem in the morning commute model (Vickrey, 

1969) and showed that parking fees alone can be efficient in increasing social welfare, and a 

combination of road tolls and parking fees can yield the system optimum that maximizes social 

welfare. Under the parking setup by Arnott et al. (1991), Zhang et al. (2008) derived the daily 

commuting pattern that combines both the morning and evening commutes, and investigated 

mechanisms and efficiencies of several road toll and parking fee regimes. Qian et al. (2012) 

investigated how parking fees and parking supply can be designed to help mitigate traffic 

congestion and reduce travel costs. Parking pricing has been advocated as an alternative of road 

pricing to help manage traffic (e.g., Fosgerau and de Palma, 2013). For a recent review of 

parking studies, one may refer to Inci (2015). 

 

Recent studies (e.g., Qian et al., 2011; Habib et al., 2012) reported that parking availability can 

affect a commuter�s trip plan, including departure time, mode and route choices. Zhang et al. 

(2011) showed that competition for limited parking spaces in the downtown would force 

travelers to depart from home earlier thus encounter larger schedule delay cost. Following the 

tradable travel credits proposed by Yang and Wang (2011), they introduced a parking permit 

distribution and trading scheme to reduce the inefficiency due to parking competition. More 

recently, a series of studies (e.g., Yang et al., 2013; Liu et al., 2014a) further investigated the 

morning commute problem with a binding parking space constraint, and proposed parking 

reservation to reduce total travel cost of travelers. While these studies provide some insights 

on impacts of competition for parking and develop strategies to improve traffic efficiency, they 

often focus on the problem in a simple dynamic network with one roadway bottleneck, and 

ignore the network-wide impacts of parking competition due to the parking space constraints. 

 

This study looks at the commuting equilibrium problem of both mode and departure time 

choices with parking space constraints in a bi-modal many-to-one network. Under different 

network specifications, various aspects associated with parking have been analyzed in the 

literature, e.g., network with multiple parking facilities (Li, 2008; Lam et al., 2006; Qian and 

Rajagopal, 2015; He et al., 2015); parking information provision (Li et al., 2012; Qian and 

Rajagopal, 2014); park-and-ride service (Li et al., 2007; Liu et al., 2009; Liu et al., 2014c). In 

the current study, we focus on the bi-modal many-to-one network to explore the network-wide 
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impacts of parking competition. Note that this network specification might be more suitable 

for those cities whose urban structure presents a largely radiocentric layout, as considered in, 

e.g., Badia et al. (2014). 

 

In the considered network with multiple bi-modal traffic corridors, commuters live in several 

different residential areas (i.e., �many� origins), and every morning they travel to the same city 

center (i.e., �one� destination) through a corridor. Every traveler can choose to either drive and 

park in the downtown or take public transit without parking consideration. For commuters from 

different origins, they have competition for parking spaces in the downtown area, but do not 

share the same roadway and public transit thus there is no direct flow interaction among them. 

For commuters from the same origin, they not only compete for parking in the city center, but 

also share the same roadway and public transit. This treatment helps us to focus on the impacts 

of parking competition and allows for tractability, while it simplifies the modeling of traffic 

interaction. We then examine how these interactions among all travelers through parking 

competition, and the interactions among travelers from the same origin through shared highway 

and transit would re-shape the bi-modal commuting equilibrium in the context of multiple 

traffic corridors. Also, we will examine how the allocation of parking reservations among 

commuters from different origins would affect the morning commute equilibrium and help 

reduce the inefficiency caused by competition for parking and roadway congestion. 

 

The rest of the paper is organized as follows. Next section presents the basic model formulation, 

and revisits the case of a one-to-one network that incorporates parking space constraints and 

parking reservations. In Section 3, the bi-modal many-to-one network with parking space 

constraints is introduced, and the commuting equilibrium without or with parking reservations 

in such a network is formulated and analyzed. Section 4 discusses the efficiency loss of the 

parking reservation system due to trading of reservations among commuters. Numerical studies 

are presented in Section 5 for illustration of the results. Finally, Section 6 concludes the paper. 

 

 

2. Revisit the Bi-modal equilibrium in a one-to-one network  

 

In this section, we will firstly present the formulation of travel cost functions of auto and transit 

modes. Then, the bi-modal commuting equilibrium without and with parking space constraints 

in a simple network with single origin-destination (O-D) will be revisited. 

 

2.1. Travel costs formulation 

 

Vickrey (1969) introduced the first bottleneck model of congestion dynamics. Smith (1984) 

and Daganzo (1985) further established existence and uniqueness of the time-dependent 

equilibrium distribution of arrivals at a single bottleneck respectively. Thanks to its analytical 
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tractability, the bottleneck model has been adopted to study various issues (e.g., Arnott et al., 

1990; Laih, 1994; Liu et al., 2015a,b). For recent comprehensive reviews of the bottleneck 

model, one may refer to, e.g., Small (2015). 

 

In the bottleneck model, travel cost by auto, including travel time cost and schedule delay cost, 

departing at time t  can be expressed as 

 ( ) ( ) ( ){ } ( ){ }* *max 0, max 0,ac t T t t t T t t T t t= α ⋅ + β⋅ − − + γ ⋅ + −  (1) 

where ( )T t  is the travel time at departure time t , α  is the value of unit travel time, and β  and 

γ  are the schedule penalty for a unit time of early arrival and late arrival respectively. It is 

assumed that 0γ > α > β > , and denote ( )δ = βγ β + γ . ( )T t  contains free flow travel time ft  

and the queuing time at the bottleneck whose service capacity is constantly equal to s. Namely, 

( ) ( )fT t t q t s= + , where ( )q t  is the queue length experienced by the traveler departing at 

time t . And 

 
( ) ( ) ( ) ( )

( ) ( )
,   or 0d

0,   and 0d

r t s r t s q tq t

r t s q tt

− > >
= 

≤ =
 (2) 

where ( )r t  is the departure rate from home at time t . When there is no parking space 

constraint, given the total number of auto commuters aN , the equilibrium auto travel cost will 

be 

 ( ) a
a a f

N
P N t

s
= α⋅ + δ ⋅ , (3) 

which is an increasing function of the number of auto commuters, aN . 

 

In the bi-modal setting, travelers can either drive their car (auto mode) or take transit (transit 

mode). For simplicity, it is assumed that the cost of taking transit is an increasing function of 

the number of transit users, i.e., 

 ( ) ( )t t t tP N c N= , (4) 

where tN  is the number of transit users. Note that, ( )t tc N  can be regarded as a reduced form 

of the transit cost function for a model in which transit users are subject to schedule delay costs, 

and have a time-of-use decision to make (Kraus and Yoshida, 2002; Kraus, 2003). More 

complicated situations, e.g., when transit operator is responsive to parking supply or roadway 

capacity expansion (Zhang et al., 2014), might be considered in further study. 

 

2.2. Bi-modal equilibrium without and with parking space constraints 

 

Denote the total number of commuters by N . Now we look at the case when parking supply 

in the city center is sufficient such that there is no parking space constraint. By assuming an 
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interior equilibrium, with travel cost functions given by Eq.(3) and Eq.(4), we immediately 

have ( ) ( )a a t tP N P N=  and a tN N N+ = , where aN  and tN  are the numbers of auto and transit 

commuters at the bi-modal equilibrium without parking space constraint respectively. This aN  

is indeed the potential demand for auto mode, and for parking as well. 

 

Now we will revisit the morning commute problem with binding parking space constraints for 

a network with single origin-destination (O-D) discussed by Yang et al. (2013). Specifically, 

we consider the bi-modal equilibrium when the parking capacity M  in the city center is less 

than the potential demand aN . Following Yang et al. (2013), let rM  and uM  denote the 

numbers of parking spaces for reservation and for competition respectively, where 
r uM M M+ = . As the parking space constraint is binding, at equilibrium, the numbers of auto 

commuters with and without reservation will be equal to rM  and uM , respectively. For 

commuters with reservations, their choices of departure time (from home) are not directly 

affected by parking availability; while for commuters without reservations, they have to either 

depart from home early enough to secure a parking space or take public transit to avoid parking 

competition. Hereinafter, we denote the commuters with reservation by r-commuter, the 

commuters without reservation but choosing auto mode (they have to depart from home early 

enough to secure parking spaces) by u-commuter, and the commuters taking transit by transit 

commuter. At the bi-modal equilibrium, travel cost of u-commuter will be identical to transit 

commuters, which is equal to ( )t tP c N M= − . 

 

Define the following critical number for a given parking capacity M : 

 ( ) ( )( )t f

s
m m M c N M t= = ⋅ − − α ⋅

β
. (5) 

As aM N< , it can be verified that 
am N

γ
β+γ> . Note that Eq.(5) reduces to that defined in Yang 

et al. (2013) if we consider 0ft = . As shown in Yang et al. (2013), different scenarios can 

appear at commuting equilibrium depending on the values of rM , uM  and M , and their 

relations to ( )m m M= . For specific auto commuting equilibrium scenarios, one may refer to 

Yang et al. (2013), where three general scenarios and two critical scenarios are discussed in 

more details. In this paper, we classify those scenarios into two categories: Category I when 

( )r M mM
γ
δ ⋅ −≥  and Category II when ( )r M mM

γ
δ ⋅ −< , where m  is defined by Eq.(5) for 

given M . For Category I, the arrivals (at destination) of commuters with reservations (r-

commuter) and auto commuters without reservations (u-commuter) are completely separated. 

