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Abstract

Recent studies examined the households’ trip-timing decisions where adults have to drive

their children to school. These studies focus on the cases where school is near workplace.

However, different school locations can affect travels and activity patterns significantly. This

study re-looks at the household shared-ride problem where school is near home. It is found

that the resulting dynamic commuting equilibrium has very different properties, which have

been examined and discussed accordingly. Three management strategies have been proposed

to reduce total travel cost, and efficiencies of these strategies are evaluated and compared.
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1 Introduction

Modelling and managing the peak hour traffic dynamics have attracted substantial attention

from both transport scientists and economists. Vickrey (1969) proposed the first bottleneck

model to capture the departure time choices of commuters and the corresponding traffic

dynamics.1 Despite the large literature on the morning commute, little attention has been

paid to the shared-ride of household members in the morning peak hour, and how intra-

household interaction among household members with different schedule preferences could

affect the trip-timing choice of a household travel.

Recently, de Palma et al. (2015) modelled the trip-timing of couples. Particularly, they

considered that couples value time at home more when together than when alone. Jia

et al. (2016) then explored the equilibrium trip scheduling of households where the adult

traveller in the household has to send the child to school before going ahead to the workplace.

More recently, Liu et al. (2016) further extended Jia et al. (2016) by looking into a more

general situation with both shared-ride travellers (on home-school-work trips) and individual

travellers (on home-work trips). In the similar spirit of staggered work hours (as those in

Henderson, 1981; Yushimito et al., 2014; Takayama, 2015), Liu et al. (2016) proposed to

coordinate the schedules of school and work to reduce traffic congestion and travel cost of

road users.

Both Jia et al. (2016) and Liu et al. (2016) examined the household travelling in a partic-

ular setting, i.e., household travellers firstly pass through the congested highway bottleneck,

which is the major driving part of the trip, and then reach the school, and finally the work-

place, as shown in Figure 1a. However, it is quite often that schools are located near homes

(for example, it is common in Chinese cities that children go to schools near homes) such

that the adult member in a household firstly drives to school with no or very light congestion

(generally far from the city center and the congested network), and then pass through the

congested highway (the major driving part for the trip) and finally reach the workplace as

in Figure 1b.

Literature has established evidence that urban planning and land-use pattern interact

with transportation and have significant impact on travel behaviour (e.g., Wilson, 1998).

1Smith (1984) and Daganzo (1985) established the existence and uniqueness of the user equilibrium
solution at a single bottleneck. Thanks to its tractability, the bottleneck model has been extended to study
various issues, e.g., stochastic bottleneck capacity and travel demand (Lindsey, 2009; Xiao et al., 2014, 2015);
heterogeneous travellers (Arnott et al., 1994; van den Berg and Verhoef, 2011; Liu and Nie, 2011; Liu et al.,
2015b; Wang and Xu, 2016); road pricing, tradable credits or parking permits to manage traffic congestion
(Arnott et al., 1990; Xiao et al., 2012; Liu et al., 2014b); integrated problem of parking and morning commute
(Arnott et al., 1991; Qian et al., 2012; Yang et al., 2013; Liu et al., 2014a); integrated modelling of morning
and evening commutes (Zhang et al., 2005, 2008); morning commute with car-pooling (Xiao et al., 2016);
activity-based modelling (Li et al., 2014).
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This paper considers the school-near-home network structure in Figure 1b, aiming to identify

the difference in resulting equilibrium traffic patterns from those in Liu et al. (2016) and

elucidate how different school locations (school near home or school near workplace) would

shape the morning commute with mixed travels of households and individuals differently.

(a) School near workplace

(b) School near home

Figure 1: Different city networks

After presenting the trip-timing and traffic patterns at the dynamic user equilibrium,

we then propose and analyse three strategies to reduce the total social cost, which is the

sume of travel time cost and schedule delay cost. The proposed strategies are: schedule

coordination of school and work, joint scheme of schedule coordination and pricing, and

schedule coordination with differentiated school and work hours. Schedule coordination and

differentiated school and work hours can reduce traffic congestion by separating the travelling

of different groups of travellers, and pricing can further reduce congestion by preventing

traffic intensity from going beyond the highway bottleneck capacity. In particular, two first-

best tolling patterns have been identified for the commuting problem with mixed travellers

(depending on parameter values). Furthermore, efficiency of the three strategies is evaluated

and analysed.

The rest of the paper is organized as follows. Section 2 presents the problem description

and the cost formulations for both households and individuals. In Section 3, the dynamic

traffic patterns at the departure/arrival equilibrium with mixed travellers are discussed and

compared with those in Liu et al. (2016). Section 4 examines the system performance under

given numbers of individual and household travellers, and work and school schedules, and

then analyses three strategies to reduce the total travel cost. Numerical illustrations and

verifications are presented in Section 5, and Section 6 concludes the paper.
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2 Model Formulation

We start with a thumbnail description of the commuting problem with both household home-

school-work shared-ride trips and individual home-work trips, and then formulate the travel

costs of individual workers and households respectively.

2.1 Thumbnail description

We consider the city network in Figure 1b, where highway bottleneck is between school and

workplace. This means that travellers start to experience traffic congestion after passing the

school. There are Nw individuals driving to the city centre for work with a desired arrival

time of tw. These individuals have to tradeoff between in-vehicle travel time cost related to

queue length at the bottleneck and schedule delay cost associated with earliness or lateness

for work. As mentioned in Section 1, Vickrey (1969) was among the first to propose the

bottleneck model to capture and analyse this trade-off.

Besides the Nw individuals, there are Nsw households with home-school-work trips. Fol-

lowing Jia et al. (2016) and Liu et al. (2016), we consider that each household trip consists

of a work trip for one adult and a school trip for one child. Therefore, there are Nsw vehicles

each carrying two travellers: an adult and a child. Throughout the paper, we will frequently

refer to the combination of an adult and a child as “household travellers”. The desired ar-

rival time for school is ts
2 whilst the desired arrival time for work is tw as mentioned before.3

When making departure time choices, household travellers will not only consider the travel

cost of the work trip, but also that of the school trip.

Before formulating the travel costs, we assume that the free-flow travel time between

home and school is zero and the travel time between school and workplace equals the delay

at the highway bottleneck. For simplicity, we also assume that the delay caused by dropping

off the child at school is negligible (which is zero then) so that we can focus on how the

schedule difference of work and school affects trip-timing of household travels, as well as the

commuting traffic equilibrium.4 It is usually the case in practice that parents arrive early for

work if they deliver the child on time for school. Thus in this paper we focus on the situation

where the desired work arrival time is later than that for school such that tw − ts ≥ 0 (with

2The desired arrival time for school is not necessarily the school start time. It can be the arrival time
point under which children can arrive at class comfortably on time. Later, we frequently refer to “later than
ts as “late for school”, which, however, does not mean that the child is late for class.

3Future research may consider heterogeneous desired arrival times for work associated with different
travellers.

4The drop-off delay at school can be readily taken into account by adding a constant delay for all house-
holds, which will create small variations to the model without affecting the central idea. This is already
illustrated in Liu et al. (2016).
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zero travel time between school and workplace), which is also an assumption in Jia et al.

(2016) and Liu et al. (2016).

2.2 Individual work trip

We now formulate the travel cost of an individual. His or her cost consists of in-vehicle travel

time cost and schedule delay cost. Specifically, for a traveller departing from home at time

t, his or her cost is

cw(t) = α · T (t) + β ·max{0, tw − t− T (t)}+ γ ·max{0, t+ T (t)− tw}, (1)

where T (t) is the experienced travel time for the traveller, and α is the value of unit travel

delay, and β and γ are the schedule penalties for a unit time of early and late arrivals,

respectively. It is assumed that γ > α > β, which is consistent with the empirical evidence.

Since T (t) only contains the queuing delay at the highway bottleneck, it is equal to q(t)
s
,

where q(t) is the queue length faced by the traveller departing at time t, and s is the

constant highway bottleneck capacity. Vehicles can leave the highway at any time and incur

no delay until the traffic flow exceeds the constant capacity. Once flow exceeds capacity,

deterministic point queue develops.

