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Upscaling species richness and abundances
in tropical forests
Anna Tovo,1* Samir Suweis,2* Marco Formentin,1† Marco Favretti,1 Igor Volkov,3

Jayanth R. Banavar,3,4† Sandro Azaele,5 Amos Maritan2

The quantification of tropical tree biodiversity worldwide remains an open and challenging problem. More than
two-fifths of the number of worldwide trees can be found either in tropical or in subtropical forests, but only
≈0.000067% of species identities are known. We introduce an analytical framework that provides robust and
accurate estimates of species richness and abundances in biodiversity-rich ecosystems, as confirmed by tests
performed on both in silico–generated and real forests. Our analysis shows that the approach outperforms other
methods. In particular, we find that upscaling methods based on the log-series species distribution systematically
overestimate the number of species and abundances of the rare species. We finally apply our new framework on
15 empirical tropical forest plots and quantify the minimum percentage cover that should be sampled to achieve
a given average confidence interval in the upscaled estimate of biodiversity. Our theoretical framework confirms
that the forests studied are comprised of a large number of rare or hyper-rare species. This is a signature of
critical-like behavior of species-rich ecosystems and can provide a buffer against extinction.
INTRODUCTION
Tropical forests have long been recognized as one of the largest pools
of biodiversity (1). Global patterns of empirical abundance distributions
show that tropical forests vary in their absolute number of species but
display surprising similarities in the distribution of individuals across
species (2–4). For practical reasons, biodiversity is typically measured
or monitored at fine spatial scales. However, important drivers of eco-
logical change tend to act at large scales (5, 6). Conservation issues, for
example, apply to diversity at global, national, or regional scales. Extra-
polating species richness from the local to the whole-forest scale is not
straightforward. A vast number of different biodiversity estimators have
been developed under different statistical sampling frameworks (7–11),
but most of them have been designed for local/regional-scale extrapola-
tions, and they tend to be sensitive to the spatial distribution of trees
(12–14), sample coverage, and sampling methods (15). A common sta-
tistical tool used to describe the commonness and rarity of species in an
ecological community is the relative species abundance distribution
(SAD or RSA), which is a list of species present within a region along
with the number of individuals per species (16, 17). Typically, the SAD
is measured at local scales (for example, in quadrats or transects; see
Fig. 1), in which the identities of the individuals living in the area are
known. The sampled SAD can be fit to a given functional form at that
scale. However, that formmay change at different spatial scales, thus
hindering analytical treatment (18). Nonparametric approaches have
also been proposed in the literature to infer species richness. Instead
of assuming a specific functional form for the SAD and fitting data to
arrive at the parameters, these methods are based on the intuitive idea
that it is only the rare species that carry information on the undetected
species in a sample. A successful example is the method introduced by
Chao et al. (15, 19, 20), which takes into account only the number of
singletons and doubletons (species with just one or two individuals)
observed at the sample scale to infer the species richness of the whole
forest.

Recently, a semianalyticalmethod to upscale species richness based
on a log series (LS) for the SAD has been proposed (section S1 and
Fig. 2) (21–25). The LS distribution was obtained by Fisher et al. (26) as
the limiting form of a negative binomial (NB) probability distribution
(that is, the probability of observingn individualswhen sampling from
a population belonging to different species), excluding zero observa-
tions (no information on the number of missed species is available) and
assuming that the distribution of individuals is known and simple (that
is, Eulerian form). The LS distribution is often used to describe SAD
patterns in ecological communities, including tropical tree commu-
nities. The robustness of the upscaling method relies on the stability
property of Fisher’sa [approximately reflecting the number of observed
singleton species (26)], which ought not to depend on the forest sample
size and is given by

Np

a
¼ ðeSp=a � 1Þ ð1Þ

where Np and Sp are the total number of individuals and species, re-
spectively, when sampling a fraction p of the forest (N1 =N and S1 = S
corresponds to the total number of individuals and species when
sampling the whole forest). Therefore, the LS method is composed of
three main steps: (i) Fisher’s a is calculated, assuming that the species
have an LS distribution (see Materials and Methods) and using the ob-
served species Sp and number of treesNp as input. (ii) The total number
of stems N for the whole area of interest is extrapolated [This is not a
trivial task, and there is no consensus on the bestmethods to implement
it. Generally, constant average stem density is assumed (24, 25).]. (iii)
The number of species at the largest scale is estimated using the formula
S = a ln (1 +N/a) (26). This method has been used to estimate the spe-
cies richness of the Amazonia (24) and that of global tropical forests
(25). For the latter case, Slik et al. (25) noted that when merging forests
in different tropical regions, the value of Fisher’s a shows an asymptotic
behavior for large areas, as if it is converging to its asymptote for each
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region. From this limiting value, it is then possible to infer the total spe-
cies richness of the different tropical regions.

On the basis of theoretical and computational analysis as well as using
the data from 15 tropical forests located all over the globe, we show that
the LS method suffers from important limitations (see section S2, figs.
S1 and S2, and table S1). Often, the SAD—especially at large scales or
with increasing sampling effort (27)—displays an interiormode (14),which
an LS cannot capture. The Fisher’s LS is not flexible enough (18) to de-
scribe different SAD patterns (14, 17, 28–32) found in tropical forests.

