Modular synthesis of thirty lead-like scaffolds suitable for CNS drug discovery programmes

Joan Mayol-Llinàs, William Farnaby* and Adam Nelson*

Supporting Information

Contents

General Experimental	1
Preparation of Cyclisation Precursors 1a–g	2
Synthesis of Scaffolds	18
X-Ray Structures	62
Assessment of the CNS Lead-Likeness of the Prepared Scaffolds	66
¹ H and ¹³ C NMR Spectra	69
NOESY Spectra	136
References	142

General Experimental

Commercially available starting materials were obtained from Sigma–Aldrich, Fluorochem and Alfa Aesar. All non-aqueous reactions were performed under nitrogen atmosphere unless otherwise stated. Water-sensitive reactions were performed in anhydrous solvents in ovendried glassware cooled under nitrogen before use. Anhydrous dichloromethane (DCM), anhydrous tetrahydrofuran (THF), anhydrous toluene, anhydrous diethyl ether, anhydrous ethanol, anhydrous methanol and anhydrous acetonitrile were obtained from a PureSolv MD5 Purification System. Anhydrous dimethylsulfoxide (DMSO) and anhydrous 1,4-dioxane were obtained from SureSeal bottles from Sigma–Aldrich. All other solvents used were of chromatography or analytical grade. Petrol refers to petroleum spirit (b.p. 40-60 °C). An IKA RV 10 rotary evaporator was used to remove the solvents under reduced pressure.

Thin layer chromatography (TLC) was performed using aluminium backed silica (Merck silica gel 60 F254) plates obtained from Merck. Ultraviolet lamp ($\lambda_{max} = 254$ nm) and KMnO₄ were used for visualization. Flash column chromatography was performed using silica gel 60 (35-70 µm particles) supplied by Merck. A Bruker Daltonics micrOTOF spectrometer with electrospray (ES) ionisation source was used for high-resolution mass spectrometry (HRMS). Perkin-Elmer One FT-IR spectrometer was used to analyse the infrared spectra. Melting points (m.p.) were determined using Stuart melting point apparatus SMP3. X-ray measurements were carried out at 120 K on an Agilent SuperNova diffractometer equipped with an Atlas CCD detector and connected to an Oxford Cryostream low temperature device using mirror monochromated Cu K_α radiation ($\lambda = 1.54184$ Å) from a Microfocus X-ray source. The structure was solved by intrinsic phasing using SHELXT¹ and refined by a full matrix least squares technique based on F² using SHELXL2014.²

Proton (¹H) and carbon (¹³C) NMR data was collected on a Bruker 300, 400 or 500 MHz spectrometer. Data was collected at 300 K unless otherwise stated. Chemical shifts (δ) are given in parts per million (ppm) and they are referenced to the residual solvent peak. Coupling constants (*J*) are reported in Hertz (Hz) and splitting patterns are reported in an abbreviated manner: app. (apparent), s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br. (broad). Assignments were made using COSY, DEPT, HMQC and NOESY experiments.

Preparation of Cyclisation Precursors 1a-g

Building blocks 4-benzoylmorpholin-3-one, **8** and **10** were prepared following literature procedures,³⁻⁵ respectively.

General Procedure A

By modification of an existing procedure,⁶ LiHMDS (2.20 eq of a 1.0 M solution in toluene or THF) was added to a solution of the carbonyl derivative (1.00 eq) in toluene (0.17 M) at -78 °C. After stirring the mixture for 1.5 h at -78 °C, a solution of the imidazole derivative **8** (1.20 eq) in toluene (2.50 M) was added dropwise and the reaction mixture was stirred at -78 °C for 3 h. Then, the reaction was allowed to warm to rt and a saturated aqueous solution of NH₄Cl (5 mL per 1.00 mmol of the carbonyl derivative) was added. The phases were separated and the aqueous phase was extracted with Et₂O or EtOAc (3 × (2 mL per 1.00 mmol of the carbonyl derivative)). Then, the organic phases were combined, dried (MgSO₄), filtered and concentrated under reduced pressure to give a crude material.

General Procedure B

By modification of an existing procedure,⁷ LiHMDS (2.20 eq of a 1.0 M solution in toluene) was added to a solution of the carbonyl derivative (1.00 eq) in the specified amount of toluene at 0 °C. After stirring for 15 min, allyl chloroformate (1.20 eq) was added and the reaction mixture was allowed to warm to rt and stirred for 1 h. Then, a saturated aqueous solution of NH₄Cl (3 mL per 1.00 mmol of the carbonyl derivative) was added, the mixture was stirred for 15 min, the phases were separated and the aqueous phase was extracted with EtOAc ($3 \times (1 \text{ mL per 1.00 mmol of the carbonyl derivative})$). The organic phases were combined, washed with brine (2 mL per 1.00 mmol of the carbonyl derivative), dried (MgSO₄), filtered and concentrated under reduced pressure to give a crude material.

General Procedure C

According to a procedure,⁸ the sulfone derivative **10** (1.20 eq) was added to a solution of the allyl ester derivative (1.00 eq) in DCM (0.10 M) at rt. After stirring the mixture for 5 min, Cs_2CO_3 (2.50 eq) was added and the reaction was stirred for the specified time at rt. Then, a

saturated aqueous solution of NH₄Cl (10 mL per 1.00 mmol of the allyl ester derivative) was added and the mixture was stirred for 30 min at rt. The phases were separated and the organic phase was extracted with DCM ($3 \times (5 \text{ mL per 1.00 mmol of the allyl ester derivative})$). The organic phases were combined, dried (MgSO₄), filtered and concentrated under reduced pressure to give a crude material.

General Procedure D

By modification of an existing procedure,⁹ the specified amount of K_2CO_3 was added to a solution of the allyl ester derivative **S1** (1.00 eq) in acetone (0.26 M). After stirring for 15 min at rt, the specified amount of the arylmethyl bromide derivative was added dropwise and the reaction mixture was stirred at 70 °C for 2 h. Then, the mixture was allowed to cool to rt, a saturated aqueous solution of NH₄Cl (9 mL per 1.00 mmol of the allyl ester derivative **S1**) was added and the mixture was stirred for 30 min. Subsequently, EtOAc (6 mL per 1.00 mmol of the allyl ester derivative **S1**) was added, the phases were separated and the aqueous phase was extracted with EtOAc (3 × (5 mL per 1.00 mmol of the allyl ester derivative **S1**)). The organic phases were combined, dried (MgSO₄), filtered and concentrated under reduced pressure to give a crude material.

General Procedure E

According to a procedure,¹⁰ PPh₃ (0.20 eq) and Pd(OAc)₂ (0.05 eq) were added to a solution of the quaternary allyl ester derivative (1.00 eq) in THF (0.10 M) and the reaction mixture was stirred for 1 h at 70 °C. Then, the solution was allowed to cool to rt, filtered through celite and concentrated under reduced pressure to give a crude material.

Prop-2-en-1-yl 4-oxooxane-3-carboxylate

According to General Procedure A, tetrahydro-4H-pyran-4-one (3.84 mL, 41.6 mmol) and LiHMDS (91.6 mL, 91.6 mmol of a 1.0 M solution in toluene) gave a crude material. The crude material was extracted with EtOAc and purified by flash column chromatography eluting with 5:95 EtOAc-hexane to yield the allyl ester derivative 9 (3.48 g, 45%, keto:enol 24:76 by ¹H-NMR in CDCl₃) as a colourless oil, $R_f 0.72$ (50:50 petrol-EtOAc); v_{max}/cm^{-1} 2968, 2856, 1741, 1718, 1663, 1624, 1395, 1305, 1216, 1101, 1047; δ_H (500 MHz, CDCl₃) 5.92 (2H, ddt, J 17.3, 10.5 and 5.6, propenyl 2-H), 5.34 (1H, app. q, J 1.5, 3-H_{trans}^{keto}), 5.31 (1H, app. dq, *J* 17.3 and 1.5, propenyl 3-H_{trans}^{enol}), 5.26 (1H, app. dd, *J* 10.5 and 1.2, propenyl 3-H_{cis}^{keto}), 5.25 (1H, app. dq, J 10.5 and 1.5, propenyl 3-H_{cis}^{enol}), 4.65 (4H, dt, J 5.6 and 1.5, propenyl 1-H₂), 4.29 (2H, app. t, J 1.7, 2-H₂^{enol}), 4.23 (1H, dd, J 11.6 and 7.1, 2-H_A^{keto}), 4.11 (1H, ddd, J 11.6, 5.1 and 0.9, 2-H_B^{keto}), 4.05-3.93 (2H, m, 6-H₂^{keto}), 3.84 (2H, t, J 5.7, 6-H₂^{enol}), 3.50 (1H, app. ddd, J 6.8, 5.1 and 1.3, 3-H^{keto}), 2.67 (1H, ddd, J 14.5, 6.2 and 5.1, 5-H_A^{keto}), 2.55 (1H, dddd, J 14.5, 7.1, 5.5 and 1.3, 5-H_B^{keto}), 2.39 (2H, tt, J 5.7 and 1.7, 5- H_2^{enol} ; δ_C (75 MHz, CDCl₃) 201.2 (C-4^{keto}), 169.7 (carboxylate C=O^{\text{enol}}), 169.3 (C-4^{\text{enol}}), 167.5 (carboxylate C= O^{keto}), 131.9 (propenyl C- 2^{enol}), 131.5 (propenyl C- 2^{keto}), 118.8 (propenyl C-3^{keto}), 118.3 (propenyl C-3^{enol}), 97.3 (C-3^{enol}), 69.6 (C-2^{keto}), 68.2 (C-6^{keto}), 66.0 (propenyl C-1^{keto}), 64.8 (propenyl C-1^{enol}), 63.9 (C-6^{enol}), 63.0 (C-2^{enol}), 57.8 (C-3^{keto}), 42.0 (C-5^{keto}), 28.8 (C-5^{enol}); HRMS found MNa⁺, 207.0627. C₉H₁₂O₄ requires *MNa*, 207.0627. Compound 9 existed as a mixture of keto and enol tautomers.

1-Benzyl 3-prop-2-en-1-yl 4-hydroxy-1,2,5,6-tetrahydropyridine-1,3-dicarboxylate

According to General Procedure B, 1-(benzyloxycarbonyl)-4-piperidinone (10.6 g, 45.45 mmol) in toluene (68.0 mL) gave a crude material. The crude material was purified by flash column chromatography, eluting with 10:90 EtOAc–hexane to yield the *allyl ester derivative S1* (5.77 g, 40%, >98% enol by ¹H-NMR in CDCl₃) as a colourless oil, $R_{\rm f}$ 0.60 (70:30 petrol–EtOAc); $v_{\rm max}/{\rm cm}^{-1}$ 3032, 2945, 1697, 1662, 1620, 1422, 1305, 1227, 1193, 1111,

1056; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.39-7.31 (5H, m, phenyl), 5.94 (1H, ddt, *J* 17.2, 10.5 and 5.6, propenyl 2-H), 5.34 (1H, dd, *J* 17.2 and 1.4, propenyl 3-H_{trans}), 5.26 (1H, app. dq, *J* 10.5 and 1.4, propenyl 3-H_{cis}), 5.17 (2H, s, arylmethyl 1-H₂), 4.69 (2H, app. dt, *J* 5.6 and 1.4, propenyl 1-H₂), 4.18 (2H, s, 2-H₂), 3.65 (2H, t, *J* 5.9, 6-H₂), 2.40 (2H, app. br. s, 5-H₂); $\delta_{\rm C}$ (100 MHz, CDCl₃) 170.6 (carboxylate C=O), 170.3 (C-4), 155.3 (Cbz C=O), 136.7 (phenyl C-1), 131.8 (propenyl C-2), 128.6 (phenyl C₂-3,5), 128.2 (phenyl C₂-2,6), 128.1 (phenyl C-4), 118.6 (propenyl C-3), 95.8 (C-3), 67.4 (arylmethyl C-1), 65.2 (propenyl C-1), 40.6 (C-2), 40.0 (C-6), 28.8 (C-5); HRMS found MH⁺, 318.1330. C₁₇H₁₉NO₅ requires *MH*, 318.1335. Compound **S1** existed exclusively as the enol tautomer.

Prop-2-en-1-yl-4-benzoyl-3-oxomorpholine-2-carboxylate

According to General Procedure A, 4-benzoylmorpholin-3-one (9.32 g, 45.4 mmol) and LiHMDS (100 mL, 100 mmol of a 1.0 M solution in THF) gave a crude material. The crude material was extracted with Et₂O and purified by flash column chromatography eluting with DCM to yield the allyl ester derivative⁶ **S2** (5.00 g, 41%) as a light yellow oil, R_f 0.62 (50:50 petrol–EtOAc); v_{max}/cm^{-1} 2950, 2893, 1745, 1685, 1449, 1373, 1274, 1227, 1155, 1139; δ_H (500 MHz, CDCl₃) 7.65-7.61 (2H, m, phenyl 2,6-H₂), 7.51 (1H, tt, *J* 7.1 and 1.2, phenyl 4-H), 7.42-7.36 (2H, m, phenyl 3,5-H₂), 5.94 (1H, ddt, *J* 17.3, 10.5 and 5.9, propenyl 2-H), 5.38 (1H, app. dq, *J* 17.3 and 1.3, propenyl 3-H_{trans}), 5.30 (1H, app. dq, *J* 10.5 and 1.3, propenyl 3-H_{cis}), 4.83 (1H, s, 2-H), 4.74 (2H, app. dt, *J* 5.9 and 1.3, propenyl 1-H₂), 4.35 (1H, ddd, *J* 12.0, 7.9 and 3.7, 6-H_A), 4.07 (1H, ddd, *J* 12.0, 5.4 and 3.8, 6-H_B), 4.00 (1H, ddd, *J* 13.3, 7.9 and 3.8, 5-H_B), 3.93 (1H, ddd, *J* 13.3, 5.4 and 3.7, 5-H_A); δ_C (125 MHz, CDCl₃) 172.6 (C-3), 166.5 (benzoyl C=O), 165.6 (carboxylate C=O), 134.6 (phenyl C-1), 132.4 (phenyl C-4), 131.0 (propenyl C-2), 128.5 (phenyl C₂-2,6), 128.2 (phenyl C₂-3,5), 119.7 (propenyl C-3), 7.1 (under signal for residual solvent, C-2), 66.9 (propenyl C-1), 62.4 (C-6), 44.7 (C-5); HRMS found MH⁺, 290.1024. C₁₅H₁₅NO₅ requires *MH*, 290.1022.

Prop-2-en-1-yl 4-oxooxolane-3-carboxylate

According to a procedure for a related compound,¹¹ methyl glycolate (8.57 mL, 111 mmol) was added dropwise to a suspension of NaH (4.88 g, 122 mmol of a 60% dispersion in mineral oil) in Et₂O (370 mL). After stirring for 4 h, the solvent was removed under reduced pressure and the crude material was dissolved in DMSO (222 mL). The solution was cooled to 0 °C and allyl acrylate (16.3 mL, 122 mmol) was added dropwise. The reaction mixture was allowed to warm to rt and stirred overnight. An aqueous solution of 10% HCl (70 mL) and Et₂O (200 mL) were added and the mixture was stirred for 30 min. Water (70 mL) was added, the phases were separated and the aqueous phase was extracted with Et₂O (4 \times 100 mL). The organic phases were combined, washed with brine (300 mL), dried (MgSO₄), filtered and concentrated under reduced pressure to give a crude material. The crude material was purified by flash column chromatography, eluting with $10:90 \rightarrow 20:80$ EtOAc-hexane to yield the *allvl ester derivative* S3 (5.45 g, 29%) as a pink oil, $R_f 0.43$ (70:30 petrol-EtOAc); v_{max}/cm^{-1} 2951, 2883, 1770, 1725; δ_{H} (400 MHz, CDCl₃) 5.90 (1H, ddt, J 17.2, 10.3 and 5.7, propenyl 2-H), 5.34 (1H, dd, J 17.2 and 1.4, propenyl 3-H_{trans}), 5.26 (1H, dd, J 10.3 and 1.4, propenyl 3-H_{cis}), 4.71-4.60 (2H, m, propenyl 1-H₂), 4.49 (1H, dd, J 9.7 and 8.3, 2-H_A), 4.44 (1H, dd, J 9.7 and 8.3, 2-H_B), 4.02 (1H, d, J 17.1, 5-H_A), 3.94 (1H, d, J 17.1, 5-H_B), 3.53 (1H, t, J 8.3, 3-H); δ_C (100 MHz, CDCl₃) 207.3 (C-4), 166.3 (carboxylate C=O), 131.4 (propenyl C-2), 119.1 (propenyl C-3), 70.8 (C-5), 69.5 (C-2), 66.5 (propenyl C-1), 53.4 (C-3); HRMS found MNa⁺, 193.0467. C₈H₁₀O₄ requires *MNa*, 193.0471.

Prop-2-en-1-yl 6-methoxy-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate

According to General Procedure B, 6-methoxy-1-indanone (7.37 g, 45.45 mmol) in toluene (100 mL) gave a crude material. The crude material was purified by flash column chromatography, eluting with 10:90 EtOAc–hexane to yield the allyl ester derivative¹² **S4** (5.23 g, 47%) as a brown oil, R_f 0.56 (70:30 petrol–EtOAc); v_{max}/cm^{-1} 2940, 2837, 1736, 1704, 1571, 1491, 1432, 1317, 1296, 1273, 1204, 1184, 1148, 1024; δ_H (400 MHz, CDCl₃) 7.39 (1H, dd, *J* 8.3 and 0.8, 4-H), 7.22 (1H, dd, *J* 8.3 and 2.5, 5-H), 7.19 (1H, d, *J* 2.5, 7-H), 5.94 (1H, ddt, *J* 17.2, 10.5 and 5.7, propenyl 2-H), 5.37 (1H, app. dq, *J* 17.2 and 1.4, propenyl 3-H_{trans}), 5.26 (1H, app. dq, *J* 10.5 and 1.4, propenyl 3-H_{cis}), 4.69 (2H, app. tt, *J* 5.7 and 1.4, propenyl 1-H₂), 3.83 (3H, s, methoxy), 3.78 (1H, dd, *J* 8.1 and 3.9, 2-H), 3.47 (1H, dd, *J* 16.9 and 3.9, 3-H_A), 3.32 (1H, dd, *J* 16.9 and 8.1, 3-H_B); δ_C (100 MHz, CDCl₃) 199.3 (C-1), 168.9 (carboxylate C=O), 159.8 (C-6), 146.5 (C-3a), 136.5 (C-7a), 131.7 (propenyl C-2), 127.2 (C-4), 125.0 (C-5), 118.6 (propenyl C-3), 105.7 (C-7), 66.2 (propenyl C-1), 55.7 (methoxy), 54.0 (C-2), 29.7 (C-3); HRMS found MNa⁺, 269.0782. C₁₄H₁₄O₄ requires *MNa*, 269.0784.

Prop-2-en-1-yl 3-({[(tert-butoxy)carbonyl]amino}methyl)-4-oxooxane-3-carboxylate

According to General Procedure C, the allyl ester derivative **9** (7.00 g, 38.0 mmol) was stirred overnight to give a crude material. The crude material was purified by flash column chromatography, eluting with 20:80 EtOAc–hexane to yield the *quaternary allyl ester derivative* **11** (10.1 g, 85%) as a colourless oil, R_f 0.67 (50:50 petrol–EtOAc); v_{max} /cm⁻¹ 3403, 2976, 2934, 2868, 1709, 1501, 1366, 1249, 1225, 1212, 1163, 1135, 1112; δ_H (400 MHz, CDCl₃) 5.88 (1H, ddt, *J* 17.3, 10.4 and 5.8, propenyl 2-H), 5.31 (1H, app. dq, *J* 17.3 and 1.4, propenyl 3-H_{trans}), 5.24 (1H, app. dq, *J* 10.4 and 1.4, propenyl 3-H_{cis}), 5.09 (1H, app. t, *J* 5.6, NH), 4.65 (1H, app. t, *J* 1.4, propenyl 1-H_A), 4.64 (1H, app. t, *J* 1.4, propenyl 1-H_B), 4.44 (1H, d, *J* 11.8, 2-H_A), 4.14-4.05 (1H, m, 6-H_A), 3.87-3.76 (1H, m, 6-H_B), 3.60 (1H, dd, *J* 14.1 and 6.8, methylcarbamate 1-H_A), 3.58 (1H, d, *J* 11.8, 2-H_B), 3.50 (1H, dd, *J* 14.1 and 6.8,

methylcarbamate 1-H_B), 2.76 (1H, ddd, *J* 15.4, 9.3 and 6.4, 5-H_A), 2.59 (1H, app. dt, *J* 14.9 and 4.4, 5-H_B), 1.38 (9H, s, ^{*t*}Bu); $\delta_{\rm C}$ (100 MHz, CDCl₃) 204.1 (C-4), 169.4 (carboxylate C=O), 155.8 (Boc C=O), 131.3 (propenyl C-2), 119.2 (propenyl C-3), 79.7 (^{*t*}Bu C₁), 72.3 (C-2), 68.4 (C-6), 66.5 (propenyl C-1), 64.0 (C-3), 41.0 (C-5 and methylcarbamate C-1), 28.3 (^{*t*}Bu C₃); HRMS found MH⁺, 314.1601. C₁₅H₂₃NO₆ requires *MH*, 314.1598.

1-Benzyl 3-prop-2-en-1-yl 3-({[(*tert*-butoxy)carbonyl]amino}methyl)-4-oxopiperidine-1,3-dicarboxylate

According to General Procedure C, the allyl ester derivative S1 (6.47 g, 20.4 mmol) was stirred overnight to give a crude material. The crude material was purified by flash column chromatography, eluting with 20:80 EtOAc-hexane to yield the quaternary allyl ester *derivative* **S5** (7.69 g, 84%) as a colourless oil, $R_f 0.63$ (50:50 petrol-EtOAc); v_{max}/cm^{-1} 3398. 2977, 1697, 1499, 1423, 1365, 1234, 1138; δ_H (500 MHz, CD₃OD, 333 K) 7.42-7.28 (5H, m, phenyl), 5.86 (1H, ddt, J 17.3, 10.5 and 5.8, propenyl 2-H), 5.28 (1H, app. dq, J 17.3 and 1.4, propenyl 3-H_{trans}), 5.19 (1H, app. dq, J 10.5 and 1.4, propenyl 3-H_{cis}), 5.16 (1H, app. s, arylmethyl 1-H_A), 5.15 (1H, app. s, arylmethyl 1-H_B), 4.61 (1H, d, J 13.9, 2-H_A), 4.57-4.52 (2H, m, propenyl 1-H₂), 4.18-4.09 (1H, m, 6-H_A), 3.61 (1H, d, J 14.4, methylcarbamate 1-H_A), 3.46 (1H, d, J 14.4, methylcarbamate 1-H_B), 3.46-3.39 (1H, m, 6-H_B), 3.35 (1H, d, J 13.9, 2-H_B), 2.68 (1H, ddd, J 15.2, 9.9 and 6.5, 5-H_A), 2.53 (1H, app. dt, J 15.2 and 4.7, 5-H_B), 1.41 (9H, s, ^tBu); δ_C (125 MHz, CD₃OD, 333 K) 205.1 (C-4), 170.3 (carboxylate C=O), 157.9 (Boc C=O), 156.8 (Cbz C=O), 137.9 (phenyl C-1), 132.8 (propenyl C-2), 129.5 (phenyl C₂-3,5), 129.2 (phenyl C-4), 129.0 (phenyl C₂-2,6), 119.3 (propenyl C-3), 80.7 (^tBu C₁), 68.9 (arylmethyl C-1), 67.6 (propenyl C-1), 63.2 (C-3), 49.5 (C-2), 44.2 (C-6), 42.9 (methylcarbamate C-1), 40.4 (C-5), 28.7 (^tBu C₃); HRMS found MNa⁺, 469.1936. C₂₃H₃₀N₂O₇ requires *MNa*, 469.1945.

Prop-2-ene-1-yl-4-benzoyl-2-({[(*tert*-butoxy)carbonyl]amino}methyl)-3-oxomorpholine-2-carboxylate

According to General Procedure C, the allyl ester derivative S2 (5.00 g, 17.3 mmol) was stirred overnight to give a crude material. The crude material was purified by flash column chromatography, eluting with 20:80 EtOAc-hexane to yield the quaternary allyl ester derivative⁸ S6 (6.00 g, 83%) as a colourless oil, $R_f 0.70$ (50:50 petrol-EtOAc); v_{max}/cm^{-1} 3390, 2977, 1687, 1504, 1366, 1275, 1228, 1143, 1064; δ_H (500 MHz, CDCl₃) 7.69-7.62 (2H, m, phenyl 2,6-H₂), 7.52 (1H, tt, J 7.1 and 1.2, phenyl 4-H), 7.42-7.37 (2H, m, phenyl 3,5-H₂), 5.96 (1H, ddt, J 17.2, 10.4 and 5.8, propenyl 2-H), 5.40 (1H, app. dq, J 17.2 and 1.3, propenyl 3-H_{trans}), 5.32 (1H, app. dq, J 10.4 and 1.3, propenyl 3-H_{cis}), 5.00 (1H, br. s, NH), 4.74 (2H, app. d, J 5.8, propenyl 1-H₂), 4.30-4.23 (1H, m, 6-H_A), 4.19 (1H, dt, J 12.3 and 4.0, 6-H_B), 4.00 (1H, ddd, J 13.4, 9.3 and 4.0, 5-H_A), 3.92 (1H, dt, J 13.4 and 3.6, 5-H_B), 3.82 (1H, dd, J 14.3 and 7.4, methylcarbamate 1-H_A), 3.74 (1H, dd, J 14.3 and 5.8, methylcarbamate 1-H_B), 1.42 (9H, s, ^tBu); δ_{C} (125 MHz, CDCl₃) 172.7 (C-3), 167.7 (benzoyl C=O), 167.5 (carboxylate C=O), 155.7 (Boc C=O), 134.7 (phenyl C-1), 134.4 (phenyl C-4), 131.0 (propenyl C-3), 128.5 (phenyl C₂-2,6), 128.3 (phenyl C₂-3,5), 119.9 (propenyl C-2), 83.0 (C-2), 79.8 (^tBu C₁), 67.1 (propenyl C-1), 62.1 (C-6), 44.9 (C-5), 44.7 (methylcarbamate C-1), 28.4 (^tBu C₃); HRMS found MH⁺, 419.1814. C₂₁H₂₆N₂O₇ requires *MH*, 419.1812.