Given the above standard setting in the literature, at the departure/arrival equilibrium,

the departure rates from home (or arrival rates at the bottleneck) of individuals who arrive at

the destination before and after desired work arrival time tw can be determined respectively,

which are

r1 =
α

α− β
s; r2 =

α

α + γ
s. (2)

Eq.(2) is a well-established result in the literature and detailed derivations are thus omitted

(one can refer to e.g., Arnott et al., 1990, for detailed derivations).

2.3 Household shared-ride

For a household trip with one adult’s work trip and one child’s school trip, the total travel

cost is the sum of the costs experienced by the two household members, which is

csw(t) = [α · 0 + β ·max{0, ts − t}+ γ ·max{0, t− ts}]

+[α · T (t) + β ·max{0, tw − t− T (t)}+ γ ·max{0, t+ T (t)− tw}]
. (3)

In Eq.(3), the travel time for school trip is zero as we assume zero free-flow time and zero

drop-off delay. Thus, the departure time from home is equal to the arrival time at school.
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This is different from that in Liu et al. (2016) where households arrive at school when leaving

the highway bottleneck. Specifically, the terms in the first square bracket of Eq.(3) are the

travel time cost and schedule delay cost for travelling to school (associated with the child

in the household). The second square bracket represents the cost experienced by the adult

in the household. Identical value of time, schedule penalties are adopted for both work and

school trips. This treatment simplifies the algebra in the paper although still leaving it quite

tedious. However, in practice we usually expect the schedule penalties for work and school

trips to be different. Future research might take this into account, as well as a more general

user heterogeneity among different groups of travellers.

As mentioned, we consider that household travels can be on time for school while early

for work i.e., tw− ts ≥ 0 (free-flow time is zero). If we, however, consider a non-zero free-flow

time between school and workplace ts−w > 0, this assumption should be correspondingly

modified to tw− ts ≥ ts−w. In either case, the setting yields two possible situations regarding

the earliness/lateness for household travels: i) early for school and early for work; ii) early

for school but late for work. The departure rates of households travelling in the two possible

situations are respectively:

r
′

1 =
α + β

α− β
s; r

′

2 =
α + β

α + γ
s. (4)

In Eq.(4), we use superscript “ ′ ” to denote the departure rates for household travels. It is

worth mentioning that r
′

1 > r1 and r
′

2 > r2 because households experience additional earliness

for school (corresponding to the β in the numerator of r
′

1 or r
′

2) and that the inequalities

r
′

1 > r1 > s > r
′

2 > r2 always hold.

In Jia et al. (2016) and Liu et al. (2016) where the congested road bottleneck is between

home and school, three possible situations for household trips can arise: i) early for school

and early for work; ii) late for school but early for work; iii) late for school and late for work.

However in the current network structure where major congestion occurs between school and

workplace (school is near home), households will never be late for school. In other words,

situations ii) and iii) in Liu et al. (2016) never occur. This is generally because the lateness

for school is more expensive than the earliness for work, and is also more expensive than the

in-vehicle queuing delay. More detailed explanation will be provided in Section 3.1.
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3 Dynamic User Equilibrium

3.1 Traffic patterns at equilibrium

Depending on the values of Nw, Nsw, α, β, γ, s, and ∆t = tw − ts, different equilibrium

traffic patterns may arise. For instance, if ∆t = tw − ts is extremely large (much larger than
Nw+Nsw

s
), households and individuals will travel at very different times and thus their travels

will be completely separated; if ∆t = tw − ts approaches zero, one can expect that the two

types of users would travel at similar times thus interact with each other through sharing

the same network.

We present all possible equilibrium traffic patterns in Figure 2. The time points (t1, t2, t3

and t4) indicated in Figure 2 can be derived based on the equilibrium condition (identical cost

for the same type of users) and flow conservation at the bottleneck (cumulative departure

should be equal to arrival). Conditions of the occurrence of each traffic pattern can be

accordingly determined based on these time points. For example, in Pattern (1), t1 ≤ t2

holds and it leads to the condition listed in Table 1 for Pattern (1). We summarize the

conditions for the occurrence of each traffic pattern in Table 1.

When the schedule difference ∆t = tw − ts decreases from +∞ to zero, the equilibrium

traffic pattern varies along the following path: (1) → (2) → (3)-1 or (3)-2 → (4) → (5)-

1 or (5)-2 → (6). However with certain combinations of Nw, Nsw, α, β and γ, particular

conditions in Table 1 can never be met, so that the corresponding traffic patterns would never

occur even if ∆t can be arbitrarily chosen. In particular, Patterns (3)-1 and (3)-2 cannot

arise for the same combination of Nw and Nsw, as they respectively require Nw ≥ β

γ
Nsw

and Nw < β

γ
Nsw. Similarly, patterns (5)-1 and (5)-2 are for cases with Nw ≥ γ

β
Nsw and

Nw < γ

β
Nsw respectively.
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Table 1: Travel costs of individuals and households for different cases

Patterns Conditions (lower bounds for ∆t) Conditions (upper bounds for ∆t)

(1) ∆t ≥ γ

β+γ
Nw

s
+ 2β

α+β
Nsw

s

(2)
∆t ≥ γ

β+γ
Nw

s
+ ( 2β

α+β
− β

β+γ
)Nsw

s
;

∆t ≥ 2β
α+β

Nsw

s

∆t < γ

β+γ
Nw

s
+ 2β

α+β
Nsw

s

(3)-1 ∆t ≥ γ

β+γ

β

α
Nw

s
+ ( 2β

α+β
− β

β+γ

β

α
)Nsw

s
∆t < γ

β+γ
Nw

s
+ ( 2β

α+β
− β

β+γ
)Nsw

s

(3)-2 ∆t ≥ ( γ

β+γ
+ γ

α+β
)Nw

s
+ ( β

α+β
− β

β+γ
)Nsw

s
∆t < 2β

α+β
Nsw

s

(4)
∆t ≥ γ

β+γ

β

α
Nw

s
+ ( γ

β+γ

β

α
− α+γ

α+β
)Nsw

s

∆t ≥ ( β

α+β

β

α
− β

β+γ
)Nw

s
+ ( β

α+β
− β

β+γ
)Nsw

s

∆t < γ

β+γ

β

α
Nw

s
+ ( 2β

α+β
− β

β+γ

β

α
)Nsw

s

∆t < ( γ

β+γ
+ γ

α+β
)Nw

s
+ ( β

α+β
− β

β+γ
)Nsw

s

(5)-1 ∆t ≥ − β

β+γ
Nw

s
+ (α+γ

α+β

β

α
− β

β+γ
)Nsw

s
∆t < γ

β+γ

β

α
Nw

s
+ ( γ

β+γ

β

α
− α+γ

α+β
)Nsw

s

(5)-2 ∆t ≥ β

α
Nw

s
− α+γ

α+β
Nsw

s
∆t < ( β

α+β

β

α
− β

β+γ
)Nw

s
+ ( β

α+β
− β

β+γ
)Nsw

s

(6)
∆t < − β

β+γ
Nw

s
+ (α+γ

α+β

β

α
− β

β+γ
)Nsw

s

∆t < β

α
Nw

s
− α+γ

α+β
Nsw

s

We now qualitatively describe all the possible traffic patterns when the dynamic user

equilibrium is achieved. In Figure 2, the red and blue solid lines represent the departures

of individuals and households, respectively. The black solid lines represent the arrivals. r1

and r2 are the departure rates of individuals, which are given in Eq.(2). r
′

1 and r
′

2 associate

with households, which are given in Eq.(4). The light red (dotted lines) extensions of the

red departure curves depict the isocost queuing curves for individuals, which are not actual

departures.

• Pattern (1): In this case, the schedule gap ∆t between school and work is relatively

large. All households depart from home between t1 and ts, while individuals depart

much closer to work start time tw as they do not need to contend with schooling.

The travels of households and individuals are completely separated. However, highway

capacity is wasted between t2 and t3 when no one uses it.