Here, we present amore general analytical framework to extrapolate
species richness from local to whole-forest scales. This framework,
derived from first principles on the basis of biological processes, is based
on the fact that the functional form of any given SAD can be approxi-
mated to any degree of accuracy with a linear combination of NB dis-
tributions (see Materials and Methods), as long as the population sizes
are smaller than some fixed, but otherwise arbitrary, threshold, as sug-
gested byNachbin’s theorem (see section S3) (33, 34).Wewill show that
our method outperforms previously proposed methods and that the LS
method turns out to be a special case of our framework.
RESULTS
Theoretical framework
The NB distribution arises naturally as the steady-state SAD of an eco-
system that undergoes simple birth-and-death dynamics, with an effec-
Tovo et al., Sci. Adv. 2017;3 : e1701438 18 October 2017
tive birth rate accounting for the effects of immigration events and/or
intraspecific interactions (2, 14), and under the neutral hypothesis that
individuals are demographically identical (see Materials and Methods)
(31). This distribution is able to adequately fit the SADs of diverse eco-
systems, such as tropical forests and coral reefs (14, 31). In particular,
Eq. 2 below is the steady-state solution of the master equation governed
by birth and death rates (see Materials and Methods). The continuum
version of the NB (that is, the g distribution) is also the stationary state
of a model that captures the temporal turnover of species (35), an im-
portant aspect of tropical tree dynamics (36).

A single NB SAD is given by

Pðnjr; xÞ ¼ 1
1� ð1� xÞr

nþ r � 1
n

� �
xnð1� xÞr ð2Þ

which is normalized so that∑∞n¼1Pðnjr; xÞ ¼ 1, where r > 0 and 0≤ x
< 1 are the parameters accounting for immigration or intraspecific
interactions and the ratio between the birth and death rates, respec-
tively (see Materials andMethods). Fisher’s LS is obtained as the r→
0 limit of Eq. 2.

Owing to partial sampling, the empirical SAD of a small sample of a
forest will likely show a monotonic decreasing behavior, because these
samples containmany rare species with just a few individuals. However,
Fig. 1. The challenge of estimating global tropical species richness. A map depicting the 15 forests in our data set in which the coordinates of each subplot
(squares) are known. Our goal is to deduce the species richness and abundances of each entire forest on the basis of the very limited knowledge in the marked dots
(see Table 1 and section S6 for a more detailed description of the data set).
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a relatively larger sample may exhibit an internal mode, because rela-
tively rare species are not found as the sampling effort increases (this
happens, for example, if the SAD at the whole-forest scale is well de-
scribed by a log-normal). Both situations are well captured by the NB
distribution, whose functional form can accommodate both shapes, de-
pending on the value of its different parameters (Fig. 3). When extra-
polating to larger spatial scales (upscaling), a single NB distribution (Eq.
2) retains the same value of the parameter r—so we say that r is scale-
invariant—whereas the parameter x depends on the sampling scale (see
Materials and Methods). The same holds true for a linear combination
of NB distributions with different values of r and the same x (see
Materials and Methods).

We formulate our analytical framework on the basis of the following
two steps: (i) Sample a fraction p* of the whole forest and then obtain
the vector,np* ¼ fn1; n2; :::; nS*g, of the abundances of the S* sampled
species. (ii) Use a linear combination of a suitable number of NBs with
the same x̂p* and different values of r to fit the empirical SAD at the
desired degree of accuracy. This method is guaranteed to be effective
according to Nachbin’s theorem (see section S3 and figs. S3 and S4)
(33, 34). The NB does not change its functional form when sampling
different fractions of areas—that is, distribution form invariance under
different sampling efforts—although the parameters of the distribution
do change. More precisely, the NB at different scales has the same r
parameters, but different x, which is a function of the scale (see
Materials and Methods). Thus, we obtain an analytical expression
of the upscaled SAD at scale p from the data at scale p* in terms of
the equation x̂p ¼ Uðp; p*jx̂p*Þ, defining x̂p in terms of p, p*, and
x̂p* (see Materials and Methods). Using the SAD at scale p*, a max-
imum likelihood method is used to estimate the parameters of the
SAD, and the upscaling equations (see Materials and Methods) are
used to predict the species richness of the entire forest, that is, p = 1.
In particular, we found that the total number of species S at the
largest scale (p = 1) is related to the number of species at scale p,
Sp, by the following relation (see section S1 for detailed calculations)
Tovo et al., Sci. Adv. 2017;3 : e1701438 18 October 2017
S ¼ Sp
1� ð1� xÞr
1� ð1� xpÞr

ð3Þ

where xp and r are the NB-fitted parameters of the SAD at scale p.
As noted above, r is scale-invariant and hence independent of p,
whereas the parameter x at the largest scale, p = 1, is given by

x ¼ xp
pþ ð1� pÞxp

ð4Þ

The framework resembles the renormalization group technique in
critical phenomena in which the behavior of a system at different scales
is described in terms of equations for themodel parameters, similarly to
what has been suggested here (37). By using our framework (that we
denote as the NB framework in the following sections), we were able
to generate accurate and robust predictions for computer-generated
forests and for 15 empirical tropical forests (Fig. 1 and Table 1).