Prop-2-en-1-yl 3-({[(tert-butoxy)carbonyl]amino}methyl)-4-oxooxolane-3-carboxylate

According to General Procedure C, the allyl ester derivative **S3** (9.60 g, 56.4 mmol) was stirred for 3 h to give a crude material. The crude material was purified by flash column chromatography, eluting with 10:90 \rightarrow 15:85 EtOAc-petrol to yield the *quaternary allyl ester derivative* **S7** (14.7 g, 87%) as a colourless oil, R_f 0.41 (70:30 petrol-EtOAc); v_{max}/cm^{-1} 3367, 2978, 1770, 1710, 1504, 1366; δ_H (400 MHz, CDCl₃) 5.86 (1H, ddt, *J* 17.2, 10.5 and 5.7, propenyl 2-H), 5.30 (1H, app. dq, *J* 17.2 and 1.3, propenyl 3-H_{trans}), 5.25 (1H, app. dq, *J* 10.5 and 1.3, propenyl 3-H_{cis}), 5.11 (1H, app. t, *J* 5.3, NH), 4.65 (1H, app. t, *J* 1.4, propenyl 1-H_A), 4.64 (1H, app. t, *J* 1.4, propenyl 1-H_B), 4.49 (1H, d, *J* 9.9, 2-H_A), 4.21 (1H, d, *J* 9.9, 2-H_B), 4.11 (1H, d, *J* 17.2, 5-H_A), 4.05 (1H, d, *J* 17.2, 5-H_B), 3.72-3.55 (2H, m, methylcarbamate 1-H₂), 1.40 (9H, s, ^{*t*}Bu); δ_C (100 MHz, CDCl₃) 208.8 (C-4), 168.6 (carboxylate C=O), 156.2 (Boc C=O), 131.1 (propenyl C-2), 119.2 (propenyl C-3), 80.1 (^{*t*}Bu C₁), 73.3 (C-2), 71.2 (C-5), 66.7 (propenyl C-1), 61.0 (C-3), 41.4 (methylcarbamate C-1), 28.4 (^{*t*}Bu C₃); HRMS found MNa⁺, 322.1256. C₁₄H₂₁NO₆ requires *MNa*, 322.1261.

Prop-2-en-1-yl 2-({[(*tert*-butoxy)carbonyl]amino}methyl)-6-methoxy-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate

According to General Procedure C, the allyl ester derivative **S4** (5.12 g, 20.8 mmol) was stirred overnight to give a crude material. The crude material was purified by flash column chromatography, eluting with 15:85 EtOAc–hexane to yield the *quaternary allyl ester derivative* **S8** (7.80 g, >99%) as an amorphous colourless solid, R_f 0.50 (70:30 petrol–EtOAc); v_{max}/cm^{-1} 3377, 2974, 2940, 1727, 1697, 1514, 1492, 1280, 1241, 1189, 1161, 1134; δ_H (300 MHz, CDCl₃) 7.37 (1H, d, *J* 8.3, 4-H), 7.21 (1H, dd, *J* 8.3 and 2.6, 5-H), 7.17 (1H, d, *J* 2.6, 7-H), 5.81 (1H, ddt, *J* 17.2, 10.6 and 5.6, propenyl 2-H), 5.20 (1H, dd, *J* 17.2 and 1.3, propenyl 3-H_{trans}), 5.18 (1H, br. s, NH), 5.17 (1H, dd, *J* 10.6 and 1.3, propenyl 3-H_{cis}), 4.59 (2H, app. dt, *J* 5.6 and 1.5, propenyl 1-H₂), 3.82 (3H, s, methoxy), 3.67 (1H, d, *J* 6.6, methylcarbamate 1-H_B), 3.45 (1H, d, *J* 17.2,

3-H_A), 3.24 (1H, d, *J* 17.2, 3-H_B), 1.40 (9H, s, ^{*t*}Bu); δ_{C} (75 MHz, CDCl₃) 201.0 (C-1), 170.8 (carboxylate C=O), 159.9 (C-6), 156.4 (Boc C=O), 146.4 (C-3a), 136.2 (C-7a), 131.5 (propenyl C-2), 127.4 (C-4), 125.3 (C-5), 118.6 (propenyl C-3), 105.9 (C-7), 79.7 (^{*t*}Bu C₁), 66.2 (propenyl C-1), 62.4 (C-2), 55.7 (methoxy), 44.0 (methylcarbamate C-1), 35.0 (C-3), 28.4 (^{*t*}Bu, C₃); HRMS found MNa⁺, 398.1572. C₂₀H₂₅NO₆ requires *MNa*, 398.1574.

1-Benzyl 3-prop-2-en-1-yl 3-benzyl-4-oxopiperidine-1,3-dicarboxylate

According to General Procedure D, the allyl ester derivative S1 (0.75 g. 2.36 mmol), K₂CO₃ (1.30 g, 9.44 mmol) and (bromomethyl)benzene (0.56 mL, 4.72 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 20:80 EtOAc-hexane to yield the quaternary allyl ester derivative S9 (0.86 g, 89%) as a colourless oil, $R_{\rm f}$ 0.38 (70:30 petrol-EtOAc); $v_{\rm max}/{\rm cm}^{-1}$ 3063, 3030, 2936, 1698, 1427, 1266, 1239, 1217, 1178, 1121; δ_H (500 MHz, CDCl₃, 323 K) 7.41-7.15 (10H, phenyl), 5.77 (1H, ddt, J 16.9, 10.7 and 5.6, propenyl 2-H), 5.26 (1H, dd, J 16.9 and 1.3, propenyl 3-H_{trans}), 5.21 (1H, app. dq, J 10.7 and 1.3, propenyl 3-H_{cis}), 5.17 (1H, app. s, Cbz arylmethyl 1-H_A), 5.16 (1H, app. s, Cbz arylmethyl 1-H_B), 4.72 (1H, dd, J 13.8 and 2.1, 2-H_A), 4.50 (2H, d, J 5.6, propenyl 1-H₂), 4.25 (1H, app. br. s, 6-H_A), 3.31 (1H, d, J 13.9, arylmethyl 1-H_A), 3.31-3.25 (1H, m, 6-H_B), 3.17 (1H, d, J 13.9, arylmethyl 1-H_B), 3.14 (1H, d, J 13.8, 2-H_B), 2.75 (1H, ddd, J 14.9, 10.4 and 6.6, 5-H_A), 2.49 (1H, app. dt, J 14.9 and 4.4, 5-H_B); $\delta_{\rm C}$ (125 MHz, CDCl₃, 323 K) 203.5 (C-4), 169.5 (carboxylate C=O), 155.2 (Cbz C=O), 136.6 (Cbz phenyl C-1), 135.6 (phenyl C-1), 131.4 (propenyl C-2), 130.6 (phenyl C₂-2,6), 128.6 (Cbz phenyl C₂-3,5), 128.5 (phenyl C₂-3,5), 128.2 (Cbz phenyl C₂-2,6), 128.0 (Cbz phenyl C-4), 127.2 (phenyl C-4), 119.3 (propenyl C-3), 67.7 (Cbz arylmethyl C-1), 66.4 (propenyl C-1), 62.3 (C-3), 50.1 (C-2), 43.5 (C-6), 40.0 (C-5), 37.6 (arylmethyl C-1); HRMS found MNa⁺, 430.1624. C₂₄H₂₅NO₅ requires *MNa*, 430.1630.

1-Benzyl 3-prop-2-en-1-yl 4-oxo-3-[(pyridin-3-yl)methyl]piperidine-1,3-dicarboxylate

According to General Procedure D, the allyl ester derivative S1 (1.00 g. 3.15 mmol), K₂CO₃ (2.17 g, 15.7 mmol) and 3-(bromomethyl)pyridine hydrobromide (1.03 g, 4.10 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 60:40 EtOAc-hexane to yield the *quaternary allyl ester derivative* **S10** (0.63 g, 49%) as a yellow oil, $R_{\rm f}$ 0.50 (EtOAc); $v_{\rm max}$ /cm⁻¹ 3031, 2946, 1697, 1423, 1235, 1215, 1177, 1125; $\delta_{\rm H}$ (500 MHz, CD₃OD, 333 K) 7.23 (2H, d, J 6.3, pyridine 2,6-H₂), 6.51 (1H, d, J 7.9, pyridine 4-H), 6.20-6.14 (5H, m, phenyl), 6.14-6.11 (1H, m, pyridine 5-H), 4.58 (1H, ddt, J 16.9, 10.1 and 6.0, propenyl 2-H), 4.05 (1H, dd, J 16.9 and 1.4, propenyl 3-H_{trans}), 4.01 (1H, dd, J 10.1 and 1.4, propenyl 3-H_{cis}), 3.97 (1H, app. s, Cbz arylmethyl 1-H_A), 3.96 (1H, app. s, Cbz arylmethyl 1-H_B), 3.50 (1H, dd, J 13.6 and 2.2, 2-H_A), 3.30-3.27 (1H, m, propenyl 1-H_A), 3.10-3.04 (1H, m, 6-H_A), 2.18 (1H, d, J 14.3, pyridinylmethyl, 1-H_A), 2.18-2.15 (2H, m, 6-H_B) and propenyl 1-H_B), 2.12 (1H, d, J 13.6, 2-H_B), 1.82 (1H, d, J 14.3, pyridinylmethyl 1-H_B), 1.63-1.52 (1H, m, 5-H_A), 1.35 (1H, app. dt, J 14.9 and 4.1, 5-H_B); δ_C (125 MHz, CD₃OD, 333 K) 204.6 (C-4), 170.5 (carboxylate C=O), 156.6 (Cbz C=O), 151.9 (pyridine 2-C), 148.7 (pyridine C-6), 140.1 (pyridine C-4), 137.8 (phenyl C-1), 133.8 (pyridine C-3), 132.5 (propenyl C-2), 129.5 (phenyl C₂-3,5), 129.1 (phenyl C-4), 128.9 (phenyl C₂-2,6), 124.7 (pyridine C-5), 119.8 (propenyl C-3), 68.8 (Cbz arylmethyl C-1), 67.5 (propenyl C-1), 63.3 (C-3), 51.2 (C-2), 44.5 (C-6), 40.6 (C-5), 35.4 (pyridinylmethyl C-1); HRMS found MH⁺, 409.1755. C₂₃H₂₄N₂O₅ requires *MH*, 409.1763.

tert-Butyl N-{[4-oxo-3-(prop-2-en-1-yl)oxan-3-yl]methyl}carbamate

According to General Procedure E, the quaternary allyl ester derivative **11** (10.1 g, 32.2 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 10:90 EtOAc–hexane to yield the *ketone derivative 1a* (6.60 g, 76%) as a brown oil, $R_f 0.39$ (70:30 petrol–EtOAc); $v_{max}/cm^{-1} 3351$, 2975, 2932, 2861, 1702, 1504, 1365, 1246, 1214, 1163, 1115; δ_H (400 MHz, CDCl₃) 5.66 (1H, app. dq, *J* 16.8 and 7.5, propenyl 2-H), 5.15-5.10 (2H, m, propenyl 3-H₂), 4.83 (1H, br. s, NH), 4.14-4.07 (1H, m, 6-H_A), 3.83 (1H, d, *J* 11.8, 2-H_A), 3.80-3.77 (1H, m, 6-H_B), 3.59 (1H, d, *J* 11.8, 2-H_B), 3.35 (1H, dd, *J* 14.3 and 7.9, methylcarbamate 1-H_A), 3.26 (1H, dd, *J* 14.3 and 5.5, methylcarbamate 1-H_B), 2.65 (1H, ddd, *J* 15.1, 9.8 and 6.5, 5-H_A), 2.53 (1H, dd, *J* 14.3 and 7.5, propenyl 1-H_B), 1.41 (9H, s, 'Bu); δ_C (100 MHz, CDCl₃) 210.1 (C-4), 156.0 (Boc C=O), 131.9 (propenyl C-2), 119.3 (propenyl C-3), 79.4 ([']Bu C₁), 73.1 (C-2), 68.2 (C-6), 55.1 (C-3), 42.0 (methylcarbamate C-1), 40.1 (C-5), 36.9 (propenyl C-1), 28.3 ([']Bu C₃); HRMS found MH⁺, 270.1701. C₁₄H₂₃NO₄ requires *MH*, 270.1699.

Benzyl 3-({[(*tert*-butoxy)carbonyl]amino}methyl)-4-oxo-3-(prop-2-en-1-yl)piperidine-1carboxylate

According to General Procedure E, the quaternary allyl ester derivative **S5** (7.56 g, 16.9 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 20:80 EtOAc–hexane to yield the *ketone derivative* **1b** (5.93 g, 87%) as a yellow oil, $R_{\rm f}$ 0.74 (50:50 petrol–EtOAc); $v_{\rm max}$ /cm⁻¹ 3366, 2976, 2931, 1689, 1429, 1365, 1273, 1157; $\delta_{\rm H}$ (500 MHz, CD₃OD, 333 K) 7.42-7.27 (5H, m, phenyl), 5.67 (1H, app.

dq, *J* 16.9 and 8.0, propenyl 2-H), 5.18 (2H, s, arylmethyl 1-H₂), 5.06 (1H, app. d, *J* 10.8, propenyl 3-H_{cis}), 5.05 (1H, app. d, *J* 18.8, propenyl 3-H_{trans}), 3.93-3.83 (1H, m, 6-H_A), 3.75 (1H, d, *J* 14.0, 2-H_A), 3.67 (1H, app. br. s, 6-H_B), 3.52 (1H, d, *J* 14.0, 2-H_B), 3.37 (1H, d, *J* 14.7, methylcarbamate 1-H_A), 3.15 (1H, d, *J* 14.7, methylcarbamate 1-H_B), 2.63-2.53 (1H, m, 5-H_A), 2.53-2.45 (1H, m, 5-H_B), 2.34 (1H, dd, *J* 14.2 and 7.0, propenyl 1-H_A), 2.24 (1H, dd, *J* 14.2 and 8.0, propenyl 1-H_B), 1.41 (9H, s, 'Bu); $\delta_{\rm C}$ (125 MHz, CD₃OD) 211.1 (4-C), 158.2 (Boc C=O), 157.2 (Cbz C=O), 137.9 (phenyl C-1), 133.6 (propenyl C-2), 129.6 (phenyl C₂-3,5), 129.2 (phenyl C₂-2,6), 129.0 (phenyl C-4), 119.4 (propenyl C-3), 80.5 ('Bu C₁), 68.8 (arylmethyl C-1), 55.2 (C-3), 50.3 (C-2), 44.2 (C-6 and methylcarbamate C-1), 39.6 (C-5), 37.7 (propenyl C-1), 28.7 ('Bu C₃); HRMS found MNa⁺, 425.2043. C₂₂H₃₀N₂O₅ requires *MNa*, 425.2046.

tert-Butyl N-{[4-benzoyl-3-oxo-2-(prop-2-en-1-yl)morpholin-2-yl]methyl}carbamate

According to General Procedure E, the quaternary allyl ester derivative **S6** (6.00 g, 14.3 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 20:80 EtOAc–hexane to yield the lactam derivative⁸ **1c** (4.30 g, 80%) as a brown oil, R_f 0.65 (50:50 petrol–EtOAc); v_{max}/cm^{-1} 3379, 2977, 2933, 1682, 1505, 1366, 1277, 1246, 1221, 1140, 1116, 1087; δ_H (400 MHz, CDCl₃) 7.55 (2H, d, *J* 7.6, phenyl 2,6-H₂), 7.50 (1H, t, *J* 7.6, phenyl 4-H), 7.39 (2H, t, *J* 7.6, phenyl 3,5-H₂), 5.88 (1H, ddt, *J* 16.0, 11.1 and 7.3, propenyl 2-H), 5.20 (1H, app. d, *J* 10.5, propenyl 3-H_{cis}), 5.19 (1H, app. d, *J* 16.8, propenyl 3-H_{trans}), 4.90 (1H, br. s, NH), 4.10-4.04 (2H, m, 6-H₂), 3.98 (1H, app. dt, *J* 9.9 and 4.8, 5-H_A), 3.90 (1H, app. dt, *J* 13.1 and 4.8, 5-H_B), 3,62 (1H, dd, *J* 14.0 and 7.1, methylcarbamate 1-H_A), 3.39 (1H, dd, *J* 14.0 and 5.6, methylcarbamate 1-H_B), 2.67 (1H, dd, *J* 14.3 and 7.3, propenyl 1-H_A), 2.51 (1H, dd, *J* 14.3 and 7.0, propenyl 1-H_B), 1.43 (9H, s, ¹Bu); δ_C (100 MHz, CDCl₃) 172.9 (C-3), 172.6 (benzoyl C=O), 155.8 (Boc C=O), 135.4 (phenyl C-1), 132.0 (phenyl C-4), 131.6 (propenyl C-2), 128.2 (phenyl C₂-3,5), 128.0 (phenyl

C₂-2,6), 119.8 (propenyl C-3), 82.1 (C-2), 79.7 (^{*t*}Bu C₁), 60.4 (C-6), 45.7 (methylcarbamate C-1), 45.4 (C-5), 39.7 (propenyl C-1), 28.4 (^{*t*}Bu C₃); HRMS found MH⁺, 375.1919. C₂₀H₂₆N₂O₅ requires *MH*, 375.1914

tert-Butyl N-{[4-oxo-3-(prop-2-en-1-yl)oxolan-3-yl]methyl}carbamate

According to General Procedure E, the quaternary allyl ester derivative **S7** (14.7 g, 49.1 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 20:80 EtOAc–hexane to yield the *ketone derivative 1d* (11.0 g, 88%) as a light-brown oil, R_f 0.42 (85:15 petrol–EtOAc); v_{max}/cm^{-1} 3357, 2977, 2933, 1697, 1515, 1392, 1366, 1248, 1158, 1059; δ_H (400 MHz, CDCl₃) 5.70 (1H, ddt, *J* 16.6, 10.5 and 7.4, propenyl 2-H), 5.14-5.10 (1H, m, propenyl 3-H_{trans}), 5.12-5.08 (1H, m, propenyl 3-H_{cis}), 4.84 (1H, app. t, *J* 5.3, NH), 4.10 (1H, d, *J* 9.9, 2-H_A), 3.99 (1H, d, *J* 9.9, 2-H_B), 3.94 (2H, app. s, 5-H₂), 3.31 (1H, app. s, methylcarbamate 1-H_A), 3.29 (1H, app. s, methylcarbamate 1-H_B), 2.27 (1H, app. d, *J* 1.2, propenyl 1-H_A), 2.25 (1H, app. d, *J* 1.2, propenyl C-2), 119.8 (propenyl C-3), 79.9 (^{*I*}Bu C₁), 73.8 (C-2), 71.5 (C-5), 52.5 (C-3), 42.4 (methylcarbamate C-1), 36.3 (propenyl C-1), 28.4 (^{*I*}Bu C₃); HRMS found MNa⁺, 278.1363. C₁₃H₂₁NO₄ requires *MNa*, 278.1362.

tert-Butyl *N*-{[6-methoxy-1-oxo-2-(prop-2-en-1-yl)-2,3-dihydro-1*H*-inden-2-yl]methyl} carbamate

According to General Procedure E, the quaternary allyl ester derivative **S8** (7.80 g, 20.8 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 10:90 EtOAc–hexane to yield the *ketone derivative Ie* (5.58 g, 81%) as an amorphous brown solid, $R_f 0.57$ (70:30 petrol–EtOAc); v_{max}/cm^{-1} 3359, 2975, 2928, 1694, 1490, 1274, 1245, 1161; δ_H (400 MHz, CDCl₃) 7.31 (1H, d, *J* 8.4, 4-H), 7.18 (1H, dd, *J* 8.4 and 2.6, 5-H), 7.13 (1H, d, *J* 2.6, 7-H), 5.60 (1H, ddt, *J* 17.0, 10.1 and 7.4, propenyl 2-H), 5.07 (1H, dd, *J* 17.0 and 1.9, propenyl 3-H_{trans}), 5.00 (1H, dd, *J* 10.1 and 1.9, propenyl 3-H_{cis}), 4.90 (1H, app. t, *J* 5.4, NH), 3.80 (3H, s, methoxy), 3.46 (1H, dd, *J* 13.7 and 6.6, methylcarbamate 1-H_A), 3.29 (1H, dd, *J* 13.7 and 6.1, methylcarbamate 1-H_B), 3.00 (1H, d, *J* 17.2, 3-H_A), 2.93 (1H, d, *J* 17.2, 3-H_B), 2.45-2.27 (2H, m, propenyl 1-H₂), 1.38 (9H, s, 'Bu); δ_C (100 MHz, CDCl₃) 209.9 (C-1), 159.6 (C-6), 156.4 (Boc C=O), 146.5 (C-3a), 137.4 (C-7a), 132.9 (propenyl C-2), 127.4 (C-4), 124.8 (C-5), 119.1 (propenyl C-3), 105.2 (C-7), 79.5 (Boc C₁), 55.7 (methoxy), 54.0 (C-2), 45.7 (methylcarbamate C-1), 39.4 (propenyl C-1), 34.9 (C-3), 28.4 (Boc C₃); HRMS found MNa⁺, 354.1679. C₁₉H₂₅NO₄ requires *MNa*, 354.1675.

Benzyl 3-benzyl-4-oxo-3-(prop-2-en-1-yl)piperidine-1-carboxylate

According to General Procedure E, the quaternary allyl ester derivative **S9** (0.83 g, 2.03 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 20:80 EtOAc–hexane to yield the *ketone derivative* 1*f* (0.66 g, 89%) as a brown oil, R_f 0.45 (70:30 petrol–EtOAc); v_{max}/cm^{-1} 3063, 3029, 2916, 1694, 1430, 1231; $\delta_{\rm H}$ (500 MHz, CD₃OD, 333 K) 7.36-7.04 (10H, m, phenyl), 5.70 (1H, ddt, *J* 17.6, 10.4

and 7.3, propenyl 2-H), 5.13 (2H, s, Cbz arylmethyl 1-H₂), 5.05 (1H, app. d, *J* 10.4, propenyl 3-H_{cis}), 5.03 (1H, app. d, *J* 17.6, propenyl 3-H_{trans}), 3.77 (1H, app. dt, *J* 13.0 and 6.5, 6-H_A), 3.68 (1H, d, *J* 13.8, 2-H_A), 3.58 (1H, d, *J* 13.8, 2-H_B), 3.56-3.51 (1H, m, 6-H_B), 2.93 (1H, d, *J* 13.9, arylmethyl 1-H_A), 2.80 (1H, d, *J* 13.9, arylmethyl 1-H_B), 2.55-2.40 (2H, m, 5-H₂), 2.31 (1H, dd, *J* 14.3 and 6.8, propenyl 1-H_A), 2.16 (1H, dd, *J* 14.3 and 7.8, propenyl 1-H_B); $\delta_{\rm C}$ (125 MHz, CD₃OD, 333 K) 212.0 (C-4), 157.2 (Cbz C=O), 137.9 (Cbz phenyl C-1), 137.8 (phenyl C-1), 134.0 (propenyl C-2), 131.5 (phenyl C₂-3,5), 129.5 (Cbz phenyl C₂-3,5), 129.2 (phenyl C₂-2,6 and Cbz phenyl C₂-2,6), 129.0 (Cbz phenyl C-4), 127.7 (phenyl C-4), 119.3 (propenyl C-3), 68.7 (Cbz arylmethyl C-1), 54.6 (C-3), 51.0 (C-2), 43.8 (C-6), 40.7 (arylmethyl C-1), 39.7 (C-5), 39.6 (propenyl C-1); HRMS found MNa⁺, 386.1717. C₂₃H₂₅NO₃ requires *MNa*, 386.1732.