For Category II, some commuters with reservations (r-commuter) have to queue after the last 

commuters without reservations (u-commuter), thus the arrivals of this two kinds of commuters 

are not fully separated. 
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As mentioned, given the parking capacity, ( )a
M N< , the travel cost of u-commuter will be 

identical to that of transit commuters, i.e., ( )u

a t tP P c N M= = − . And the travel cost of 

commuters with a reservation, r

aP , is 

 

,   Category I

,   Category II

r

f
r

a

f

M
t

s
P

M m
t

s


α ⋅ + δ ⋅

= 
−α ⋅ + γ ⋅



. (6) 

For Category I, r

aP  is increasing in rM , while for Category II, r

aP  is constant. It can be shown 

that r

a fP t M s≤ α + δ  holds. Therefore, ( )r u

a f a a t tP t N s P P c N M< α + δ < = = − , indicating 

the commuters with reservation (r-commuter) can enjoy a lower cost than those without 

reservations (u-commuter). This also means that travelers are willing to pay a price to obtain a 

parking reservation, which is also the motivation of our discussion on trading of reservations 

later in Section 4. 

 

In addition, at equilibrium, the first and the last u-commuter will arrive at destination at time 

 
( )

*

, , ,; 

r u u

u s u e u s

m M M M
t t t t

s s

+
= − = + , (7) 

where uM  is the number of u-commuter. Let ( ),u et x , ( )0,
a

x N∈  denote the latest arrival time 

at the destination of the u-commuters. With Eq.(7), we have 

 ( ) ( )*

,

r u u
u

u e

m M M M
t M t

s s

+
= − + . (8) 

When the available parking space is 0+  (a positive value approaching 0), the latest arrival time 

of u-commuters at the destination is ( ), 0u et . When the number of public parking spaces is set 

to be the possible maximum r

aN M− , the latest arrival time of u-commuters at the destination 

is ( ), au e

rNt M− . Let ( )1

,u et t−  denote the inverse function of ( ),

u

u e
t M  which represents the 

number of u-commuters with respect to the latest arrival time of u-commuters at the destination. 

Since the latest arrival time of u-commuters at the destination is exactly the time when the 

public parking space for competition is used up, therefore ( )1

,u et t−  can also be regarded as a 

function of the auto demand with respect to the ending time of public parking spaces. Clearly 

there is a positive auto demand corresponding to each parking ending time 

( ) ( )( ), ,0 , r

u e u e at t t N M∈ − . If no parking space is available before time ( ), 0u et , the number of 

u-commuters will be zero. If parking spaces are still available after time ( ), au e

rNt M− , there 

is indeed no parking space constraint. In this case, whether reserving a space or not makes no 
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difference, and u r

aM N M= − . After expanding the feasible region of the public parking space 

ending time, the number of u-commuters can be rewritten as follows: 

 ( )
( )

( ) ( ) ( )( )
( )

,

1

, , ,

,

0 0

0 ,

u e

r

u e u e u e a

r

u e a

r

aN M

t t

t t t t t t N M

t t N M

−

 ≤
π

−

= ∈ −


≥ −

. (9) 

Function ( )tπ  constructs a mapping between public parking space ending time and number of 

u-commuters, through the internal Wardropian bi-modal equilibrium. The construction of 

function ( )tπ  reduces to that in Zhang et al. (2011) if we consider the special case of our model 

here that all parking spaces are not for reservation but open for competition, i.e., 0rM = . 

Evidently ( )tπ  is an increasing (but not strictly increasing) function. This function will be 

used in Section 3 for computing the equilibrium traffic pattern in the bi-modal many-to-one 

network.  

 

 

3. The bi-modal many-to-one network with parking space constraints 

 

Now we consider a bi-modal many-to-one network with n  origins (i.e., �many�) and the same 

destination D  (i.e., �one�) as shown in Figure 1. Each origin-destination (O-D) pair is 

connected by a highway with bottleneck and a parallel public transit line with dedicated right-

of-way. Note that there are some studies exploring the optimal dynamic traffic assignment and 

commuting equilibrium in queuing networks, e.g., Yang and Meng (1998), Zhang and Zhang 

(2010). In the bi-modal many-to-one network, commuters are living in different residential 

areas and they travel to the same city center every morning either by driving or taking transit. 

For commuters from different residential areas, they do not share the same highway or public 

transit, thus there is no direct flow interaction among them. However, as they travel to the same 

downtown with parking limitation, they have to compete with each other for parking spaces. 

For commuters living in the same origin, they not only compete with each other for parking, 

but also interact with each other at the shared highway and public transit. 

 

In the many-to-one network depicted in Figure 1, for the -thi  O-D pair, i.e., from iO  to D , let 

it  denote the free flow travel time, is  the capacity of the highway bottleneck i , and iN , ,a iN , 

,t iN , ( ), , ,t i t i t i
P c N=  the total travel demands, the numbers of auto commuters and transit 

commuters, and transit cost function, where { }1, 2,..., ni I∈ = , and I  is the set of O-D pairs. 

Total number of parking spaces available at the city center is M . 
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Highway Public Transit
 

Figure 1. The many-to-one network with highway and public transit 

 

3.1. Commuting equilibrium 

 

Firstly, suppose M  is large enough thus there is no parking space constraint. For given origin 

iO , under no parking space constraint, the equilibrium travel costs of auto commuters and 

transit commuters should be equal, i.e., ( ) ( ), , , ,a i a i t i t i
P N P N= , where , ,a i t i iN N N+ = , and ,a iN  

and ,t iN  are the numbers of auto and transit commuters from origin iO  respectively. Without 

a parking space constraint, the commuting equilibria for different O-D pairs are independent 

of each other. Therefore, the combined equilibrium in the bi-modal many-to-one network will 

reduce to a simple summation of equilibrium without parking space constraint for the n  O-D 

pairs. In this study, we will focus on the case with binding parking space constraints. A binding 

parking space constraint in the many-to-one network implies that  

 ,a a ii
M N N< = , (10) 

where ,a iN  is the potential auto demand or parking demand for traveler from the -thi  origin 

iO . In this case, travelers from at least one origin will have to compete for the parking spaces. 

The commuting equilibrium with parking space constraints in the bi-modal many-to-one 

network can be determined by a similar approach as that in Zhang et al. (2011), with the help 

of Eq.(9) to determine the parking space ending time. Later we will present the procedure to 

compute the equilibrium in the many-to-one network with parking space constraints and 

parking reservations, which incorporates that in Zhang et al. (2011) as a special case. 

 

Now we turn to the commuting equilibrium when parking reservations are introduced. Denote 

the allocation of reserved parking spaces (or parking reservations) among commuters from all 
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origins by { }r

i
M=rM , where ,0 r

i a iM N≤ ≤  for any i I∈ . Then, r

iM  is the parking 

reservations assigned to commuters from origin iO . Note that the commuting equilibrium 

without introducing reservations is a special case of our model with 0r

iM =  (later in numerical 

analysis, we use UE to refer to this situation). For O-D pair i , denote the auto demand function 

with respect to the public parking space ending time, as defined in Eq.(9) by ( )i tπ . Let endt  be 

the public parking space (those not for reservation) ending time. Since the total number of 

public parking spaces is r

ii
M M− , we have ( )i r

end ii i
t M Mπ = −  . The O-D pairs can 

be classified into three groups as follows: 

 1) ( ), 0i

u e end
t t+ ≥  and 0u

iM = , 1i I∈ ; 

 2) ( ),

i u

u e i end
t M t=  and 0u

iM > , 2i I∈ ; 

 3) ( ),

i u

u e i end
t M t<  and 0u

iM ≥ , 3i I∈ ; 

where 1 2 3I I I I=  . For commuters from O-D 1i I∈ , competing for parking spaces is too 

costly when compared with taking transit thus no one will choose to drive without a reserved 

space. For commuters from O-D 2i I∈ , some of the travelers choose to compete for parking 

spaces (u-commuter) and the last u-commuters of these O-D arrive at the destination just at the 

ending time of public parking space. For commuters from O-D 3i I∈ , given the allocation 

{ }r

i
M=rM , the parking space constraint is not binding for them, and those without 

reservations can always obtain a public parking space before the ending time. Note that kI , 

where 1,2,3k = , might be empty while at least one of them should be non-empty. 

 

Given the allocation { }r

i
M=rM , we propose the bi-section based procedure (denoted as 

Procedure I, which will also be used later in Section 4) to calculate the dynamic user 

equilibrium with parking space constraints and mixed supply of parking spaces (two classes: 

those for reservation and those open for competition). In Procedure I, Stage 1 will compute the 

public parking space ending time through a bi-section based procedure, and Stage 2 will 

determine the exact equilibrium traffic pattern for each O-D pair i  depending on r

iM  and the 

resulting ( )i iM m
γ
δ ⋅ − . Note that, for O-D 3i I∈ , the auto commuting traffic pattern at 

equilibrium is just the same as that if there is no parking constraint, which is a limiting case of 

Category II. The travel costs in this case can still be calculated by using the formulations for 

Category II. 
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Procedure I: Computing the User Equilibrium Solution 

Stage 0: Initialization 

Input: iN , ,a iN , ,t iN , ( ), , ,t i t i t i
P c N= , M ; specific reservation allocation r

iM . 