Test on in silico forests
We first compared the results of our method applied to a computer-
generated forest. In this in silico experiment, we fixed the number of
species (S = 5000) and their abundance distribution a priori and then
generated the forest accordingly. Species abundances were extracted
from a log-normal SAD ofmean, m = 5, and SD, s = 1, and the individual
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Fig. 3. Versatility of the NB distribution. The NB distribution is a two-
parameter distribution that shows self-similarity and can display both monotonic
LS-like behavior (in the limit r→0, the NB tends to the LS distribution) and a uni-
modal shape, as a function of the scaling parameter x. The red curve represents
the analytical threshold separating these two cases. The SAD, especially at large
scales or with increasing sampling effort (27), often displays an interior mode that
cannot be captured by the LS distribution but can be described by the NB. The NB
distribution naturally arises as the steady-state SAD of an ecosystem undergoing
generalized dynamics of birth, death, speciation, and migration processes (see
Materials and Methods). Finally, any discrete probability distribution, such as the
SAD, can be approximated to any degree of accuracy by a suitable linear combi-
nation of NBs that retains the self-similarity feature (see Materials and Methods).
An example is shown of how the parameter x of the NB increases as the area of
the forest doubles. Starting from x = 0.36, as the area doubles, the x value moves
upward to the value corresponding to the successive (dashed) horizontal line in
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Fig. 2. Schematic presentation of our theoretical upscaling framework. It
consists of three steps. (A) We know the abundances of S* species within a given
region covering a fraction p* of the whole forest. (B) We perform the best fit
(maximum likelihood) of the SAD (an NB or an LS). (C) Using the best-fit param-
eters obtained in (B) and using our upscaling Eqs. 11 and 15, we predict the
biodiversity Spred of the whole forest.
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trees were located according to a modified Thomas process (see fig. S5
and section S4) (38, 39) with two distinct clustering coefficients (high
and low clustering). The log-normal SAD, originally proposed by Pres-
ton (40), has been used to fit the SAD of several tropical forests (14, 41),
whereasThomas clustermodels have reproduced empirical species-area
curves with high fidelity (12, 42).

We then sampled nonoverlapping 1-unit plots at randomly chosen
locations covering only a small fraction, p* = 5 %, of the area and at-
tempted to predict S using only this partial information.We performed
the estimation of the total species richness of the computer-generated
forest by using a single NB distribution or a linear combination of two
NB distributions, the LS method and the Chao estimator, based on
sampling without replacement (see section S5 and table S3). For both
clustering regimes, the prediction of the number of species using theNB
framework with just one NB was already very good (error < 2%; high
Tovo et al., Sci. Adv. 2017;3 : e1701438 18 October 2017
clustering, Spred = 5095; low clustering, Spred = 5067). The linear com-
bination of two NBs increased the accuracy of the prediction at the
whole-forest scale p=1 (with twoparameters, we obtained the following
values: error < 0.2%; high clustering, Spred = 4995; low clustering, Spred =
5011). Chao’s method gave results comparable to those with one NB
(error < 2%; high clustering, Spred = 4938; low clustering, Spred =
4931) while underestimating the true number of species instead of over-
estimating it. In contrast, the LS method strongly overestimated the
number of species (error > 56 %; high clustering, Spred = 7838; low
clustering, Spred = 9036).We thus found that although the original forest
had a log-normal SAD entangled with spatial correlations, a single NB
or a linear combination of twoNBs led to surprisingly good predictions
and systematically outperformed the LS method; this result was also
true for a computer-generated forest with an NB SAD and when a dif-
ferent sampling method was performed, consisting of collecting data
within a unique spatial window covering the same percentage of the
whole forest area (section S4 and table S2). Finally, we compared the
results for an in silico LS forest. As expected, in this case, the LSmethod
performed very well, predicting a species richness of 4930 against the
true value of 5000 (error ~ 1.3%). The very same result was obtained
by using the NB method. The best fit of the SAD with an NB led to
an r parameter very close to zero (r ~ 10−5), so that the NB distribution
was effectively converging to an LS. In contrast, the Chao method un-
derestimated the number of species giving a prediction of 3878 (error ~
22%). Previous results have shown (43) that the Chao estimator for up-
scaling species richness based on sampling with replacement perform
poorly in hyperdiverse communities with many rare species. Here, we
found that the very same result holds for the estimator based on
sampling without replacement, an assumption consistent with the
way empirical forests are sampled.