Benzyl 4-oxo-3-(prop-2-en-1-yl)-3-[(pyridin-3-yl)methyl]piperidine-1-carboxylate

According to General Procedure E, the quaternary allyl ester derivative **S10** (0.60 g, 1.47 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 60:40 EtOAc–hexane to yield the *ketone derivative Ig* (0.43 g, 80%) as a yellow oil, R_f 0.48 (EtOAc); v_{max}/cm^{-1} 3030, 2915, 1693, 1422, 1230; δ_H (500 MHz, CD₃OD, 333 K) 8.37 (1H, dd, *J* 4.9 and 1.7, pyridine 6-H), 8.32 (1H, d, *J* 2.3, pyridine 2-H), 7.58 (1H, d, *J* 7.9, pyridine 4-H), 7.37-7.24 (6H, m, phenyl and pyridine 5-H), 5.69 (1H, ddt, *J* 17.1, 10.3 and 7.3, propenyl 2-H), 5.15 (2H, s, phenylmethyl 1-H₂), 5.09 (1H, app. dt, *J* 10.3 and 1.6, propenyl 3-H_{cis}), 5.05 (1H, dd, *J* 17.1 and 1.6, propenyl 3-H_{trans}), 3.87-3.81 (1H, m, 6-H_A), 3.74 (1H, dd, *J* 13.8 and 1.2, 2-H_A), 3.57 (1H, d, *J* 13.8, 2-H_B), 3.56-3.51 (1H, m, 6-H_B), 2.98 (1H, d, *J* 14.2, pyridinylmethyl 1-H_A), 2.84 (1H, app. dt, *J* 15.6 and 6.1, 5-H_B), 2.29 (1H, dd, *J* 14.6 and 6.8, propenyl 1-H_A), 2.20 (1H, dd, *J* 14.6 and 7.7, propenyl 1-H_B); δ_C (125 MHz, CD₃OD, 333 K) 211.3 (C-4), 157.2 (Cbz C=O), 151.8 (pyridine C-2), 148.4 (pyridine C-6), 140.0 (pyridine C-4), 137.9 (phenyl C-1), 134.5 (pyridine C-3), 133.5

(propenyl C-2), 129.5 (phenyl C₂-3,5), 129.2 (phenyl C₂-2,6), 129.1 (phenyl C-4), 124.7 (pyridine C-5), 119.7 (propenyl C-3), 68.7 (Cbz arylmethyl C-1), 54.5 (C-3), 51.0 (C-2), 43.9 (C-6), 39.6 (propenyl C-1), 39.5 (C-5), 37.5 (pyridinylmethyl C-1); HRMS found MH⁺, 365.1862. C₂₂H₂₄N₂O₃ requires *MH*, 365.1865.

Synthesis of Scaffolds

General Procedure F (Method A in main text)

By modification of an existing procedure,¹³ 2-methyl-2-butene (7.50 eq) was added dropwise to BH₃•THF (3.50 eq of a 1.0 M solution in THF) at 0 °C. The mixture was stirred for 2 h at 0 °C. Then, a solution of the alkene derivative (1.00 eq) in THF (0.35 M) at 0 °C was added dropwise. The reaction mixture was stirred for 45 min at 0 °C and subsequently it was stirred for 1 h at rt. Then, NaBO₃•4H₂O (7.50 eq) and water (3 mL per 1.00 mmol of the alkene derivative) were added. After stirring the mixture vigorously for 18 h at rt, EtOAc (3 mL per 1.00 mmol of the alkene derivative) was added, the phases were separated and the aqueous phase was extracted with EtOAc (4 × (3 mL per 1.00 mmol of the alkene derivative)). Then, the organic phases were combined, dried (MgSO₄), filtered and concentrated under reduced pressure to give a crude material.

General Procedure G (Method B in main text)

Trifluoroacetic acid (20.0 eq) and Et₃SiH (1.50 eq) were added to a solution of the hemiacetal derivative (1.00 eq) in DCM (0.10 M) at rt. The reaction mixture was stirred for 18 h at rt. After removing the solvent and trifluoroacetic acid under reduced pressure, the crude material was dissolved in DCM (0.10 M), and Et₃N (10.0 eq) and Boc₂O (1.20 eq) were added. After stirring the reaction mixture for 18 h at rt, a saturated aqueous solution of NaHCO₃ (10 mL per 1.00 mmol of the hemiacetal derivative) was added, the phases were separated and the aqueous phase was extracted with DCM ($3 \times (4 \text{ mL per 1.00 mmol of the hemiacetal derivative})$). Then, the organic phases were combined, dried (MgSO₄), filtered and concentrated under reduced pressure to give a crude material.

General Procedure H (Variation of Method B in main text)

By modification of an existing procedure,¹⁴ Et₃SiH (16.0 eq) was added dropwise to a solution of the hemiacetal derivative (1.00 eq) in DCM (16.0 mM) at rt. The mixture was cooled to -78 °C and BF₃•Et₂O (4.00 eq) was added dropwise. After stirring the reaction mixture at -78 °C for 2 h, it was allowed to warm to rt and stirred overnight. The solvent was removed under reduced pressure and the crude material was dissolved in DCM (0.10 M). Then, Et₃N (5.00 eq) and Boc₂O (1.20 eq) were added and the reaction mixture was stirred overnight at rt. A saturated aqueous solution of NH₄Cl (10 mL per 1.00 mmol of the hemiacetal derivative) was added, the phases were separated and the aqueous phase was extracted with DCM (3 × (3 mL per 1.00 mmol of the hemiacetal derivative)). The organic phases were combined, dried (MgSO₄), filtered and concentrated under reduced pressure to give a crude material.

General Procedure I (Variation of Method B in main text)

Trifluoroacetic acid (20.0 eq) and Et₃SiH (1.50 eq) were added to a solution of the hemiacetal derivative (1.00 eq) in DCM (0.10 M) at rt. The reaction mixture was stirred for 18 h at rt. A saturated aqueous solution of NaHCO₃ (10 mL per 1.00 mmol of the hemiacetal derivative) was added, the phases were separated and the aqueous phase was extracted with DCM ($3 \times (4 \text{ mL per 1.00 mmol of the hemiacetal derivative})$). Then, the organic phases were combined, dried (MgSO₄), filtered and concentrated under reduced pressure to give a crude material.

General Procedure J (Method C in main text)

Ozonized oxygen gas was passed through a solution of the alkene derivative (1.00 eq) in DCM (0.10 M) at -78 °C until the solution became blue in colour. Then, the solution was purged with oxygen gas until the blue colour disappeared and dimethyl sulfide (20.0 eq) was added dropwise. After stirring the reaction mixture for 30 min at -78 °C, it was allowed to warm to rt. Then, it was stirred at rt for 18 h and the solvent was removed under reduced pressure to yield a crude material.

General Procedure K (Method E in main text)

According to a procedure,⁸ the specified amount of a solution of diisobutylaluminium hydride 1.0 M in DCM was added dropwise to a solution of the ketone derivative (1.00 eq) in DCM

(0.18 M) at -78 °C. After stirring the reaction mixture for 1 h at -78 °C, the mixture was allowed to warm to rt and a saturated aqueous solution of potassium sodium tartrate tetrahydrate (5 mL per 1.00 mmol of the ketone derivative) was added dropwise. Then, the mixture was stirred for 18 h at rt, the phases were separated and the aqueous phase was extracted with DCM (5 × (3 mL per 1.00 mmol of the ketone derivative). The organic phases were combined, dried (MgSO₄), filtered and concentrated under reduced pressure to give a crude material.

General Procedure L (Method F in main text)

According to a procedure,¹⁵ NaHCO₃ (2.00 eq) and I₂ (1.10 eq) were added to a solution of the alkene derivative (1.00 eq) in acetonitrile (0.10 M) at 0 °C. The reaction mixture was stirred at rt for 3 days. Then, a saturated aqueous solution of Na₂S₂O₃ (7 mL per 1.00 mmol of the alkene derivative) was added, the phases were separated and the aqueous phase was extracted with EtOAc (3 × (7 mL per 1.00 mmol of the alkene derivative)). The organic phases were combined, washed with brine (3 mL per 1.00 mmol of the alkene derivative), dried (MgSO₄), filtered and concentrated under reduced pressure to give a crude material.

General Procedure M (Method G in main text)

^tBuOK (3.00 eq) was added to a solution of the alcohol derivative (1.00 eq) in THF (75.0 mM) at 0 °C. After stirring the reaction mixture for the specified time at rt, a saturated aqueous solution of NH₄Cl (10 mL per 1.00 mmol of the alcohol derivative) and EtOAc (10 mL per 1.00 mmol of the alcohol derivative) were added. The phases were separated and the aqueous phase was extracted with EtOAc ($4 \times (5 \text{ mL per 1.00 mmol of the alcohol derivative})$). The organic phases were combined, dried (MgSO₄), filtered and concentrated under reduced pressure to yield a crude material.

General Procedure N (Method H or Method I in main text)

The respective aldehyde (1.50 eq) and trifluoroacetic acid (35.0 eq) were added dropwise to a solution of the ketone derivative (1.00 eq) in MeOH (0.18 M). The reaction mixture was stirred at 65 °C for four days. Then, the mixture was allowed to cool to rt and the solvent and trifluroroacetic acid were removed under reduced pressure to give a crude material.

General Procedure O (Method L in main text)

By modification of an existing procedure,⁸ pyridine (31.0 eq) was added to a solution of the alcohol derivative (1.00 eq) in Ac₂O (26.4 eq) at rt. Then, the reaction mixture was stirred for 18 h at rt and the solvent was removed under reduced pressure. The crude material was dissolved in DCM (3 mL per 1.00 mmol of the alcohol derivative) and an aqueous solution of 10% CuSO₄ (3 mL per 1.00 mmol of the alcohol derivative) was added. After stirring the mixture for 5 min at rt, the phases were separated and the aqueous phase was extracted with DCM (3 × (2 mL per 1.00 mmol of the alcohol derivative)). The organic phases were combined, dried (MgSO₄), filtered and concentrated under reduced pressure to yield the specified acetate derivative.

General Procedure P (Method M in main text)

By modification of an existing procedure,¹⁶ triethylamine (2.00 eq) and methanesulfonyl chloride (1.20 eq) were added to a solution of the alcohol derivative (1.00 eq) in DCM (0.20 M) at 0 °C. The reaction mixture was stirred for 2 h at rt. Then, trifluoroacetic acid (65.0 eq) was added dropwise and the mixture was stirred for a further 5 h at rt. Subsequently, the solvent and trifluoroacetic acid were removed under reduced pressure. After dissolving the crude product in DCM (0.20 M), triethylamine (35.0 eq) was added and the resulting mixture was stirred for 18 h at rt. Then, Boc₂O (1.20 eq) was added and the reaction was stirred for a further 18 h at rt. A saturated aqueous solution of NaHCO₃ (5 mL per 1.00 mmol of the alcohol derivative) was added, the phases were separated and the aqueous phase was extracted with DCM ($3 \times (3 \text{ mL per 1.00 mmol of the alcohol derivative})$). The organic phases were combined, dried (MgSO₄), filtered and concentrated under reduced pressure to give a crude material.

General Procedure Q (Method C followed by Method N in main text)

Ozonized oxygen gas was passed through a solution of the alkene derivative (1.00 eq) in DCM (0.10 M) at -78 °C until the solution became blue in colour. Then, the solution was purged with oxygen gas until the blue colour disappeared and dimethyl sulfide (20.0 eq) was added dropwise. After stirring the reaction mixture for 30 min at -78 °C, it was allowed to warm to rt. Then, it was stirred at rt for 18 h and the solvent was removed under reduced

pressure. The crude material was dissolved in DCM (0.10 M) and pyridinium dichromate (2.00 eq) and celite (0.4 g per 1.00 mmol of the alkene derivative) were added. The reaction mixture was stirred for 1 week at rt. Then, the mixture was filtered through celite and concentrated under reduced pressure to give a crude material.

General Procedure R (Method C followed by Method O in main text)

Ozonized oxygen gas was passed through a solution of the alkene derivative (1.00 eq) in DCM (0.10 M) at -78 °C until the solution became blue in colour. Then, the solution was purged with oxygen gas until the blue colour disappeared and dimethyl sulfide (20.0 eq) was added dropwise. After stirring the reaction mixture for 30 min at -78 °C, it was allowed to warm to rt. Then, it was stirred at rt for 18 h and the solvent was removed under reduced pressure. The crude material was dissolved in acetic acid (0.20 M) and NaBH(OAc)₃ (7.00 eq) was added. The reaction mixture was stirred for 2 h at rt. Then, a saturated aqueous solution of NaHCO₃ (50 mL per 1.00 mmol of the alkene) and DCM (20 mL per 1.00 mmol of the alkene) were separated and the aqueous phase was extracted with DCM (4 × (10 mL per 1.00 mmol of the alkene)). The organic phases were combined, dried (MgSO₄), filtered and concentrated under reduced pressure to give a crude material.

tert-Butyl N-({8a-hydroxy-octahydropyrano[4,3-b]pyran-4a-yl}methyl)carbamate

According to General Procedure F, the alkene derivative **1a** (0.50 g, 1.85 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 50:50 EtOAc–hexane to yield the *hemiacetal derivative* **12** (0.41 g, 76%, dr > 95:<5 by ¹H-NMR) as an amorphous colourless solid, $R_{\rm f}$ 0.25 (50:50 petrol–EtOAc); $v_{\rm max}/{\rm cm}^{-1}$ 3301, 2960, 2880, 1692, 1594, 1365, 1283, 1273, 1254, 1170, 1109, 1068; $\delta_{\rm H}$ (400 MHz, CD₃OD)

6.32 (1H, app.t, *J* 5.1, NH), 4.06 (1H, ddd, *J* 12.4, 11.2 and 3.0, 2-H_A), 3.85 (1H, d, *J* 11.6, 5-H_A), 3.80 (1H, app. tt, *J* 5.5 and 1.2, 7-H_A), 3.69-3.60 (2H, m, 2-H_B and 7-H_B), 3.44 (1H, d, *J* 11.6, 5-H_B), 3.40-3.32 (3H, m, OH and methylcarbamate 1-H₂), 2.02 (1H, td, *J* 13.1 and 5.5, 8-H_A), 1.92 (1H, app. td, *J* 13.3 and 4.9, 3-H_A), 1.79 (1H, app. qt, *J* 13.3 and 4.6, 3-H_B), 1.57 (1H, app. d, *J* 13.5, 8-H_B), 1.47 (9H, s, 'Bu), 1.46-1.39 (1H, m, 4-H_A), 1.25 (1H, app. d, *J* 13.7, 4-H_B); $\delta_{\rm C}$ (100 MHz, CD₃OD) 158.7 (Boc C=O), 96.0 (C-8a), 79.8 ('Bu C₁), 70.5 (C-5), 66.7 (C-7), 60.8 (C-2), 45.0 (methylcarbamate C-1), 41.9 (C-4a), 36.9 (C-8), 28.7 ('Bu C₃), 24.6 (C-4), 22.3 (C-3); HRMS found MNa⁺, 310.1628. C₁₄H₂₅NO₅ requires *MNa*, 310.1624.

Benzyl 4a-({[(*tert*-butoxy)carbonyl]amino}methyl)-8a-hydroxy-octahydro-2*H*pyrano[3,2-*c*]pyridine-6-carboxylate

According to General Procedure F, the alkene derivative **1b** (0.20 g, 0.49 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 30:70 EtOAc–hexane to yield the *hemiacetal derivative S11* (0.12 g, 58%, *dr* >95:<5 by ¹H-NMR) as an amorphous colourless solid, R_f 0.37 (50:50 petrol–EtOAc); v_{max} /cm⁻¹ 3317, 2957, 2889, 2472, 1672, 1432, 1363, 1250, 1164, 1142, 1089, 1065; δ_H (500 MHz, CD₃OD, 333 K) 7.42-7.26 (5H, m, phenyl), 5.14 (1H, d, *J* 12.4, arylmethyl 1-H_A), 5.11 (1H, d, *J* 12.4, arylmethyl 1-H_B), 4.02 (1H, td, *J* 11.9 and 3.2, 2-H_A), 3.95 (1H, app. dt, *J* 13.1 and 2.6, 7-H_A), 3.66-3.57 (2H, m, 2-H_B and 5-H_A), 3.40-3.33 (3H, m, 5-H_B and methylcarbamate 1-H₂), 3.08 (1H, td, *J* 13.1 and 3.4, 7-H_B), 2.93 (1H, br. s, OH), 1.95 (1H, td, *J* 13.5 and 5.0, 4-H_A), 1.83-1.71 (2H, m, 8-H_A and 3-H_A), 1.65-1.51 (1H, m, 8-H_B), 1.42 (10H, s, ^{*'*}Bu and 3-H_B), 1.30 (1H, app. d, *J* 13.5, 4-H_B); δ_C (125 MHz, CD₃OD, 333 K) 158.4 (Boc C=O), 157.3 (Cbz C=O), 138.1 (phenyl C-1), 129.6 (phenyl C₂-3,5), 129.1 (phenyl C₂-2,6), 129.0 (phenyl C-4), 96.6 (C-8a), 80.1 (^{*'*}Bu C₁), 68.6 (arylmethyl C-1), 61.0 (C-2), 49.0 (C-5), 47.3 (C-4a), 44.6 (methylcarbamate C-1), 42.9 (C-7), 35.7 (C-8), 28.8 (^{*'*}Bu C₃), 25.8 (C-4), 22.1 (C-3); HRMS found MNa⁺, 443.2147. C₂₂H₃₂N₂O₆ requires *MNa*, 443.2152.

tert-Butyl N-({7a-hydroxy-hexahydro-2H-furo[3,4-b]pyran-4a-yl}methyl)carbamate

According to General Procedure F, the alkene derivative 1d (1.00 g, 3.91 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 40:60 EtOAc-hexane to yield the hemiacetal derivative S12 (0.78 g, 73%, hemiacetal: alcohol 67:33 by ¹H-NMR in CDCl₃) as a colourless oil, R_f 0.19 (50:50 petrol-EtOAc); ν_{max}/cm⁻¹ 3342, 2936, 2881, 1688, 1510,1365, 1248, 1164, 1049, 1008; δ_H (400 MHz, CDCl₃) 5.30 (1H, s, NH^{alcohol}), 4.94 (1H, app. t, J 6.6, NH^{hemiacetal}), 4.05 (1H, d, J 8.7, 5-H_A^{alcohol}), 3.89-3.80 (2H, m, 2-H_A^{hemiacetal} and hydroxypropyl 3-H_A^{alcohol}), 3.79-3.73 (4H, m, 2-H2^{alcohol}, 5-H2^{hemiacetal}), 3.73-3.66 (2H, m, 2-HB^{hemiacetal} and hydroxypropyl 3-H_B^{alcohol}), 3.63 (1H, d J 8.7, 5-H_B^{alcohol}), 3.61-3.57 (2H, m, 7-H₂^{hemiacetal}), 3.37-3.25 (3H, m, methylcarbamate 1-H₂^{alcohol} and methylcarbamate 1-H_A^{hemiacetal}), 3.30 (1H, dd, J 14.4 and 4.5, methylcarbamate 1- $H_B^{hemiacetal}$), 1.85-1.67 (2H, m, 3- $H_A^{hemiacetal}$ and hydroxypropyl 2- $H_A^{alcohol}$), 1.66-1.57 (2H, m, 4- $H_A^{hemiacetal}$ and hydroxypropyl 1- $H_A^{alcohol}$), 1.54-1.45 (2H, m, 3-H_B^{hemiacetal} and hydroxypropyl 2-H_B^{alcohol}), 1.46-1.36 (20H, m, 4-H_B^{hemiacetal}, hydroxypropyl 1- $H_B^{alcohol}$, ${}^tBu^{hemiaceta}l$ and ${}^tBu^{alcohol}$); δ_C (100 MHz, CDCl₃) 218.1 (C-4^{alcohol}), 157.0 (Boc $C=O^{hemiacetal}$), 156.4 (Boc $C=O^{alcohol}$), 103.4 (C-7a^{hemiacetal}), 80.0 (^tBu C₁^{alcohol}), 79.7 (^tBu C1^{hemiacetal}), 77.2 (C-5^{hemiacetal}), 74.5 (C-2^{alcohol}), 73.9 (C-7^{hemiacetal}), 71.5 (C-5^{alcohol}), 62.5 (hydroxypropyl C-3^{alcohol}), 61.2 (C-2^{hemiacetal}), 52.2 (C-3^{alcohol}), 46.3 (methylcarbamate C-1^{hemiacetal}), 44.9 (C-4a^{hemiacetal}), 42.3 (methylcarbamate C-1^{alcohol}), 28.5 (^tBu C₃^{hemiacetal}), 28.4 (^tBu C₃^{alcohol}), 28.1 (hydroxypropyl C-1^{alcohol}), 27.1 (hydroxypropyl C-2^{alcohol}), 22.5 (C-4^{hemiacetal}), 21.1 (C-3^{hemiacetal}); HRMS found MNa⁺, 296.1463. C₁₃H₂₃NO₅ requires MNa, 296.1468. Compound S12 existed as a mixture of the hemiacetal and alcohol.

tert-Butyl *N*-{[2-(3-hydroxypropyl)-6-methoxy-1-oxo-2,3-dihydro-1*H*-inden-2-yl]methyl} carbamate

According to General Procedure F, the alkene derivative 1e (0.50 g, 1.50 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 50:50 EtOAc-hexane to yield the *alcohol derivative* **S13** (0.32 g, 61%, >98% alcohol by ¹H-NMR in CDCl₃) as a pale-yellow oil, $R_f 0.40$ (30:70 petrol-EtOAc); v_{max}/cm^{-1} 3368, 2931, 2870, 1687, 1490, 1365, 1274, 1245, 1161, 1054, 1024; δ_H (400 MHz, CDCl₃) 7.32 (1H, d, J 8.4, 4-H), 7.18 (1H, dd, J 8.4 and 2.6, 5-H), 7.13 (1H, d, J 2.6, 7-H), 4.95 (1H, app. t, J 5.0, NH), 3.82 (3H, s, methoxy), 3.54 (2H, t, J 6.3, hydroxypropyl 3-H₂), 3.45 (1H, dd, J 13.5 and 7.0, methylcarbamate 1- H_A), 3.25 (1H, dd, J 13.5 and 5.9, methylcarbamate 1- H_B), 2.98 (1H, d, J 17.1, 3-H_A), 2.93 (1H, d, J 17.1, 3-H_B), 1.81 (1H, br. s, OH), 1.74-1.64 (2H, m, hydroxypropyl 1-H₂), 1.56-1.44 (1H, m, hydroxypropyl 2-H_A), 1.37 (9H, s, ^tBu), 1.36-1.28 (1H, m, hydroxypropyl 2-H_B); δ_C (100 MHz, CDCl₃) 210.5 (C-1), 159.6 (C-6), 156.5 (Boc C=O), 146.5 (C-3a), 137.5 (C-7a), 127.4 (C-4), 124.9 (C-5), 105.2 (C-7), 79.6 (Boc C₁), 62.8 (hydroxypropyl C-3), 55.7 (methoxy), 54.0 (C-2), 45.8 (methylcarbamate C-1), 35.6 (C-3), 31.0 (hydroxypropyl C-1), 28.4 (^tBu C₃), 27.5 (hydroxypropyl C-2); HRMS found MNa⁺, 372.1784. C₁₉H₂₇NO₅ requires MNa, 372.1781. Compound S13 existed exclusively as the alcohol.

Benzyl 4a-benzyl-8a-hydroxy-octahydro-2H-pyrano[3,2-c]pyridine-6-carboxylate

According to General Procedure F, the alkene derivative **1f** (0.60 g, 1.65 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 30:70 EtOAc–hexane to yield the *hemiacetal derivative* **S14** (0.52 g, 83%) as colourless oil, $R_{\rm f}$ 0.39 (50:50 petrol–EtOAc); $v_{\rm max}$ /cm⁻¹ 3399, 2943, 2877, 2523, 2068, 1672, 1431, 1269,

1248, 1138, 1071; $\delta_{\rm H}$ (500 MHz, CD₃OD, 333 K) 7.44-7.25 (5H, m, Cbz phenyl), 7.17-7.06 (5H, m, phenyl), 5.16 (2H, s, Cbz arylmethyl 1-H₂), 4.12-3.95 (2H, m, 2-H_A and 7-H_A), 3.64-3.59 (1H, m, 5-H_A), 3.59-3.56 (1H, m, 2-H_B), 3.27 (1H, d, *J* 13.3, 5-H_B), 3.14 (1H, t, *J* 12.9, 7-H_B), 2.79 (2H, s, arylmethyl 1-H₂), 1.97 (1H, td, *J* 13.1 and 5.2, 8-H_A), 1.82 (1H, td, *J* 13.5 and 5.0, 4-H_A), 1.74-1.66 (1H, m, 3-H_A), 1.66-1.60 (1H, m, 8-H_B), 1.37-1.24 (1H, m, 3-H_B), 0.77 (1H, app. d, *J* 13.5, 4-H_B); $\delta_{\rm C}$ (125 MHz, CD₃OD, 333 K) 157.7 (Cbz C=O), 138.9 (Cbz phenyl C-1 and phenyl C-1), 132.2 (phenyl C₂-3,5), 129.5 (Cbz phenyl C₂-3,5), 129.1 (phenyl C₂-2,6 and Cbz phenyl C-2), 128.7 (Cbz phenyl C-4), 126.9 (phenyl C-4), 96.9 (C-8a), 68.5 (Cbz arylmethyl C-1), 60.7 (C-2), 46.9 (C-5), 42.7 (C-7), 41.5 (C-4a), 39.1 (arylmethyl C-1), 35.1 (C-8), 27.3 (C-4), 22.2 (C-3); HRMS found MNa⁺, 404.1830. C₂₃H₂₇NO₄ requires *MNa*, 404.1837.