• Pattern (2): This pattern is similar to Pattern (1). The difference lies in that, as the

schedule gap ∆t between school and work becomes smaller, the travels of households

and individuals are now more connected, i.e., the first individual will join the queue

behind the last household. It follows that there is no capacity waste between the

arrivals (at work) of households and individuals.
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• Pattern (3)-1: Compared to Pattern (2), as the gap ∆t becomes even smaller, the

travels of households and individuals become more connected and households travel in

the middle of the peak period as shown in Figure 2c. As the number of individuals is

relatively large, i.e., Nw ≥ β

γ
Nsw, some of the individuals are forced to depart earlier

than households due to the small gap ∆t. On the other hand, households stick to

the time duration close to ts since they are affected by the school schedule. One can

verify that travelling further away from ts would lead to an increase in travel cost for

households.

• Pattern (3)-2: Contrary to Pattern (3)-1, this pattern occurs when the number of

households is relatively large, i.e., Nw < β

γ
Nsw. As the schedule gap ∆t becomes less

than that in Pattern (2), some of the households are forced to be late for work.

• Pattern (4): When ∆t becomes sufficiently small, no matter Nw ≥ β

γ
Nsw or Nw <

β

γ
Nsw, households depart in the middle of the peak duration, arriving at school close

to the desired arrival time for school ts, and at work between t2 and t3. By doing

so households can avoid large schedule delays costs for both school and work. As

earliness and lateness are less expensive for individuals (i.e., one unit time of earliness

or lateness leads to double penalty for households compared to individual), some of

them are forced to arrive relatively early for work and some are relatively late for work

(arrive at time points further away from tw).

• Pattern (5)-1: When the number of individuals is relatively large (Nw ≥ γ

β
Nsw) and

the schedule gap ∆t is very small, the morning peak is dominated by individuals as

shown in Figure 2f. Similarly, the small number of households will travel close to ts

to reduce their “double schedule delay cost”. For other duration along the red solid

lines, the traffic pattern is very close to those in the standard bottleneck model with

only individuals.

• Pattern (5)-2: Different from Pattern (5)-1, when the number of households is large

(Nw < γ

β
Nsw) and ∆t is small, all individuals depart earlier than households. Individ-

uals cannot travel close to tw as households with “double schedule delay cost” have

larger willingness-to-pay to travel during this time slot.

• Pattern (6): Similar to Pattern (5)-1, some individuals and all households arrive late

for work. The difference is that all individuals now travel earlier than households.

As shown in Figure 2, the last households always depart at the desired arrival time for

school ts in all patterns. They have no incentive to depart later even though doing so can

8



reduce their travel delays and/or earliness for work.

Proposition 3.1. In the school-near-home case shown in Figure 1b, at the commuting equi-

librium, there will be no household arriving later than the desired school arrival time ts.

Proposition 3.1 states that if the child in the household is attending the school near

home (major congestion occurs between school and work place), the parent will choose to

send the child to school no later than the desired school arrival time ts even if he or she will

encounter very large earliness for work. We now take Pattern (1) in Figure 2a as an example

to illustrate the reason.

In Figure 2a, households depart from home between t1 and ts. Suppose that the travel

cost of a household is c0. We now explain why a household has no incentive to depart from

home at a later time t, such that t > ts.

If ts < t ≤ t2, travel cost of the household will be c0 + (γ − α)(t − ts). As γ > α, i.e.,

lateness for school is more expensive than travel delay, it is evident that households have no

incentive to depart in this period.

If t2 < t ≤ t3, travel cost of the household will be c0 + (γ − α)(t2 − ts) + (γ − β)(t− t2).

As γ > β, i.e., lateness for school is more expensive that earliness for work, again households

have no incentive to depart in this period.

If t > t3, it is obvious that by departing later, the household cannot reduce the cost

associated with work trip, while encounter larger late arrival schedule delay cost for school

trip.

Note that in this paper, we assume that the child members in the households have

identical α, β, and γ as the adult members, and γ > α > β. However, the validity of

Proposition 3.1 does not necessarily rely on these assumptions; instead, it requires that the

late arrival penalty for school is larger than the value-of-time for work trip, and also larger

than the early arrival penalty for work, which, we conjecture, generally hold in practice.
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(a) Pattern (1) (b) Pattern (2)

(c) Pattern (3)-1 (d) Pattern (3)-2

(e) Pattern (4) (f) Pattern (5)-1

(g) Pattern (5)-2 (h) Pattern (6)

Figure 2: All possible equilibrium traffic patterns
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3.2 Varying traffic patterns

We now explore how the equilibrium traffic pattern varies with the schedule difference ∆t

and the relative number of the two groups of users Nw

Nsw
. To avoid repetition of algebra, we

only present the result with α2 − βγ > 0. This inequality is consistent with many empirical

evidences, e.g., Tseng et al. (2005), where (per hour) the average value of time α is 9.91

(EUR$), early arrival penalty β is 4.66 (EUR$), and late arrival penalty γ is 14.48 (EUR$).

If the converse α2−βγ ≤ 0 prevails, the traffic pattern will vary in a different way among the

possible flow patterns presented in Section 3.1. One of the major differences is that Pattern

(6) cannot arise when α2 − βγ > 0, but it may occur when α2 − βγ ≤ 0.

Figure 3: Occurrence of different patterns in the domain of ( Nw

Nsw
,∆t)

The occurrence of different equilibrium traffic patterns in the domain of ( Nw

Nsw
,∆t) is

displayed in Figure 3. There are several critical lines in the domain that divide it into

seven regions. Each region corresponds to a particular traffic pattern. In Figure 3, x-axis

represents Nw

Nsw
and y-axis represents ∆t. Line 1 separating (1) and (2) corresponds to y =

( γ

β+γ
x+ 2β

α+β
)Nsw

s
; Line 2 separating (2) and (3)-1 corresponds to y = ( γ

β+γ
x+( 2β

α+β
− β

β+γ
))Nsw

s
;

Line 3 separating (2) and (3)-2 corresponds to y = 2β
α+β

Nsw

s
; Line 4 separating (3)-1 and (4)

corresponds to y = ( γ

β+γ

β

α
x+( 2β

α+β
− β

β+γ

β

α
))Nsw

s
; Line 5 separating (3)-2 and (4) corresponds

to y = (( γ

β+γ
+ γ

α+β
)x + ( β

α+β
− β

β+γ
))Nsw

s
; Line 6 separating (4) and (5)-1 corresponds

to y = ( γ

β+γ

β

α
x + ( γ

β+γ

β

α
− α+γ

α+β
))Nsw

s
; and Line 7 separating (4) and (5)-2 corresponds to

11



y = (( β

α+β

β

α
− β

β+γ
)x + ( β

α+β
− β

β+γ
))Nsw

s
. These lines are established from the conditions in

Table 1. Later, these lines are numerically illustrated in Figure 8.

For given Nw, Nsw, α, β, and γ, how the traffic pattern varies with ∆t is summarized in

Table 2. For ease of presentation, we define the following critical values:

λ1 =
α2β + α2γ + αγ2 − β2γ

(α + β)βγ
;λ2 =

α(γ − α)

α2 + αβ − β2 − βγ
;λ3 =

β

γ
; (5)

where λ2 is only valid when α2 + αβ − β2 − βγ is not equal to zero. These critical values

are derived based on conditions for the occurrence of Pattern (5)-1 and Pattern (5)-2 listed

in Table 1. As can be seen in Table 2, these critical values are related to the occurrence

of Pattern (5)-1 and Pattern (5)-2. Furthermore, since α2 − βγ > 0 and α > β, it can be

verified that α2 + αβ − β2 − βγ 6= 0 and the following inequality holds.

λ1 > λ2 > λ3. (6)

It can be readily verified that when ∆t decreases from +∞ to zero, the traffic pattern

will change from one pattern to another according to the order in Table 2, based on the

equilibrium conditions in Table 1. Table 2 will be utilized when we explore how individual

or household travel cost and total travel cost vary with ∆t.