Test on empirical data
To test the accuracy of our method on more realistic distributions of
trees (for example, habitat heterogeneity, species spatial distributions,
etc.), we used subsamples taken from empirical forest data (see section
S6 and table S6) and predicted the number of species at the
corresponding largest empirically observable scale. That is, we extracted
a fraction p of the data and applied our framework to infer the number
of species at the scale p*. Moreover, we compared our results to those
obtained with other methods to upscale species richness and abun-
dances, previously proposed in the literature (see tables S3 to S5 and
fig. S6) (19–21, 25). We found that our method outperforms that of
Chao and Chiu (19, 20)—which typically overestimates the forest spe-
cies richness—for Amazonia, Pasoh, and Yasuni (Fig. 4). For the re-
maining forests, the NB method performed better than the LS
method, which overestimates the number of species at p*, and it was
comparable to Chao’s (see section S5 for a detailed discussion). How-
ever, we remark that the accuracy inChao’s predictions is due to the fact
that, when sampling these forests at small scales, we found a low number
of singleton and doubleton species. Therefore, Chao and Chiu (19, 20)
conservatively gave the number of species at the observation scale itself
as output, that is, S≈Sp* (see section S5). This limitation is evident in
Fig. 4, which shows the tropical forest species area relationship (SAR),
that is, the number of observable species as a function of the fraction of
the sampled area a, (p*≤ a≤ 1).Whereas LS andNB show the expected
qualitative behavior, the method of Chao saturates almost immediately
at a ≈ p*, which is clearly an artifact of the method. The same results
were obtained when using Chao’s estimator based on sampling with
replacement (43).
Table 1. Predicting the biodiversity in tropical forests. Predicted total
number of species, Spred, at the whole-forest scale (corresponding to
p = 1) for each of the 15 tropical forests in our database. Predictions
are determined by using information on the sampled scale p* (fourth
column), where we observe N* trees belonging to S* species (second and
third columns). In the fifth column, we show the predictions obtained by
using the NB framework with a single NB for fitting the sampled SAD.
SEs were computed by propagating the errors in the fitting parameters of the
SAD (obtained by the bootstrapping method) and of S*. The latter has
been determined as follows: For each data set, we created the corresponding
predicted forest at the scale p = 1 by generating Spred numbers distributed
according to an NB with parameters (r, x). We then sampled the p% of
the list of individuals, as in the original data. The last two columns show
the predictions of the LS and Chao methods.
Forest
 S*
 N*
 p*%

Spred
(NB)
Spred
(LS)
Spred
(Chao)
Amazonia
 4962
 553949
 0.00016
 13602 ± 711
 14984
 5561
Barro
Colorado
301
 222602
 3.20513
 366 ± 15
 419
 315
Bukit
Barisan
340
 14974
 0.00169
 471 ± 40
 1020
 346
Bwindi
 128
 18490
 0.01813
 163 ± 15
 288
 129
Caxiuana
 386
 32701
 0.01818
 437 ± 14
 915
 386
Cocha Cashu
 489
 16640
 0.00035
 731 ± 63
 1674
 501
Korup
 226
 17427
 0.00473
 282 ± 23
 591
 226
Manaus
 946
 38933
 0.06000
 1016 ± 14
 2242
 956
Nouabalé-
Ndoki
110
 7196
 0.00143
 125 ± 8
 316
 110
Pasoh Forest
Reserve
927
 310520
 0.35714
 1193 ± 36
 1590
 1049
Ranomafana
 269
 34580
 0.01463
 336 ± 22
 620
 269
Udzungwa
 109
 18447
 0.00302
 146 ± 20
 269
 114
Volcan Barva
 392
 44439
 0.02025
 448 ± 16
 895
 395
Yanachaga
 209
 2041
 0.00372
 802 ± 211
 802
 259
Yasuni
 481
 13817
 0.61100
 565 ± 20
 974
 484
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Biodiversity upscaling of tropical forest data
After testing ourmodel on controlled computer-generated data and real
forest subsamples, we applied our framework to predict the species rich-
ness and abundances of tropical forest data. Because of the good agree-
ment between the predictions made with a single NB for the artificial
forests, we chose to work again with a single NB. Such a form can be
derived from basic ecological processes (14, 31), and it also permits an
exact analytical treatment of the upscaling protocol. Although in few
cases, using more than one NB improves the accuracy of the predic-
tions, in general, it increases the likelihood that the empirical data are
overfit at the sampled scale. Therefore, through the NB method, we
attempted to predict the species richness at thewhole-forest scale (p= 1)
for each of the 15 tropical forests around the equatorial zone, and we
compared our predictionswith those of previous results based on the LS
distribution (24, 25) and with that obtained with the method of Chao.
We found that the LS method systematically led to higher estimates of
the number of rare species and consequently of the forest species rich-
ness at the largest scale (see Table 1). Only for the Yanachaga Chemillén
National Park, the two estimates with NB and LS were essentially the
same. The discrepancies in the estimates increased to approximately
10% for Amazonia and Barro Colorado Island (BCI), reached 30 to
40% for Pasoh and Bukit Barisan and ranged between 72 and 152%
for the remaining 10 forests. In contrast, Chao’s method predicted a
much smaller number of species at the whole-forest scale. The errors
in our estimates are also given in Table 1.