Benzyl 8a-hydroxy-4a-[(pyridin-3-yl)methyl]-octahydro-2*H*-pyrano[3,2-*c*]pyridine-6carboxylate

According to General Procedure F, the alkene derivative **1g** (0.20 g, 0.55 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 80:20 \rightarrow 100:0 EtOAc-hexane to yield the *hemiacetal derivative* **S15** (0.15 g, 70%) as a colourless oil, R_f 0.26 (EtOAc); v_{max}/cm^{-1} 3339, 2943, 2877, 2519, 2065, 1692, 1426, 1351, 1270, 1247, 1212, 1138, 1072, 1024; δ_H (500 MHz, CD₃OD, 333 K) 8.37 (1H, app. s, pyridine 6-H), 8.31 (1H, d, *J* 4.9, pyridine 2-H), 7.70-7.57 (1H, m, pyridine 4-H), 7.51-7.23 (5H, m, phenyl), 7.15 (1H, br. s, pyridine 5-H), 5.18 (2H, s, phenylmethyl 1-H₂), 4.15-3.98 (2H, m, 7-H_A and 2-H_A), 3.60 (1H, ddd, *J* 11.3, 5.4 and 1.6, 2-H_B), 3.55 (1H, d, *J* 13.5, 5-H_A), 3.31 (1H, d, *J* 13.5, 5-H_B), 3.13 (1H, td, *J* 12.9 and 3.3, 7-H_B), 2.85 (1H, d, *J* 13.7, pyridinylmethyl 1-H_A), 1.85 (1H, td, *J* 13.4 and 4.9, 4-H_A), 1.77-1.67 (1H, m, 3-H_A), 1.64 (1H, app. d, *J* 14.1, 8-H_B), 1.34 (1H, app. d, *J* 13.7, 3-H_B), 0.77 (1H, app. d, *J* 13.4, 4-H_B); δ_C (125 MHz,

CD₃OD, 333 K) 157.5 (Cbz C=O), 152.3 (pyridine C-2), 147.7 (pyridine C-6), 140.6 (pyridine C-4), 138.1 (phenyl C-1), 135.5 (pyridine C-3), 129.6 (phenyl C₂-3,5), 129.2 (phenyl C₂-2,6), 129.0 (phenyl C-4), 124.4 (pyridine C-5), 96.7 (C-8a), 68.6 (phenylmethyl C-1), 60.6 (C-2), 46.9 (C-5), 42.7 (C-7), 41.6 (C-4a), 36.5 (pyridinylmethyl C-1), 35.3 (C-8), 27.4 (C-4), 22.1 (C-3); HRMS found MH⁺, 383.1961. C₂₂H₂₆N₂O₄ requires *MH*, 383.1965.

tert-Butyl *N*-{[(4a*R**,8a*R**)-octahydropyrano[4,3-*b*]pyran-4a-yl]methyl}carbamate

According to General Procedure G, the hemiacetal derivative **12** (0.16 g, 0.55 mmol) gave a crude material. The crude material (dr >95:<5 by ¹H-NMR) was purified by flash column chromatography, eluting with 30:70 EtOAc–hexane to yield the *ether derivative* **13** (0.15 g, 99%, dr >95:<5 by ¹H-NMR) as colourless blocks, m.p. (CHCl₃/Et₂O), 98-102 °C; R_f 0.50 (50:50 petrol–EtOAc); v_{max} /cm⁻¹ 3318, 2959, 2932, 2873, 2858, 2824, 1710, 1546, 1365, 1249, 1169, 1094, 1073, 1057; δ_H (400 MHz, CDCl₃) 4.73 (1H, br. s, NH), 3.97 (1H, app. dd, *J* 11.6 and 4.9, 2-H_A), 3.85 (1H, d, *J* 11.6, 5-H_A), 3.72-3.64 (2H, m, 7-H₂), 3.42 (1H, app. t, *J* 3.8, 8a-H_A), 3.37 (1H, td, *J* 11.6 and 2.3, 2-H_B), 3.30-3.23 (3H, m, 5-H_B and methylcarbamate 1-H₂), 2.08 (1H, dddd, *J* 14.4, 10.6, 7.2 and 3.3, 8-H_A), 1.78-1.64 (1H, m, 3-H_A), 1.54 (1H, app. dd, *J* 14.4 and 2.8, 8-H_B), 1.48-1.37 (3H, m, 3-H_B and 4-H₂), 1.43 (9H, s, 'Bu); δ_C (100 MHz, CDCl₃) 156.4 (Boc C=O), 79.4 ('Bu C₁), 74.6 (C-8a), 67.9 (C-5), 67.7 (C-2), 63.4 (C-7), 45.7 (methylcarbamate C-1), 36.8 (C-4a), 28.6 (C-4), 28.5 ('Bu C₃), 28.3 (C-8), 22.3 (C-3); HRMS found MH⁺, 272.1856. C₁₄H₂₅NO₄ requires *MH*, 272.1856. The relative configuration was determined using X-ray crystallography and NOESY (500 MHz, CDCl₃), nOe observed between 8a-H and 8-H_A, 8a-H and 8-H_B, 8a-H and NH.

Benzyl (4a*R**,8a*R**)-4a-({[(*tert*-butoxy)carbonyl]amino}methyl)-octahydro-2*H*pyrano[3,2-*c*]pyridine-6-carboxylate

According to General Procedure G, the hemiacetal derivative S11 (0.10 g, 0.24 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 20:80 EtOAc-hexane to yield the *ether derivative 2* (49.0 mg, 51%, $dr > 95 \le 5$ by ¹H-NMR) as colourless oil, R_f 0.45 (50:50 petrol-EtOAc); v_{max}/cm⁻¹ 3320, 2925, 2874, 2851, 1711, 1672, 1534, 1445, 1432, 1360, 1281, 1246, 1220, 1163, 1149, 1131, 1086; $\delta_{\rm H}$ (500 MHz, CD₃OD, 333 K) 7.40-7.25 (5H, m, phenyl), 5.12 (2H, s, arylmethyl 1-H₂), 3.94 (1H, app. dt, J 11.1 and 2.4, 2-H_A), 3.87 (1H, app. dt, J 13.1 and 3.0, 7-H_A), 3.51 (1H, d, J 13.5, 5-H_A), 3.42-3.33 (3H, m, 2-H_B, 5-H_B and 8a-H), 3.16 (1H, d, J 14.3, methylcarbamate 1-H_A), 3.12 (1H, app. dt, J 13.1 and 3.3, 7-H_B), 2.84 (1H, d, J 14.3, methylcarbamate 1-H_B), 2.01-1.91 (1H, m, 8-H_A), 1.82-1.69 (1H, m, 3-H_A), 1.63-1.52 (2H, m, 8-H_B and 4-H_A), 1.50-1.44 (1H, m, 3-H_B), 1.43 (10H, s, ^tBu and 4-H_B); δ_C (125 MHz, CD₃OD, 333 K) 158.5 (Boc C=O), 157.5 (Cbz C=O), 138.2 (phenyl C-1), 129.5 (phenyl C₂-3,5), 129.1 (phenyl C₂-2,6), 128.9 (phenyl C-4), 80.3 (^tBu C₁), 76.2 (C-8a), 68.6 (C-2), 68.4 (arylmethyl C-1), 46.1 (C-5), 45.9 (methylcarbamate C-1), 40.5 (C-7), 38.8 (C-4a), 30.0 (C-4), 28.8 (^tBu C₃), 28.3 (C-8), 23.1 (C-3); HRMS found MNa⁺, 427.2202. $C_{22}H_{32}N_2O_5$ requires *MNa*, 427.2203. The relative configuration was determined using NOESY (500 MHz, CD₃OD, 333 K), nOe observed between 8a-H and 8-H_A, 8a-H and 8-H_B, 8a-H and methylcarbamate 1-H_A, 8a-H and methylcarbamate 1-H_B.

tert-Butyl *N*-{[(4a*R**,7a*S**)-hexahydro-2*H*-furo[3,4-*b*]pyran-4a-yl]methyl}carbamate

According to General Procedure H, the hemiacetal derivative **S12** (0.74 g, 2.70 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting

with 20:80 EtOAc–hexane to yield the *ether derivative* **35** (0.30 g, 43%, *dr* >95:<5 by ¹H-NMR) as colourless oil, R_f 0.35 (50:50 petrol–EtOAc); v_{max}/cm^{-1} 3318, 2949, 2928, 2875, 2855, 1677, 1540, 1365, 1276, 1250, 1160, 1135, 1093, 1081, 1059, 1034; δ_H (500 MHz, CDCl₃) 4.76 (1H, app. t, *J* 5.1, NH), 4.11 (1H, dd, *J* 10.1 and 4.0, 7-H_A), 3.92-3.86 (1H, m, 2-H_A), 3.87 (1H, d, *J* 8.4, 5-H_A), 3.79 (1H, app. d, *J* 10.1, 7-H_B), 3.73 (1H, app. d, *J* 4.0, 7a-H), 3.51 (1H, d, *J* 8.4, 5-H_B), 3.31 (1H, td, *J* 11.4 and 2.3, 2-H_B), 3.15 (1H, dd, *J* 14.1 and 6.8, methylcarbamate 1-H_A), 2.98 (1H, dd, *J* 14.1 and 6.5, methylcarbamate 1-H_B), 1.80-1.69 (1H, m, 3-H_A), 1.69-1.64 (2H, m, 4-H₂), 1.53-1.46 (1H, m, 3-H_B), 1.43 (9H, s, 'Bu); δ_C (100 MHz, CDCl₃) 156.5 (Boc C=O), 80.3 (C-7a), 79.7 ('Bu C₁), 74.2 (C-7), 71.2 (C-5), 66.2 (C-2), 46.5 (methylcarbamate C-1), 45.9 (C-4a), 28.5 ('Bu C₃), 24.3 (C-4), 21.7 (C-3); HRMS found MNa⁺, 280.1517. C₁₃H₂₃NO₄ requires *MNa*, 280.1519. The relative configuration was determined using NOESY (500 MHz, CDCl₃), nOe observed between 7a-H and methylcarbamate 1-H_A, 7a-H and methylcarbamate 1-H_B, 7a-H and NH.

tert-Butyl *N*-{[(4a*R**,9b*S**)-8-methoxy-2*H*,3*H*,4*H*,4a*H*,5*H*,9b*H*-indeno[1,2-*b*]pyran-4a-yl]methyl}carbamate

According to General Procedure H, the alcohol derivative **S13** (0.10 g, 0.28 mmol) gave a crude material. The crude material (dr >95:<5 by ¹H-NMR) was purified by flash column chromatography, eluting with 20:80 EtOAc–hexane to yield the *ether derivative* **38** (62.0 mg, 65%, dr >95:<5 by ¹H-NMR) as a colourless oil, R_f 0.48 (60:40 petrol–EtOAc); v_{max}/cm^{-1} 3336, 2929, 2856, 1696, 1513, 1488, 1451, 1364, 1275, 1264, 1244, 1166, 1152, 1079, 1029; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.09 (1H, d, *J* 8.2, 6-H), 6.89 (1H, d, *J* 2.4, 9-H), 6.77 (1H, dd, *J* 8.2 and 2.4, 7-H), 4.76 (1H, app. t, *J* 6.3, NH), 4.74 (1H, s, 9b-H), 3.78 (3H, s, methoxy), 3.60 (2H, app. t, *J* 4.3, 2-H₂), 3.37 (1H, dd, *J* 14.0 and 6.9, methylcarbamate 1-H_A), 3.25 (1H, dd, *J* 14.0 and 6.3, methylcarbamate 1-H_B), 2.60 (2H, app. s, 5-H₂), 1.79-1.67 (1H, m, 3-H_A), 1.67-1.58 (1H, m, 4-H_A), 1.57-1.47 (1H, m, 4-H_B), 1.43 (10H, s, 'Bu and 3-H_B); $\delta_{\rm C}$ (100 MHz, CDCl₃) 159.1 (C-8), 156.3 (Boc C=O), 143.0 (C-9a), 133.1 (C-5a), 126.4 (C-6), 114.6 (C-7), 109.5 (C-9), 82.8 (C-9b), 79.3 ('Bu C₁), 63.1 (C-2), 55.5 (methoxy), 46.2

(methylcarbamate C-1), 39.0 (C-5), 28.5 (^tBu C₃), 28.0 (C-4), 22.0 (C-3); HRMS found MNa^+ , 356.1838. $C_{19}H_{27}NO_4$ requires *MNa*, 356.1832. The relative configuration was determined using NOESY (500 MHz, CD₃OD), nOe observed between 9b-H and methylcarbamate 1-H_A, 9b-H and methylcarbamate 1-H_B.

Benzyl (4aR*,8aR*)-4a-benzyl-octahydro-2H-pyrano[3,2-c]pyridine-6-carboxylate

According to General Procedure I, the hemiacetal derivative S14 (0.45 g, 1.18 mmol) gave a crude material. The crude material (dr 93:7 by ¹H-NMR) was purified by flash column chromatography, eluting with 10:90 EtOAc-hexane to yield the ether derivative 43 (0.27 g. 63%, dr > 95 < 5 by ¹H-NMR) as colourless oil, $R_f 0.40$ (70:30 petrol-EtOAc); v_{max}/cm^{-1} 3061, 3028, 2932, 2851, 1692, 1427, 1265, 1243, 1210, 1129, 1086, 1074, 1025; $\delta_{\rm H}$ (500 MHz, CD₃OD, 333 K) 7.35-7.25 (5H, m, Cbz phenyl), 7.15 (5H, app. br. s, phenyl), 5.19 (1H, d, J 12.4, Cbz arylmethyl 1-H_A), 5.15 (1H, d, J 12.4, Cbz arylmethyl 1-H_B), 3.97 (1H, app. ddt, J 13.0, 5.5 and 2.0, 7-H_A), 3.92 (1H, app. ddt, J 11.3, 4.7 and 1.8, 2-H_A), 3.60 (1H, d, J 13.3, 5-H_A), 3.38-3.29 (3H, m, 5-H_B, 8a-H and 2-H_B), 3.15 (1H, td, J 13.0 and 3.2, 7-H_B), 2.75 (1H, d, J 13.4, arylmethyl 1-H_A), 2.40 (1H, d, J 13.4, arylmethyl 1-H_B), 2.10 (1H, dddd, J 14.4, 13.0, 5.5 and 3.2, 8-H_A), 1.76-1.69 (1H, m, 3-H_A), 1.69-1.63 (1H, m, 8-H_B), 1.48 (1H, td, J 13.8 and 4.7, 4-H_A), 1.37 (1H, app. ddt, J 13.2, 4.7 and 2.4, 3-H_B), 1.10 (1H, app. dt, J 13.8 and 3.6, 4-H_B); δ_C (125 MHz, CD₃OD, 333 K) 157.7 (Cbz C=O), 138.2 (phenyl C-1 and Cbz phenyl C-1), 131.9 (phenyl C₂-3,5), 129.5 (Cbz phenyl C₂-3,5), 129.1 (phenyl C₂-2,6 and Cbz phenyl C₂-2,6), 128.9 (Cbz phenyl C-4), 127.2 (phenyl C-4), 78.7 (C-8a), 68.7 (Cbz arylmethyl C-1), 68.5 (C-2), 46.4 (C-5), 42.3 (arylmethyl C-1), 40.2 (C-7), 37.7 (C-4a), 31.7 (C-4), 28.0 (C-8), 23.3 (C-3); HRMS found MNa⁺, 388.1880. C₂₃H₂₇NO₃ requires MNa, 388.1888. The relative configuration was determined using NOESY (500 MHz, CD₃OD, 333 K), nOe observed between 8a-H and arylmethyl 1-H_A, 8a-H and arylmethyl 1-H_B, 8a-H and $8-H_A$, 8a-H and $8-H_B$.

Benzyl (4a*R**,8a*R**)-4a-[(pyridin-3-yl)methyl]-octahydro-2*H*-pyrano[3,2-*c*]pyridine-6carboxylate

According to General Procedure I, the hemiacetal derivative S15 (0.13 g, 0.34 mmol) gave a crude material. The crude material (dr 91:9 by ¹H-NMR) was purified by flash column chromatography, eluting with 70:30 EtOAc-hexane to yield the ether derivative 44 (0.11 g, 88%, dr 91:9 by ¹H-NMR) as colourless oil, $R_f 0.32$ (EtOAc); v_{max}/cm^{-1} 3030, 2934, 2851, 1690, 1424, 1266, 1243, 1207, 1130, 1085, 1025; δ_H (500 MHz, CD₃OD, 333 K) 8.36 (1H, d, J 6.8, pyridine 6-H), 8.35 (1H, s, pyridine 2-H), 7.76-7.57 (1H, m, pyridine 4-H), 7.39 (2H, d, J 7.9, phenyl 2,6-H₂), 7.34 (2H, t, J 7.9, phenyl 3,5-H₂), 7.28 (1H, t, J 7.9, phenyl 4-H), 7.20 (1H, app. br. s, pyridine 5-H), 5.18 (2H, s, phenylmethyl, 1-H₂), 3.99 (1H, ddd, J 13.0, 3.0 and 1.3, 7-H_A), 3.96-3.91 (1H, m, 2-H_A), 3.55 (1H, d, J 13.4, 5-H_A), 3.40-3.33 (3H, m, 5-H_B, 8a-H and 2-H_B), 3.14 (1H, td, J 13.0 and 3.3, 7-H_B), 2.81 (1H, d, J 13.5, pyridinylmethyl 1-H_A), 2.40 (1H, d, J 13.5, pyridinylmethyl 1-H_B), 2.13-2.02 (1H, m, 8-H_A), 1.74-1.68 (1H, m, 8-H_B), 1.68-1.63 (1H, m, 3-H_A), 1.45 (1H, td, J 13.4 and 3.0, 4-H_A), 1.41-1.36 (1H, m, 3-H_B), 1.07 (1H, app. d, J 13.4, 4-H_B); δ_C (125 MHz, CD₃OD, 333 K) 157.6 (Cbz C=O), 152.0 (pyridine C-2), 148.0 (pyridine C-6), 140.3 (pyridine C-4), 138.2 (phenyl C-1), 134.7 (pyridine C-3), 129.6 (phenyl C₂-3,5), 129.1 (phenyl C₂-2,6), 129.0 (phenyl C-4), 124.5 (pyridine C-5), 78.7 (C-8a), 68.7 (Cbz arylmethyl C-1), 68.5 (C-2), 45.8 (C-5), 40.2 (C-7), 39.1 (pyridinylmethyl C-1), 37.6 (C-4a), 31.7 (C-4), 28.0 (C-8), 23.2 (C-3); HRMS found MH^+ , 367.2015. $C_{22}H_{26}N_2O_3$ requires *MH*, 367.2021. The relative configuration was determined using NOESY (500 MHz, CD₃OD, 333 K), nOe observed between 8a-H and pyridinylmethyl 1-H_A, 8a-H and 8-H_A, 8a-H and 8-H_B.

tert-Butyl 3-hydroxy-10-oxo-7-oxa-2-azaspiro[4.5]decane-2-carboxylate

According to General Procedure J, the alkene derivative **1a** (0.25 g, 0.93 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 50:50 EtOAc–hexane to yield the *hemiaminals* **14** (0.19 g, 75%, *dr* 66:34 by ¹H-NMR) as an amorphous colourless solid, R_f 0.23 and 0.34 (50:50 petrol–EtOAc); v_{max}/cm^{-1} 3432, 2956, 2923, 2852, 1697, 1382, 1365, 1255, 1223, 1169, 1149, 1115, 1097; δ_H (400 MHz, CDCl₃) 5.53 (1H, app. d, *J* 6.5, 3-H^{maj}), 2.46 (1H, app. d, *J* 4.9 3-H^{min}), 4.11 (4H, app. d, *J* 11.6, 8-H_A and 6-H_A), 3.89 (2H, ddd, *J* 11.6, 8.8 and 4.5, 8-H_B), 3.76 (1H, d, *J* 11.6, 6-H_B^{maj}), 3.72-3.60 (4H, m, 6-H_B^{min}, 1-H_A and 1H_B^{min}), 3.50 (1H, d, *J* 11.2, 1-H_B^{maj}), 2.93 (1H, br. s, OH^{mai}), 2.70-2.43 (6H, m, 9-H₂ and 4-H_A), 1.75 (2H, app. d, *J* 14.1, 4-H_B), 1.64 (1H, br. s, OH^{mai}), 1.48 (18H, s, ^{*t*}Bu); δ_C (100 MHz, CDCl₃) 206.2 (C₂-10), 154.8 (Boc 2C=O), 81.7 (C₂-3), 80.9 (^{*t*}Bu 2C₁), 75.5 (C₂-6), 68.5 (C₂-8), 56.6 (C-5^{mai}), 55.8 (C-5^{min}), 51.1 (C-1^{min}), 50.9 (C-1^{mai}), 40.9 (C₂-9), 36.6 (C-4^{min}), 36.0 (C-4^{mai}), 28.5 (^{*t*}Bu 2C₃); HRMS found MNa⁺, 294.1314. C₁₃H₂₁NO₅ requires *MNa*, 294.1311.

tert-Butyl *N*-{[(3a*R*,7a*S*)-1-benzyl-octahydropyrano[4,3-*b*]pyrrol-3a-yl]methyl} carbamate

Benzylamine (12.9 μ L, 117 μ mol), acetic acid (12.2 μ L, 214 μ mol) and NaBH(OAc)₃ (56.7 mg, 267 μ mol) were added to a solution of the hemiaminals **14** (29.0 mg, 107 μ mol) in DCM (1.00 mL) at rt. The reaction mixture was stirred for 18 h at rt. Then, a saturated aqueous solution of NaHCO₃ (1 mL) was added and the solution was stirred for 5 min. The phases were separated and the aqueous phase was extracted with DCM (3 × 1 mL). The organic phases were combined, dried (MgSO₄), filtered and concentrated under reduced pressure to

give a crude product. The crude product was purified by flash column chromatography, eluting with 20:80 EtOAc-hexane to yield the amine derivative 15 (11.0 mg, 30%, dr 83:17 by ¹H-NMR) as an amorphous colourless solid, $R_{\rm f}$ 0.53 (50:50 petrol-EtOAc); $v_{\rm max}/{\rm cm}^{-1}$ 3323, 2965, 2924, 2792, 1712, 1537, 1452, 1388, 1268, 1247, 1165, 1131, 1085; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.35-7.21 (5H, m, phenyl), 5.22 (1H, br. s, NH), 3.96 (1H, d, J 13.3, arylmethyl 1-H_A), 3.80 (1H, td, J 10.9 and 3.1, 6-H_A), 3.66-3.61 (1H, m, 6-H_B), 3.59 (1H, d, J 11.8, 4-H_A), 3.45 (1H, d, J 11.8, 4-H_B), 3.39-3.30 (1H, m, methylcarbamate 1-H_A), 3.29-3.20 (2H, m, arylmethyl 1-H_B and methylcarbamate 1-H_B), 2.92 (1H, td, J 9.4 and 4.5, 2-H_A), 2.50 (1H, app. s, 7a-H), 2.39-2.27 (1H, m, 2-H_B), 1.91-1.78 (1H, m, 7-H_A), 1.70 (1H, app. dq, J 14.6 and 3.6, 7-H_B), 1.63-1.51 (1H, m, 3-H_A), 1.45 (9H, s, ^{*t*}Bu), 1.39-1.28 (1H, m, 3-H_B); δ_{C} (100 MHz, CDCl₃) 156.5 (C=O), 139.7 (phenyl C-1), 128.5 (phenyl C₂-3,5), 128.3 (phenyl C2-2,6), 127.0 (phenyl C-4), 79.2 (^tBu C1), 71.2 (C-4), 64.0 (C-6), 63.0 (C-7a), 57.1 (arylmethyl C-1), 51.2 (C-2), 46.3 (methylcarbamate C-1), 44.1 (C-3a), 29.4 (C-3), 28.5 (^tBu C₃), 24.0 (C-7); HRMS found MH⁺, 347.2337. C₂₀H₃₀N₂O₃ requires *MH*, 347.2329. The relative configuration was determined using NOESY (500 MHz, CDCl₃), nOe observed between 7a-H and methylcarbamate 1-H_A, 7a-H and methylcarbamate 1-H_B, 7a-H and 7-H_A, 7a-H and 7-H_B.

tert-Butyl N-{[(3R*, 4R*)-4-hydroxy-3-(prop-2-en-1-yl)oxan-3-yl]methyl}carbamate

According to General Procedure K, the ketone derivative **1a** (0.50 g, 1.85 mmol) and diisobutylaluminium hydride (4.08 mL, 4.08 mmol of a 1.0 M solution in DCM) gave a crude material. The crude material (*dr* 86:14 by ¹H-NMR) was purified by flash column chromatography, eluting with 50:50 EtOAc–hexane to yield the *alcohol derivative* **16a** (0.47 g, 93%, *dr* 86:14 by ¹H-NMR) as a yellow oil, R_f 0.31 (70:30 petrol–EtOAc); v_{max}/cm^{-1} 3340, 2975, 2932, 2856, 1682, 1512, 1365, 1274, 1248, 1163, 1083; δ_H (400 MHz, CDCl₃) 5.83 (1H, ddt, *J* 15.3, 9.5 and 7.7, propenyl 2-H), 5.13 (1H, app. d, *J* 15.3, propenyl 3-H_{trans}), 5.10

(1H, app. d, *J* 9.5, propenyl 3-H_{cis}), 4.80 (1H, app. t, *J* 7.0, NH), 3.97 (1H, app. dd, *J* 11.6 and 4.0, 6-H_A), 3.68 (1H, dd, *J* 11.1 and 4.8, 4-H), 3.61 (1H, d, *J* 11.4, 2-H_A), 3.39 (1H, td, *J* 11.6 and 2.9, 6-H_B), 3.35-3.33 (1H, app. d, *J* 8.0, methylcarbamate 1-H_A), 2.98 (1H, d, *J* 11.4, 2-H_B), 2.70 (1H, dd, *J* 14.9 and 5.4, methylcarbamate 1-H_B), 2.43 (1H, dd, *J* 14.0 and 7.2, propenyl 1-H_A), 2.26 (1H, dd, *J* 14.0 and 8.1, propenyl 1-H_B), 1.85 (1H, app. dd, *J* 11.9 and 4.8, 5-H_A), 1.70 (1H, app. dt, *J* 13.1 and 1.84, 5-H_B), 1.45 (9H, s, ^{*t*}Bu); δ_{C} (100 MHz, CDCl₃) 157.8 (Boc C=O), 134.0 (propenyl C-2), 118.6 (propenyl C-3), 80.3 (^{*t*}Bu C₁), 70.3 (C-2), 70.1 (C-4), 67.2 (C-6), 43.7 (methylcarbamate C-1), 42.9 (C-3), 31.6 (propenyl C-1), 29.5 (C-5), 28.4 (^{*t*}Bu C₃); HRMS found MH⁺, 272.1855. C₁₄H₂₅NO₄ requires *MH*, 272.1856. The relative configuration was determined by analogy with the carbocyclic analogue⁸ and using NOESY (500 MHz, CDCl₃), nOe observed between 4-H and methylcarbamate 1-H_A.