Table 2: Varying equilibrium traffic pattern against ∆t

Range of Nw

Nsw
Varying traffic pattern when ∆t decreases (from +∞ to zero)

[λ1,∞) (1) → (2) → (3)-1 → (4) → (5)-1

[λ2, λ1) (1) → (2) → (3)-1 → (4)

[λ3, λ2) (1) → (2) → (3)-1 → (4) → (5)-2

[0, λ3) (1) → (2) → (3)-2 → (4) → (5)-2

4 Managing System Performance

4.1 User travel costs

In Section 3, we have described all the possible commuting traffic patterns in detail. Now we

examine the users’ travel costs under different patterns. Based on Section 3 and with some
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manipulations,5 we can obtain the equilibrium travel cost of individuals cw and households

csw, both of which are summarized in Table 3.

Table 3: Individual and household travel costs under different equilibrium traffic patterns

Pattern Individual cost cw & Household cost csw (User Equilibrium)

(1)
cw = βγ

β+γ
Nw

s

csw = β∆t+ 2β α−β

α+β
Nsw

s

(2)
cw = −γ∆t+ γNw

s
+ 2βγ

α+β
Nsw

s

csw = β∆t+ 2β α−β

α+β
Nsw

s

(3)-1
cw = βγ

β+γ
Nw

s
+ βγ

β+γ
Nsw

s

csw = βγ

β+γ
Nw

s
+ ( βγ

β+γ
+ β(α−β)

α+β
)Nsw

s

(3)-2
cw = − γ(α+β)

α+2β+γ
∆t+ γNw

s
+ 2βγ

α+2β+γ
Nsw

s

csw = − β(γ−α)
α+2β+γ

∆t+ 2β(α+γ)
α+2β+γ

Nsw

s

(4)
cw = βγ

β+γ
Nw

s
+ βγ

β+γ
Nsw

s

csw = − αβ(β+γ)
α2+αβ−β2+αγ

∆t+ (α+γ)(α+β)
α2+αβ−β2+αγ

βγ

β+γ
Nw

s
+ (α+γ)(α+β)

α2+αβ−β2+αγ
( βγ

β+γ
+ β(α−β)

α+β
)Nsw

s

(5)-1
cw = βγ

β+γ
Nw

s
+ βγ

β+γ
Nsw

s

csw = βγ

β+γ
Nw

s
+ ( βγ

β+γ
+ β(α+γ)

α+β
)Nsw

s

(5)-2
cw = β(α+β)

α+2β+γ
∆t+ β(1− β

α

α+β

α+2β+γ
)Nw

s
+ β(α+γ)

α+2β+γ
Nsw

s

csw = − β(γ−α)
α+2β+γ

∆t+ (α + γ)β
α

α+β

α+2β+γ
Nw

s
+ 2β(α+γ)

α+2β+γ
Nsw

s

(6)
cw = αβ

α+β+γ
∆t+ β(α+γ)

α+β+γ
Nw

s
+ β(α+γ)

α+β+γ
α

α+β
Nsw

s

csw = αβ

α+β+γ
∆t+ β(α+γ)

α+β+γ
Nw

s
+ β(α+γ)

α+β+γ
(1 + α+γ

α+β
)Nsw

s

Proposition 4.1. Equilibrium travel cost of a user group (household or individual) is more

sensitive to the number of users in that group than the number in the other group, i.e.,

wherever ∂ci
∂Ni

and ∂ci
∂Nj

exist, we have

∂ci

∂Ni

≥
∂ci

∂Nj

, (7)

where i 6= j, and i, j ∈ {w, sw}.

Proposition 4.1 is verified using Table 3 (details relayed to Appendix A). This proposition

5The equilibrium travel costs for households and individuals are derived from the time points in Figure
2.
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dictates that intra-group externality is more significant than inter-group externality. Similar

results have been found by Liu et al. (2016) and Lindsey (2004), although a different school

location is considered here and the combined trip-timing decision of household members’

shared-ride brings further complexity to the model.

It can be inferred from Table 3 that how household and individual travel cost change

with ∆t depends on which traffic pattern prevails. Table 4 summarizes dci
∆t

for i ∈ {w, sw}

for all traffic patterns.

Table 4: Derivatives of costs with respect to schedule difference ∆t

Pattern dcw
d∆t

dcsw
d∆t

(1) 0 β > 0

(2) −γ < 0 β > 0

(3)-1 0 0

(3)-2 − γ(α+β)
α+2β+γ

< 0 − β(γ−α)
α+2β+γ

< 0

(4) 0 − αβ(β+γ)
α2+αβ−β2+αγ

< 0

(5)-1 0 0

(5)-2 β(α+β)
α+2β+γ

> 0 − β(γ−α)
α+2β+γ

< 0

(6) αβ

α+β+γ
> 0 αβ

α+β+γ
> 0

The results in Table 4 are briefly explained in the following and meanwhile readers can

refer to the corresponding traffic patterns in Figure 2 for a better understanding of Table 4.

In Pattern (1), travels of households and individuals are completely separated. A

marginal increase in ∆t does not affect the individuals as they still travel around tw, i.e.,
dcw
d∆t

= 0. However, the larger schedule difference ∆t will enlarge the earliness for work ex-

perienced by households as their departure is constrained by the school schedule, and thus
dcsw
d∆t

> 0.

In Pattern (2), similar to Pattern (1), a larger ∆t will force the households to depart

further away from tw (depart earlier, so that dcsw
d∆t

> 0). Thus, the travels of the two types

of users will be more separated, and the individual work trips will be less affected by the

households. As a result, on average the individual traveller will experience less queuing, and

smaller schedule delay cost ( dcw
d∆t

< 0).

In Pattern (3)-1 and Pattern (5)-1, given a marginal increase in ∆t, households will not

change their relative departure/arrival time with respect to ts. Therefore, the cost associated

with the school trip will remain constant. The relative scale of queuing and schedule delay
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cost associated with the work trip will change with ∆t, but their sum will not. It follows

then dcw
d∆t

= 0 and dcsw
d∆t

= 0.

In Pattern (3)-2 and Pattern (4), a marginal increase in ∆t would reduce the number

of late-for-work households. This is because the households are constrained by the school

trip, and they depart relatively earlier with respect to tw if ∆t is larger. As less late-for-

work households implies less congestion delays (see Figure 2d and Figure 2e), we then have
dcsw
d∆t

< 0. In Pattern (3)-2, as households depart further away from tw, individuals can be

less affected and thus can reduce their late arrival penalties, and dcw
d∆t

< 0. However, for

Pattern (4), similar to Pattern (3)-1 and Pattern (5)-1, the change in ∆t will change the

relative scale of queuing delay cost and schedule delay cost for the work trip, but it does not

change the sum of queuing delay cost and schedule delay cost, and we have dcw
d∆t

= 0.

In Pattern (5)-2 and Pattern (6), a larger ∆t will lead households to depart further away

from tw (depart earlier). As all individuals travel earlier than households, individuals will

be forced to travel even earlier. As a result, we have dcw
d∆t

> 0. In Pattern (5)-2, similar to

Pattern (3)-2 and Pattern (4), there will be less households late for work, and their queuing

delays will be reduced. Thus, dcsw
d∆t

< 0. However in Pattern (6) a marginal increase in ∆t will

not reduce the number of late-for-work households, but will enlarge the (average) queuing

delay for households, and dcsw
d∆t

> 0.

4.2 Schedule coordination

Now we explore how to coordinate the schedules of school and work (by appropriately choos-

ing ∆t) to reduce travel cost. Based on Table 3, we can obtain the total travel cost for all

travellers

TC = Nw · cw +Nsw · csw, (8)

where cw and csw are the cost of individuals and households respectively. The optimal ∆t

that minimizes total travel cost can then be determined, which is denoted by (∆t)∗.6 We

present (∆t)∗ in Proposition 4.2.