Compute the ,a iN  for each O-D pair. 

Stage 1: Compute the public parking space ending time 
Step 1-0: Initialization 

Define ( ){ },min 0i

e u e
i

tτ =  and ( ){ }, ,max i r

l u e a i i
i

t N Mτ = − . 

Set a sufficiently small positive number ε  as the convergence criterion. 

Let 1k = . 

Step 1-1: 

Let ( )
2

e lk τ +ττ = . 

If ( )l e l
τ − τ τ ≤ ε , ( )k

endt = τ ; otherwise, go to Step 1-2. 

Step 1-2: 

If ( ) ( )i r

end ii i
t M Mπ > −  , ( )k

lτ = τ ; otherwise, ( )k

eτ = τ . 

Let 1k k= + , go to Step 1-1. 

Stage 2: Determine the equilibrium for each origin-destination pair 
Step 2-0: Initialization 

Calculate the number of u-commuters for each O-D pair by ( )u i

i endM t= π . 

Calculate r u

i i iM M M= + , and ,t i i iN N M= − . 

Step 2-1: 

Calculate im  with ,t i i iN N M= −  from Step 2-0. 

Step 2-2: 

For every i I∈ , compare r

iM  with ( )i iM m
γ
δ ⋅ − : 

If ( )r

i i iM M m
γ
δ≥ ⋅ − , the equilibrium for O-D pair i  is in Category I; 

Otherwise, the equilibrium for O-D pair i  is in Category II. 

Note: 510−ε =  is applied in this paper. 

 

To ease later analysis of the commuting equilibrium in the bi-modal many-to-one network, we 

now summarize several facts about the latest arrival time of the u-commuters defined in Eq.(8) 

in the following Lemma 1. 

 

Lemma 1. The latest arrival time of the u-commuters defined in Eq.(8) satisfying 

 
( ) ( ) ( ) ( ) ( ), , , , ,

0; 0;  0;  0;  0.

u u u u u

u e u e u e u e u e

u r

f

dt M t M t M t M t M

dM N M t s

∂ ∂ ∂ ∂
> < > > ≤

∂ ∂ ∂ ∂
 (11) 

 

Proof. With Eq.(5) and Eq.(8), it follows 

 ( ) ( )( )*

,

1 u
u r u

u e t f

M
t M t c N M M t

s
= − ⋅ − − − α ⋅ +

β
. (12) 
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Let 
( )

( )

r u
t

r u

dc N M M

d N M Mtc
− −

− −
′ = , then 0tc′ >  as ( )tc ⋅  is increasing. With Eq.(12), we have 

 

( )

( )

( )

( )

( )

,

,

,

,

,

2

1 1
0

1
0

1
0

1
0

0

u

u e

tu

u

u e

t

u

u e

tr

u

u e

f

u u
u e

dt M
c

dM s

t M
c

N

t M
c

M

t M

t

t M M

s s

′= ⋅ + >
β

∂
′= − ⋅ <

∂ β

∂
′= ⋅ >

∂ β

∂
= ⋅α >

∂ β

∂
= − ≤

∂

. (13) 

This completes the proof.    # 

 

Lemma 1 can be applied to the functions of latest arrival time of the u-commuters for all O-D 

pairs, i.e., ( ),

i

u et ⋅  for i I∈ . 

 

Proposition 1. At equilibrium, i) for 1i I∈ , 0u

iM = ; ii) for 2i I∈ , iN ↑ , r

iM ↓ , it ↓ , is ↑   

indicate u

iM ↑ ; iii) for 3i I∈ , ,

u r

i a i iM N M= − . 

 

In Proposition 1, the results in (i) and (iii) are straightforward. Proposition 1(ii) states that for 

O-D pair i  with ( ),

i u

u en ie d
tt M= , a larger iN , a smaller r

iM , a smaller it , or a larger is  (while 

other parameters are identical) indicates a larger equilibrium u

iM . This can be derived from 

Lemma 1. Suppose that for two O-D pairs 2,i j I∈ , all parameters are identical except i jN N>

. Given ( ) ( ), ,

i u j u

u e i uend e j
t M tt M== , from Lemma 1 and Eq.(13), we have u u

i jM M> . Similar 

analysis can be applied for r

iM , it  and is . 

 

3.2. System performance with parking reservations 

 

Given the allocation of reservations among commuters of different O-D pairs, r
M , the total 

travel cost of all commuters at equilibrium can be written as 

 ( ) ( ) ( ), , ,

r r u u r u

i a i i a i i t i i i ii i
TC TC P M P M P N M M = = ⋅ + ⋅ + ⋅ − −  r r

M M , (14) 

where for all i I∈ , u

iM , ,

r

a iP  and ( ), , ,

u r u

a i t i t i i i i
P P c N M M= = − −  are from the resulting 

equilibrium computed according to Section 3.1. Note that ,

r

a iP  is in the form given in Eq.(6). 
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In Eq.(14), ( )i
TC rM  is the total travel cost of commuters from origin iO . The socially optimal 

allocation r*
M  can be determined by solve the following problem: 

 ( )min :TC
r

r

M
M  (15) 

s.t. 

 r

ii
M M≤ ; (16) 

 for l   alr a

i i iM N≤ ; (17) 

 for a0 ll   r

i iM ≥ . (18) 

 

Now we consider the case when all parking space are reserved to commuters, i.e., r

ii
M M=

, and 0u

iM =  for all i . Denote the allocation that satisfies r

ii
M M=  as r

M . In this case, 

minimizing total travel cost is equivalent to solving the problem in Eq.(15) while replacing the 

constraint in Eq.(16) by r

ii
M M= , and remaining the other constraints in Eqs.(17) and (18)

. Under its optimal solution *r
M , total travel cost should be no less than that by solving Eq.(15) 

under constraints in Eqs.(16)-(18), i.e., ( ) ( )* *TC TC≥r rM M . This is straightforward because 

*r
M  is the optimal solution within a subset of the feasible region defined by Eqs.(16), (17) and 

(18). Therefore, it might be socially preferable to retain some parking spaces open for 

competition. 

 

Proposition 2. For any i I∈  and j I∈ , at equilibrium we have 

 1 0

u

j

r

i

dM

dM
− ≤ ≤ . (19) 

 

Proof. See Appendix. 

 

Proposition 2 states that once the number of reservations assigned to travelers from a specific 

origin iO  increases, the numbers of u-commuters from each origin will decrease or at least do 

not increase. Moreover, for O-D pair i , as shown in the proof of Proposition 2, the total number 

of auto commuters, i.e., r u

i i iM M M= +  (summation of those with and without reservation), 

will probably increase. Note that it is possible that iM  does not increase, e.g., when there is 

only one O-D pair, or other O-D pairs all belong to group 1 or 3 (boundary equilibrium) such 

that iM  remains constant. 

 

In most cases, iM  will increase as r

iM  increases. If the commuting traffic equilibrium for O-

D pair i  belongs to Category I, from Eq.(6), we know that the travel cost of r-commuters (those 
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with reservation) will be ,

r r

a i i i iP t M s= α ⋅ + δ ⋅ , which increases with r

iM . If the commuting 

traffic equilibrium belongs to Category II, ( ),

r

a i i i i iP t M m s= α ⋅ + γ ⋅ −  will increase with r

iM  

as long as iM  increases as well. This is because, if an increase in r

iM  leads to an increase in 

iM , then ( )i i im m M=  decreases. However, for the case of a one-to-one network, the total 

number of drivers r uM M M= +  remains constant even if we increase rM . Therefore, travel 

cost of r-commuters, ( )r

a fP t M m s= α ⋅ + γ ⋅ − , will be a constant as discussed in Section 2.2. 

 

Proposition 3. For any i I∈  and j i I≠ ∈ , where 2I ≥ , , we have 

 0
j

r

i

dTC

dM
≥ , if j  belongs to Category I; (20) 

 0
j

r

i

dTC

dM
≥ , if j  belongs to Category II and 0r

jM → ; (21) 

where jTC  is defined by Eq.(14). 

 

Proof. Based on Eq.(14), 

 ( ), ,

r

j a j t jr r

j j jr r r

i i j

dTC dP dP
M N M

dM dM dM
= ⋅ + ⋅ − . (22) 

For j  that belongs to Category I, with Eq.(6), we have , 0r r

a j idP dM = . Therefore, 

 ( ),

,

u

j j r

j jr r

i i

t j

t j

dTC dM
N M

d d dM

dc

NM

 
= ⋅ − ⋅ −  

 
, (23) 

where 
( )

( )
,,

,
0

r u
t j j j j

r
t j

u
j

t j

j j

dP N Mdc

d N Md

M

MN

− −

− −
= > . Since 1 0u r

j idM dM− ≤ ≤ , we have 0r

j idTC dM ≥ . For j  

that belongs to Category II, with Eq.(6) and Eq.(22), we have 

 ( ), ,

, ,

u

j jrt j t j

t

r

j j jr r

i j t jj i

dTC dM
M N M

dM

dc dc

ds dN d MN

  
⋅ ⋅     

γ γ
= + − ⋅ −

β 
. (24) 

If 0r

jM → , ( ),

,

t j

j t j

dc

dN

r

js
M

γ γ
β+ ⋅  will also approach zero, and be less than ( ),

,

t j

t j
j

dc

d

r

N jN M⋅ − . 