Benzyl (3*R**,4*R**)-3-({[(*tert*-butoxy)carbonyl]amino}methyl)-4-hydroxy-3-(prop-2-en-1-yl)piperidine-1-carboxylate

According to General Procedure K, the ketone derivative **1b** (0.50 g, 1.24 mmol) and diisobutylaluminium hydride (1.36 mL, 1.36 mmol of a 1.0 M solution in DCM) gave a crude material. The crude material (dr >95:<5 by ¹H-NMR) was purified by flash column chromatography, eluting with 30:70 EtOAc–hexane to yield the *alcohol derivative* **16b** (0.39 g, 78%, dr >95:<5 by ¹H-NMR) as a colourless oil, $R_f 0.55$ (50:50 petrol–EtOAc); v_{max}/cm^{-1} 3367, 2975, 2935, 2870, 2492, 1672, 1428, 1364, 1234, 1155, 1079; δ_H (500 MHz, CD₃OD, 333 K) 7.37-7.27 (5H, m, phenyl), 5.87 (1H, app. dd, *J* 13.3 and 7.0, propenyl 2-H), 5.11 (2H, s, arylmethyl 1-H₂), 5.03 (1H, app. d, *J* 17.0 propenyl 3-H_{trans}), 5.00 (1H, app. d, *J* 10.2, propenyl 3-H_{cis}), 3.95 (1H, app. d, *J* 13.3, 6-H_A), 3.72 (1H, d, *J* 13.7, 2-H_A), 3.63 (1H, dd, *J* 9.7 and 4.4, 4-H), 3.15 (1H, d, *J* 14.3, methylcarbamate 1-H_A), 3.06 (1H, app. br. s, 6-H_B), 2.95 (1H, d, *J* 14.3, methylcarbamate 1-H_B), 2.78 (1H, d, *J* 13.7, 2-H_B), 2.18 (1H, dd, *J* 14.2 and 7.9, propenyl 1-H_A), 2.09 (1H, dd, *J* 14.2 and 7.0, propenyl 1-H_B), 1.78-1.71 (1H, m, 5-

H_A), 1.70-1.60 (1H, m, 5-H_B), 1.43 (9H, s, ^{*i*}Bu); δ_{C} (125 MHz, CD₃OD, 333 K) 158.9 (Boc C=O), 157.3 (Cbz C=O), 138.1 (phenyl C-1), 135.2 (propenyl C-2), 129.5 (phenyl C₂-3,5), 129.1 (phenyl C₂-2,6), 129.0 (phenyl C-4), 118.6 (propenyl C-3), 80.5 (^{*i*}Bu C₁), 71.8 (C-4), 68.5 (arylmethyl C-1), 48.3 (C-2), 45.0 (methylcarbamate C-1), 43.6 (C-3), 43.0 (C-6), 33.3 (propenyl C-1), 29.8 (C-5), 28.8 (^{*i*}Bu C₃); HRMS found MNa⁺, 427.2205. C₂₂H₃₂N₂O₅ requires *MNa*, 427.2203. The relative configuration was determined by analogy with the carbocyclic analogue⁸ and using NOESY (500 MHz, CD₃OD), nOe observed between 4-H and methylcarbamate 1-H_A, 4-H and methylcarbamate 1-H_B.

tert-Butyl *N*-{[(3*R**,4*S**)-4-hydroxy-3-(prop-2-en-1-yl)oxolan-3-yl]methyl}carbamate

According to General Procedure K, the ketone derivative 1d (2.00 g, 7.83 mmol) and diisobutylaluminium hydride (17.2 mL, 17.2 mmol of a 1.0 M solution in DCM) gave a crude material. The crude material (dr > 95:<5 by ¹H-NMR) was purified by flash column chromatography, eluting with $20:80 \rightarrow 40:60$ EtOAc-hexane to yield the *alcohol derivative* 16d (1.85 g, 92%, $dr > 95 \le 5$ by ¹H-NMR) as a light-yellow oil, $R_f = 0.29$ (50:50) petrol-EtOAc); v_{max}/cm⁻¹ 3341, 2976, 2930, 2872, 1686, 1516, 1365, 1272, 1248, 1162, 1068, 1046; $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.83 (1H, ddt, J 17.2, 10.1 and 7.5, propenyl 2-H), 5.17 (1H, dd, J 17.2 and 1.8, propenyl 3-H_{trans}), 5.12 (1H, dd, J 10.1 and 1.8, propenyl 3-H_{cis}), 4.84 (1H, app. t, J 5.0, NH), 4.24-4.10 (2H, m, 5-H_A and 4-H), 3.71-3.67 (1H, m, 5-H_B), 3.66 (1H, d, J 8.9, 2-H_A), 3.54 (1H, d, J 8.9, 2-H_B), 3.17-3.02 (2H, m, methylcarbamate, 1-H₂), 2.60 (1H, br. s, OH), 2.33 (1H, dd, J 14.3 and 7.7, propenyl 1-H_A), 2.26 (1H, dd, J 14.3 and 7.1, propenyl 1-H_B), 1.43 (9H, s, ^tBu); δ_C (100 MHz, CDCl₃) 156.9 (Boc C=O), 134.7 (propenyl C-2), 118.5 (propenyl C-3), 79.9 (^tBu C₁), 75.6 (C-4), 74.3 (C-5), 73.9 (C-2), 50.2 (C-3), 44.1 (methylcarbamate C-1), 33.5 (propenyl C-1), 28.5 (^tBu C₃); HRMS found MNa⁺, 280.1514. $C_{13}H_{23}NO_4$ requires *MNa*, 280.1519. The relative configuration was determined from compound **3**.
tert-Butyl *N*-{[(1*R**,2*S**)-1-hydroxy-6-methoxy-2-(prop-2-en-1-yl)-2,3-dihydro-1*H*inden-2-yl]methyl}carbamate

According to General Procedure K, the ketone derivative 1e (1.00 g, 3.01 mmol) and diisobutylaluminium hydride (6.63 mL, 6.63 mmol of a 1.0 M solution in DCM) gave a crude material. The crude material (dr > 90:<10 by ¹H-NMR) was purified by flash column chromatography, eluting with 20:80 EtOAc-hexane to yield the alcohol derivative 16e (0.63 g, 63%, dr > 95:<5 by ¹H-NMR) as a yellow oil, $R_f 0.37$ (70:30 petrol-EtOAc); v_{max}/cm^{-1} 3368, 2976, 2931, 2835, 1685, 1512, 1490, 1435, 1365, 1272, 1245, 1159, 1029; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.03 (1H, d, J 8.2, 4-H), 6.91 (1H, d, J 2.4, 7-H), 6.75 (1H, dd, J 8.2 and 2.4, 5-H), 5.85-5.68 (1H, m, propenyl 2-H), 5.03 (1H, app. d, J 19.7, propenyl 3-H_{trans}), 5.04 (1H, app. d, J 11.7, propenyl 3-H_{cis}), 4.94 (1H, app. t, J 6.3, NH), 3.79 (3H, s, methoxy), 3.29 (1H, dd, J 14.2 and 6.9, methylcarbamate 1-H_A), 3.20 (1H, dd, J 14.2 and 5.8, methylcarbamate 1-H_B), 2.73 (1H, d, J 15.4, 3-H_A), 2.51 (1H, d, J 15.4, 3-H_B), 2.34 (1H, dd, J 14.2 and 7.4, propenyl 1-H_A), 2.05 (1H, dd, J 14.2 and 7.3, propenyl 1-H_B), 1.44 (9H, s, ^tBu); δ_{C} (100 MHz, CDCl₃) 159.2 (C-6), 157.1 (Boc C=O), 145.5 (C-7a), 135.2 (propenyl C-2), 131.4 (C-3a), 125.6 (C-4), 118.0 (propenyl C-3), 114.5 (C-5), 108.9 (C-7), 80.7 (C-1), 79.8 (^tBu C₁), 55.6 (methoxy), 52.7 (C-2), 46.5 (methylcarbamate C-1), 36.8 (C-3), 34.6 (propenyl C-1), 28.5 (^tBu C₃); HRMS found MNa⁺, 356.1838. C₁₉H₂₇NO₄ requires MNa, 356.1832. The relative configuration was determined from compound 39 and 22e.

tert-Butyl *N*-{[(2*R**,3a*R**,7a*R**)-2-(iodomethyl)-hexahydro-2*H*-furo[3,2-*c*]pyran-3a-yl]methyl}carbamate

According General Procedure L, the alkene derivative 16a (0.10 g, 0.37 mmol) gave a crude material. The crude material (dr 80:20 by ¹H-NMR) was purified by flash column chromatography, eluting with 15:85 EtOAc-hexane to yield the tetrahydrofuran derivative 17 (57.0 mg, 39%, $dr > 95 \le 5$ by ¹H-NMR) as an amorphous colourless solid, $R_f 0.50$ (50:50) petrol-EtOAc); v_{max}/cm⁻¹ 3323, 2975, 2950, 2923, 2895, 2868, 2848, 1703, 1547, 1349, 1273, 1252, 1235, 1164, 1139, 1069; δ_H (500 MHz, CDCl₃, 323 K) 4.85 (1H, br. s, NH), 4.06 (1H, app. dtd, J 8.5, 6.9 and 5.3, 2-H), 3.78 (1H, app. t, J 3.8, 7a-H), 3.71 (1H, ddd, J 11.4, 5.7 and 2.7, 6-H_A), 3.63 (1H, td, J 11.4 and 3.1, 6-H_B), 3.56 (1H, d, J 11.9, 4-H_A), 3.48 (1H, d, J 11,9, 4-H_B), 3.35-3.29 (3H, m, methylcarbamate 1-H₂ and iodomethyl 1-H_A), 3.24 (1H, dd, J 10.0 and 6.9, iodomethyl 1-H_B), 1.98 (1H, dd, J 13.4 and 8.5, 3-H_A), 1.95-1.91 (1H, m, 7-H_A), 1.82 (1H, app. dq, J 14.9 and 3.0, 7-H_B), 1.45 (9H, s, ^tBu), 1.29 (1H, dd, J 13.4 and 6.9, 3-H_B); δ_C (125 MHz, CDCl₃) 156.3 (C=O), 79.5 (^tBu C₁), 77.9 (C-7a), 77.0 (C-2), 71.0 (C-4), 64.0 (C-6), 44.8 (methylcarbamate C-1), 44.6 (C-3a), 38.9 (C-3), 28.5 (^tBu C₃), 26.9 (C-7), 9.43 (iodomethyl C-1); HRMS found MH^+ , 398.0823. $C_{14}H_{24}INO_4$ requires *MH*, 398.0822. The relative configuration was determined by NOESY NMR (500 MHz, CDCl₃) nOe observed between methylcarbamate $1-H_A$ and 2-H, 2-H and 7a-H.

(4aR*, 8aR*)-4a-(Prop-2-en-1-yl)-octahydropyrano[3,4-e][1,3]oxazin-2-one

According to General Procedure M, the alcohol derivative **16a** (20.0 mg, 73.7 μ mol) was stirred for 1 h to yield the crude *carbamate derivative* **18** (14.0 mg, 96%) as an amorphous colourless solid, $R_f 0.20$ (EtOAc); v_{max}/cm^{-1} 3277, 2964, 2922, 2852, 1707, 1660, 1471, 1442, 1366, 1312, 1256, 1179, 1101, 1081, 1059; δ_H (400 MHz, CDCl₃) 5.91 (1H, br. s, NH), 5.87-5.72 (1H, m, propenyl 2-H), 5.22 (1H, app. d, *J* 2.5, propenyl 3-H_A), 5.18 (1H, app. s, propenyl 3-H_B), 4.25 (1H, dd, *J* 12.0 and 4.9, 8a-H), 4.11 (1H, app. dd, *J* 12.1 and 5.3, 7-H_A), 3.88 (1H, dd, *J* 11.6 and 1.2, 5-H_A), 3.46 (1H, td, *J* 12.1 and 2.7, 7-H_B), 3.14 (1H, dd, *J* 11.3

and 4.4, 4-H_A), 2.94 (1H, dd, *J* 11.6 and 1.7, 5-H_B), 2.81 (1H, dd, *J* 11.3 and 1.4, 4-H_B), 2.61 (1H, dd, *J* 13.9 and 6.7, propenyl 1-H_A), 2.18 (1H, dd, *J* 13.9 and 8.2, propenyl 1-H_B), 2.03 (1H, app. qd, *J* 12.6 and 5.3, 8-H_A), 1.87-1.77 (1H, m, 8-H_B); $\delta_{\rm C}$ (100 MHz, CDCl₃) 154.0 (C-2), 132.1 (propenyl C-2), 120.3 (propenyl C-3), 78.9 (C-8a), 70.4 (C-5), 66.7 (C-7), 45.2 (C-4), 35.5 (C-4a), 28.6 (propenyl C-1), 26.8 (C-8); HRMS found MH⁺, 198.1124. C₁₀H₁₅NO₃ requires *MH*, 198.1124.

Benzyl (4a*R**,8a*R**)-2-oxo-4a-(prop-2-en-1-yl)-octahydro-2*H*-pyrido[3,4-*e*][1,3]oxazine-6-carboxylate

According to General Procedure M, the alcohol derivative **16b** (0.12 g, 0.30 mmol) was stirred for 1 h to yield a crude material. The crude material was purified by flash column chromatography, eluting with 80:20 EtOAc–hexane to yield the *carbamate derivative* **30** (62.0 mg, 63%) as a colourless oil, R_f 0.42 (10:90 MeOH–EtOAc); v_{max}/cm^{-1} 3480, 3376, 3215, 3133, 2938, 2874, 1671, 1437, 1311, 1267, 1236, 1215, 1157, 1112, 1086, 1054; δ_H (500 MHz, CD₃OD, 333 K) 7.38-7.25 (5H, m, phenyl), 5.81 (1H, app. br. s, propenyl 2-H), 5.13 (2H, s, arylmethyl 1-H₂), 5.12-5.04 (2H, m, propenyl 3-H₂), 4.34 (1H, app. dt, *J* 13.0 and 2.1, 7-H_A), 4.28 (1H, dd, *J* 10.0 and 6.8, 8a-H), 4.20 (1H, d, *J* 13.7, 5-H_A), 3.15 (1H, d, *J* 11.7, 4-H_A), 2.96-2.90 (1H, m, 7-H_B), 2.87 (1H, d, *J* 11.7, 4-H_B), 2.51 (1H, d, *J* 13.7, 5-H_B), 2.20 (1H, dd, *J* 14.3 and 6.4, propenyl 1-H_A), 2.03 (1H, dd, *J* 14.3 and 8.6, propenyl 1-H_B), 1.86-1.75 (2H, m, 8-H₂); δ_C (125 MHz, CD₃OD, 333 K) 157.0 (C-2), 156.3 (Cbz C=O), 137.9 (phenyl C-1), 133.6 (propenyl C-2), 129.5 (phenyl C₂-3,5), 129.2 (phenyl C₂-2,6), 129.1 (phenyl C-4), 120.2 (propenyl C-3), 81.0 (C-8a), 68.7 (arylmethyl C-1), 48.6 (C-5), 46.6 (C-4), 43.2 (C-7), 36.1 (C-4a), 29.8 (propenyl C-1), 26.6 (C-8); HRMS found MNa⁺, 353.1473. C₁₈H₂₂N₂O₄ requires *MNa*, 353.1477.

(4aR*,7aS*)-4a-(Prop-2-en-1-yl)-hexahydro-2H-furo[3,4-e][1,3]oxazin-2-one

According to General Procedure M, the alcohol derivative **16d** (0.56 g, 2.17 mmol) was stirred for 18 h to yield a crude material. The crude material was purified by flash column chromatography, eluting with EtOAc to yield the *carbamate derivative* **3** (0.26 g, 65%) as colourless blocks, m.p. (DCM), 138-142 °C; R_f 0.20 (EtOAc); v_{max}/cm^{-1} 3254, 3132, 2979, 2950, 2929, 2895, 1700, 1384, 1301, 1257, 1132, 1104, 1076, 1014; δ_H (400 MHz, CDCl₃) 6.57 (1H, br. s, NH), 5.78 (1H, ddt, *J* 17.1, 9.8 and 7.4, propenyl 2-H), 5.27-5.12 (2H, m, propenyl 3-H₂), 4.58 (1H, dd, *J* 10.1 and 8.0, 7a-H), 4.05 (1H, dd, *J* 10.1 and 8.0, 7-H_A), 4.01 (1H, d, *J* 8.6, 5-H_A), 3.70 (1H, dd, *J* 10.1 and 8.0, 7-H_B), 3.46 (1H, d, *J* 8.6, 5-H_B), 3.38 (1H, dd, *J* 11.1 and 4.3, 4-H_A), 3.18 (1H, d, *J* 11.1, 4-H_B), 2.34-2.17 (2H, m, propenyl 1-H₂); δ_C (100 MHz, CDCl₃) 154.9 (C-2), 132.0 (propenyl C-2), 120.4 (propenyl C-3), 80.5 (C-7a), 71.7 (C-5), 64.9 (C-7), 46.7 (C-4), 40.5 (C-4a), 29.9 (propenyl C-1); HRMS found MH⁺, 184.0964. C₉H₁₃NO₃ requires *MH*, 184.0968. The relative configuration was determined using X-ray crystallography.

(4a*R**,9b*S**)-8-Methoxy-4a-(prop-2-en-1-yl)-2*H*,3*H*,4*H*,4a*H*,5*H*,9b*H*-indeno[2,1-*e*][1,3] oxazin-2-one

According to General Procedure M, the alcohol derivative 16e (20.0 mg, 60.0 μ mol) was stirred for 18 h to yield a crude material. The crude material was purified by flash column

chromatography, eluting with 70:30 EtOAc–hexane to yield the *carbamate derivative* **39** (9.00 mg, 58%) as colourless blocks, m.p. (CHCl₃/pentane), 180-185 °C; R_f 0.46 (EtOAc); v_{max}/cm^{-1} 3231, 3122, 2935, 2354, 1691, 1481, 1434, 1295, 1242, 1081; δ_H (400 MHz, CDCl₃) 7.13 (1H, d, *J* 8.2, 6-H), 7.00 (1H, d, *J* 2.5, 9-H), 6.79 (1H, dd, *J* 8.2 and 2.5, 7-H), 5.84 (1H, br. s, NH), 5.72 (1H, ddt, *J* 17.0, 10.1 and 7.5, propenyl 2-H), 5.39 (1H, s, 9b-H), 5.12 (1H, ddt, *J* 10.1, 1.7 and 0.9, propenyl 3-H_{cis}), 5.03 (1H, app. dq, *J* 17.0 and 1.7, propenyl 3-H_{trans}), 3.80 (3H, s, methoxy), 3.54-3.41 (2H, m, 4-H₂), 2.95 (1H, d, *J* 14.7, 5-H_A), 2.45 (1H, d, *J* 14.7, 5-H_B), 2.20 (1H, dd, *J* 14.5 and 7.5, propenyl 1-H_A), 1.84 (1H, dd, *J* 14.5 and 7.0, propenyl 1-H_B); δ_C (100 MHz, CDCl₃) 159.4 (C-8), 155.1 (C-2), 139.6 (C-9a), 133.1 (propenyl C-2), 131.3 (C-5b), 126.5 (C-6), 119.6 (propenyl C-3), 114.5 (C-7), 108.2 (C-9), 85.8 (C-9b), 55.6 (methoxy), 49.0 (C-4), 45.3 (C-4a), 35.6 (C-5), 31.2 (propenyl C-1); HRMS found MH⁺, 260.1275. C₁₅H₁₇NO₃ requires *MH*, 260.1281. The relative configuration was determined using X-ray crystallography.

(1*R**, 5*S**)-1-(Prop-2-en-1-yl)-3-oxa-7-azabicyclo[3.3.1]nonan-9-one

According to General Procedure N, paraformaldehyde (16.8 mg, 0.56 mmol) and the ketone derivative **1a** (0.10 g, 0.37 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 95.4:4.1:0.5 DCM–EtOH–NH₄OH to yield the *bridged bicyclic derivative* **19** (20.0 mg, 30%) as a yellow oil, R_f 0.40 (92.4:6.8:0.8 DCM–EtOH–NH₄OH); v_{max}/cm^{-1} 3362, 3074, 2922, 2848, 1709, 1674, 1638, 1455, 1435, 1375, 1234, 1211, 1082; δ_H (400 MHz, CD₃OD) 5.86 (1H, ddt, *J* 15.4, 11.0 and 7.5, propenyl 2-H), 5.09 (1H, dd, *J* 10.5 and 1.5, propenyl 3-H_{cis}), 5.08 (1H, dd, *J* 16.7 and 1.5, propenyl 3-H_{trans}), 4.43 (1H, app. dt, *J* 11.3 and 1.6, 4-H_A), 4.26 (1H, dd, *J* 11.3 and 1.6, 2-H_A), 3.97 (1H, app. dt, *J* 11.3 and 2.5, 4-H_B), 3.73 (1H, dd, *J* 11.3 and 3.1, 2-H_B), 3.63 (1H, app. dt, *J* 13.8 and 2.2, 6-H_A), 3.49 (1H, dd, *J* 13.7 and 2.4, 8-H_A), 3.13 (1H, app. dt, *J* 13.8 and 2.9, 6-H_B), 2.89 (1H, dd, *J* 13.7 and 3.1, 8-H_B), 2.37 (1H, app. s, 5-H), 2.15 (2H, app. d, *J* 7.5, propenyl

1-H₂); δ_C (100 MHz, CD₃OD) 213.7 (C-9), 134.0 (propenyl C-2), 118.7 (propenyl C-3), 79.3 (C-2), 75.9 (C-4), 60.3 (C-8), 55.8 (C-6), 53.9 (C-1), 52.7 (C-5), 35.3 (propenyl C-1). HRMS found MH⁺, 182.1179. C₁₀H₁₅NO₂ requires *MH*, 182.1175.