Proposition 4.2. For given Nw and Nsw, i) if Nw ≥ β

γ
Nsw

(∆t)∗ =
γ

β + γ

Nw

s
+

2β

α + β

Nsw

s
; (9)

6This can be verified by looking at the first-order derivative of TC with respect to ∆t, dTC

d∆t
, and by

comparing different local optima.
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ii) and if Nw < β

γ
Nsw

(∆t)∗ =
2β

α + β

Nsw

s
. (10)

Proposition 4.2, with referring to Table 1, implies that when Nw ≥ β

γ
Nsw, the optimal

∆t leads to the boundary equilibrium traffic pattern between patterns (2) and (1). When

Nw < β

γ
Nsw, the optimal ∆t leads to the boundary between patterns (3)-2 and (2). The

corresponding optimal traffic patterns are depicted in Figure 4, where the blue and red lines

are the departures from home associated with households and individuals respectively.

In the boundary traffic pattern between patterns (2) and (1), the departures/arrivals of

households and individuals are separated, thus the congestion is reduced. In this case, the

first individual arrives at work just after the last households, and thus there is no capacity

waste of the highway bottleneck (no gap in the arrivals at work between households’ and

individuals’).

In the boundary traffic pattern between patterns 3-(2) and (2), the last household and

first individual are exactly on time for work. By comparing Figure 4a and Figure 4b, it is

intuitive that the congestion delay is larger under the boundary pattern between 3-(2) and

(2) than the boundary pattern between (2) and (1). We could increase ∆t to further reduce

congestion , but it would increase the schedule delay cost for households, as the gap between

school and work schedules becomes larger. When Nw < β

γ
Nsw (the number of households is

relatively large), increasing ∆t can lead to a very large increase in total travel cost because

a relatively large number of households would encounter larger schedule delay cost. Thus,

there is no incentive to increase ∆t from the system’s perspective, even if doing so can reduce

congestion.

However, when the network structure of Liu et al. (2016) is in effect, the boundary case

between patterns (2) and (3)-2 in Figure 4b is always socially unfavourable compared to the

case in Figure 4a. This is because, under the framework of Liu et al. (2016), households might

arrive at school later than ts and their arrivals at work can be closer to tw. Consequently, the

increase in schedule delay cost caused by the separation of two user groups is less significant.
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(a) Boundary case between patterns (1) & (2) (b) Boundary case between patterns (2) & (3)-2

Figure 4: Two critical traffic patterns

From Proposition 4.2 the total travel cost under the optimal ∆t can be derived, which is

TC∗ =











( βγ

β+γ
Nw

s
) ·Nw + ( βγ

β+γ
Nw

s
+ 2αβ

α+β
Nsw

s
) ·Nsw Nw ≥ β

γ
Nsw

(γNw

s
) ·Nw + ( 2αβ

α+β
Nsw

s
) ·Nsw Nw < β

γ
Nsw

. (11)

TC∗ in Eq.(11) is the minimum cost that can be achieved by adjusting the schedule difference

between school and work. It is a second-best optimum. After introducing the joint scheme of

schedule coordination and pricing in next subsection, we will evaluate the efficiency of pure

schedule coordination against the optimal joint scheme that leads to the first-best situation.

Before doing so, we now compare the school-near-home case with the school-near-workplace

case when the schedule difference is optimized. According to Liu et al. (2016), when school

is near workplace, it is optimal to set the school and work schedule difference as

(∆t)∗∗ =
γ

β + γ

Nw

s
+

2β

β + γ

Nsw

s
. (12)

The resulting minimum total travel cost under the (∆t)∗∗ is

TC∗∗ = (
βγ

β + γ

Nw

s
) ·Nw + (

βγ

β + γ

Nw

s
+

2βγ

β + γ

Nsw

s
) ·Nsw. (13)

With respectively optimized schedule difference, the relative efficiency of different school

locations is evaluated by this ratio:

η =
TC∗

TC∗∗
. (14)
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We have the following results regarding the ratio η.

Proposition 4.3. The relative efficiency of school-near-home against school-near-workplace,

i.e., η, satisfies

η =











λ2+λ+
2α(β+γ)
γ(α+β)

λ2+λ+2
< 1 λ ≥ β

γ

β+γ
β

λ2+
2α(β+γ)
γ(α+β)

λ2+λ+2
< 1 0 ≤ λ < β

γ

, (15)

where λ = Nw

Nsw
and Nsw 6= 0.

Proof. Based on Eqs.(11), (13), and (14), it is easy to establish that η can be determined as

a function of λ = Nw

Nsw
where Nsw > 0, which is given in Eq.(15). We now show that η < 1.

Firstly, as γ > α > β > 0 holds, we have

α(β + γ) < γ(α + β) ⇐⇒
2α(β + γ)

γ(α + β)
< 2.

Secondly, when 0 ≤ λ < β

γ
,

γ

β
λ2 < λ ⇐⇒

β + γ

β
λ2 < λ2 + λ

Based on the above, one can readily verify with Eq.(15) that η < 1 holds.

The implication of Proposition 4.3 is twofold. Firstly, the relative efficiency η is deter-

mined by the relative size of the user groups λ = Nw

Nsw
. Secondly, η is always smaller than

1 as long as γ > α > β > 0, meaning that with household shared-ride and respectively

optimized schedule difference, ceteris paribus, the school-near-home plan considered in this

paper is a more efficient setting than the school-near-workplace plan as in Jia et al. (2016)

and Liu et al. (2016). This is mainly because, in the school-near-home case, the arrival rate

at school r
′

1 as shown in Figure 4 is not constrained by the road bottleneck capacity s, and

thus larger than that in Liu et al. (2016), which is equal to s. The arrivals at school are then

more concentrated around the desired school arrival time and the total schedule delay cost

associated with the school trips can be smaller.

4.3 Schedule coordination and pricing

Subsection 4.2 discussed how to appropriately adjust ∆t to reduce total travel cost and

achieve the second-best situation. The first-best situation can be achieved by simultaneously

implementing pricing to avoid queueing and coordinating schedules of work and school to
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avoid additional schedule penalties. We begin with describing the first-best situation, to

which we refer as the System Optimum (SO).

Queues should be eliminated at the SO to minimize the travel delay cost such that the

departure rate should be exactly equal to the highway bottleneck capacity s. To minimize

schedule delay cost, arrivals at work should occur between t1 = tw − γ

β+γ
Nw+Nsw

s
and t4 =

tw + β

β+γ
Nw+Nsw

s
, such that the number of early arrival travellers is γ

β
times the number of

late arrival travellers. Similarly, arrivals at school should occur between t2 = ts −
γ

β+γ
Nsw

s

and t3 = ts +
β

β+γ
Nsw

s
. These results are standard in the bottleneck model literature so the

detailed derivations are omitted. By appropriately setting ts and tw, we can minimize the

schedule delay cost associated with both school and work trips. Specifically, to achieve this,

we let [t2, t3] be within [t1, t4] as shown in Figure 5.

Setting the above as the target traffic pattern, we can derive the optimal time-varying

toll given an appropriate ∆t. To achieve SO where t2 ≥ t1, we should set ∆t ≤ γ

β+γ
Nw

s
if

Nw ≥ β

γ
Nsw, and ∆t ≤ β

β+γ
Nsw

s
if Nw < β

γ
Nsw. In other words, ∆t should be upper bounded,

because if the gap between ts and tw is too large, the inequality t2 ≥ t1 will be violated,

and there would be very significant schedule delay costs for household travellers (one may

imagine the case with an extremely large ∆t).

We now briefly depict how to derive the first-best time-varying toll. Similar to Eq.(1)

and Eq.(3), the travel cost after taking into account pricing can be written as follows. For

individual home-work trips:

cw(t) = α · T (t) + β ·max{0, tw − t− T (t)}+ γ ·max{0, t+ T (t)− tw}+ τ(t), (16)

where τ(t) is the toll for the traveller departing at time t; and for household home-school-

work trips, we have

csw(t) = α · 0 + β ·max{0, ts − t}+ γ ·max{0, t− ts}

+α · T (t) + β ·max{0, tw − t− T (t)}+ γ ·max{0, t+ T (t)− tw}+ τ(t)
. (17)

Note that here the toll is charged per vehicle rather than per passenger. Given ts and tw and

t1 = tw−
γ

β+γ
Nw+Nsw

s
, t2 = ts−

γ

β+γ
Nsw

s
, t3 = ts+

β

β+γ
Nsw

s
, t4 = tw+

β

β+γ
Nw+Nsw

s
, we can derive

the time-varying tolls by setting T (t) = 0 and taking the first-order derivatives of Eq.(16)

and Eq.(17) with respect to t. Depending on the relative magnitude of t3 = ts +
β

β+γ
Nsw

s

with respect to tw, two toll pattens can arise.