Again, as 1 0u r

j idM dM− ≤ ≤ , we have 0r

j idTC dM ≥ .    # 

 

Proposition 3 is a direct result of Proposition 2. It indicates that if one increases the number of 

reservations assigned to commuters of one specific O-D pair, the commuters of other O-D pairs 

belonging to Category I would be worse off or at least not better off. Furthermore, if O-D pair 

j  belongs to Category II, 0r

j idTC dM ≥  might not hold when r

jM  is relatively large. This is 

explained as follows. By increasing the number of reservations assigned to travelers from 
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origin iO , the number of commuters from origin jO  who choose auto mode, i.e., r u

j jM M+ , 

can decrease, and the highway can be less congested with less traffic. Thus, , 0r r

a j idP dM < . It 

is also worth mentioning that assigning more reservations to commuters from one specific 

origin, while might increase total travel cost of commuters from other origins (as stated in 

Proposition 3), will not necessarily reduce the total travel cost of commuters from this origin. 

This will be discussed in the following. 

 

We examine the specific allocation r
M , under which we have r

ii
M M= . In this case, 

according to our classification of equilibria, the traffic equilibrium of each O-D is a limiting 

case of Category I where 0u

iM = . Also note that if we reduce r

iM  by a certain amount which 

is small enough, the traffic equilibrium of each O-D will still belong to Category I. We focus 

on the situation when r
M  is close to r

M  thus the traffic equilibria of all O-D pairs belong to 

Category I. Given the above consideration, for a given M , the total travel cost is 

 ( ) ( ) ( )1

,

1

rn
r r u ri

i i i t i i i i i ii
i i

M
TC TC t M c N M M N M

s=

  
= = α ⋅ + δ ⋅ ⋅ + − − ⋅ −  

  
 r

M , (25) 

where ( ),t ic ⋅  is the transit cost function for commuters from origin i , and 1

iTC  is the special 

form of iTC  defined in Eq.(14). Note that each u

iM  in Eq.(25) is the equilibrium number of u-

commuters for O-D pair i  which fully depends on r
M . The first-order derivative of Eq.(25) 

with respect to r

iM  is 

 
( )

r

i

dTC

dM
=

rM
 (26) 

 2
r

i
i

i

M
t

s
α ⋅ + δ ⋅  (27) 

 ( ) ( )
( ) ( ),

, 1

r u u
t i i i ir u ri

t i i i i i irr u
ii i i

dc N M M dM
c N M M N M

dMd N M M

− −  
− − − − ⋅ + ⋅ − 

− −  
 (28) 

 
( )

( ) ( ),

r u u
t j j j j j r

j jrr uj i
ij j j

dc N M M dM
N M

dMd N M M≠

− −
− ⋅ ⋅ −

− −
 , (29) 

where 1,2,...,i n= . By assigning additional reservation to travelers of O-D i , Eq.(27) is the 

marginal increase of total travel cost of all r-commuters of O-D i , and Eq.(28) is the marginal 

decrease of total travel cost of all other commuters from O-D i , and Eq.(29) is the marginal 

increase of total travel cost of all other commuters from O-D j i≠ . Note that Eq.(29) is non-

negative according to Proposition 3. While Eq.(27) is only valid when the commuting 

equilibrium belongs to Category I, Eqs.(28) and (29) are valid for both Categories I and II. 
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Proposition 4. i) If 

 
( )

max 0
r

i

dTC

dM
=

  
> 

  r r*

r

M M

M
, (30) 

where ( ) r

i
dTC dMr

M  is defined in Eq.(26), it is socially preferable to retain some parking 

spaces open for competition. ii) Furthermore, for any i I∈ , if 

 
( )

0
r

i

dTC

dM
=

>
r r*

r

M M

M
, (31) 

a small decrease of *r r

i iM M=  will lead to a decrease in total cost. 

 

Proposition 4 is straightforward. If the first-order derivative of total cost at *r
M  with respect 

to a specific r

iM  is positive, total travel cost can be reduced through decreasing r

iM  by a small 

amount. In the following Proposition 5, we provide a stronger condition for further intuition. 

Before doing so, we define 

  ( ) ( ) ( )
( ) ( ),

,2

rr
t i i ir r ri

i i i t i i i i ir
i i i

dc N MM
MC M t c N M N M

s d N M

 − 
 Δ = α ⋅ + δ ⋅ − − + ⋅ −   −   

, (32) 

for any i I∈ . ( )r

i i
MC MΔ  is the difference between the marginal cost of the auto side and the 

marginal cost of the transit side when all parking spaces are reserved to commuters (then the 

number of transit users ,

r

t i i iN N M= − ). 

 

Proposition 5. i) As 

 ( ){ }max 0r

i iMC M
=

Δ >
r r*M M

, (33) 

it is socially preferable to retain some parking spaces open for competition. ii) Furthermore, 

for any i I∈ , if 

 ( ) 0r

i iMC M
=

Δ >
r r*

M M
, (34) 

a small decrease of *r r

i iM M=  will lead to a decrease in total cost. 

 

Proof. According to Proposition 4, regarding the first-order derivative of Eq.(25) with respect 

to r

iM , as defined in Eq.(26), we have 

 

( )

( ) ( )
( ) ( ),

,2

r

i

r ur
t i i i ir u ri

i t i i i i i ir u
i i i i

dTC

dM

dc N M MM
t c N M M N M

s d N M M

≥

− −
α ⋅ + δ ⋅ − − − − ⋅ −

− −

r
M

. (35) 
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At =r r*
M M , 0u

iM =  for any i I∈ , it follows 

 
( ) ( )r

i ir

i

dTC
MC M

dM =

=

≥ Δ
r r*

r r*

r

M M

M M

M
. (36) 

Therefore, Eq.(33) in Proposition 5 implies that Eq.(30) in Proposition 4 holds as well. It is 

socially preferable to retain some parking spaces unreserved. Similarly, we can show that 

Eq.(34) indicates that a small decrease of *r r

i iM M=  will lead to a decrease in total cost.    # 

 

Proposition 5 indicates that when all parking spaces are reserved to travelers, if the marginal 

cost in the auto side is larger than that in the public transit side, it is beneficial to the system to 

retain some public parking spaces open for competition in the morning peak. Furthermore, if 

we consider the transit cost is nearly constant, i.e., ( ) ( ), 0r r

t i i i i i
dc N M d N M− − → , it follows 

that Eq.(32) approaches ( ) ( ),2r r r

i i i i i t i i i
MC M t M s c N MΔ = α ⋅ + δ − − . When r

iM  is relatively 

large, i.e., closer to ,a iN , ( )r

i i
MC MΔ  is more likely to be positive, indicating it is more likely 

to be beneficial by retaining some parking spaces open for competition. However, when 

parking is very limited, i.e., M  is relatively small, and r

iM  will be small as well, then 

( )r

i i
MC MΔ  is likely to be negative, indicating that it is unlikely to reduce travel cost by 

maintaining some public parking spaces. This is verified in numerical studies. 

 

 

4. Efficiency loss due to trading of reservations among commuters 

 

4.1. One-to-one network case 

 

Now we consider the case where commuters can trade their parking reservations (without 

consideration of transaction cost). It is similar with tradable parking permit considered in 

Zhang et al. (2011), Liu et al., (2014b). Firstly, we look at the case of a one-to-one network. 

Under a parking space constraint, a reserved parking space would yield a travel cost saving, 

i.e., r

a tP P< , where tP  is the transit travel cost and r

aP  is the travel cost of r-commuters, which 

is discussed in Section 2.2. Thus, travelers would be willing to pay a price no larger than 
r

t aP P−  to obtain a parking reservation. Indeed, given the total number of reservations rM , the 

equilibrium price of a parking reservation should be exactly equal to the cost saving from 

traveling with a reservation, which is 

 p r

t ap P P= − . (37) 

For the one-to-one network case, given parking capacity M , the transit cost tP  is constantly 

equal to ( )tc N M− , while r

aP  given by Eq.(6) is increasing over rM  for ( )rM M m
γ
δ≥ − , 
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i.e., Category I, and constant for ( )rM M m
γ
δ< − , i.e., Category II. Therefore, the price of the 

reservation given in Eq.(37) will be decreasing for Category I, while it will be constant for 

Category II, which are shown in Figure 2. Indeed, rM  can be regarded as the total supply of 

parking spaces for reservation, with the increase of supply, the price of reservation goes down 

or at least does not go up. Also note that, when M m≤ , where m  is defined by Eq.(5), as the 

difference of M m−  will be always non-positive, ( )rM M m
γ
δ≥ −  holds. It follows that the 

equilibrium in Category II will never arise. In this case, the price of reservation is depicted by 

the right panel in Figure 2. 

 

Figure 2. The price of parking reservation under the commuting equilibrium in the one-to-

one network 

 

Note that the left panel of Figure 2 for price of reservation in Category II is only valid in the 

one-to-one network case. This is because, as discussed in Section 3.2 after Proposition 2, in the 

case of a many-to-one network, an increase r

iM  for one specific O-D i  might yield an increase 

in ,

r

a iP  even if the equilibrium belongs to Category II (due to the network-wide interaction 

among travelers through parking competition). Then, the price (value) of a reservation for 

travelers of O-D i  will not be a constant. This is also briefly discussed in the following section. 