Our framework is also able to give a quantitative estimate of the
sampling effort (ppred %; first column in Table 2) needed to achieve spe-
Tovo et al., Sci. Adv. 2017;3 : e1701438 18 October 2017
cies richness predictions with error bars below approximately 5% (this
percentage was arbitrarily chosen as an illustration, and our approach
can be straightforwardly used for any other percentage of error). These
estimates have been obtained through Monte Carlo simulations,
which test the self-consistency of the NBmethod and allow us to infer
these critical sampling thresholds (see section S7 and figs. S7 and S8).
We found that for some forests (BCI, Caxiuana,Manaus, Volcan Barva,
andYasuni), the present sampling effortmay be sufficiently informative
and representative to characterize the biodiversity of thewhole forest. In
contrast, we propose an estimate of the further sampling required for all
the other forests (Table 1). Amazonia, for example, would need approx-
imately twice the current amount of sampling; Cocha and Nouabalé
would need approximately 10 times; and Bwindi, Udzungwa, and
Yanachaga would need several hundred times the current sampling
(see the third columnofTable 2 showing the ratio between the predicted
needed sampling and the actual one).

We also estimated the number of hyper-rare species, defined as
species with fewer than 1000 individuals, and the number of hyperdo-
minant species, defined as the most abundant species contributing
approximately 50% to the total number of individuals of the forest
(see Table 3) (24).
DISCUSSION
Our analysis shows that hyper-rarity, as also suggested by previous
works (24, 25), is a recurrent pattern in large-scale tropical forests,
which may suggest that these tropical forests are biodiversity hot
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spots (see also discussion below) (44). Focusing on Amazonia, we
predict that roughly 4500 Amazon tree species are hyper-rare. If they
could be found and identified, then this would automatically qualify
them for inclusion in the International Union for Conservation of
Nature’s Red List of Threatened Species. The NB upscaling for the
entire Amazon forest predicts that half the total number of trees be-
long to just 300 hyperdominant species, whereas 33% of the 13,602
tree species are hyper-rare. In this way, ecologists would have an
estimate of howmany Amazon tree species face the most severe threats
of extinction. These rare species in the Amazon forest (and our
planet’s biodiversity) are like dark matter in cosmology, which
accounts formuch of the universe. Nevertheless, inmost of the forests,
we obtained a smaller number of hyper-rare species and a higher
number of hyperdominant ones with respect to previous estimates
(24, 25). This result is in agreement with the tests we performed both
in silico and on empirical forest data. We believe that this is due to the
fact that the asymptotic value of Fisher’s a in the LSmethod is strongly
biased when a very small fraction of the forest is sampled (typically <
1%) (section S2).

Aswell as being a crucial and practicalmeasure of fragile biodiversity
in conservation ecology, hyper-rarity is also an important theoretically
intriguing and open question that goes under the name of the “Fisher
Tovo et al., Sci. Adv. 2017;3 : e1701438 18 October 2017
paradox” (43, 45). We still do not know why there is such a huge
separation of population size scales between rare and hyperdominant
species. Our framework provides a possible interpretation for this
phenomenon and suggests that hyper-rarity could be a manifestation
of criticality in tropical forests (37, 46). The parameters of the NB dis-
tributions that provided the best predictions of the upscaled species
richness in tropical forests fall within a tiny region of parameter space:
0 < r < 0.7 and x≈ 1. This result is surprising, because there are neither
theoretical nor biological reasons why tropical forests should have their
parameters localized within such a narrow region, especially when
considering that they are in completely different geographical regions
with differing evolutionary histories. However, a closer examination
of the form of the NB distribution reveals that the relative fluctuation

of abundances, that is,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈ðn� 〈n〉Þ2〉

q
=〈n〉, diverges as x→ 1 and r→ 0

(see Fig. 5 and section S8). Thus, parameter values in the vicinity of this
region allow an ecosystem to have the highest heterogeneity in its abun-
dance distribution. The points shown in Fig. 5 correspond to the
parameter values obtained for the 15 forests. A physical system, such
as water and vapor, in the vicinity of its critical point, is characterized
by density fluctuations that become very large, with droplets of water
and bubbles of gas of all sizes thoroughly interspersed, and the system
appears the same at different scales (that is, it is self-similar) (37). This
scale invariance confers to the system an acute sensitivity to certain
types of external perturbations or disturbances whose effects are rea-
lized at long distances. The observed large abundance fluctuations
suggest that tropical forests may be critical systems and may be re-
latively reactive to disturbances (47, 48) and able to adapt optimally
to new external conditions/constraints. Under a given set of environ-
mental conditions, only a few species are best at exploiting the limited
available resources (49). Because of environmental fluctuations, these
conditions may not continue to remain advantageous for the existing
very few abundant species. However, a large pool of species may serve
as a reservoir of new opportunities and responses and as a buffer
against newly changed conditions (49). According to this view, hyper-
rarity is essential for an ecosystem to maintain its functions and react
promptly to changes: Rare speciesmay provide the key to an ecosystem’s
future (50).

To summarize, we have presented a theoretical framework to
upscale species richness and abundances in tropical forests from a
limited number of samples. The advantage of our methodmainly relies
on two properties. First, it is flexible. TheNB, depending on the value of
its parameters, may display either an LS-like behavior or an interior
mode, and it is therefore able to describe different SAD shapes. Thus,
we can use the same functional form to reproduce different ecosystems’
SAD, as those observed in our data set. In contrast, an LS SADpredicts a
very specific form for the SAD that is not flexible enough to describe any
SAD with an interior mode. Furthermore, our approach, relying on an
appropriate linear combination ofNBs, can basically accommodate any
type of complex SAD functional form.