(1*R**,5*S**,6*R**)-6-phenyl-1-(prop-2-en-1-yl)-3-oxa-7-azabicyclo[3.3.1]nonan-9-one

According to General Procedure N, benzaldehyde (57.6 µL, 0.56 mmol) and the ketone derivative 1a (0.10 g, 0.37 mmol) gave a crude material. The crude material (dr > 95 < 5 by ¹H-NMR) was purified by flash column chromatography, eluting with 97:2.7:0.3 DCM-EtOH-NH₄OH to yield the *bridged bicyclic derivative* 4 (32.0 mg, 33%, *dr* >95:<5 by ¹H-NMR) as an amorphous yellow solid, $R_f 0.40$ (50:50 petrol-EtOAc); v_{max}/cm^{-1} 3337, 3059, 3030, 2921, 2851, 1708, 1470, 1372, 1225, 1210, 1088; δ_H (500 MHz, CDCl₃) 7.34-7.18 (5H, m, phenyl), 5.75 (1H, ddt, J 17.3, 10.0 and 7.5, propenyl 2-H), 5.03 (1H, dd, J 10.0 and 1.9, propenyl 3-H_{cis}), 5.00 (1H, dd, J 17.3 and 1.9, propenyl 3-H_{trans}), 4.27 (1H, app. s, 6-H), 4.16 (1H, dd, J 11.4 and 1.6, 2-H_A), 4.06 (1H, app. d, J 11.7, 4-H_A), 3.69 (1H, dd, J 11.4 and 3.1, 2-H_B), 3.61 (1H, app. dt, J 11.7 and 2.1, 4-H_B), 3.54 (1H, d, J 13.8, 8-H_A), 2.97 (1H, dd, J 13.8 and 3.2, 8-H_B), 2.82 (1H, br. s, NH), 2.51 (1H, app. s, 5-H), 2.18 (1H, dd, J 14.4 and 7.3, propenyl 1-H_A), 2.11 (1H, dd, J 14.4 and 7.7, propenyl 1-H_B); $\delta_{\rm C}$ (125 MHz, CDCl₃) 212.0 (C-9), 139.1 (phenyl C-1), 132.4 (propenyl C-2), 128.8 (phenyl C₂-3,5), 127.6 (phenyl C-4), 126.2 (phenyl C₂-2,6), 118.7 (propenyl C-3), 78.4 (C-2), 70.1 (C-4), 66.9 (C-6), 58.8 (C-8), 56.6 (C-5), 52.2 (C-1), 34.3 (propenyl C-1); HRMS found MH⁺, 258.1491. C₁₆H₁₉NO₂ requires MH, 258.1488. The relative configuration was determined using NOESY (500 MHz, CDCl₃), nOe observed between phenyl and 4-H_A, 6-H and 8-H_A, 5-H and 6-H.

tert-Butyl N-{[(3R*,4R*)-4-(benzyloxy)-3-(prop-2-en-1-yl)oxan-3-yl]methyl}carbamate

By modification of an existing procedure,¹⁷ NaH (37.0 mg, 0.92 mmol of a 60% dispersion in mineral oil) was added to a mixture of the alcohol derivative 16a (0.23 g, 0.84 mmol), benzyl bromide (0.12 mL, 1.00 mmol) and tetrabutylammonium iodide (62.0 mg, 0.17 mmol) in THF (5.00 mL) at 0 °C. The reaction mixture was stirred for 18 h at rt. Then, a saturated aqueous solution of NaHCO₃ (5 mL) was added, the phases were separated and the aqueous phase was extracted with EtOAc (4×5 mL). The organic phases were combined, dried (MgSO₄), filtered and concentrated under reduced pressure to give a crude product. The crude product was purified by flash column chromatography, eluting with 10:90 EtOAc-hexane to yield the *benzyl derivative* 20 (0.26 g, 86%) as a colourless oil, $R_{\rm f}$ 0.75 (50:50 petrol-EtOAc); v_{max}/cm⁻¹ 3426, 3344, 2973, 2930, 2859, 1712, 1504, 1453, 1365, 1243, 1165, 1088; δ_H (400 MHz, CDCl₃) 7.40-7.27 (5H, m, phenyl), 5.81 (1H, ddt, J 15.2, 10.1 and 7.5, propenyl 2-H), 5.17-5.01 (2H, m, propenyl 3-H₂), 4.87 (1H, app. t, J 4.8, NH), 4.66 (1H, d, J 11.6, arylmethyl 1-H_A), 4.39 (1H, d, J 11.6, arylmethyl 1-H_B), 4.05-3.90 (1H, m, 6-H_A), 3.67 (1H, d, J 11.8, 2-H_A), 3.48 (1H, app. td, J 7.9 and 3.8, 4-H), 3.45-3.38 (1H, m, 6-H_B), 3.18-3.09 (1H, m, methylcarbamate 1-H_A), 3.01 (1H, d, J 11.8, 2-H_B), 3.00 (1H, d, J 13.5, methylcarbamate 1-H_B), 2.33 (2H, app. d, J 7.6, propenyl 1-H₂), 2.00-1.90 (1H, m, 5- H_A), 1.78 (1H, app. dtd, J 13.7, 9.5 and 4.5, 5- H_B), 1.41 (9H, s, ^tBu); δ_C (100 MHz, CDCl₃) 156.1 (C=O), 138.4 (phenyl C-1), 133.8 (propenyl C-2), 128.6 (phenyl C₂-3,5), 127.8 (phenyl C₂-2,6), 126.2 (phenyl C-4), 118.6 (propenyl C-3), 81.3 (^{*t*}Bu C₁), 78.9 (C-4), 70.6 (C-2), 70.3 (arylmethyl C-1), 66.0 (C-6), 44.3 (methylcarbamate C-1), 42.1 (C-3), 32.1 (propenyl C-1), 28.5 (^{*t*}Bu C₃), 26.3 (C-5); HRMS found MH⁺, 362.2328. C₂₁H₃₁NO₄ requires *MH*, 362.2325.

tert-Butyl (5*R**,10*R**)-10-(benzyloxy)-3-(iodomethyl)-7-oxa-2-azaspiro[4.5]decane-2carboxylate

According General Procedure L, the alkene derivative 20 (0.10 g, 0.28 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 15:85 EtOAc-hexane to yield the *pyrrolidine derivative 21* (41.0 mg, 30%, dr 77:23 by ¹H-NMR) as a yellow oil, $R_f 0.63$ (50:50 petrol-EtOAc); v_{max}/cm^{-1} 2928, 2857, 1687, 1391, 1364, 1157, 1087; δ_H (500 MHz, CDCl₃ 323 K) 7.37-7.26 (10H, m, phenyl), 4.67 (1H, d, J 11.8, arylmethyl 1-H_A^{maj}), 4.64 (1H, d, J 11.9, arylmethyl 1-H_A^{min}), 4.45 (1H, d, J 11.8, arylmethyl 1-H_B^{maj}), 4.42 (1H, d, J 11.9, arylmethyl 1-H_B^{min}), 3.92-3.82 (2H, m, 8-H_A), 3.79-3.75 (2H, m, 3-H) 3.73 (2H, d, J 11.1, 6-H_A), 3.61 (2H, d, J 11,3, 1-H_A), 3.58-3.49 (4H, m, 8-H_B and iodomethyl 1-H_A), 3.44-3.40 (4H, m, 10-H and iodomethyl 1-H_B), 3.33 (2H, d, J 11.1, 6-H_B), 3.21 (2H, d, J 11.3, 1-H_B), 2.20-2.08 (2H, m, 9-H_A), 1.93-1.65 (6H, m, 9-H_B and 4-H₂), 1.47 (9H, s, ^tBu^{maj}), 1.45 (9H, s, ^tBu^{min}); δ_C (125 MHz, CDCl₃, 323 K) 154.3 (2C=O), 138.5 (phenyl C-1^{maj}), 138.4 (phenyl C-1^{min}), 128.6 (phenyl C₂-3,5^{min}), 128.5 (phenyl C₂-3,5^{maj}), 127.8 (phenyl C-4^{min}), 127.7 (phenyl C-4^{maj}), 127.6 (phenyl C₄-2,6), 80.1 (^{*t*}Bu C₁^{min}), 80.0 ('Bu C₁^{maj}), 78.0 (C-10^{min}), 77.1 (C-10^{maj}), 73.0 (C₂-6), 71.1 (arylmethyl C-1^{min}), 70.9 (arylmethyl C-1^{maj}), 64.9 (C-8^{maj}), 63.2 (C-8^{min}), 56.3 (C-3^{maj}), 55.2 (C-3^{min}), 52.3 (C-1^{min}), 51.6 (C-1^{maj}), 46.3 (C-5^{maj}), 45.8 (C-5^{min}), 36.6 (C₂-4), 28.6 (^tBu 2C₃), 27.4 (C-9^{maj}), 26.3 (C-9^{min}), 13.7 (iodomethyl C-1^{maj}), 12.9 (iodomethyl C-1^{min}); HRMS found MH⁺, 488.1295. C₂₁H₃₀INO₄ requires *MH*, 488.1292.

tert-Butyl (3*R**,5*S**,10*S**)-10-(benzyloxy)-3-[(pyridin-3-yl)methyl]-7-oxa-2-azaspiro[4.5] decane-2-carboxylate

According to a procedure,¹⁸ a solution of the alkene **20** (0.10 g, 0.28 mmol) and 3bromopyridine (31.8 µL, 0.33 mmol) in 1,4-dioxane (1.62 mL) was added to a mixture of Pd(OAc)₂ (3.09 mg, 13.8 µmols), DPE-Phos (14.9 mg, 27.0 µmols) and Cs₂CO₃ (0.22 g, 0.67 mmols). The reaction mixture was stirred vigorously at 105 °C for 18 h. Then, it was allowed to cool to rt, filtered through celite and concentrated under reduced pressure to give a crude product. The crude product (dr 67:33 by ¹H-NMR) was purified by flash column chromatography, eluting with $70:30 \rightarrow 50:50$ hexane-EtOAc to yield the *pyrrolidine derivative* 6 (38.0 mg, 31%, $dr > 95 \le 5$ by ¹H-NMR) as a grey oil, $R_f 0.56$ (EtOAc); v_{max}/cm^{-1} 2928, 2858, 1685, 1393, 1364, 1155, 1085; δ_H (500 MHz, CDCl₃, 323 K) 8.44 (1H, d, J 1.7, pyridine 2-H), 8.40 (1H, app. s, pyridine 6-H), 7.43 (1H, d, J 4.5, pyridine 4-H), 7.38-7.25 (5H, m, phenyl), 7.13 (1H, dd, *J* 7.7 and 4.5, pyridine 5-H), 4.61 (1H, d, *J* 11.7, phenylmethyl 1-H_A), 4.36 (1H, d, J 11.7, phenylmethyl 1-H_B), 4.04 (1H, app. br. s, 3-H), 3.83 (1H, m, 8-H_A), 3.54 (1H, d, J 11.4, 6-H_A), 3.50-3.43 (2H, m, 1-H_A and 8-H_B), 3.26 (1H, app. br. s, 10-H), 3.15 (1H, d, J 11.4, 6-H_B), 3.13-2.87 (2H, m, 1-H_B and pyridinylmethyl 1-H_A), 2.72 (1H, app. br. s, pyridinylmethyl 1-H_B), 1.99 (1H, dd, J 13.6 and 8.0, 4-H_A), 1.78-1.71 (2H, m, 4- H_B and 9- H_A), 1.66-1.56 (1H, m, 9- H_B), 1.48 (9H, s, ^tBu); δ_C (125 MHz, CDCl₃, 323 K) 154.7 (C=O), 151.0 (pyridine C-2), 147.8 (pyridine C-6), 138.5 (pyridine C-3), 137.0 (pyridine C-4), 134.0 (phenyl C-1), 128.5 (phenyl C₂-3,5), 127.8 (phenyl C-4), 127.7 (phenyl C₂-2,6), 123.2 (pyridine C-5), 79.7 (^tBu C₁), 76.7 (C-10), 71.7 (C-6), 70.7 (phenylmethyl C-1), 64.9 (C-8), 57.1 (C-3), 51.1 (C-1), 46.5 (C-5), 37.7 (C-4), 34.1 (pyridinylmethyl C-1), 28.6 (C-9 and ^tBu C₃); HRMS found MH⁺, 439.2604. C₂₆H₃₄N₂O₄ requires MH, 439.2596. The relative stereochemistry was determined using NOESY (500 MHz, CDCl₃, 323 K) nOe not observed between 3-H and 6-H_A.

(3*R**, 4*R**)-3-({[(*tert*-Butoxy)carbonyl]amino}methyl)-3-(prop-2-en-1-yl)oxan-4-yl acetate

According to General Procedure O, the alcohol derivative **16a** (0.36 g, 1.35 mmol) gave the *acetyl derivative* **22a** (0.40 g, 95%) as a yellow oil, $R_f 0.71$ (50:50 petrol–EtOAc); v_{max}/cm^{-1} 3355, 2973, 2933, 2859, 1739, 1714, 1508, 1365, 1236, 1164, 1089; δ_H (400 MHz, CDCl₃) 5.88-5.73 (1H, m, propenyl 2-H), 5.11 (1H, app. s, propenyl 3-H_{trans}), 5.08 (1H, app. d, *J* 2.5, propenyl 3-H_{cis}), 5.00 (1H, app. t, *J* 6.9, 4-H), 4.95 (1H, br. s, NH), 3.86 (1H, app. dt, *J* 11.6 and 4.6, 6-H_A), 3.68 (1H, d, *J* 12.0, 2-H_A), 3.55-3.46 (1H, m, 6-H_B), 3.28 (1H, dd, *J* 14.6 and 8.2, methylcarbamate 1-H_A), 3.18 (1H, d, *J* 12.0, 2-H_B), 2.87 (1H, dd, *J* 14.6 and 5.5, methylcarbamate 1-H_B), 2.35 (1H, dd, *J* 14.1 and 7.5, propenyl 1-H_A), 2.13-2.04 (1H, m, propenyl 1-H_B), 2.08 (3H, s, acetyl), 1.87-1.79 (2H, m, 5-H₂), 1.41 (9H, s, 'Bu); δ_C (100 MHz, CDCl₃) 170.9 (acetyl C=O), 156.2 (Boc C=O), 133.1 (propenyl C-2), 118.8 (propenyl C-3), 79.4 ('Bu C₁), 71.5 (C-4), 70.4 (C-2), 65.8 (C-6), 42.3 (methylcarbamate C-1), 42.0 (C-3), 33.5 (propenyl C-1), 28.4 ('Bu C₃), 27.6 (C-5), 21.2 (acetyl CH₃). HRMS found MNa⁺, 336.1791. C₁₆H₂₇NO₅ requires *MNa*, 336.1786.

Benzyl (3*R**,4*R**)-4-(acetyloxy)-3-({[(*tert*-butoxy)carbonyl]amino}methyl)-3-(prop-2-en-1-yl)piperidine-1-carboxylate

According to General Procedure O, the alcohol derivative **16b** (0.34 g, 0.84 mmol) gave the *acetyl derivative* **22b** (0.36 g, 95%) as a colourless oil, $R_{\rm f}$ 0.70 (50:50 petrol–EtOAc); $v_{\rm max}$ /cm⁻¹ 3367, 2976, 2936, 1738, 1697, 1510, 1434, 1365, 1232, 1160, 1036; $\delta_{\rm H}$ (500 MHz, CD₃OD, 333 K) 7.38-7.26 (5H, m, phenyl), 5.93-5.78 (1H, m, propenyl 2-H), 5.12 (2H, s, arylmethyl 1-H₂), 5.05 (1H, app. d, *J* 10.2, propenyl 3-H_{cis}), 5.04 (1H, app. d, *J* 17.2, propenyl 3-H_{trans}), 4.85 (1H, dd, *J* 8.3 and 4.0, 4-H), 3.71 (1H, app. br. s, 6-H_A), 3.57 (1H, d, *J* 13.9, 2-H_A), 3.35 (1H, app. br. s, 6-H_B), 3.16 (1H, d, *J* 13.9, 2-H_B), 3.13 (1H, d, *J* 15.1, methylcarbamate 1-H_A), 3.03 (1H, d, *J* 15.1, methylcarbamate 1-H_B), 2.22-2.08 (2H, m, propenyl 1-H₂), 2.05 (3H, s, acetyl), 1.96-1.86 (1H, m, 5-H_A), 1.75-1.66 (1H, m, 5-H_B), 1.42 (9H, s, ^{*t*}Bu); $\delta_{\rm C}$ (125 MHz, CD₃OD, 333 K) 172.1 (acetyl C=O), 158.2 (Boc C=O), 157.2 (Cbz C=O), 138.0 (phenyl C-1), 134.5 (propenyl C-2), 129.5 (phenyl C₂-3,5), 129.1 (phenyl

C₂-2,6), 129.0 (phenyl C-4), 118.8 (propenyl C-3), 80.3 (^tBu C₁), 73.2 (C-4), 68.6 (arylmethyl C-1), 48.6 (C-2), 43.6 (C-6), 42.9 (C-3), 42.2 (methylcarbamate C-1), 35.3 (propenyl C-1), 28.8 (^tBu C₃), 27.1 (C-5), 21.0 (acetyl CH₃); HRMS found MNa⁺, 469.2304. $C_{24}H_{34}N_2O_6$ requires *MNa*, 469.2309.

(3*R**,4*S**)-4-({[(*tert*-Butoxy)carbonyl]amino}methyl)-4-(prop-2-en-1-yl)oxolan-3-yl acetate

According to General Procedure O, the alcohol derivative **16d** (1.76 g, 6.83 mmol) gave the *acetyl derivative* **22d** (1.95 g, 95%) as a yellow oil, $R_{\rm f}$ 0.52 (50:50 petrol–EtOAc); $v_{\rm max}/\rm{cm}^{-1}$ 3254, 3139, 2974, 2938, 2874, 1737, 1704, 1449, 1395, 1366, 1352, 1249, 1233, 1223, 1162, 1131, 1082, 1020; $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.72 (1H, ddt, *J* 17.3, 10.0 and 7.4, propenyl 2-H), 5.18-5.04 (3H, m, 3-H and propenyl 3-H₂), 4.91 (1H, app. t, *J* 5.0, NH), 4.25 (1H, dd, *J* 10.6 and 5.6, 2-H_A), 3.71 (1H, dd, *J* 10.6 and 2.9, 2-H_B), 3.68 (1H, d, *J* 9.0, 5-H_A), 3.61 (1H, d, *J* 9.0, 5-H_B), 3.21 (1H, dd, *J* 14.2 and 6.4, methylcarbamate 1-H_A), 3.13 (1H, dd, *J* 14.2 and 6.4, methylcarbamate 1-H_B), 2.30-2.14 (2H, m, propenyl 1-H₂), 2.08 (3H, s, acetyl), 1.43 (9H, s, ^{*t*}Bu); $\delta_{\rm C}$ (100 MHz, CDCl₃) 170.7 (acetyl C=O), 156.4 (Boc C=O), 133.9 (propenyl C-2), 118.7 (propenyl C-3), 79.7 (^{*t*}Bu C₁), 77.2 (C-3), 74.7 (C-5), 73.4 (C-2), 50.1 (C-4), 43.9 (methylcarbamate C-1), 34.0 (propenyl C-1), 28.5 (^{*t*}Bu C₃), 21.0 (acetyl CH₃); HRMS found MNa⁺, 322.1621. C₁₅H₂₅NO₅ requires *MNa*, 322.1624.

(1*R**,2*S**)-2-({[(*tert*-Butoxy)carbonyl]amino}methyl)-6-methoxy-2-(prop-2-en-1-yl)-2,3dihydro-1*H*-inden-1-yl acetate

According to General Procedure O, the alcohol derivative **16e** (0.50 g, 1.50 mmol) gave the *acetyl derivative* **22e** (0.55 g, 98%) as a pale-yellow oil, $R_{\rm f}$ 0.50 (70:30 petrol–EtOAc); $v_{\rm max}/{\rm cm}^{-1}$ 3376, 2976, 2930, 1712, 1493, 1366, 1233, 1163, 1029; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.08 (1H, d, *J* 8.9, 4-H), 6.81 (2H, app. d, *J* 6.3, 5-H and 7-H), 6.04 (1H, s, 1-H), 5.86 (1H, ddt, *J* 16.6, 10.4 and 7.4, propenyl 2-H), 5.06 (1H, d, *J* 16.6, propenyl 3-H_{trans}), 5.05 (1H, d, *J* 10.4, propenyl 3-H_{cis}), 4.96 (1H, app. t, *J* 7.5, NH), 3.78 (3H, s, methoxy), 3.27 (1H, dd, *J* 14.2 and 6.9, methylcarbamate 1-H_A), 3.11 (1H, dd, *J* 14.2 and 6.2, methylcarbamate 1-H_B), 2.86 (1H, d, *J* 15.9, 3-H_A), 2.67 (1H, d, *J* 15.9, 3-H_B), 2.21 (2H, app. d, *J* 7.4, propenyl 1-H₂), 2.13 (3H, s, acetyl), 1.42 (9H, s, ¹Bu); $\delta_{\rm C}$ (100 MHz, CDCl₃) 171.4 (acetyl C=O), 159.1 (C-6), 156.3 (Boc C=O), 141.5 (C-7a), 134.4 (propenyl C-2), 133.5 (C-3a), 125.7 (C-4), 118.2 (propenyl C-3), 115.5 (C-5), 110.1 (C-7), 80.5 (C-1), 79.4 (¹Bu C₁), 55.6 (methoxy), 51.8 (C-2), 45.5 (methylcarbamate C-1), 38.2 (C-3), 36.5 (propenyl C-1), 28.5 (¹Bu C₃), 21.2 (acetyl CH₃); HRMS found MNa⁺, 398.1934. C₂₁H₂₉NO₅ requires *MNa*, 398.1937. The relative stereochemistry was determined using NOESY (500 MHz, CDCl₃) nOe observed between 1-H and methylcarbamate 1-H_A, 1-H and methylcarbamate 1-H_B.

(3*R**,4*R**)-3-({[(*tert*-Butoxy)carbonyl]amino}methyl)-3-(3-hydroxypropyl)oxan-4-yl acetate

According to General Procedure F, the alkene derivative **22a** (0.22 g, 0.69 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 60:40 EtOAc–hexane to yield the *alcohol derivative* **23** (0.17 g, 73%) as a light-yellow oil, $R_{\rm f}$ 0.13 (50:50 petrol–EtOAc); $v_{\rm max}$ /cm⁻¹ 3364, 2960, 2865, 1712, 1514, 1365, 1237, 1165, 1083, 1048, 1027; $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.05 (1H, app. t, *J* 6.9, NH), 4.95 (1H, app. t,

J 6.4, 4-H), 3.81 (1H, app. dt, *J* 10.7 and 5.0, 6-H_A), 3.67-3.58 (3H, m, 2-H_A and hydroxypropyl 3-H₂), 3.54 (1H, app. dt, *J* 12.0 and 6.3, 6-H_B), 3.28 (1H, dd, *J* 14.4 and 7.9, methylcarbamate 1-H_A), 3.21 (1H, d, *J* 12.0, 2-H_B), 2.94 (1H, dd, *J* 14.4 and 5.6, methylcarbamate 1-H_B), 2.07 (3H, s, acetyl), 1.98 (1H, br. s, OH), 1.82 (2H, app. q, *J* 5.9, 5-H₂), 1.65-1.32 (4H, m, hydroxypropyl 1,2-H₄), 1.41 (9H, s, ^{*t*}Bu); $\delta_{\rm C}$ (100 MHz, CDCl₃) 170.9 (acetyl C=O), 156.5 (Boc C=O), 79.5 (^{*t*}Bu C₁), 71.5 (C-4), 70.1 (C-2), 65.4 (C-6), 62.9 (hydroxypropyl C-3), 41.7 (methylcarbamate C-1), 41.3 (C-3), 28.4 (^{*t*}Bu C₃), 27.4 (C-5), 25.7 (hydroxypropyl C-2), 24.6 (hydroxypropyl C-1), 21.2 (acetyl CH₃); HRMS found MH⁺, 332.2072. C₁₆H₂₉NO₆ requires *MH*, 332.2067.

Benzyl (3*R**,4*R**)-4-(acetyloxy)-3-({[(*tert*-butoxy)carbonyl]amino}methyl)-3-(3hydroxypropyl)piperidine-1-carboxylate

According to General Procedure F, the alkene derivative **22b** (0.25 g, 0.55 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 60:40 EtOAc–hexane to yield the *alcohol derivative* **S16** (0.22 g, 86%) as a colourless oil, $R_{\rm f}$ 0.38 (20:80 petrol–EtOAc); $v_{\rm max}/{\rm cm}^{-1}$ 3400, 2937, 2872, 2508, 1681, 1433, 1365, 1235, 1157, 1035; $\delta_{\rm H}$ (500 MHz, CD₃OD, 333 K) 7.38-7.28 (5H, m, phenyl), 5.12 (2H, s, arylmethyl 1-H₂), 4.87 (1H, dd, *J* 8.1 and 3.8, 4-H), 3.68 (1H, app. br. s, 6-H_A), 3.53 (1H, app. br. s, 2-H_A), 3.53-3.40 (2H, m, hydroxypropyl 3-H₂), 3.38 (1H, app. br. s, 6-H_B), 3.18 (2H, d, *J* 14.7, 2-H_B and methylcarbamate 1-H_A), 3.03 (1H, d, *J* 14.7, methylcarbamate 1-H_B), 2.05 (3H, s, acetyl), 1.95-1.86 (1H, m, 5-H_A), 1.76-1.63 (1H, m, 5-H_B), 1.61-1.53 (1H, m, hydroxypropyl 2-H_A), 1.53-1.44 (2H, m, hydroxypropyl 2-H_B and hydroxypropyl 1-H_A), 1.42 (9H, s, ^{*t*}Bu), 1.40-1.32 (1H, m, hydroxypropyl 1-H_B); $\delta_{\rm C}$ (125 MHz, CD₃OD, 333 K) 172.2 (acetyl C=O), 158.3 (Boc C=O), 157.2 (Cbz C=O), 138.1 (phenyl C-1), 129.5 (phenyl C₂-3,5), 129.1 (phenyl C₂-2,6), 129.0 (phenyl C-4), 80.3 (^{*t*}Bu C₁), 73.5 (C-4), 68.5 (arylmethyl C-1), 63.6 (hydroxypropyl C-3), 48.7 (C-2), 43.1 (methylcarbamate C-1), 42.5

(C-6), 42.2 (C-3), 28.8 (^{*i*}Bu C₃), 27.2 (hydroxypropyl C-1), 27.0 (hydroxypropyl C-2), 21.0 (acetyl CH₃); HRMS found MNa⁺, 487.2411. C₂₄H₃₆N₂O₇ requires *MNa*, 487.2420.

tert-Butyl N-{[2-(3-hydroxypropyl)-3-oxomorpholin-2-yl]methyl}carbamate

According to General Procedure F, the alkene derivative **1c** (0.20 g, 0.53 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with EtOAc to yield the *alcohol derivative S17* (0.11 g, 71%) as a pale oil, R_f 0.20 (10:90 MeOH–EtOAc); v_{max}/cm^{-1} 3307, 2974, 2932, 2876, 1696, 1660, 1509, 1484, 1365, 1340, 1269, 1248, 1163, 1124, 1063; δ_H (400 MHz, CDCl₃) 7.20 (1H, br. s, 4-H), 5.12 (1H, app. t, *J* 5.0, methylcarbamate NH), 3.96-3.78 (2H, m, 6-H₂), 3.65-3.49 (3H, m, hydroxypropyl 3-H₂ and methylcarbamate 1-H_A), 3.49-3.40 (1H, m, 5-H_A), 3.40-3.28 (2H, m, 5-H_B and methylcarbamate 1-H_B), 2.54 (1H, br. s, OH), 2.00-1.85 (1H, m, hydroxypropyl 1-H_A), 1.79-1.64 (2H, m, hydroxypropyl 1-H_B and hydroxypropyl 2-H_A), 1.63-1.51 (1H, m, hydroxypropyl 2-H_B), 1.42 (9H, s, ^{*t*}Bu); δ_C (100 MHz, CDCl₃) 172.8 (C-3), 156.2 (Boc C=O), 80.9 (^{*t*}Bu C₁), 79.5 (C-2), 62.5 (hydroxypropyl C-3), 59.5 (C-6), 44.9 (C-5), 42.2 (methylcarbamate C-1), 31.3 (hydroxypropyl C-2), 28.5 (^{*t*}Bu C₃), 26.6 (hydroxypropyl C-1); HRMS found MNa⁺, 311.1574. C₁₃H₂₄N₂O₅ requires *MNa*, 311.1577.