When β

β+γ
Nsw

s
≤ ∆t ≤ γ

β+γ
Nw

s
(t3 < tw holds and τ(t1) = 0 is assumed), the first-best
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toll is

τ(t) =



































































0 t ∈ (−∞, t1)

β(t− tw) +
βγ

β+γ
Nw+Nsw

s
t ∈ [t1, t2)

2β(t− ts)− β∆t+ βγ

β+γ
Nw+2Nsw

s
t ∈ [t2, ts)

(β − γ)(t− ts)− β∆t+ βγ

β+γ
Nw+2Nsw

s
t ∈ [ts, t3)

β(t− tw) +
βγ

β+γ
Nw+Nsw

s
t ∈ [t3, tw)

−γ(t− tw) +
βγ

β+γ
Nw+Nsw

s
t ∈ [tw, t4)

0 t ∈ [t4,+∞)

, (18)

The corresponding toll pattern is displayed in Figure 5a, where t1, t2, t3 and t4 are defined

in the above. Households arrive between t2 and t3 (the blue solid lines represent the tolls

experienced by households). The premier condition β

β+γ
Nsw

s
≤ ∆t ≤ γ

β+γ
Nw

s
implies Nsw

s
≤

γ

β+γ
Nw+Nsw

s
, meaning that all households can complete their trips within a time interval less

than or equal to γ

β+γ
times of the total peak duration [t1, t4]. However, if there are too many

households such that Nsw

s
> γ

β
Nw

s
, the toll pattern in Figure 5a is no longer feasible. In fact,

when 0 ≤ ∆t ≤ β

β+γ
Nsw

s
(t3 ≥ tw), the first-best toll is

τ(t) =



































































0 t ∈ (−∞, t1)

β(t− tw) +
βγ

β+γ
Nw+Nsw

s
t ∈ [t1, t2)

2β(t− ts)− β∆t+ βγ

β+γ
Nw+2Nsw

s
t ∈ [t2, ts)

(β − γ)(t− ts)− β∆t+ βγ

β+γ
Nw+2Nsw

s
t ∈ [ts, tw)

−2γ(t− tw)− γ∆t+ βγ

β+γ
Nw+2Nsw

s
t ∈ [tw, t3)

−γ(t− tw) +
βγ

β+γ
Nw+Nsw

s
t ∈ [t3, t4)

0 t ∈ [t4,+∞)

, (19)

where t1, t2, t3 and t4 still follow the same formulas as in Eq.(18). The toll pattern determined

by Eq.(19) is displayed in Figure 5b. It is different from the former case in the sense that

there will be some households late for both school and work between tw and t3. During this

time interval, the toll decreases over time at the rate of −2γ as shown in Figure 5b.

In a special case where ∆t = 0, which is always feasible, the toll segment between ts and

tw (decreasing at a rate of (β − γ)) in Figure 5b will disappear.7 The resulting toll pattern

over time is similar to the optimal toll for the case with heterogeneous individual travellers (a

group of Nw with schedule penalties of β and γ, and a group of Nsw with schedule penalties

7This special case of first-best toll is described in Liu et al. (2016) for efficiency comparison purpose.
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of 2β and 2γ), which has been well studied in the literature.

(a) Toll pattern (1): β
β+γ

Nsw

s
≤ ∆t ≤ γ

β+γ
Nw

s

(b) Toll pattern (2): 0 ≤ ∆t ≤ β
β+γ

Nsw

s

Figure 5: First-best time-varying toll under different ∆t

It is evident from Figure 5 that the maximum toll for households (−β∆t+ βγ

β+γ
Nw+2Nsw

s
)

is always imposed on the households that arrive on time for school (departing at time ts).

We summarize the relevant findings in the following propositions.

Proposition 4.4. Under the first-best toll given in Eq.(18) or Eq.(19), the maximum toll

for a household occurs at time ts. The value of this maximum toll varies with ∆t, reaching

the upper bound

τup =
βγ

β + γ

Nw + 2Nsw

s
, (20)
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at ∆t = 0; and the lower bound

τlow =







βγ

β+γ
Nw+Nsw

s
Nw ≥ β

γ
Nsw

βγ

β+γ

Nw+(2−β
γ
)Nsw

s
Nw < β

γ
Nsw

. (21)

at ∆t = γ

β+γ
Nw

s
when Nw ≥ β

γ
Nsw, and at ∆t = β

β+γ
Nsw

s
when Nw < β

γ
Nsw.

As tolls for individuals are quite standard in the literature, we omit detailed discussions.

While the tolls experienced by households or individuals vary with ∆t, the total toll revenue

of all travellers does not change with ∆t, under a given toll scheme defined in either Eq.(18)

or Eq.(19) (this can be readily verified).

Proposition 4.5. Under the first-best toll in either Eq.(18) or Eq.(19), the total toll revenue

is constantly equal to 1
2s

βγ

β+γ
(N2

w +NwNsw + 2N2
sw) regardless of ∆t.

The total travel cost (tolls excluded) at the System Optimum is

TCSO = 0.5 ·
βγ

β + γ

Nw +Nsw

s
(Nw +Nsw) + 0.5 ·

βγ

β + γ

Nsw

s
Nsw. (22)

The relative efficiency of the second-best situation achieved through pure schedule coordi-

nation as in Subsection 4.2 with respect to the System Optimum (first-best situation) can

be evaluated by examining the ratio θ:

θ =
TC∗

TCSO

(23)

With some manipulations, we have the following proposition.

Proposition 4.6. The relative efficiency of pure schedule coordination (second-best solution)

with respect to the System Optimum (first-best solution) satisfies

θ =











λ2+λ+
2α(β+γ)
γ(α+β)

0.5λ2+λ+1
< 2 λ ≥ β

γ

β+γ
β

λ2+
2α(β+γ)
γ(α+β)

0.5λ2+λ+1
≤ 2α(β+γ)

γ(α+β)
< 2 0 ≤ λ < β

γ

, (24)

where λ = Nw

Nsw
and Nsw 6= 0.

It is obvious that θ > 1 holds always. Proposition 4.6 further indicates that, firstly,

the relative efficiency θ depends on the relative size of user groups λ = Nw

Nsw
; secondly, the

relative efficiency can always be bounded by 2 regardless of the value of time α and schedule
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penalties β and γ. This means that the minimum total travel cost achieved under the optimal

schedule coordination (second-best) will always be less than twice the minimum total travel

cost at the System Optimum. Note that if ∆t is not appropriately chosen, the travel cost

at the dynamic user equilibrium (without tolling) can be much more than twice of the cost

at System Optimum. This is different from the standard results with identical travellers

(identical value of time, schedule penalties and desired arrival time for work) in, e.g., Arnott

et al. (1990), as household shared-ride is incorporated.

4.4 Differentiated school and work schedules

This subsection will briefly show that if children are attending different schools near the

residential area, it is beneficial for the transportation system to encourage differentiated

school schedules at different schools. The rational is that differentiated schedules can separate

the travels of households and avoid temporally-concentrated demand. We illustrate the idea

with two groups of schools, of which the desired arrival times are respectively ts,1 and ts,2,

as shown in Figure 6.

To avoid tedious repetition, we do not elaborate on all the possible situations with two

different school schedules. The focus is given to the two critical traffic patterns in Figure 4,

which are the (second-best) optima under uniform school schedule. Based on this benchmark,

the travel cost of households can be further reduced by separating the departure/arrival of

the households tied with the two different school schedules. Assuming xNsw (x ∈ [0, 1])

households attend the school with ts,1, and (1−x)Nsw attend the other with ts,2, the proposed

school schedules are

ts,1 = tw − γ

β+γ
Nw

s
− 2β

α+β
Nsw

s
− α−β

α+β

(1−x)Nsw

s

ts,2 = tw − γ

β+γ
Nw

s
− 2β

α+β

(1−x)Nsw

s

, (25)

if Nw ≥ β

γ
Nsw and x ∈ [0, 1]; and

ts,1 = tw − 2β
α+β

Nsw

s
− α−β

α+β

(1−x)Nsw

s

ts,2 = tw − 2β
α+β

(1−x)Nsw

s

, (26)

if Nw < β

γ
Nsw and x ∈ [0, 1− γ

β
Nw

Nsw
].