Second, the NB (or a combination of them), besides being flexible, is
also self-similar under different sampling intensities. This is the key fea-
ture that allows us to obtain an easy analytical formula to upscale the
SAD from the sample scale to any arbitrary one. In the studyofHarte et al.
(21), despite the flexibility of the approach, the upscaling can be per-
formed only by numerically solving a pair of analytical equations. In
the study of Zillio and He (51), they proposed an iterative method
for estimating the species richness and the abundance distribution.
Again, this method is flexible, but no analytical treatment can be
Table 2. Sampling targets for forest percentage cover. Using our
results on upscaled forest species richness, it is possible to estimate the
percentage ppred% of the forest that must be sampled to achieve an es-
timation error of approximately 5% with a certainty of 95%. We derived
these values by creating the predicted forest at the whole-forest scale (we
generated Spred numbers according to an NB with parameters r and x) and
sampled it at increasingly larger scales until the desired accuracy in the
estimation of the global species richness was reached (see section S7 for
more details). The last column indicates how much extra sampling is
needed (if the number is greater than 1) to reach 5% precision.
Forest
 ppred%
 ppred/p*
Amazonia
 0.0003
 1.875
Barro Colorado
 3
 1
Bukit Barisan
 0.05
 18
Bwindi
 5
 386
Caxiuana
 0.01
 0.55
Cocha Cashu
 0.003
 8.57
Korup
 0.02
 1.06
Manaus
 0.02
 0.17
Nouabalé-Ndoki
 0.015
 10.5
Pasoh forest reserve
 0.5
 1.4
Ranomafana
 0.1
 6.84
Udzungwa
 1.5
 497
Volcan Barva
 0.02
 0.25
Yanachaga
 1
 269
Yasuni
 0.3
 0.49
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Table 3. Fisher’s paradox. Hyper-rare species [defined as species with fewer than 1000 individuals (24, 25)] and hyperdominant species (the most abundant
species, accounting for ≈ 50 % of the total number of individuals) percentages were predicted in the whole area of each tropical forest obtained by applying
both the NB and LS methods. We found that by using our NB method, the number of hyper-rare species in most of the forests was drastically reduced with
respect to the LS method, thus suggesting that the extremely high value of hyper-rare species predicted in previous studies (24, 25) is an artifact of the LS
method. Nevertheless, we found that the hyper-rarity phenomenon is a genuine emergent pattern in tropical forests.
Tov
Forest
o et al., Sci. Adv. 2017;3 : e1701438 18 October 201
Hyper-rare (%)
7

Hyperdominant (%)
NB method
 LS method
 NB method
 LS method
Amazonia
 33
 37
 2.2
 2.0
Barro Colorado Nature Monument
 47
 60
 5.5
 4.8
Bukit Barisan
 22
 46
 7.9
 1.9
Bwindi Impenetrable Forest
 15
 48
 7.4
 3.5
Caxiuana
 6
 49
 10.3
 3.2
Cocha Cashu Manu National Park
 7
 41
 8.4
 2.5
Korup National Park
 9
 51
 9.3
 3.1
Manaus
 6
 59
 14.5
 2.8
Nouabalé-Ndoki
 4
 43
 11.2
 2.4
Pasoh Forest Reserve
 34
 55
 6.5
 3.1
Ranomafana
 12
 49
 7.5
 2.7
Udzungwa Mountain National Park
 12
 48
 6.3
 3.0
Volcan Barva
 8
 52
 10.5
 2.5
Yanachaga Chemillén National Park
 54
 56
 3.0
 2.7
Yasuni National Park
 39
 74
 11.6
 4.4
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Fig. 5. Tropical forests are poised in the vicinity of criticality. (A) Plot of the relative fluctuations of species abundances,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈ðn� 〈n〉Þ2〉

q
=〈n〉, in linear scale versus

abundances 〈n〉 at the logarithmic scale. The black dots represent the predicted values for each of the 15 tropical forests listed in Table 1 at the whole-forest scale, and
the red line is the line of equation y = 1. All values are located above this line, thus indicating that the relative fluctuations in abundance are considerable for all the
forests. (B) Contour plot of the relative fluctuation of abundances for an NB SAD FðxrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈ðn� 〈n〉Þ2〉

q
=〈n〉. The black dots represent the pair (r, log [1 − x]), where r and

x are the predicted parameters for each forest of our data set after upscaling at the whole-forest scale. These dots are all located in the region of the parameter space
around which the function F(x, r) diverges, that is, x ≈ 1 and 0 < r < 0.7.
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performed. Finally, in our framework, we only need the fraction of
the sampled area with respect to the whole forest, whereas in other
approaches, additional information on the upscaled forest is re-
quired [for example, the number of individuals of themost abundant
species (52)].