(1*R**,2*S**)-2-({[(*tert*-Butoxy)carbonyl]amino}methyl)-2-(3-hydroxypropyl)-6-methoxy-2,3-dihydro-1*H*-inden-1-yl acetate

According to General Procedure F, the alkene derivative **22e** (0.20 g, 0.53 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 50:50 EtOAc–hexane to yield the *alcohol derivative* **S18** (0.17 g, 83%) as a colourless oil, $R_{\rm f}$ 0.36 (30:70 petrol–EtOAc); $v_{\rm max}$ /cm⁻¹ 3376, 3270, 3145, 2937, 2873, 1705, 1493, 1394, 1368, 1234, 1167, 1144, 1121, 1008; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.08 (1H, d, *J* 8.1, 4-H), 6.81 (2H, app. d, *J* 7.6, 5-H and 7-H), 5.97 (1H, s, 1-H), 5.06 (1H, app. t, *J* 7.0, NH), 3.77 (3H, s, methoxy), 3.67-3.51 (2H, m, hydroxypropyl 3-H₂), 3.24-3.04 (2H, m, methylcarbamate 1-H₂), 2.83 (1H, d, *J* 15.8, 3-H_A), 2.65 (1H, d, *J* 15.8, 3-H_B), 2.11 (3H, s, acetyl), 1.87 (1H, br. s, OH), 1.63-1.49 (4H, m, hydroxypropyl 1,2-H₄), 1.41 (9H, s, ^{*t*}Bu); $\delta_{\rm C}$ (100 MHz, CDCl₃) 171.5 (acetyl C=O), 159.1 (C-6), 156.7 (Boc C=O), 141.6 (C-7a), 133.7 (C-3a), 125.7 (C-4), 115.6 (C-5), 110.3 (C-7), 80.6 (C-1), 79.6 (^{*t*}Bu C₁), 63.2 (hydroxypropyl C-3), 55.6 (methoxy), 51.7 (C-2), 45.0 (methylcarbamate C-1), 38.7 (C-3), 28.5 (^{*t*}Bu C₃), 27.6 (hydroxypropyl C-1), 27.3 (hydroxypropyl C-2), 21.3 (acetyl CH₃); HRMS found MNa⁺, 416.2049. C₂₁H₃₁NO₆ requires *MNa*, 416.2043.

tert-Butyl (5R*, 6R*)-5-(acetyloxy)-2-oxa-8-azaspiro[5.5]undecane-8-carboxylate

According to General Procedure P, the alcohol derivative **23** (0.10 g, 0.30 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 20:80 EtOAc–hexane to yield the *piperidine derivative* **24** (54.0 mg, 57%) as a colourless oil, R_f 0.59 (50:50 petrol–EtOAc); v_{max}/cm^{-1} 2936, 2857, 1737, 1687, 1423, 1365, 1274, 1234, 1160, 1141, 1090, 1040; δ_H (500 MHz, CDCl₃, 323 K) 4.89 (1H, dd, *J* 6.2 and 3.7, 5-H), 3.71 (1H, ddd, *J* 12.1, 8.7 and 3.6, 3-H_A), 3.65 (1H, app. t, *J* 5.1, 3-H_B), 3.62 (1H, d, *J* 12.0, 1-H_A), 3.50 (1H, d, *J* 13.7, 7-H_A), 3.42-3.34 (1H, m, 9-H_A), 3.32-3.28 (1H, m, 9-H_B), 3.25 (1H, d, *J* 12.0, 1-H_B), 3.24 (1H, d, *J* 13.7, 7-H_B), 2.05 (3H, s, acetyl), 2.03-1.98 (1H, m, 4-H_A), 1.69-1.60 (1H, m, 4-H_B), 1.53-1.48 (3H, m, 10-H₂ and 11-H_A), 1.43 (9H, s, ¹Bu), 1.42-1.38 (1H, m, 11-H_B); δ_C (125 MHz, CDCl₃, 323 K) 170.1 (acetyl C=O), 154.9 (Boc C=O), 79.7 (^tBu C₁), 71.1 (C-5), 70.8 (C-1), 64.7 (C-3), 49.4 (C-7), 44.5 (C-9), 37.5 (C-

6), 28.5 (^{*i*}Bu C₃), 27.4 (C-4), 26.6 (C-10), 21.0 (acetyl CH₃), 20.5 (C-11); HRMS found MNa⁺, 336.1789. C₁₆H₂₇NO₅ requires *MNa*, 336.1786.

2-Benzyl 8-*tert*-butyl (5*R**,6*S**)-5-(acetyloxy)-2,8-diazaspiro[5.5]undecane-2,8dicarboxylate

According to General Procedure P, the alcohol derivative **S16** (50.0 mg, 0.12 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 30:70 EtOAc–hexane to yield the *piperidine derivative* **5** (19.0 mg, 40%) as a colourless oil, $R_{\rm f}$ 0.60 (50:50 petrol–EtOAc); $v_{\rm max}/{\rm cm}^{-1}$ 2936, 2866, 1737, 1686, 1425, 1364, 1273, 1232, 1205, 1154, 1108, 1038; $\delta_{\rm H}$ (500 MHz, CD₃OD, 333 K) 7.37-7.27 (5H, m, phenyl), 5.14 (1H, d, *J* 12.4, arylmethyl 1-H_A), 5.11 (1H, d, *J* 12.4, arylmethyl 1-H_B), 4.89 (1H, dd, *J* 6.8 and 3.6, 5-H), 3.63-3.44 (3H, m, 3-H₂ and 1-H_A), 3.44-3.33 (4H, m, 9-H₂, 1-H_B and 7-H_A), 3.19 (1H, d, *J* 12.9, 7-H_B), 2.06 (3H, s, acetyl), 1.99-1.90 (1H, m, 4-H_A), 1.74-1.65 (1H, m, 4-H_B), 1.64-1.58 (1H, m, 11-H_A), 1.57-1.47 (2H, m, 10-H₂), 1.43 (9H, s, 'Bu), 1.41-1.36 (1H, m, 11-H_B); $\delta_{\rm C}$ (125 MHz, CD₃OD, 333 K) 171.9 (acetyl C=O), 157.1 (Boc C=O), 156.5 (Cbz C=O), 138.1 (phenyl C-1), 129.5 (phenyl C₂-3,5), 129.1 (phenyl C₂-2,6), 129.0 (phenyl C-4), 81.3 ('Bu C₁), 72.7 (C-5), 68.5 (arylmethyl C-1), 50.2 (C-7), 49.0 (C-1), 45.5 (C-9), 41.7 (C-3), 39.3 (C-6), 28.7 ('Bu C₃), 28.0 (C-10), 27.2 (C-4), 21.7 (C-11), 20.8 (acetyl CH₃); HRMS found MNa⁺, 469.2306. C₂4H₃₄N₂O₆ requires *MNa*, 469.2314.

tert-Butyl 5-oxo-1-oxa-4,8-diazaspiro[5.5]undecane-8-carboxylate

According to General Procedure P, the alcohol derivative **S17** (78.0 mg, 0.27 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 60:40 EtOAc–hexane to yield the *piperidine derivative* **33** (42.0 mg, 57%) as a colourless oil, R_f 0.44 (EtOAc); v_{max}/cm^{-1} 3192, 3071, 2954, 2925, 1687, 1667, 1421, 1364, 1335, 1276, 1243, 1175, 1150, 1107, 1086; δ_H (500 MHz, CD₃OD, 333 K) 4.37 (1H, br. s, 4-H), 4.16 (1H, d, *J* 13.9, 7-H_A), 3.95 (1H, app. d, *J* 12.3, 9-H_A), 3.79 (1H, ddd, *J* 12.1, 8.5 and 3.5, 2-H_A), 3.72 (1H, app. br. s, 2-H_B), 3.32 (1H, ddd, *J* 12.5, 8.5 and 4.2, 3-H_A), 3.26-3.15 (1H, m, 3-H_B), 3.00 (1H, app. br. s, 7-H_B), 2.69 (1H, app. br. s, 9-H_B), 1.93 (1H, app. td, *J* 13.5 and 4.5, 10-H_A), 1.86-1.76 (1H, m, 10-H_B), 1.75-1.62 (1H, m, 11-H_A), 1.36 (10H, s, 11-H_B and 'Bu); δ_C (125 MHz, CD₃OD, 333 K) 173.9 (C-5), 157.1 (Boc C=O), 81.1 ('Bu C₁), 77.6 (C-6), 60.1 (C-2), 45.0 (C-7), 43.1 (C-9), 43.0 (C-3), 32.8 (C-10), 28.7 ('Bu C₃), 20.6 (C-11); HRMS found MNa⁺, 293.1466. C₁₃H₂₂N₂O₄ requires *MNa*, 293.1471.

tert-Butyl (2*R**,3*S**)-3-(acetyloxy)-5-methoxy-1,3-dihydrospiro[indene-2,3'-piperidine]-1'-carboxylate

According to General Procedure P, the alcohol derivative **S18** (50.0 mg, 0.13 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 10:90 EtOAc–hexane to yield the *piperidine derivative* 40 (6.00 mg, 13%) as a colourless oil, R_f 0.50 (70:30 petrol–EtOAc); v_{max} /cm⁻¹ 2928, 2851, 1732, 1689, 1493, 1426, 1365, 1285, 1234, 1152, 1018; δ_H (500 MHz, CDCl₃, 323 K) 7.10 (1H, d, *J* 8.3, 7-H), 6.98 (1H, d, *J* 2.5, 4-H), 6.84 (1H, dd, *J* 8.3 and 2.5, 6-H), 5.83 (1H, s, 3-H), 3.78 (3H, s,

methoxy), 3.60-3.48 (1H, m, 6'-H_A), 3.32 (1H, ddd, *J* 12.8, 7.0 and 5.1, 6'-H_B), 3.25 (1H, d, *J* 13.2, 2'-H_A), 3.15 (1H, d, *J* 13.2, 2'-H_B), 2.81 (1H, d, *J* 15.6, 1-H_A), 2.66 (1H, d, *J* 15.6, 1-H_B), 2.04 (3H, s, acetyl), 1.87-1.78 (1H, m, 4'-H_A), 1.69 (1H, app. dt, *J* 13.0 and 5.6, 4'-H_B), 1.61-1.54 (2H, m, 5'-H₂), 1.40 (9H, s, 'Bu); δ_{C} (100 MHz, CDCl₃, 323 K) 170.8 (acetyl C=O), 159.3 (C-5), 155.0 (Boc C=O), 141.7 (C-3a), 135.2 (C-7a), 125.9 (C-7), 116.3 (C-6), 111.7 (C-4), 80.6 (C-3), 79.7 (^tBu C₁), 55.7 (methoxy), 51.8 (C-2'), 47.4 (C-2), 44.3 (C-6'), 39.8 (C-1), 30.4 (C-4'), 28.6 (^tBu C₃), 22.9 (C-5'), 21.2 (acetyl CH₃); HRMS found MNa⁺, 398.1935. C₂₁H₂₉NO₅ requires *MNa*, 398.1937.

tert-Butyl (5*R**,10*R**)-10-(acetyloxy)-3-hydroxy-7-oxa-2-azaspiro[4.5]decane-2carboxylate

According to General Procedure J, the alkene derivative **22a** (69.0 mg, 0.22 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 30:70 \rightarrow 50:50 EtOAc–hexane to yield *hemiaminals* **25** (51.0 mg, 74%, *dr* 58:42 by ¹H-NMR) as an amorphous colourless solid, R_f 0.53 and 0.33 (50:50 EtOAc–petrol); v_{max}/cm^{-1} 3451, 2973, 2861, 1739, 1694, 1389, 1365, 1233, 1160; δ_H (500 MHz, CD₃OD, 333 K) 5.08-4.99 (1H, m, 3-H^{maj}), 4.95-4.86 (1H, m, 3-H^{min}) 4.79-4.68 (2H, m, 10-H), 3.81-3.63 (2H, m, 8-H_A), 3.54-3.36 (6H, m, 8-H_B, 6-H_A and 1-H_A), 3.30-3.09 (4H, m, 6-H_B and 1-H_B), 2.02-1.91 (8H, m, acetyl and 4-H_A), 1.83-1.68 (4H, m, 4-H_B and 9-H_A), 1.64-1.54 (2H, m, 9-H_B), 1.38 (18H, s, 'Bu); δ_C (125 MHz, CD₃OD, 333 K) 171.9 (acetyl 2C=O), 156.0 (Boc C=O^{maj}), 155.7 (Boc C=O^{min}), 90.5 (C-3^{maj}), 89.8 (C-3^{min}), 81.8 ('Bu C₁^{maj}), 81.7 ('Bu C₁^{min}), 74.5 (C-10^{maj}), 73.4 (C-8^{maj}), 72.9 (C-10^{min}), 72.4 (C-8^{min}) 65.4 (C-6^{maj}), 64.7 (C-6^{min}) 52.3 (C-1^{maj}), 50.6 (C-1^{min}), 46.1 (C₂-5), 39.0 (C-4^{min}), 37.4 (C-4^{maj}), 30.1 (C-9^{maj}), 29.5 (C-9^{min}), 28.6 ('Bu 2C₃), 20.8 (acetyl 2CH₃); HRMS found MNa⁺, 338.1575. C₁₅H₂₅NO₆ requires *MNa*, 338.1579.

tert-Butyl (5R*, 10R*)-10-(acetyloxy)-3-oxo-7-oxa-2-azaspiro[4.5]decane-2-carboxylate

Pyridinium dichromate (47.4 mg, 0.126 mmol) and celite (20 mg) were added to a solution of the hemiaminals **25** (20.0 mg, 63.4 µmol) in DCM (1.00 mL) at rt. The reaction mixture was stirred for 1 week at rt. Then, the mixture was filtered through celite and concentrated under reduced pressure to give a crude product. The crude product was purified by flash column chromatography, eluting with 40:60 EtOAc–hexane to yield the *pyrrolidine derivative* **26** (13.0 mg, 65%) as a colourless oil, R_f 0.30 (50:50 petrol–EtOAc); v_{max}/cm^{-1} 2975, 2933, 2857, 1785, 1738, 1711, 1367, 1310, 1230, 1147, 1093, 1044, 1025; δ_H (500 MHz, CDCl₃) 4.90 (1H, dd, *J* 8.8 and 4.2, 10-H), 3.88 (1H, app. dt, *J* 12.0 and 4.7, 8-H_A), 3.70 (1H, d, *J* 11.6, 6-H_A), 3.57 (1H, ddd, *J* 12.0, 9.0 and 3.3, 8-H_B), 3.49 (2H, app. s, 1-H₂), 3.36 (1H, d, *J* 11.6, 6-H_B), 2.68 (1H, d, *J* 17.9, 4-H_A), 2.49 (1H, d, *J* 17.9, 4-H_B), 2.09 (3H, s, acetyl), 1.90 (1H, app. dq, *J* 13.0 and 4.0, 9-H_A), 1.68 (1H, app dtd, *J* 13.9, 9.3 and 4.5, 9-H_B), 1.52 (9H, s, ¹Bu); δ_C (125 MHz, CDCl₃) 171.9 (C-3), 170.3 (acetyl C=O), 149.9 (Boc C=O), 83.5 (¹Bu C₃), 21.1 (acetyl CH₃); HRMS found MH⁺, 314.1598. C₁₅H₂₃NO₆ requires *MH*, 314.1598.

7-Benzyl 2-*tert*-butyl (5*R**,10*S**)-10-(acetyloxy)-3-oxo-2,7-diazaspiro[4.5]decane-2,7-diazaspiro[4.5]decane-2,7-

According to General Procedure Q, the alkene derivative **22b** (0.20 g, 0.45 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 35:65 EtOAc–hexane to yield the *pyrrolidine derivative* **31** (0.12 g, 60%) as a colourless oil, R_f 0.42 (50:50 petrol–EtOAc); v_{max}/cm^{-1} 2978, 1785, 1738, 1696, 1432, 1367, 1315, 1229, 1148, 1104, 1041; δ_H (500 MHz, CD₃OD, 333 K) 7.37-7.27 (5H, m, phenyl), 5.15 (1H, d, *J* 12.3, arylmethyl 1-H_A), 5.12 (1H, d, *J* 12.3, arylmethyl 1-H_B), 4.97 (1H, dd, *J* 8.4 and 3.9, 10-H), 3.80-3.75 (1H, m, 8-H_A), 3.73 (1H, dd, *J* 13.6 and 1.5, 6-H_A), 3.58 (1H, d, *J* 11.2, 1-H_A), 3.53 (1H, d, *J* 11.2, 1-H_B), 3.93-3.34 (1H, m, 8-H_B), 3.32 (1H, d, *J* 13.6, 6-H_B), 2.63 (1H, d, *J* 17.7, 4-H_A), 2.33 (1H, d, *J* 17.7, 4-H_B), 2.04 (3H, s, acetyl), 1.83 (1H, app. ddt, *J* 14.0, 6.4 and 3.9, 9-H_A), 1.67 (1H, dtd, *J* 14.0, 8.4 and 4.4, 9-H_B), 1.49 (9H, s, 'Bu); δ_C (125 MHz, CD₃OD, 333 K) 174.1 (C-3), 171.7 (acetyl C=O), 157.1 (Boc C=O), 151.3 (Cbz C=O), 137.9 (phenyl C-1), 129.6 (phenyl C₂-3,5), 129.2 (phenyl C-4), 128.9 (phenyl C₂-2,6), 84.5 ('Bu C₁), 74.7 (C-10), 68.7 (arylmethyl C-1), 53.3 (C-1), 50.2 (C-6), 41.9 (C-8), 40.3 (C-5), 39.4 (C-4), 28.3 (C-9), 28.2 ('Bu C₃) 20.7 (acetyl CH₃); HRMS found MNa⁺, 469.1942. C₂₃H₃₀N₂O₇ requires *MNa*, 469.1945.

tert-Butyl (4R*,5S*)-4-(acetyloxy)-8-oxo-2-oxa-7-azaspiro[4.4]nonane-7-carboxylate

According to General Procedure Q, the alkene derivative **22d** (0.25 g, 0.83 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 40:60 \rightarrow 60:40 EtOAc-hexane to yield the *pyrrolidine derivative* **36** (0.19 g, 76%) as a yellow oil, $R_{\rm f}$ 0.34 (40:60 petrol–EtOAc); $v_{\rm max}$ /cm⁻¹ 2977, 2933, 2873, 1786, 1737, 1699, 1389, 1366, 1311, 1230, 1151, 1104, 1062, 1047, 1023; $\delta_{\rm H}$ (500 MHz, CD₃OD, 333 K) 5.15 (1H, dd, *J* 5.3 and 2.7, 4-H), 4.20 (1H, dd, *J* 10.8 and 5.3, 3-H_A), 3.86 (1H, d, *J* 8.7, 1-H_A), 3.75 (1H, dd, *J* 10.8 and 2.7, 3-H_B), 3.73 (1H, d, *J* 11.0, 6-H_A), 3.72 (1H, d, *J* 8.7, 1-H_B), 3.68 (1H, d, *J* 11.0, 6-H_B), 2.78 (1H, d, *J* 17.8, 9-H_A), 2.48 (1H, d, *J* 17.8, 9-H_B), 2.08 (3H, s, acetyl), 1.52 (9H, s, ^{*t*}Bu); $\delta_{\rm C}$ (125 MHz, CD₃OD, 333 K) 174.1 (C-8), 172.0 (acetyl C=O), 151.3 (Boc C=O), 84.5 (^{*t*}Bu C₁), 79.4 (C-4), 76.2 (C-1), 73.7 (C-3), 55.7 (C-6), 46.7 (C-5),

37.2 (C-9), 28.3 (^tBu C₃), 20.6 (acetyl CH₃); HRMS found MNa⁺, 322.1257. C₁₄H₂₁NO₆ requires *MNa*, 322.1261.

tert-Butyl (2*R**,3*R**)-3-(acetyloxy)-5-methoxy-5'-oxo-1,3-dihydrospiro[indene-2,3'pyrrolidine]-1'-carboxylate

According to General Procedure Q, the alkene derivative **22e** (0.10 g, 0.26 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 25:75 EtOAc–hexane to yield the *pyrrolidine derivative* **41** (37.0 mg, 37%) as a colourless oil, R_f 0.48 (50:50 petrol–EtOAc); v_{max}/cm^{-1} 2978, 2934, 1784, 1737, 1715, 1492, 1367, 1310, 1224, 1150, 1022; δ_H (400 MHz, CDCl₃, 323 K) 7.13 (1H, d, *J* 8.3, 7-H), 6.91 (1H, d, *J* 2.6, 4-H), 6.85 (1H, dd, *J* 8.3 and 2.6, 6-H), 6.00 (1H, s, 3-H), 3.78 (3H, s, methoxy), 3.76 (1H, d, *J* 11.0, 2'-H_A), 3.57 (1H, d, *J* 11.0, 2'-H_B), 3.06 (1H, d, *J* 15.3, 1-H_A), 2.90 (1H, d, *J* 15.3, 1-H_B), 2.83 (1H, d, *J* 17.4, 4'-H_A), 2.44 (1H, d, *J* 17.4, 4'-H_B), 2.08 (3H, s, acetyl), 1.51 (9H, s, ^tBu); δ_C (100 MHz, CDCl₃, 323 K) 172.1 (C-5'), 170.7 (acetyl C=O), 159.7 (C-5), 150.0 (Boc C=O), 141.1 (C-3a), 133.1 (C-7a), 125.9 (C-7), 116.2 (C-6), 111.1 (C-4), 83.2 (^tBu C₁), 81.1 (C-3), 56.2 (C-2'), 55.7 (methoxy), 47.5 (C-2), 41.8 (C-1), 40.4 (C-4'), 28.2 (^tBu C₃), 20.9 (acetyl CH₃); HRMS found MNa⁺, 398.1583. C₂₀H₂₅NO₆ requires *MNa*, 398.1574.

tert-Butyl (5R*, 10R*)-10-(acetyloxy)-7-oxa-2-azaspiro[4.5]decane-2-carboxylate

By modification of an existing procedure,¹⁹ NaBH(OAc)₃ (93.0 mg, 441 µmol) was added to a solution of the hemiaminals 25 (20.0 mg, 63.4 µmol) in AcOH (0.30 mL) at rt. The reaction mixture was stirred for 3 h at rt. Then, a saturated aqueous solution of NaHCO₃ (1 mL) and DCM (1 mL) were added. The phases were separated and the aqueous phase was extracted with DCM (4 \times 1 mL). The organic phases were combined, dried (MgSO₄), filtered and concentrated under reduced pressure to give a crude product. The crude product was purified by flash column chromatography, eluting with 25:75 EtOAc-hexane to yield the pyrrolidine derivative 27 (15.0 mg, 79%) as a colourless oil, $R_{\rm f}$ 0.47 (50:50 petrol-EtOAc); $v_{\rm max}/{\rm cm}^{-1}$ 2971, 2863, 1738, 1691, 1398, 1364, 1234, 1172, 1145, 1103, 1090, 1071; δ_H (500 MHz, CDCl₃, 323 K) 4.91 (1H, dd, J 7.5 and 3.8, 10-H), 3.81 (1H, ddd, J 11.2, 7.0 and 3.9, 8-H_A), 3.65 (1H, d, J 11.5, 6-H_A), 3.61 (1H, ddd, J 11.2, 7.4 and 3.7, 8-H_B), 3.48-3.45 (1H, m, 3-H_A), 3.37-3.26 (1H, m, 3-H_B), 3.34 (1H, d, J 11.5, 6-H_B), 3.29 (1H, d, J 11.3, 1-H_A), 3.16 (1H, m, 1-H_B), 2.08 (3H, s, acetyl), 1.94-1.86 (2H, m, 9-H_A and 4-H_A), 1.84-1.78 (1H, m, 4-H_B), 1.75-1.67 (1H, m, 9-H_B), 1.46 (9H, s, ^tBu); δ_{C} (125 MHz, CDCl₃, 323 K) 170.3 (acetyl C=O), 154.6 (Boc C=O), 79.6 (^tBu C₁), 72.2 (C-10), 71.4 (C-6), 65.0 (C-8), 51.3 (C-1), 44.4 (C₂-3,5), 29.2 (C-9), 28.7 (C-4 and ^{*t*}Bu C₃), 21.1 (acetyl CH₃); HRMS found MH⁺, 300.1805. C₁₅H₂₅NO₅ requires *MH*, 300.1805.