 

4.2. Many-to-one network case 

 

In the many-to-one network, the parking reservations might be traded among commuters from 

different origins. In this case, as the total number of reservations rM  distributed to the 

population is identical, the resulting allocation of reservations among O-D pairs, { }r

i
M=r

M  

will be identical, which is a result of joint equilibrium of modal-split and traffic pattern in the 

network and trading of reservations in the market, i.e., equilibrium of both travel and trading. 
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Trading of reservations will occur between commuters with different values of reservation, as 

long as commuters with lower values still have positive number of reservations. 

 

For ease of presentation, the set of all O-D pairs I  is divided into two subsets aI  and bI  in the 

way that at equilibrium, if 0r

iM > , ai I∈  and if 0r

iM = , bi I∈ . Note here when we consider 

trading of reservations, r

iM  is used to denote the equilibrium number of reservations for 

commuters of O-D i  after trading, which is also the equilibrium number of r-commuters for 

this O-D. Further study may consider issues related to initial distribution of reservations to 

travelers as considered in Liu et al. (2014b). For commuters of O-D ai I∈ , the equilibrium 

parking reservation price is given by 

 , ,

p p r

i t i a ip p P P= = − . (38) 

The price should be identical for any O-D ai I∈ . Otherwise, trading of parking reservations 

will occur, i.e., those with higher p

ip  will buy reservations from those with lower p

ip , and both 

sides of the trading can benefit from it. For commuters of O-D pair bi I∈ , the value of a 

reservation is 

 ,

p T A p

i i r ip P P p= − ≤ , (39) 

where pp  is determined by Eq.(38). Note that the �equal sign� of the inequality in Eq.(39) 

holds in the boundary case, where 0r

iM =  and p

ip  is just equal to the price determined in 

Eq.(38). As mentioned, for bi I∈ , 0r

iM = . This means that, travelers from these origins will 

benefit from selling out their reservations (if some reservations are assigned to them at the 

initial reservation distribution) even they have to compete for parking or take transit; and if 

they do not have a reservation, they will not buy from the market as the reservations are too 

expensive for them, i.e., the price of a reservation is greater than the cost saving associated 

with the reservation. 

 

As discussed in Section 4.1, in a one-to-one network, the price of reservation is constant 

(independent of rM ) if the equilibrium is in Category II because r

aP  is constant. However in 

the many-to-one network, as discussed in Section 3.2, ,

r

a iP  might increase with r

iM  even if the 

equilibrium for O-D i  belongs to Category II. It follows that the value of reservation for 

commuters from this origin might decrease with r

iM  (in the case of Category II). 

 

The optimal allocation of reservation r*
M  minimizes the total travel cost given in Eq.(14), and 

we have 

 
( ) ( )

* *

r r

i j

TC TC

M M
= =

∂ ∂
=

r r r r

r r

M M M M

M M
, (40) 
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for any ,i j I∈ , where ( )TC r
M  is given in Eq.(14). However, the equilibrium allocation of 

parking reservations after trading will satisfy the following conditions, 

 , ,

p r p

i t i a ip P P p= − ≤ , (41) 

 ( ) 0r p p

i i
M p p⋅ − = . (42) 

The trading equilibrium determined by Eqs.(41) and (42) usually deviates from Condition 

Eq.(40). This means that trading of reservation among travelers will probably lead to non-

optimal allocation of reservations among travelers from a system perspective. This is later 

verified in numerical studies. 

 

At the joint equilibrium of travel and trading, Eqs.(41) and Eq.(42) should hold in addition to 

the traffic equilibrium conditions. By taking the advantage of the Procedure I in Section 3.1, 

we then propose the heuristic (Procedure II) to compute the joint equilibrium. In Procedure II, 

Step 0 computes the traffic equilibrium given the current r
M , and Step 1 adjusts r

M  in the 

direction to satisfy conditions for trading equilibrium. 

 

Procedure II: Computing the User Equilibrium with Trading 

Initialization: 

Input: iN , ,a iN , ,t iN , ( ), , ,t i t i t i
P c N= , M , rM ; 

Compute the ,a iN  for each O-D pair. 

Set ,

,

a i

a ii

Nr r

i N
M M= ⋅  as an initial solution. 

Adjust the 
r

iM : 

Step 0: 

Use Procedure I to compute the traffic equilibrium. 
Set 1k = . 

Step 1: 

For every i I∈ , calculate , ,

p r

i t i a ip P P= − ; calculate 
p r
i ii

r

p Mp

M
p

⋅=   

Loop 1 (for every i I∈ ): 

If p p

ip p≥ , 
( ) ( ) ( ){ }1 1

, ,min , 1
p
i

p

k k pr r

i a i i a i k p
M N M N

+ = + ⋅ ⋅ − , and let i I ′∈ ; 

Otherwise, ( ) ( )1k kr r

i iM M
+ =  and let i I ′′∈ . (End of Loop 1) 

Loop 2 (for every i I∈ ): 

If p p

ip p≥ , ( ) ( )1k kr r

i iM M
+ = ; 

Otherwise, ( ) ( )

( )
( )( )1

kr
i

kr
jj I

k M kr r r

i jj IM
M M M

′′∈

+

′∈
= ⋅ −
  . (End of Loop 2) 

Step 2: 

If 
( ) ( )

( )

1k kp pr r
i i i ii i

kp r
i ii

p M p M

p M

+⋅ − ⋅

⋅

  ′< ε


, stop, and let ( )1kr r

i iM M
+= ; 

Otherwise, let ( )1kr r

i iM M
+= , and 1k k= + , then go to Step 1-0. 

Note: 710−′ε =  is applied in this paper. 
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5. Numerical study 

 

In this section, we will present some numerical analysis to illustrate the essential ideas in the 

paper. In our analysis, following Liu et al. (2015b), the value of time and schedule delay 

penalties are: 9.91 (EUR$/hour)α = , 4.66 (EUR$/hour)β = , 14.48 (EUR$/hour)γ = . 

 

5.1. Two-to-one case 

 

Firstly, we look at the two-to-one case, and we take the symmetric case as a benchmark, where 

25(min)it = , 2500iN = , 30( / min)is veh= , ( ), , 0, 1, ,t i t i i i t i
c N c c N= + × , 0, 6 (EUR$)ic =  and 

1, 0.001 (EUR$/person)ic =  for 1,2i = . By �symmetric�, we mean the characteristics and 

parameters for both O-D pairs are identical. The potential auto demand for each O-D pair is 

then , 1477a iN = . We consider 2000M = , and 500r

iM =  for both 1,2i = . At the bi-modal 

equilibrium, 500u

iM = , the price of reservation is 2.39 (EUR$)p p

ip p= =  for both 1,2i = . 

 

When all the parameters for O-D 1 are fixed, we now look at how changing those for O-D 2, 

i.e., 2N , 2t , 2s  and 0,2c , would affect the commuting equilibrium. Figure 3 shows how these 

four ratios, i.e., ( )2 2

p p

b
p p , ( )2 2

u u

b
M M , ( )2 2 b

M M  and ( ),2 ,2a a b
N N , vary with the ratios 

( )2 2 b
N N  (in Figure 3(a)), ( )2 2b

t t  (in Figure 3(b)), ( )2 2 b
s s  (in Figure 3(c)) and 

( )0,2 0,2 b
c c  (in Figure 3(d)). Note that the subscript ' 'b  corresponds to the benchmark case 

(symmetric case). 

 

Figure 3(a) shows that the four ratios increase if we increase the travel demand 2N . This 

indicates that if there is more travel demand from origin 2, the cost saving (value or price) of a 

reservation is higher, more commuters will choose to drive without reservation (however, it is 

upper bounded by 1000, and ( )2 2

u u

b
M M  is upper bounded by 1000 500 2=  due to the 

parking limitation), total number of drivers (both those with and without reservation) increases 

(however, it is upper bounded as 2 500rM =  and 2

uM  is upper bounded by 1000), and the 

potential parking demand increases. 
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(a) Ratios vary with ( )2 2 b
N N                          (b) Ratios vary with ( )2 2b

t t  

 

(c) Ratios vary with ( )2 2 b
s s                          (d) Ratios vary with ( )0,2 0,2 b

c c  

Figure 3. Comparison of ratios of ( )2 2

p p

b
p p , ( )2 2

u u

b
M M , ( )2 2 b

M M  and ( ),2 ,2a a b
N N  

 

Figures 3(b), 3(c) and 3(d) show that the four ratios increase if we decrease the free flow time 

2t , i.e., increase ( )2 2b
t t , and if we increase the roadway capacity 2s , and if we increase fixed 

transit cost 0,2c . By decreasing 2t , increasing 2s , and increasing 0,2c , it means for commuters 

from origin 2, driving becomes more attractive (either driving becomes less costly or taking 

transit becomes more costly). As a result, the cost saving (value or price) of a reservation is 

higher, more commuters will choose to drive without reservation, total number of drivers (with 

or without reservation) increases, and the potential parking demand increases. Figure 3(b) 

shows that the increasing rate of these four ratios are decreasing as ( )2 2b
t t  increases. Indeed, 

the four ratios are all upper bounded by the values when 2 0t → . When we increase 2s , the 

ratios ( )2 2

p p

b
p p , ( )2 2

u u

b
M M , ( )2 2 b

M M  are upper bounded by the values when 2s → ∞ . 