These two properties allow our method to be applied on statistical
upscaling problems beyond forest ecology. A possible application is,
for example, in the field of metagenomics. Using recently developed
DNA sequencing machines, it is possible to obtain the total genomic
DNA directly from a macro fauna or flora environmental sample (that
is, a macrobiome). This metagenomic (gene of genes) approach,
together with taxonomic classification algorithms (53), allows a char-
acterization of the biodiversity of the samples (typically prokaryotes).
However, SAD curves built in this way describe the biodiversity only
very locally (the scale of the given environmental sample). Nevertheless,
by assuming well-mixed communities and finding an appropriate com-
bination of NBs fitting the observed SAD, we can use our framework to
upscale the microbiome SAD to a larger scale (for example, the whole
gut), as would be measured if it were possible to survey the entire
environment. It can also be applied to immunology for finding the
number of T cell receptor clonotypes in a human body. These examples
show the promising generality of our approach and open the possibility
of new applications of the upscaling framework to other taxa or type
of systems.
MATERIALS AND METHODS
Upscaling NBs
Here, we chose the NB distribution in Eq. 2 as the SAD. Apart from
its simplicity and versatility, we chose this form for our analysis for
four reasons:

(1) Any discrete probability distribution, such as the SAD, can be
approximated to any degree of accuracy by a suitable linear combi-
nation of NBs (see section S3 for some examples and discussion).We
made the parsimonious choice of a single NB function because it suf-
fices to approximately describe the available tropical forest data, as
discussed in the Results and Discussion.

(2) The NB distribution arises naturally as the steady-state SAD
of an ecosystem with sufficiently weak interspecies interactions and
undergoing generalized dynamics of birth, death, speciation, and
immigration to and emigration from the surrounding metacommunity
(see “Stochastic model leading to an NB SAD”).

(3) In the limit of r→ 0, theNBbecomes thewell-knownFisher’s LS,
which has been widely used to describe the patterns of abundance in
ecological communities. Of course, because of the flexibility of choosing
r to be nonzero, theNBdistribution is alwaysmore versatile than the LS.
The SAD, especially at large scales or with increasing sampling effort
(27), often displays an interior mode that cannot be captured by an
LS distribution. To assess whether the increased reliability of the NB
method with respect to the LS method is only due to the introduction
of the additional parameter r, we used the Akaike information criterion,
which shows that theNB is the preferredmodel for all tropical forests in
our data set except one for which r is very close to zero.

4. Finally and importantly, if one chooses two contiguous patches
with NB as SADs characterized by the same parameters r and x ≡ x1/2
and combines the two, then remarkably, the resulting larger patch is also
characterized by an NB distribution with the same scale-invariant value
of r and a new scale-dependent parameter, x, given by the analytical ex-
pression in Eq. 4 below with p = 1/2. This special form-invariant prop-
Tovo et al., Sci. Adv. 2017;3 : e1701438 18 October 2017
erty of the NB distribution, albeit with a scale-dependent parameter,
makes it particularly well suited for our extrapolation studies.

When upscaling, we are interested in the SAD and in the total num-
ber of species, S, at the scale of thewhole forest areaA.We denoteP(n|1)
as the probability that a species has exactly n individuals at the whole-
forest scale (here, 1 refers to the whole forest). Note that P(n|1) is
defined only for n≥ 1, because S is the total number of species actually
present in the forest, thus each having at least one individual.

We assumed that the SAD has the functional form of an NB,
Pðnjr; xÞ, for nonzero populations, with parameters (r, x) (r is known
as the clustering coefficient), that is

Pðnj1Þ ¼ cðr; xÞPðnjr; xÞ with

Pðnjr; xÞ ¼ nþ r � 1
n

� �
xnð1� xÞr ; cðr; xÞ ¼ 1

1� ð1� xÞr

ð5Þ
where c is the normalization constant. The constant c was determined
by imposing ∑∞n¼1Pðnj1Þ ¼ 1, where the sum starts from n = 1, because
species with zero abundance at the scale of the whole forest will be also
absent in the subplots. Note thatPðnjr; xÞwas normalized for n≥ 0. In
the subplots, there is a nonzero probability to find species, which are
present in the whole forest, with n = 0 individuals, and thus it accounts
for the number of missing species in the subplots.

Let us now consider a subsample of area a of the whole forest and
define p = a/A as the scale of the sample, which is the fraction of the
sampled forest. The goal is to compute the SAD in the subsample.

We assumed that the subsample SAD was not affected by spatial
correlations due to both interspecific and intraspecific interactions.
This hypothesis is well satisfied using in silico–generated forests with
various degrees of spatial correlations (see section S4). Under this hy-
pothesis, the conditional probability that a species has k individuals in
the smaller area, a = pA, given that it has total abundance n in the whole
region of area A is given by the binomial distribution

Pbinomðkjn; pÞ ¼ n
k

� �
pkð1� pÞn�k k ¼ 0;…; n ð6Þ

and Pbinomðkjn; pÞ ¼ 0 if k > n. Now, we want to prove that the sub-
sample SAD, P(k|p), is again an NB for k ≥ 1, with the rescaled
parameter x and the same r. It can be shown that the probability,
PsubðkjpÞ, to find a species with population k≥ 0 in the subplot of area
a = pA is