7-Benzyl 2-*tert*-butyl (5*R**,10*S**)-10-(acetyloxy)-2,7-diazaspiro[4.5]decane-2,7dicarboxylate

According to General Procedure R, the alkene derivative **22b** (0.10 g, 0.23 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 30:70 EtOAc–hexane to yield the *pyrrolidine derivative* **32** (61.0 mg, 61%) as a colourless oil, R_f 0.41 (50:50 petrol–EtOAc); v_{max} /cm⁻¹ 2974, 2876, 1737, 1688, 1430, 1398, 1364, 1233, 1211, 1145, 1101, 1059, 1041; δ_H (500 MHz, CD₃OD, 333 K) 7.38-7.26 (5H, m,

phenyl), 5.16 (1H, d, *J* 12.4, arylmethyl 1-H_A), 5.09 (1H, d, *J* 12.4, arylmethyl 1-H_B), 4.90 (1H, dd, *J* 7.1 and 3.7, 10-H), 3.61 (1H, ddd, *J* 12.5, 7.7 and 4.2, 8-H_A), 3.53 (1H, d, *J* 13.4, 6-H_A), 3.52-3.47 (1H, m, 8-H_B), 3.45-3.40 (1H, m, 3-H_A), 3.38 (1H, d, *J* 13.4, 6-H_B), 3.35-3.27 (1H, m, 3-H_B), 3.22 (1H, d, *J* 11.2, 1-H_A), 3.12 (1H, d, *J* 11.2, 1-H_B), 2.06 (3H, s, acetyl), 1.93-1.84 (1H, m, 4-H_A), 1.82-1.74 (1H, m, 9-H_A), 1.73-1.63 (2H, m, 4-H_B and 9-H_B), 1.43 (9H, s, ^{*t*}Bu); $\delta_{\rm C}$ (125 MHz, CD₃OD, 333 K) 171.9 (acetyl C=O), 157.1 (Boc C=O), 156.3 (Cbz C=O), 138.0 (phenyl C-1), 129.6 (phenyl C₂-3,5), 129.1 (phenyl C-4), 128.9 (phenyl C₂-2,6), 81.1 (^{*t*}Bu C₁), 73.9 (C-10), 68.6 (arylmethyl C-1), 52.6 (C-1), 49.2 (C-6), 47.5 (C-5), 45.4 (C-3), 41.6 (C-8), 30.2 (C-4), 28.9 (C-9), 28.8 (^{*t*}Bu C₃), 20.8 (acetyl CH₃); HRMS found MNa⁺, 455.2147. C₂₃H₃₂N₂O₆ requires *MNa*, 455.2152.

tert-Butyl 9-benzoyl-10-oxo-6-oxa-2,9-diazaspiro[4.5]decane-2-carboxylate

According to General Procedure R, the alkene derivative **1c** (0.20 g, 0.53 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 20:80 EtOAc–hexane to yield the *pyrrolidine derivative* **34** (94.0 mg, 49%) as a colourless oil, R_f 0.63 (50:50 petrol–EtOAc); v_{max}/cm^{-1} 2974, 2888, 1682, 1394, 1366, 1313, 1279, 1234, 1172, 1132, 1100, 1082; δ_H (500 MHz, CD₃OD, 333 K) 7.57-7.53 (2H, m, phenyl 2,6-H₂), 7.50 (1H, tt, *J* 7.2 and 1.6, phenyl 4-H), 7.41 (2H, td, *J* 7.2 and 1.6, phenyl 3,5-H₂), 4.13-4.01 (2H, m, 7-H₂), 3.99-3.86 (2H, m, 8-H₂), 3.69 (2H, app. s, 1-H₂), 3.54 (1H, ddd, *J* 10.5, 8.5 and 3.5, 3-H_A), 3.47 (1H, ddd, *J* 10.5, 8.9 and 7.5, 3-H_B), 2.43-2.35 (1H, m, 4-H_A), 2.35-2.26 (1H, m, 4-H_B), 1.46 (9H, s, ^{*t*}Bu); δ_C (125 MHz, CD₃OD, 333 K) 174.6 (C-10), 173.3 (benzoyl C=O), 156.2 (Boc C=O), 136.9 (phenyl C-1), 132.9 (phenyl C-4), 129.3 (phenyl C₂-3,5), 129.0 (phenyl C₂-2,6), 81.3 (C-5), 81.1 (^{*t*}Bu C₁), 61.4 (C-7), 56.6 (C-1), 46.8 (C-8), 45.9 (C-3), 36.6 (C-4), 28.8 (^{*t*}Bu C₃); HRMS found MNa⁺, 383.1575. C₁₉H₂₄N₂O₅ requires *MNa*, 383.1577.

tert-Butyl (4R*,5S*)-4-(acetyloxy)-2-oxa-7-azaspiro[4.4]nonane-7-carboxylate

According to General Procedure R, the alkene derivative **22d** (0.25 g, 0.83 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 30:70 EtOAc–hexane to yield the *pyrrolidine derivative* **37** (0.18 g, 76%) as a colourless oil, R_f 0.42 (50:50 petrol–EtOAc); v_{max} /cm⁻¹ 2975, 2934, 2873, 1738, 1693, 1400, 1366, 1236, 1161, 1122; δ_H (500 MHz, CD₃OD, 333 K) 5.04 (1H, dd, *J* 4.9 and 2.1, 4-H), 4.09 (1H, dd, *J* 10.7 and 4.9, 3-H_A), 3.71 (1H, dd, *J* 10.7 and 2.1, 3-H_B), 3.70 (1H, d, *J* 8.6, 1-H_A), 3.67 (1H, d, *J* 8.6, 1-H_B), 3.40-3.34 (1H, m, 8-H_A), 3.34-3.28 (1H, m, 8-H_B), 3.28-3.22 (2H, m, 6-H₂), 2.04 (3H, s, acetyl), 2.03-2.01 (1H, m, 9-H_A), 1.81 (1H, ddd, *J* 13.6, 8.0 and 6.1, 9-H_B), 1.42 (9H, s, 'Bu); δ_C (125 MHz, CD₃OD, 333 K) 172.1 (acetyl C=O), 156.3 (Boc C=O), 81.1 ('Bu C₁), 78.9 (C-4), 75.9 (C-1), 74.2 (C-3), 55.5 (C-6), 54.0 (C-5), 46.1 (C-8), 28.8 (C-9 and 'Bu C₃), 20.6 (acetyl CH₃); HRMS found MNa⁺, 308.1465. C₁₄H₂₃NO₅ requires *MNa*, 308.1468.

tert-Butyl (2*R**,3*R**)-3-(acetyloxy)-5-methoxy-1,3-dihydrospiro[indene-2,3'-pyrrolidine]-1'-carboxylate

According to General Procedure R, the alkene derivative **22e** (0.10 g, 0.26 mmol) gave a crude material. The crude material was purified by flash column chromatography, eluting with 20:80 EtOAc–hexane to yield the *pyrrolidine derivative* **42** (49.0 mg, 51%) as a colourless oil, R_f 0.38 (70:30 petrol–EtOAc); v_{max} /cm⁻¹ 2974, 2933, 1733, 1689, 1492, 1395, 1365, 1227, 1163, 1144, 1118, 1100, 1020; δ_H (500 MHz, CD₃OD, 333 K) 7.14 (1H, d, *J* 8.3, 7-H), 6.92 (1H, d, *J* 2.5, 4-H), 6.86 (1H, dd, *J* 8.3 and 2.5, 6-H), 5.92 (1H, s, 3-H), 3.76 (3H,

s, methoxy), 3.50-3.37 (2H, m, 5'-H₂), 3.33 (1H, d, *J* 11.0, 2'-H_A), 3.16 (1H, d, *J* 11.0, 2'-H_B), 3.01 (1H, d, *J* 15.3, 1-H_A), 2.77 (1H, d, *J* 15.3, 1-H_B), 2.15 (1H, app. dt, *J* 13.0 and 7.4, 4'-H_A), 2.06 (3H, s, acetyl), 1.89 (1H, app. dt, *J* 13.0 and 6.8, 4'-H_B), 1.44 (9H, s, ^{*t*}Bu); δ_C (100 MHz, CD₃OD, 333 K) 172.5 (acetyl C=O), 160.7 (C-5), 156.5 (Boc C=O), 142.9 (C-3a), 136.1 (C-7a), 126.6 (C-7), 116.9 (C-6), 112.2 (C-4), 82.1 (C-3), 81.0 (^{*t*}Bu C₁), 57.2 (C-2'), 56.0 (methoxy), 55.0 (C-2), 46.3 (C-5'), 41.5 (C-1), 32.1 (C-4'), 28.8 (^{*t*}Bu C₃), 20.8 (acetyl CH₃); HRMS found MNa⁺, 384.1779. C₂₀H₂₇NO₅ requires *MNa*, 384.1781.

tert-Butyl (5*R**,10*R**)-10-(acetyloxy)-3-methoxy-7-oxa-2-azaspiro[4.5]decane-2carboxylate

TsOH•H₂O (2.74 mg, 14.4 µmol) was added to a solution of the hemiaminals 25 (0.15 g, 0.48 mmol) in MeOH (1.20 mL) at rt. The reaction mixture was stirred for 18 h at rt. Then, the solvent was removed under reduced pressure to give a crude product. The crude product was purified by flash column chromatography, eluting with 20:80 EtOAc-hexane to yield the aminals 28 (0.12 g, 77%, dr 77:23 by ¹H-NMR) as a colourless oil, $R_{\rm f}$ 0.33 (50:50 petrol–EtOAc); v_{max} /cm⁻¹ 2973, 2934, 2859, 1740, 1697, 1390, 1366, 1234, 1164, 1068; δ_{H} (500 MHz, CD₃OD, 333 K) 5.16 (1H, app. d, *J* 6.3, 3-H^{min}), 5.13 (1H, app. d, *J* 5.7, 3-H^{maj}), 4.99 (1H, dd, J 5.5 and 3.5, 10-H^{min}), 4.85 (1H, dd, J 7.6 and 3.8, 10-H^{maj}), 3.94 (1H, d, J 11.5, 6-H_A^{min}) 3.83 (1H, d, J 11.5, 6-H_A^{maj}), 3.79 (2H, ddd, J 11.2, 7.0 and 3.9, 8-H_A), 3.62-3.59 (2H, m, 8-H_B), 3.57 (1H, d, J 11.5, 6-H_B^{maj}), 3.54 (2H, d, J 11.6, 1-H_A), 3.47 (1H, d, J 11.5, 6- H_B^{min}), 3.33-3.27 (8H, m, 1- H_B and methoxy 1- H_3), 2.08 (3H, s, acetyl 1- H_3^{min}), 2.05 (3H, s, acetyl 1-H₃^{maj}), 2.00 (2H, dd, J 13.8 and 5.7, 4-H_A), 1.91 (2H, app. d, J 13.8, 4-H_B), 1.86-1.80 (2H, m, 9-H_A), 1.73-1.64 (2H, m, 9-H_B), 1.49 (9H, s, ^tBu^{min}), 1.48 (9H, s, ^tBu^{maj}); δ_C (125 MHz, CD₃OD, 333 K) 172.0 (acetyl C=O^{maj}), 171.9 (acetyl C=O^{min}) 156.0 (Boc 2C=O), 90.7 (C-3^{maj}), 89.9 (C-3^{min}), 81.8 (^tBu 2C₁), 74.5 (C-10^{maj}), 73.4 (C-6^{maj}), 72.9 (C-10^{min}), 72.4 (C-6^{min}), 65.4 (C-8^{maj}), 64.6 (C-8^{min}), 56.0 (methoxy C-1^{maj}), 55.7 (methoxy C-

1^{min}), 52.4 (C₂-1), 46.3 (C₂-5), 37.3 (C₂-4), 30.1 (C-9^{maj}), 29.5 (C-9^{min}), 28.6 (^{*t*}Bu 2C₃), 20.8 (acetyl 2CH₃); HRMS found MNa⁺, 352.1740. C₁₆H₂₇NO₆ requires *MNa*, 352.1730.

tert-Butyl (5*R**,10*R**)-10-(acetyloxy)-3-phenyl-7-oxa-2-azaspiro[4.5]decane-2carboxylate

According to a procedure,²⁰ PhMgBr (0.75 mL, 0.75 mmol of a 1.0 M solution in THF) was added dropwise to a suspension of CuBr•Me₂S (0.15 g, 0.75 mmol) in Et₂O (1.50 mL) at -40 °C. The suspension was stirred at -40 °C for 1 h and then it was cooled to -78 °C. Subsequently, Et₂O•BF₃ (92.6 µL, 0.75 mmol) and a solution of the aminals 28 (0.10 g, 0,30 mmol) in Et₂O (0.50 mL) were added and the reaction mixture was warmed to 0 °C. The reaction was stirred at 0 °C for 18 h. Then, it was warmed to rt, a saturated aqueous solution of NH₄Cl (2 mL) and EtOAc (2 mL) were added, the phases were separated and the aqueous phase was extracted with EtOAc (4×2 mL). The organic phases were combined, washed with brine (4 mL), dried (MgSO₄), filtered and concentrated under reduced pressure to give a crude product. The crude product (dr 50:50 by ¹H-NMR) was purified by flash column chromatography, eluting with 20:80 EtOAc-hexane to yield the phenyl derivative 29 (0.10 g, 88%, dr 57:43 by ¹H-NMR) as a colourless oil, $R_f 0.56$ (50:50 petrol-EtOAc); v_{max}/cm^{-1} 3504, 2972, 2930, 2859, 1738, 1688, 1392, 1363, 1234, 1159, 1090, 1070; δ_H (500 MHz, CD₃OD, 333 K) 7.24-7.16 (5H, m, phenyl^{min}), 7.14-7.05 (5H, m phenyl^{maj}), 4.91 (1H, dd, J 7.4 and 3.9, 10-H^{min}), 4.87-4.78 (1H, m, 10-H^{maj}), 4.80-4.73 (1H, m, 3-H^{min}) 4.66 (1H, app. t, J 8.4, 3-H^{maj}), 3.70 (2H, ddd, J 11.3, 7.5 and 3.7, 8-H_A), 3.60 (2H, d, J 11.5, 6-H_A), 3.56 (2H, ddd, J 11.3, 6.7 and 4.1, 8-H_B), 3.45 (2H, d, J 12.0, 1-H_A), 3.35 (2H, d, J 12.0, 1-H_B), 3.29 (2H, J 11.5, 6-H_B), 2.46 (1H, app. dd, J 13.5 and 8.5, 4-H_A^{min}), 2.28 (1H, ddd, J 13.5, 8.0 and 1.3, 4-H_A^{maj}), 2.00 (3H, s, acetyl^{min}), 1.91 (3H, s, acetyl^{maj}), 1.86-1.79 (1H, m, 9-H_A^{min}), 1.79-1.71 (2H, m, 4-H_B^{maj} and 9-H_A^{maj}), 1.70-1.62 (2H, m, 4-H_B^{min} and 9-H_B^{min}), 1.58 (1H, app. dtd, J 13.8, 6.7 and 3.7, 9-H_B^{maj}); δ_C (125 MHz, CD₃OD, 333 K) 172.0 (C=O^{min}), 171.8

(C=O^{maj}), 156.3 (phenyl C-1^{maj}), 156.1 (phenyl C-1^{min}), 129.4 (phenyl C₂-4), 127.8 (phenyl C₂-3,5^{maj}), 127.7 (phenyl C₂-3,5^{min}), 126.6 (phenyl C₂-2,6^{min}), 126.5 (phenyl C₂-2,6^{maj}), 73.5 (C-6^{min}), 73.1 (C₂-10), 71.4 (C-6^{maj}), 65.7 (C-8^{min}), 65.5 (C-8^{maj}), 62.4 (C-3^{maj}), 61.6 (C-3^{min}), 55.3 (C-1^{maj}), 53.1 (C-10^{min}), 46.9 (C-5^{maj}), 46.6 (C-5^{min}), 41.4 (C-4^{maj}), 41.2 (C-4^{min}), 30.2 (C-9^{maj}), 29.7 (C-9^{min}), 20.9 (acetyl CH₃^{min}) 20.7 (acetyl CH₃^{maj}); HRMS found MH⁺, 276.1594. C₁₆H₂₁NO₃ requires *MH*, 276.1594.

X-Ray Structures

ORTEP diagram of 13

Crystal data and structure refinement for 13				
Empirical formula	C ₁₄ H ₂₅ NO ₄			
Formula weight	271.35			
Temperature/K	120.01(19)			
Crystal system	monoclinic			
Space group	$P2_1/c$			
a/Å	11.04739(18)			
b/Å	12.2038(2)			
c/Å	10.96322(18)			
α/°	90.00			
β/°	91.7913(16)			
γ/°	90.00			
Volume/Å ³	1477.35(4)			
Z	4			

$\rho_{calc}g/cm^3$	1.220
μ/mm^{-1}	0.721
F(000)	592.0
Crystal size/mm ³	$0.21\times0.12\times0.09$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	8 to 147.5
Index ranges	$-9 \le h \le 13, -14 \le k \le 14, -13 \le l \le 13$
Reflections collected	6401
Independent reflections	$2882 [R_{int} = 0.0214, R_{sigma} = 0.0256]$
Data/restraints/parameters	2882/0/175
Goodness-of-fit on F ²	1.052
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0374, wR_2 = 0.0880$
Final R indexes [all data]	$R_1 = 0.0435, wR_2 = 0.0918$
Largest diff. peak/hole / e Å ⁻³	0.29/-0.19

ORTEP diagram of 3

Crystal data and structure refinement for 3		
Empirical formula	C ₉ H ₁₃ NO ₃	
Formula weight	183.20	
Temperature/K	120.01(10)	
Crystal system	monoclinic	
Space group	$P2_1/c$	
a/Å	7.65800(10)	

b/Å	9.53160(10)
c/Å	12.1849(2)
α/°	90
β/°	94.8050(10)
γ/°	90
Volume/Å ³	886.29(2)
Ζ	4
$\rho_{calc}g/cm^3$	1.373
μ/mm^{-1}	0.859
F(000)	444.0
Crystal size/mm ³	0.48 imes 0.28 imes 0.26
Radiation	$Cu K\alpha (\lambda = 1.54184)$
20 range for data collection/°	11.596 to 147.354
Index ranges	$-8 \le h \le 9, -8 \le k \le 11, -14 \le l \le 15$
Reflections collected	4943
Independent reflections	1726 [$R_{int} = 0.0130, R_{sigma} = 0.0130$]
Data/restraints/parameters	1726/0/118
Goodness-of-fit on F ²	1.072
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0315, wR_2 = 0.0799$
Final R indexes [all data]	$R_1 = 0.0339, wR_2 = 0.0817$
Largest diff. peak/hole / e Å ⁻³	0.31/-0.19

ORTEP diagram of 39

Crystal data and structure refinement for 39			
Empirical formula	C ₁₅ H ₁₇ NO ₃		
Formula weight	259.29		
Temperature/K	119.97(16)		
Crystal system	triclinic		
Space group	P-1		
a/Å	6.7483(5)		
b/Å	9.9314(7)		
c/Å	11.0967(8)		
α/°	63.764(7)		
β/°	79.148(6)		
γ/°	74.800(6)		
Volume/Å ³	641.49(9)		
Z	2		
$\rho_{calc}g/cm^3$	1.342		
μ/mm^{-1}	0.762		
F(000)	276.0		
Crystal size/mm ³	0.15 imes 0.08 imes 0.06		
Radiation	$CuK\alpha (\lambda = 1.54184)$		
20 range for data collection/°	8.916 to 147.94		
Index ranges	$-8 \le h \le 7, -12 \le k \le 10, -13 \le l \le 12$		
Reflections collected	4223		
Independent reflections	2397 [$R_{int} = 0.0277, R_{sigma} = 0.0391$]		
Data/restraints/parameters	2397/0/173		
Goodness-of-fit on F ²	1.028		
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0379, wR_2 = 0.0941$		
Final R indexes [all data]	$R_1 = 0.0450, wR_2 = 0.0996$		
Largest diff. peak/hole / e Å ⁻³	0.35/-0.22		

Assessment of the CNS Lead-Likeness of the Prepared Scaffolds

In order to assess the CNS lead-likeness of the 30 prepared scaffolds, corresponding virtual scaffolds without protecting groups, iodines, ketones and alkenes were generated (Fig. 1). Subsequently, a previously described protocol was used for virtual library generation and scoring to obtain the mean CNS Lead MPO score per scaffold.²¹ See Table 1 and Table 2 for reactions and aspects of medicinal chemistry capping groups used for virtual decoration.

Figure 1: Generation of virtual scaffolds from the 30 scaffolds prepared. Virtual scaffolds containing aldehydes were converted to alcohols prior to decoration or were decorated with a reductive amination reaction.

Type of decoration reaction	Functionality in the scaffold	Functionality in the reagent	
Amidation	Amines	Carboxylic acid	
Sulfonylation	Amines	Sulfonyl chlorides	
O-alkylation/arylation	Alcohols	Halides	
N-alkylation/arylation	Amines, amides	Halides	
Reductive amination	Amines	Ketones, aldehydes	
Reductive amination	aldehydes Amines		
Urea formation	Amines	Isocyanates	

Table 1: Reactions used for virtual library generation. Scaffolds with one point of decoration were decorated once. Scaffolds with two or more points of decoration were decorated twice. Primary amines serve as two points of decoration.

Substituent type	Number	Mean MW	Range MW	Mean cLogP	Range cLogP
Carboxylic acids	20	118.6	60.0 - 156.6	0.71	-0.49 - 2.12
Sulfonyl chlorides	15	173.2	114.5 - 211.1	1.24	0.00 - 2.40
Halides	30	163.3	94.9 - 205.5	1.88	0.68 - 3.24
Ketones	3	76.7	58.1 - 100.1	-0.32	-0.680.10
Aldehydes	15	102.4	44.0 - 140.6	0.93	-0.44 - 2.25
Isocyanates	15	119.9	71.1 – 167.6	1.01	-0.05 - 2.36

Table 2: Aspects of the 98 medicinal chemistry capping groups used for the decoration of the virtual scaffolds. More features of these medicinal chemistry capping groups can be found in a previously published set.¹⁸

NOESY Spectra

References

1 0. 11. Difference, neuro ci ystatto ζ_1 , n , ω_1 , ω_2 , n , ω_1 , ω_2	1	G. M. Sheldrick,	Acta	Crystallogr.	Α,	2015.	, 71	, 3	
---	---	------------------	------	--------------	----	-------	------	-----	--

- 2 G. M. Sheldrick, Acta Crystallogr. C, 2015, 71, 3.
- 3 US Pat., US005635103A, 1997.
- 4 B. M. Trost and J. Xu, J. Org. Chem., 2007, 72, 9372.
- 5 D. Sikriwal, R. Kant, P. R. Maulik and D. K. Dikshit, *Tetrahedron*, 2010, 66, 6167.
- 6 Y. Numajiri, G. Jime, B. Wang, K. N. Houk and B. M. Stoltz, *Org. Lett.*, 2015, **17**, 1082.
- R. Ragavan, K. Kumar, V. Vijayakumar, S. Sarveswari, S. Ramaiah, A. Anbarasu, S. Karthikeyan, P. Giridharan and N. Kumari, *Org. Med. Chem. Lett.*, 2013, 3, 1.
- 8 Y. Numajiri, B. P. Pritchett, K. Chiyoda and B. M. Stoltz, *J. Am. Chem. Soc.*, 2015, 137, 1040.
- 9 L. H. P. Teixeira, E. J. Barreiro and C. A. M. Fraga, Synth. Commun., 1997, 27, 3241.

- 10 I. Shimizu, T. Yamada and J. Tsuji, *Tetrahedron Lett.*, 1980, **21**, 3199.
- 11 M. A. Gianturco, P. Friedel and A. S. Giammarino, *Tetrahedron*, 1964, 20, 1763.
- 12 K. Matsuzaki, K. Okuyama, E. Tokunaga, M. Shiro and N. Shibata, *ChemistryOpen*, 2014, **3**, 233.
- 13 Z. Xu, Q. Wang and J. Zhu, J. Am. Chem. Soc., 2015, 137, 6712.
- Y. H. Zhu, M. Zhang, Q. Y. Li, Q. Liu, J. Zhang, Y. Y. Yuan, F. J. Nan and M. W.
 Wang, *Chin. Chem. Lett.*, 2014, 25, 693.
- I. Colomer, C. J. Empson, P. Craven, Z. Owen, R. G. Doveston, I. Churcher, S. P. Marsden and A. Nelson, *Chem. Commun.*, 2016, 52, 7209.
- X. Wu, J. Huang, B. Guo, L. Zhao, Y. Liu, J. Chen and W. Cao, *Adv. Synth. Catal.*, 2014, 356, 3377.
- 17 G. Bartoli, M. Bosco, A. Carlone, M. Locatelli, P. Melchiorre and L. Sambri, Org. Lett., 2004, 6, 3973.
- R. G. Doveston, P. Tosatti, M. Dow, D. J. Foley, H. Y. Li, A. J. Campbell, D. House,
 I. Churcher, S. P. Marsden and A. Nelson, *Org. Biomol. Chem.*, 2015, 13, 859.
- 19 N. Langlois and F. Rakotondradany, *Tetrahedron*, 2000, 56, 2437.
- 20 B. M. Trost and F. Miege, J. Am. Chem. Soc., 2014, 136, 3016.
- J. Mayol-Llinàs, A. Nelson, W. Farnaby and A. Ayscough, *Drug Discov. Today*, 2017, 22, 965.