Figure 6a and Figure 6b display the equilibrium traffic pattern with Nw ≥ β

γ
Nsw and

Nw < β

γ
Nsw respectively. When Nw < β

γ
Nsw, x ≤ 1 − γ

β
Nw

Nsw
should hold so the equilibrium

pattern in Figure 6b is valid (the red dotted line, representing the isocost queuing curve, is
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to the right of the blue solid line which represents the departures of households with desired

school arrival time ts,2).

(a) Boundary case between patterns (1) & (2) (b) Boundary case between patterns (2) & (3)-2

Figure 6: Differentiated school schedules for two critical traffic patterns

The travel cost reduced by the proposed differentiated school schedules with respect to

the second-best optima with uniform school schedule is:

∆TCs = x(1− x)(β
α− β

α + β

Nsw

s
+ α

2β

α + β

Nsw

s
)Nsw (27)

The above ∆TC reaches the maximum at x = 0.5 if Nw ≥ β

γ
Nsw; at x = 0.5 if Nw < β

γ
Nsw

and 1 − γ

β
Nw

Nsw
≥ 0.5; at x = 1 − γ

β
Nw

Nsw
if Nw < β

γ
Nsw and 1 − γ

β
Nw

Nsw
< 0.5. This indicates

that as households distribute more evenly between the two schools, a larger efficiency can

be achieved by implementing differentiated school schedules.

We now examine how to appropriately differentiate work schedules to be compatible

with the differentiated school schedules. Suppose that the differentiated school schedules are

still ts,1 and ts,2 as defined in the above, and households can also have differentiated work

schedules. For xNsw (x ∈ [0, 1]) households with ts,1, and (1− x)Nsw with ts,2, the proposed

work schedules are respectively

tw,1 = tw − γ

β+γ
Nw

s
− (1− x)Nsw

s

tw,2 = tw − γ

β+γ
Nw

s

, (28)
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if Nw ≥ β

γ
Nsw and x ∈ [0, 1], as shown in Figure 7a; and the work schedules are respectively

tw,1 = tw − (1− x)Nsw

s

tw,2 = tw

, (29)

if Nw < β

γ
Nsw and x ∈ [0, 1 − γ

β
Nw

Nsw
], as shown in Figure 7b. Note that differentiated work

schedules can be simultaneously implemented for individuals, which are not included here to

again avoid tedious repetition given that staggered work-hour scheme has been well studied

in the literature in for example Henderson (1981).

(a) Boundary case between patterns (1) & (2) (b) Boundary case between patterns (2) & (3)-2

Figure 7: Differentiated school and work schedules for two critical traffic patterns

When the desired arrival times (or work start times) are set as compatible with the school

schedules, the total travel cost of all travellers can be further reduced by (compared to the

cases with only differentiated school schedules in Figure 6):

∆TCw = [
γ

β + γ

Nw

s
+ x(1− x)

Nsw

s
]Nsw (30)

if Nw ≥ β

γ
Nsw and x ∈ [0, 1]; and

∆TCw = x(1− x)
Nsw

s
Nsw (31)

if Nw < β

γ
Nsw and x ∈ [0, 1 − γ

β
Nw

Nsw
]. Similarly, one can verify that ∆TCw reaches the

maximum at x = 0.5 if Nw ≥ β

γ
Nsw; at x = 0.5 if Nw < β

γ
Nsw but 1 − γ

β
Nw

Nsw
≤ 0.5; and at

x = 1 − γ

β
Nw

Nsw
if Nw < β

γ
Nsw and 1 − γ

β
Nw

Nsw
< 0.5. These results together with those from

Eq.(27) suggest that the more evenly do the households distribute between the two schools,
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the more largely the cost can be reduced through differentiated and compatible school and

work schedules.

5 Numerical Experiments

This section presents numerical results to illustrate and verify the analysis in the paper. We

start with introducing the numerical settings. Following Liu et al. (2015a), the value of time

α is 9.91 (EUR$/hour), early arrival penalty β is 4.66 (EUR$/hour), and late arrival penalty

γ is 14.48 (EUR$/hour). The capacity of the highway bottleneck is s = 30 (veh/min).

Given Nsw = 2000, by varying Nw

Nsw
and ∆t, we obtain the contour map of individual cost

cw, household cost csw, and total cost TC in Figure 8. The occurrence of different traffic

patterns in the domain of ( Nw

Nsw
,∆t) is shown in Figure 8a which is a numerical verification

of Figure 3. Figure 8b shows that in most cases the individual travel cost remains constant

with fixed Nw

Nsw
and varying ∆t, indicating that in various cases the individual travel cost is

not affected by ∆t. However, as ∆t increases and the traffic pattern shifts from Pattern(3)-1

to (2) to (1) (varying within Pattern (2)), the individual cost decreases sharply. Another

observation from Figure 8b is that individual cost increases with Nw

Nsw
for given ∆t, which is

straightforward because when there are more individuals, ∂cw
∂Nw

> 0 and ∂csw
∂Nw

≥ 0.

Different from the individual travel cost, the household travel cost (csw) is more sensitive

to ∆t when Nw

Nsw
is fixed. In Figure 8c, csw firstly decreases and then increases with ∆t for

given Nw

Nsw
. For given Nw

Nsw
, the household cost achieves the minimum within the domain for

Pattern (3)-1 or Pattern (3)-2 mostly rather than the boundary pattern between Pattern

(1) and Pattern (2). This is because, a larger ∆t (comparing Pattern (2) with Pattern

(3)-1 or (3)-2) leads to larger earliness (for work) for the households as their departures

are constrained by the school trip. When the number of households is significant compared

to individuals (Nw < β

γ
Nsw), to avoid costly large earliness (for work) for a large number

of users, we should set the ∆t to realize the boundary pattern between Pattern (3)-2 and

Pattern (1) as discussed in Subsection 4.2. The total cost contours in Figure 8d can also

explain why the optimal schedule coordination often occurs at the boundary case between

Pattern (1) and Pattern (2).
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Figure 8: Costs contours in the domain of ( Nw

Nsw
,∆t)

Figure 9 shows two situations with different ratios of Nw

Nsw
. It displays how individual

cost, household cost, and total cost vary with schedule difference ∆t. Specifically, Figure 9a

and 9b correspond to Nw = 5500 and Nsw = 2000, and thus Nw

Nsw
= 2.75 > β

γ
= 0.32; and

Figure 9c and 9d correspond to Nw = 300 and Nsw = 2000, and thus Nw

Nsw
= 0.15 < β

γ
= 0.32.

Given α, β, and γ, we obtain λ1 = 3.71, λ2 = 0.82, and λ3 = 0.32, which are defined in

Eq.(5). We have derived in Table 2 that increasing ∆t from zero will lead the traffic pattern

vary through (4) → (3)-1 → (2) → (1) when Nw

Nsw
= 2.75, or in line with (5)-2 → (4) → (3)-2

→ (2) → (1) when Nw

Nsw
= 0.15. Both paths are now verified by Figure 9.

In Figure 9a where Nw

Nsw
> β

γ
, the decrease in individual travel cost over ∆t is sharper

than the increase of household cost in Pattern (2). Since there is a relatively large number

of individuals, the total cost reaches the minimum at the boundary between Pattern (2) and

Pattern (1) which coincides with the minimum of individual travel cost over ∆t as shown in

Figure 9b.