PsubðkjpÞ ¼ cðr; xÞ⋅Pðkjr; x̂pÞ k≥ 1 ð7Þ

Psubð0jpÞ ¼ 1� ∑
k≥1

PsubðkjpÞ k ¼ 0 ð8Þ

where

x̂p ¼
px

1� xð1� pÞ ð9Þ

The method uses only the information that we can infer from a sub-
sample at some scale p*. Therefore, we only have information on the
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abundances of the S*(≤S) species present in the surveyed area. By
denoting with S*(k), the number of species of abundance k at scale
p*, we obtained

S*ðkÞ
S*

≡Pðkjp�Þ ¼ Psubðkjp�Þ
∑k′≥1Psubðk′jp�Þ ¼

Pðkjr; x̂p� Þ
∑k′≥1Pðk′jr; x̂p�

Þ ¼ cðrx̂p� Þ ⋅Pðkjr; x̂p� Þ k≥ 1 ð10Þ

which, from Eq. 5, is anNB normalized for k≥ 1, whereasPðkjr; x̂p*Þ
is normalized for k ≥ 0. We therefore obtained the key result that
starting with an NB distribution for the SAD at the whole-forest
scale, the SAD at smaller scales is also distributed according to an
NB with the same clustering coefficient r and a rescaled parameter
x̂p* depending on both x and p*. A SAD with the property of having
the same functional form at different scales is said to be form-invariant.

By fitting the SAD of the data at the scale p*, we can thus find both
the parameters r and x̂p* and, by inverting Eq. 9, we can obtain x

x ¼ x̂p*

p* þ x̂p*ð1� p*Þ ð11Þ

Using Eq. 9 to eliminate x from the last equation, one obtains the
following relation for the parameter x at the two scales p and p* referred
in the Results

x̂p ¼
px̂p*

p* þ x̂p*ðp� p*Þ ≡ Uðp; p�jx̂p� Þ ð12Þ

from which, of course, one can recover both Eqs. 9 and 11, where
x ≡ x̂p¼1.

We nowwish to determine the relation between the total number of
species at the whole scale p = 1, S, with the total number of species
surveyed at scale p, Sp. Referring to the scale p*, in the following equa-
tion, we also used the notation S*≡ Sp� . This can be simply obtained by
observing that

Psubðk ¼ 0jp�Þ ¼ ðS� S�Þ=S ð13Þ

Psubðkjp�Þ ¼ S�ðkÞ=S ð14Þ

Using Eq. 8, we finally found that the prediction for the total number
of species in the whole forest, in terms of the data on the surveyed sub-
plot, is given by

S ¼ S*

1� Psubðk ¼ 0jp*Þ ¼ S*
1� ð1� xÞr
1� ð1� x̂p*Þr

ð15Þ

where x is given by Eq. 11.
Our framework holds exactly when species are spatially uncorre-

lated. However, our in silico experiments indicated that the framework
is robust even in the presence of spatial correlations and for different
sampling methods (section S4).
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Stochastic model leading to an NB SAD
As explained in the Introductions, the NB distribution can be derived
from first principles on the basis of biological processes. Let Pn;sðtÞ be
the probability that, at time t, species s has exactly n individuals,
where s ∈ {1, …, S}. We assumed that the population dynamics of
each species is governed by two terms, bn,s and dn,s, which are the birth
and death rates, respectively, for species s with n individuals. The
master equation regulating the evolution of Pn;sðtÞ for n ≥ 0 is then

∂
∂t

Pn;sðtÞ ¼ Pn�1;sðtÞbn�1;s þ Pnþ1;sðtÞdnþ1;s � Pn;sðtÞbn;s
� Pn;sðtÞdn;s

The above equation is also valid for n = 0 and n = 1 if we set b−1,s =
d0,s = 0. The steady-state solution is

Pn;s ¼ cs∏
n�1

i¼0

bi;s
diþ1;s

ð16Þ

The term cs is a normalization factor found by imposing
∑∞

n¼0Pn;s ¼ 1:
Let us assume that the birth term in the above equation depends on a

density-independent term, bs, which is the per-capita birth rate, and on
the term rs, which takes into account immigration events or intraspecific
interactions

bn;s ¼ bsðnþ rsÞ

Analogously, let us suppose that the death termdepends on a density-
independent term, ds, which is the per-capita death rate

dn;s ¼ dsn

These suppositions are reasonable in ecology. By substituting in Eq.
16 and setting xs = bs/ds, we obtained

Pn;s ¼ cs

�
nþ rs � 1

n

�
xns ð17Þ

The normalization constant can be easily found by imposing

1 ¼ ∑
∞

n¼0
Pn;s ¼ cs ∑

∞

n¼0

nþ rs � 1
n

� �
xns ¼ csð1� xsÞ�rs

Therefore, the probability that the sth species has n individuals at
equilibrium is given by an NB with parameters (rs, xs)

Pn;s ¼ nþ rs � 1
n

� �
xns ð1� xsÞrs ð18Þ

Under the neutral hypothesis, in which all species are considered to
be equivalent, we can remove the species index s from the above
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equation, thus obtaining a negative binomially distributed SAD for
the ecosystem under study.
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