Figure 3(c) shows that when ( )2 2 2.5
b

s s ≥ , these three ratios almost remain constants. 
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Furthermore, the ratio of potential demand ( ),2 ,2a a b
N N  is upper bounded by 

1.69 2500 /1477=  as ,2 2 2500aN N≤ = . In Figure 3(d), it is shown that ( )2 2

p p

b
p p  always 

increases as ( )0,2 0,2 b
c c  increases. This is because, when transit becomes more costly, the 

saving from a reservation would be larger. In Figure 3(d), similar to those in Figure 3(a), 

( )2 2

u u

b
M M  is upper bounded by 2, and ( )2 2 b

M M  is upper bounded by 1.5; and similar to 

that in Figure 3(c), ( ),2 ,2a a b
N N  is upper bounded by 1.69. 

 

When all parameters for O-D pair 1 are fixed, Figure 4(a) presents how increasing 2

rM  would 

influence 1

pp , 2

pp , p

avep , where ( )1 1 2 2

p r p r p r

ave
p M p M p M= ⋅ + ⋅ . Figure 4(b) shows how this 

would affect 1

uM  and 2

uM , as well as 1M  and 2M . Figure 4(c) presents how travel costs vary 

with 2

rM . Figure 4(d) shows when commuters can trade their reservations, how the resulting 

equilibrium travel cost and the price of reservation will be different from those when trading is 

not allowed. Note that in the cases without trading of reservations, the average price 

( )1 1 2 2

p r p r p r

ave
p M p M p M= ⋅ + ⋅  can be regarded as the average cost saving from a reservation 

(for all commuters). In the cases with trading, it is equal to the price of a reservation at the 

trading market, and also the cost saving by driving with a reservation. 

 

As shown in Figure 4(a), as we increase 2

rM , the price (or value) of a reservation for 

commuters from origin 2, i.e., 2

pp , decreases. However, 1

pp  decreases with 2

rM . This is 

because, at equilibrium, 1

uM  decreases with 2

rM , as shown in Figure 4(b). It follows that, for 

commuters of O-D 1, traveling without reservations (either compete for parking or take transit) 

is more costly. Then the value of a reservation is larger. It is straightforward that p

avep  is 

between 1

pp  and 2

pp . 

 

Figure 4(b) shows that not only 1

uM , but also 2

uM  decreases with 2

rM , which is consistent with 

Proposition 2 in Section 3. Furthermore, in Figure 4(b), 2 2 2

r uM M M= +  increases with 2

rM . 

Note that, as shown in Figure 4(b), when 1 2 500r rM M= =  (the benchmark case), we have 

1 2 500u uM M= = , and 1 2 1000M M= = . As shown in Figure 4(a) and Figure 4(c), the price of 

reservation, and the total travel cost of commuters are identical for each O-D pair. 

 

Figure 4(c) shows the travel cost of commuters of O-D 1 increases with 2

rM , which is 

consistent with Proposition 3 in Section 3. As mentioned in Section 3, assigning more 

reservations to commuters from a specific origin does not necessarily reduce total travel cost 
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of them. This is depicted in Figure 4(c) as travel cost of commuters of O-D 2 (the blue dash-

dotted line) increases with 2

rM  after it reaches its minimum at 2 965rM = . In Figure 4(c), the 

red dashed line is the half of the total travel cost of all commuters, which is the average of the 

blue dotted line and blue dash-dotted line. 

 

Figure 4. Equilibrium under varying 2

rM  in the two-to-one case 

 

Figure 4(d) further shows that if we allow travelers to trade their reservations, how the 

equilibrium travel cost and the average price of reservation vary with 2

rM . Note here, since all 

characteristics for the two O-D pairs are identical except the reservations, given the total 

number of reservations, the optimum (in terms of minimizing total travel cost) coincides with 

the trading equilibrium. Therefore, in Figure 4(d), the red dotted line (for trading equilibrium) 
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is under the blue dotted line (for non-trading equilibrium). Furthermore, the price of reservation 

at the trading equilibrium is higher than the average price at the non-trading equilibrium (the 

red dashed line is above the blue dashed line), indicating averagely the cost saving through a 

reservation is higher in the trading equilibrium case. 

 

Table 1. Parameters for three cases: symmetric, asymmetric 1 and asymmetric 2 

 Symmetric case Asymmetric case 1 Asymmetric case 2 

( )2, 2,i i
c N  3

2,6.0 10 iN−+ ×  3

2,6.5 10 iN−+ ×  3

2,7.5 10 iN−+ ×  

2N  2500  2750  3000  

2  (min)t  25  22  18  

2  (veh/min)s  30  25  22  

,1 ,2,a aN N  1477,1477  1477,1676  1477,2051  

Figure 5 (a) (b) (c) (d) (e) (f) 

M  1500 2500 1500 2500 1500 2500 

1 2,

( )

r rM M

TC UE
 

0,0

38750
 

0,0

36250
 

0,0

42722
 

0,0

40106
 

0,0

48474
 

0,0

45753
 

1 2,

( )

r rM M

TC SO
 

750,750

35522
 

800,800

33763
 

679,821

38776
 

813,897

36829
 

555,945

43178
 

841,1099

40864
 

1 2,

( )

r rM M

TC UET
 

750,750

35522
 

800,800

33763
 

600,900

38814
 

746,964

36855
 

357,1143

43437
 

682,1258

41031
 

1 2,

( )

r rM M

TC SOB
 

750,750

34420
 

1250,1250

31508

605,895

37510
 

1129,1371

34071

388,1112

41564
 

929,1571

37301
 

( ) ( )
( ) ( )

TC UE TC SO

TC UE TC SOB

−

−
 75%  52%  76%  54%  77%  58%  

Note: All costs TC  are in EUR$ 

 

Table 1 summarizes the parameters of O-D pair 2 for the examples in Figure 5 while those of 

O-D pair 1 are identical to the benchmark case. In Table 1, ( )TC UE  is the total travel cost 

when reservation is not introduced, which corresponds to the point (0,0)  in Figure 5; and 

( )TC SO  is the total travel cost when the optimal allocation is introduced given the parking 

capacity, which corresponds to the star-marked point in Figure 5; and ( )TC UET  is the total 

travel cost when total number of reservations is identical to that under ( )TC SO , but we allow 

travelers to trade, which corresponds to the circle-marked point in Figure 5; and ( )TC SOB  is 

the minimum total travel cost can be achieved (congestion at highway is eliminated, the joint 
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result of allocation of parking spaces among different O-D pairs and modal-split for each O-D 

pair are optimal). 

 

Figure 5. Total cost contours for six cases 

 

For Figures 5(a), 5(c) and 5(e), parking capacity is relatively small, i.e., 1500M = ,  which is 

0.51 aN  for symmetric case, 0.48 aN  for asymmetric case 1 and 0.43 aN  for asymmetric case 
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2. ( )TC SO  is achieved at the boundary of the feasible domain of ( )1 2,r rM M , denoted by the 

star-marked point, indicating it is socially preferred to reserve all parking spaces to commuters 

to avoid costly competition for parking. However, in Figures 5(b), 5(d) and 5(f), parking 

capacity is relatively large although it is less than the potential demand, i.e., 2500M = ,  which 

is 0.85 aN  for symmetric case, 0.80 aN  for asymmetric case 1 and 0.71 aN  for asymmetric case 

2. ( )TC SO  is achieved at the interior of the feasible domain of ( )1 2,r rM M , denoted by the star-

marked point, indicating it is socially preferred to retain some parking spaces open for 

competition to separate arrivals of r-commuter and u-commuters, and thus temporally relieve 

traffic congestion. 

 

As we see from Table 1, from symmetric case  asymmetric case 1 asymmetric case 2→ → , 

the characteristics for the two O-D pairs become more asymmetric. It follows that the total cost 

contours in the feasible domain of ( )1 2,r rM M  become more asymmetric, as shown in Figure 5. 

We also note that, the combination of 1

rM  and 2

rM  at the trading equilibrium (the circle-

marked point) moves further away from the optimal allocation (the star-marked point) as the 

two O-D pairs becomes more asymmetric. However, in the current example, even if the two 

O-D pairs are relatively asymmetric (Asymmetric case 2), the efficiency loss due to trading of 

reservations is relatively small for both 1500M =  and 2500M = , as one can see in Table 1 

(43437 and 41031 for UET while 43178 and 40864 for SO). However, if the two O-D pairs 

become more asymmetric, the efficiency will be even larger. Later in the five-to-one network 

example, we will show the efficiency loss due to trading can be fairly large. 

 

In Table 1, 
( ) ( )

( ) ( )
TC UE TC SO

TC UE TC SOB

−

−
 is the ratio of travel cost reduction by the reservation system to the 

maximum travel cost reduction (the maximum potential), given the current travel demand, 

parking capacity, highway capacity and transit cost. We can see the reservation system is quite 

efficient, as in Table 1, 
( ) ( )

( ) ( )
TC UE TC SO

TC UE TC SOB

−

−
 is all above 52% , and can be up to 77% . Furthermore, 

as the two O-D pairs become more asymmetric, the ratio 
( ) ( )

( ) ( )
TC UE TC SO

TC UE TC SOB

−

−
 increases, i.e., 

75% 76% 77%→ →  for the case with 1500M = , and 52% 54% 58%→ →  for 2500M = . 