Similarly in Figure 9c where Nw

Nsw
< β

γ
, the decrease in individual travel cost over ∆t
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is sharper than the increase of household cost under Pattern (2). However, the number

of households is relatively large with respect to individuals. Thus, the total increase of

household cost overweights the total decrease of individual cost. Therefore, the total cost

reaches the minimum at the boundary between Pattern (3)-2 and Pattern (2), coinciding

with the minimum of household travel cost.

Figure 9: Individual cost, and household cost, and total cost vary with ∆t: (a)-(b): Nw =
5500, Nsw = 2000; (c)-(d): Nw = 300, Nsw = 2000

Figure 10 further shows how the derivatives of user costs with respect to number of users

vary with ∆t at which Nw = 5500, Nsw = 2000, and Nw

Nsw
= 2.75. Similarly, the traffic pattern

varies through (4) → (3)-1 → (2) → (1) as ∆t increases. In Figure 10, ‘w-w’, ‘w-sw’, ‘sw-w’,

and ‘sw-sw’ represent ∂cw
∂Nw

, ∂cw
∂Nsw

, ∂csw
∂Nw

, and ∂csw
∂Nsw

, respectively. It is evident that ∂cw
∂Nw

≥ ∂cw
∂Nsw

and ∂csw
∂Nw

< ∂csw
∂Nsw

always hold, which is a numerical illustration of Proposition 4.1, indicating

that the equilibrium travel cost of a user group (household or individual in this paper) is

more sensitive to the number of users in that group than the number of users in the other

group.

28



0 50 100 150 200
Schedule difference (minutes)

0

0.1

0.2

0.3

0.4

0.5
D

er
iv

at
iv

e
(a) Individual cost

w-w
w-sw

0 50 100 150 200
Schedule difference (minutes)

0

0.05

0.1

0.15

0.2

0.25

D
er

iv
at

iv
e

(b) Household cost

sw-w
sw-sw

(4) (1)

(3)-1

(1)(2)

(3)-1

(4)

(2)

Figure 10: Derivatives of user costs with respect to numbers of users

6 Conclusion and Discussion

This study re-examines the morning commute problem with both individuals’ home-work

trips and households’ home-school-work shared-ride trips in the context of a different school

location from the literature. We consider that the congested road bottleneck is between the

school and workplace, which is quite common in reality as children often go to school near

home, rather than between school and home. In this case, the adult member in a household

will firstly drive to the school with zero or very light congestion, and then pass through the

congested highway bottleneck where the major delay occurs, and finally reach the workplace.

Specifically, we examine the dynamic user equilibrium with mixed travellers (individual

and household) under the “school near home” network, and compare it with that in Liu et al.

(2016) under “school near workplace” network (the major differences of this paper with Liu

et al. (2016) are summarized in Appendix B). We find that the dynamic traffic equilibrium

is significantly affected by school locations. In the “school near home” network, households

always arrive at school no later than the desired school arrival time. This is because, lateness

for school is more expensive than earliness for work, and is more expensive than in-vehicle

queuing delay.

Three strategies aiming at reducing total social cost have been proposed and analysed:

“school-work schedule coordination”, “school-work schedule coordination and pricing”, and

“differentiated school and work schedules”. Two first-best toll patterns arising under dif-

ferent parameter values have been derived and analysed for the joint scheme of schedule

coordination and pricing. Efficiencies of the three strategies are examined and compared.

The modelling framework of this paper is general for analysing household members’

shared-ride. The analysis and results apply to not only school-work trips but also to house-
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holds with two workers that carpool when one workplace is relatively closer to home.

As a first step to understand the impacts of different school locations on the morning

commuting equilibrium with household home-school-work trips, we have assumed determin-

istic travel demand and highway capacity. This indeed allows tractability for analytical

insights. However, it is important to account for stochasticity in both demand and supply

in the model (e.g., the stochastic nature of traffic flow dynamics). The highway capacity

and travel demand fluctuations can lead to variability in queue length behind the highway

bottleneck and variability of travel time and trip cost, and thus can affect the departure time

choices of both households and individual workers. This means that stochasticity can create

variations in the dynamic traffic patterns studied in the paper. To model the stochasticity,

similar approaches as those in Lindsey (2009); Xiao et al. (2015) can be adopted. While the

central ideas (e.g., school hours push households to depart earlier, and schedule coordination

separate travels of households and individuals) can be extended, the exact dynamic traffic

patterns and the optimal decisions (e.g., schedule coordination, pricing) need careful re-

examination with demand and supply stochasticity. The efficiency gains from the proposed

management strategies should be re-evaluated accordingly; whilst the current deterministic

analysis can serve as comparable measures.

This study can also be extended in several other directions. Firstly, the ride-sharing

of non-family members, as well as the trip-timing and coordination of travellers, can be

analysed. In this case, travellers have to tradeoff between the inconvenience caused by ride-

sharing and the reduced monetary cost through ride-sharing, which further complicates the

joint trip-timing choice of a shared-ride and the morning commuting dynamics. Secondly,

future study requires a general queuing network with schools and workplaces distributed

over different places. An intuitive example would be the two-tandem bottleneck network

considered in Kuwahara (1990), in which we can model a joint equilibrium of departure time

choice, work choice, and school choice of households. Thirdly, a multi-modal transportation

system can be incorporated so that household members can either share ride through driving

or take public transport, where public transport service is responsive to traffic conditions,

such as those considered in Zhang et al. (2014, 2016). Fourthly, in this study, identical value

of time and schedule penalties are adopted for both work and school trips. However in prac-

tice, the schedule penalties and values of time for work and school trips are usually different.

Future research will take this into account, as well as more general user heterogeneity among

different groups of travellers (in either group of households or individuals).
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Appendix

Appendix A. Proof of Proposition 4.1

Proof. To prove Proposition 4.1, we just need to calculate ∂cw
∂Nw

, ∂cw
∂Nsw

, ∂csw
∂Nw

and ∂csw
∂Nsw

under

different equilibrium traffic patterns, and then compare them accordingly. Based on Table

3, the mentioned derivatives (when exist) can be readily obtained, and it follows that:

Pattern ∂cw
∂Nw

≥ ∂cw
∂Nsw

∂csw
∂Nw

≤ ∂csw
∂Nsw

(1) βγ

β+γ
1
s
> 0 0 <

2β(α−β)
α+β

1
s

(2) γ 1
s
> 2βγ

α+γ
1
s

0 <
2β(α−β)

α+β
1
s

(3)-1 βγ

β+γ
1
s
= βγ

β+γ
1
s

βγ

β+γ
1
s
< ( βγ

β+γ
+ β(α−β)

α+β
)1
s

(3)-2 γ 1
s
> 2βγ

α+2β+γ
1
s

0 <
2β(α+γ)
α+2β+γ

1
s

(4) βγ

β+γ
1
s
= βγ

β+γ
1
s

(α+γ)(α+β)
α2+αβ−β2+βγ

βγ

β+γ
1
s
<

(α+γ)(α+β)
α2+αβ−β2+βγ

( βγ

β+γ
+ β(α−β)

α+β
)1
s

(5)-1 βγ

β+γ
1
s
= βγ

β+γ
1
s

βγ

β+γ
1
s
< ( βγ

β+γ
+ β(α+γ)

α+β
)1
s

(5)-2 β(1− β

α

α+β

α+2β+γ
)1
s
>

β(α+γ)
α+2β+γ

1
s

β

α

(α+β)(α+γ)
α+2β+γ

1
s
<

2β(α+γ)
α+2β+γ

1
s

(6) β(α+γ)
α+β+γ

1
s
>

β(α+γ)
α+β+γ

α
α+β

1
s

β(α+γ)
α+β+γ

1
s
<

β(α+γ)
α+β+γ

(1 + α+γ

α+β
)1
s

The proposition is then proved.
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Appendix B. The major differences between this paper and Liu

et al. (2016)

Aspects This paper Liu et al. (2016)

School location near home near workplace

Number of possible flow patterns 8 4

School arrival later than ts Never Possible

Flow patterns under the opti-
mized schedule coordination

Depending on Nw and Nsw Unique

Total cost under optimized sched-
ule coordination

Smaller Larger

First-best toll patterns Identified Special case given

Differentiated school and/or work
schedules considered

Yes No
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