Besides, 
( ) ( )

( ) ( )
TC UE TC SO

TC UE TC SOB

−

−
 is larger for cases with smaller parking capacity. This is because, when 

parking capacity is smaller, the costly schedule delays due to competition for parking, which 

are the major inefficiencies, can be sharply reduced through reservation. 

 

5.2. Five-to-one example 
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Now we present a numerical example of a five-to-one network for further insights. Table 2 

summarizes characteristics for each O-D pair in such a network. 

 

Table 2. Summary of values of parameters and variables 

O-D specific Parameters O-D pair 

1 2 3 4 5 

Travel demand iN   3000 2000 3000 2000 2500 

Free flow travel time it  (min) 24 30 26 35 20 

Highway capacity is  (veh/min) 25 18 25 25 22 

Fixed transit cost 0,ic  (EUR$) 5.5 6.0 5.8 6.0 6.5 

Variable transit cost 1,ic  (10-3 EUR$/person) 1 1 1 0.5 1 

Potential auto demand ,a iN  1354 714 1345 428 1552 

 

Table 3 further presents the results of the five-to-one network in nine situations. In Table 3, 

OUE corresponds to the case without parking spaces constraints, and UE corresponds to the 

case without reservation introduced (but with a parking space constraint), and SO is the case 

with optimal allocation of reservations among O-D pairs. When total number of reservations 

is equal to that for SO, UEP is the case that the numbers of reservations assigned to each O-D 

pair are proportional to their potential demands, and UET is when trading of reservations is 

allowed. Note that UE(1), SO(1), UEP(1) and UET(1) are for the case with 4880M = , while 

UE(2), SO(2), UEP(2) and UET(2) are for the case with 2000M = . 

 

In Table 3, for each situation, we present the numbers and prices of reservations for each O-D 

pair and as well as the total travel cost. SOBTC  corresponds to the minimum travel cost given 

the travel demand, parking capacity, highway capacity and transit cost (generally cannot be 

achieved by reservation system only). Taking SOBTC  as the benchmark for efficiency analysis, 

we define the ratio ( ) ( )( ) ( ) SOBTC UE TC TC UE TCθ = − −  to measure the relative efficiency 

of the specific situation. Note that ( )TC UE TC−  is the travel cost reduction compared with the 

UE, and ( ) SOBTC UE TC−  is the maximum travel cost reduction. 

 

As shown in the third row of Table 3, given the same parking capacity M and rM , for a 

specific O-D pair i , p

ip  decreases with r

iM  (for the three situations of SO, UEP and UET). 

Also, in three cases, i.e., SO(1), UEP(1) and UET(1), for O-D 4 , 4 0uM =  when a positive 

number of public parking spaces are open for competition, indicating competing for parking is 

too costly for commuters from O-D 4. In this case, O-D 4 belongs to group 1 where 

( ), 0i

u e end
t t+ >  as discussed in Section 3.1. When we look at O-D pair 5 in the case of UEP(1), 

D
ow

nl
oa

de
d 

by
 [

H
K

U
ST

 L
ib

ra
ry

] 
at

 2
3:

57
 2

7 
O

ct
ob

er
 2

01
5 



A
cc

ep
te

d 
M

an
us

cr
ip
t

Revised paper submitted to Transportmetrica A: Transport Science 

 
- 28 - 

we see that the total number of drivers is 5 916 636 1552M = + = , which equals the potential 

demand in Table 2. In this case, O-D pair 5 then belongs to group 3. The current allocation of 

reservation assigns quite a lot reservations to commuters of this O-D pair, and those without 

reservation can always obtain a public parking space before the ending time as discussed in 

Section 3.1. Similarly, in the situation of UE(1), O-D pair 4 belongs to group 3. Given the 

parking allocation, for commuters from O-D pairs belong to group 3, the parking space 

constraint is not binding for them. Therefore, the travel cost of those with and without 

reservation is identical, which is shown in the fourth row of Table 3, and the value of a 

reservation is zero, which is shown in the third row. 
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Table 3. Summary of different cases in the bi-modal five-to-one network 

 OUE UE(1) SO(1) UEP(1) UET(1) UE(2) SO(2) UEP(2) UET(2) 

M  5393 4880 4880 4880 4880 2000 2000 2000 2000 

( )

r

p

M

p
 

0 

(0) 

0 

(1.49) 

3183 

(1.36) 

3183 

(0.84) 

3183 

(0.77) 

0 

(3.40) 

2000 

(2.79) 

2000 

(2.77) 

2000 

(2.69) 

,

( )

r u

i i

p

i

M M

p

 

0,1354 

(0) 

0,714 

(0) 

0,1345 

(0) 

0,428 

(0) 

0,1552 

(0) 

0,1220 

(1.85) 

0,662 

(0.92) 

0,1212 

(1.83) 

0,428 

(0.00) 

0,1362 

(2.87) 

773,454 

(1.49) 

574,108 

(0.49) 

772,447 

(1.47) 

372,0 

(0.16) 

692,686 

(2.47) 

799,460 

(1.30) 

421,146 

(1.10) 

794,454 

(1.33) 

252,0 

(0.50) 

916,636 

(0.00) 

847,451 

(0.77) 

502,133 

(0.77) 

845,444 

(0.77) 

157,0 

(0.77) 

833,668 

(0.77) 

0,552 

(3.98) 

0,146 

(2.90) 

0,545 

(3.96) 

0,0 

(1.22) 

0,757 

(4.94) 

578,0 

(2.56) 

216,0 

(2.13) 

583,0 

(2.55) 

25,0 

(1.15) 

599,0 

(3.50) 

502,0 

(2.85) 

265,0 

(1.92) 

499,0 

(2.83) 

159,0 

(0.77) 

576,0 

(3.58) 

552,0 

(2.69) 

86,0 

(2.69) 

543,0 

(2.69) 

0,0 

(1.22) 

820,0 

(2.69) 

, ,

,

,

( )

u

t i a i

r

a i

P P

P
 

7.15 

(7.15) 

7.29 

(7.29) 

7.46 

(7.46) 

6.79 

(6.79) 

7.45 

(7.45) 

7.28 

(5.43) 

7.34 

(6.42) 

7.56 

(5.76) 

6.79 

(6.79) 

7.64 

(4.77) 

7.27 

(5.78) 

7.32 

(6.83) 

7.58 

(6.11) 

6.81 

(6.65) 

7.62 

(5.15) 

7.24 

(5.94) 

7.43 

(6.33) 

7.55 

(6.22) 

6.87 

(6.37) 

7.45 

(7.45) 

7.20 

(6.43) 

7.37 

(6.59) 

7.51 

(6.74) 

6.92 

(6.15) 

7.50 

(6.73) 

7.95 

(3.96) 

7.85 

(4.96) 

8.25 

(4.29) 

7.00 

(5.78) 

8.24 

(3.30) 

7.92 

(5.32) 

7.78 

(5.66) 

8.22 

(5.66) 

6.99 

(5.84) 

8.40 

(4.90) 

8.00 

(5.14) 

7.74 

(5.82) 

8.30 

(5.47) 

6.92 

(6.15) 

8.42 

(4.84) 

7.95 

(5.26) 

7.91 

(5.24) 

8.26 

(5.57) 

7.00 

(5.78) 

8.18 

(5.49) 

iTC  

21438 

14572 

22365 

13572 

18622 

21841 

14676 

22764 

13572 

19096 

20664 

14355 

21606 

13569 

17346 

20682 

14400 

21598 

13621 

18620 

20954 

14343 

21882 

13722 

18106 

23843 

15707 

24765 

14000 

20607 

22263 

15111 

23164 

13946 

18907 

22561 

14963 

23490 

13720 

18997 

22362 

15597 

23314 

14000 

18247 

TC  90570 91949 87540 88922 89008 98922 93392 93730 93520 

SOBTC   81953 82701 82701 82701 82701 91866 91866 91866 91866 

θ  - 0 48% 33% 32% 0 78% 74% 77% 

Category 
2,2,2,2,

2 

2,2,2,2,

2 

2,1,1,1,

2 

2,1,2,1,

2 

2,1,2,1,

2 

1,1,1,1,

1 

1,1,1,1,

1 

1,1,1,1,

1 

1,1,1,1,

1 

 

Again, we see the reservation scheme is efficient in reducing travel cost, as θ  is above 32% 

for the six situations where reservation is introduced, and can be as large as 78%. However, 

when comparing SO(1) and UET(1), we see a efficiency loss of 16% due to trading of 

reservations. This means that we probably should prohibit commuters from trading their 

reservations. Furthermore, we see the major contributor of this loss is the increase of travel cost 

of commuters of O-D pair 5, as can be seen by looking at the increase of 5TC  (from 17346 to 

18106). This increase is due to a more congested highway as travelers from this origin will buy 
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reservations from other commuters, i.e., the increase in 5

rM  (833 692> ) leads to an increase 

in total number of drivers (833 668 692 686+ > + ). 

 

5.3. Convergence of Procedure I and Procedure II 

 

Figure 6 shows convergence of the proposed Procedure I and Procedure II in the two-to-one 

example. Figure 6(a) depicts the errors defined in Procedure I and Procedure II for computing 

traffic equilibrium (without trading), i.e., ( )l e l
τ − τ τ , and for computing joint equilibrium of 

travel and trading, i.e., 
( ) ( )

( )

1k kp pr r
i i i ii i

kp r
i ii

p M p M

p M

+⋅ − ⋅

⋅

 


, against the number of iterations; while Figure 6(b) 

depicts how the prices of reservation and public parking space ending time evolve over 

iteration. 

 

                  (a) Errors against iteration                 (b) Prices of reservation and ending time 

Figure 6. Convergence of the proposed Procedures I and II 

 

Note that when computing the joint equilibrium of travel and trading, in each iteration, we have 

to run Procedure I to compute the traffic equilibrium. Thus, there would be one error curve for 

ending time (red dashed line in Figure 6(a)) and curves of ending time (red dashed line in 

Figure 6(b)). In Figure 6, we choose only one as an illustrative example. The values in Figure 

6(b) are normalized through being divided by the final solution, so that all the curves 

approaches 1 after certain numbers of iterations. 

 

 

6. Concluding remarks 
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In this paper we examine how the binding parking capacity constraints re-shape the rush-hour 

traffic patterns in a bi-modal many-to-one network. Several properties of the commuting 

equilibrium with parking space constraints and parking reservation are discussed. Procedures 

for computing the dynamic user equilibrium with a parking space constraint (either trading of 

reservations is allowed or not) have been proposed. 

 

Particularly, we show that parking reservation system can help reduce deadweight loss due to 

parking competition and roadway congestion. Furthermore, it is shown that assigning more 

reservations to travelers from a specific origin does not necessarily reduce total travel cost of 

them, while doing so can lead to an increase in travel cost of travelers from other origins. Our 

analysis also indicates that when parking supply is less than the potential demand but relatively 

large, it is socially preferred to retain some parking spaces open for competition. This is 

because, by retaining public parking spaces, we indeed separate departures and arrivals of those 

with and without reservations. Thus, traffic congestion is temporally relieved.  However, when 

the total parking supply is relatively small, all parking spaces should be reserved to travelers 

to avoid costly competition for parking. 

 

We also show that trading of reservations among travelers can yield an efficiency loss. As 

shown in the numerical example, this loss is less when the characteristics of all the O-D pairs 

are more similar. However, as shown in the five-to-one network example, the loss of efficiency 

can be up to 16%, thus trading should be prohibited. However, when the loss due to trading is 

relatively small, we may allow people to trade as prohibiting trading can be costly in practice. 

 

While the current study adopts a network with multiple independent traffic corridors, further 

study may consider a linear corridor with multiple origins and one destination as in Tian et al. 

(2007). In this case, if we only consider single bottleneck congestion at the end of the corridor, 

the model would be very similar to the one-to-one traffic corridor case discussed in Section 2 

and Yang et al. (2013) (the difference is that, commuters from different origins along the 

corridor will have different free-flow travel times). However, if we incorporate dynamic traffic 

congestion along the corridor as Arnott and de Palma (2011), the problem would be much more 

challenging, which is one of our priorities for future research. We may also analyze the impacts 

of limited parking in a general multi-modal network. We expect similar trends as those in this 

study even for a general network with more complex traffic dynamics. This is because, the 

qualitative impacts of parking limitation and parking reservation will not change, i.e., parking 

limitation forces people to travel earlier or shift to public transport; parking reservation offers 

flexibility in mode and departure time choices. 

 

The current paper considers all the travelers as regular morning commuters. Future study may 

take into account two classes of travelers: regular and occasional commuters. In this case, 

parking operators might be more willing to provide parking reservation services to the regular 
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customers (e.g., by charging less). We will explore how to set the differentiated reservation 

prices, and efficiently allocate the reservations among these two classes of travelers. Besides 

considering prices of parking, we may also link parking duration with scheduling of daily work 

activities, morning-evening commutes such as that considered in Zhang et al. (2005). 
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Appendix. Proof of Proposition 2 

 

Proof. We prove Proposition 2 by looking at the case that 2hI ≥  where 1, 2,3h = , while the 

other case where 2hI <  is much simpler and Proposition 2 can be verified. Suppose there is a 

marginal increase 0r

iMΔ >  in r

iM , which can be sufficiently small. Note that the case with 

0r

iMΔ <  is similar. 

 

Part (i): 1i I∈  

Suppose 1i I∈ , as 0r

iMΔ >  is small enough, then for 1 3j I I∈  , 0u

jMΔ = . Now we look at 

those 2j I∈ . Firstly, there must exist at least one O-D pair denoted by 2k I∈  such that u

kM  

decreases, i.e., 0u

kMΔ < , otherwise we have the contradiction that ( )r u

i ii
M M M+ > . 

 

We now show that if there exists an 2k I∈ , thus 0u

kMΔ < , then for any 2j I∈ , 0u

jMΔ <  by 

contradiction. Suppose for some j , we have 0u

jMΔ ≥ . Since 0u

kMΔ <  and r

kM  remains 

constant, r u

k kM M+  decreases. It follows that ( ),

r u

t k k k k
c N M M− −  increases. Further with 

Eq.(12) and 0u

kMΔ < , the ending time of public parking spaces endt  becomes earlier. For those 

j  with 0u

jMΔ ≥ , we have that r u

j jM M+  increases or at least does not decrease, and 

( ),

r u

t j j j j
c N M M− −  decreases or at least does not increase. With Eq.(12) and 0u

jMΔ ≥ , the 

ending time of public parking spaces endt  becomes later or at least not earlier, which is a 

contradiction. 
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According to the above, we easily see that given 0r

iMΔ > , for any j I∈ , we have 0u

jMΔ ≤ . 

As 0r

iMΔ >  can be sufficiently small, we have 0u r

j idM dM ≤ . Furthermore, by noting the 

fact that 
1

1
n u r

j ij
dM dM

=
= − , we have 1u r

j idM dM ≥ − . 

 

Part (ii): 2i I∈  

Suppose 2i I∈ , as 0r

iMΔ >  is small enough, then for 1 3j I I∈  , it can be verified that 

0u

jMΔ = . Similarly, there must exist at least one O-D pair denoted by 2k I∈  such that u

kM  

decreases, i.e., 0u

kMΔ < , otherwise we have the contradiction that ( )r u

i ii
M M M+ > . Given 

0u

kMΔ < , we consider two possible cases: k i=  or k i≠ . Similar to the proof for Part(i), we 

can show that if there exists an 2l I i∈ ≠ , thus 0u

lMΔ < , then for any 2j I i∈ ≠ , 0u

jMΔ <  by 

contradiction. Now we discuss the two possible cases: k i=   or k i≠ . 

 

If k i≠ , since 0u

kMΔ < , based on the analysis above, for any 2j I i∈ ≠ , 0u

jMΔ < , and it 

follows that the ending time of public parking spaces becomes earlier. Given this result, it 

suffices to show that 0u

iMΔ < . Suppose 0u

iMΔ ≥ , r u

i iM M+  increases, and 

( ),

r u

t i i i i
c N M M− −  will decrease. With Eq.(12) and 0u

iMΔ ≥ , the ending time of public 

parking spaces becomes later, which is a contradiction, and 0u

iMΔ <  holds. This means for 

any j , whether equal to i  or not, we have 0u

jMΔ < , and 0u r

j idM dM ≤ . 

 

If k i= , and 0u

kMΔ < . Given the above analysis, it suffices to show that for any 2j I i∈ ≠ , 

0u

jMΔ ≥  will lead to a contradiction. Suppose for some j i≠ , we have 0u

jMΔ ≥ . Then, 

similarly, the ending time of public parking spaces becomes later or at least not earlier. Note 

that this ending time is also that for travelers from origin k i= , as 0u

kMΔ < , with Eq.(12), one 

can verify that ( ),

r u

t k k k k
c N M M− −  should decrease. It then follows that r u

k kM M+  will 

increase, and note that this also means r u

k k
M MΔ > Δ . As for any j i≠ , we have 0u

jMΔ ≥  

and r

jM  remains constant, thus r u

j jM M+  will increase or at least do not decrease. We thus 

have ( )
1

n r u

j jj
M M M

=
+ > , which contradicts the fact that ( )

1

n r u

j jj
M M M

=
+ = . We then 

conclude that for any j , whether equal to k i=  or not, 0u

jMΔ < , and 0u r

j idM dM ≤ . 
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In summary, given that 2i I∈  and 0r

iMΔ > , for any j I∈ , we have 0u

jMΔ ≤ . As 0r

iMΔ >  

can be sufficiently small, we have 0u r

j idM dM ≤ . Since 
1

1
n u r

j ij
dM dM

=
= − , we then have 

1u r

j idM dM ≥ − . 

 

Part (iii): 3i I∈  

Suppose 3i I∈ , as the parking space constraint is not binding for commuters from origin i , it 

follows ,

u r

i a i iM N M= − . As 0r

iMΔ > ,  we have 0u r

i iM MΔ = −Δ < . For all other j i≠ , we 

have 0u

jMΔ = . It is straightforward to see 1 0u r

j idM dM− ≤ ≤ . This completes the proof.    # 
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