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Abstract

Value sets for the EQ‐5D‐5L are required to facilitate its use in estimating quality‐

adjusted life years. An international protocol has been developed to guide the

collection of stated preference data for this purpose and has been used to

generate EQ‐5D‐5L valuation data for England. The aim of this paper is report

the innovative methods used for modelling those data to obtain a value set.

Nine hundred and ninety‐six members of the English general public completed

time trade‐off (TTO) and discrete choice experiment (DCE) tasks. We estimate

models, with and without interactions, using DCE data only, TTO data only,

and TTO/DCE data combined. TTO data are interpreted as both left and right

censored. Heteroskedasticity and preference heterogeneity between individuals

are accounted for. We use Bayesian methods in the econometric analysis. The

final model is chosen based on the deviance information criterion (DIC).

Censoring and taking account of heteroskedasticity have important effects on

parameter estimation. For DCE data only, TTO data only, and DCE/TTO data

combined, models with parameters for all dimensions and levels perform best,

as judged by the DIC. Taking account of heterogeneity improves fit, and the

multinomial model reports the lowest DIC. This paper presents approaches that

suit observed characteristics of EQ‐5D‐5L valuation data and recognise respon-

dents' preference heterogeneity. The methods described are potentially relevant

to other value set studies.
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1 | INTRODUCTION

Generic preference‐based measures of health‐related quality of life (HRQoL) have been developed primarily for use in
the economic evaluation of health care technologies (Brazier, Ratcliffe, Salomon, & Tsuchiya, 2017). The EQ‐5D is the
most well‐known and widely used generic preference‐based measure (Devlin & Krabbe, 2013), with applications in
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

reative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the

y John Wiley & Sons Ltd.

wileyonlinelibrary.com/journal/hec 1

http://orcid.org/0000-0003-4436-1126
http://orcid.org/0000-0002-1561-5361
http://orcid.org/0000-0002-4927-7858
http://orcid.org/0000-0003-3656-8063
mailto:b.a.vanhout@sheffield.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/hec.3560
http://wileyonlinelibrary.com/journal/hec


2 FENG ET AL.
clinical studies, reimbursement decision making, health care monitoring, and population health studies. It comprises
five dimensions: mobility, self‐care, usual activities, pain/discomfort, and anxiety/depression. In the original version
of the instrument, each dimension has three severity levels: no, some, or extreme problems. In order to increase the
instrument's sensitivity to changes in health, a new version of the instrument with five levels on each of the five dimen-
sions, that is, the EQ‐5D‐5L, has been developed (Herdman et al., 2011).

To generate country‐specific EQ‐5D value sets, general public respondents are asked to value a subset of health states
described by the instrument. A number of different techniques can be used to obtain these values, such as standard gam-
ble, time trade‐off (TTO), or visual analogue scale. They may also be derived indirectly using the discrete choice exper-
iment (DCE) method, where values on a latent scale are derived from health state comparisons. To value the EQ‐5D‐5L
in England we collected data from 996 individuals following a protocol developed by the EuroQol Group (Oppe, Devlin,
van Hout, Krabbe, & de Charro, 2014), which comprises a combination of TTO and DCE tasks.

Van Hout and McDonnell (1992) presented the first EQ‐5D value function, later published by van Busschbach,
McDonnell, Essink‐Bot, and van Hout (1999). Regression techniques were used to estimate the coefficients for each level
and dimension, which could then be used to generate values for all the health states described by the instrument. A
number of issues related to the modelling approaches used to develop value sets that were relevant at that time are just
as important now. Some of the issues are technical in nature, some are related to specific aspects of the valuation tasks,
and some challenge the assumptions made in the valuation studies. An example of the latter is a question about whether
the mean should be used as the measure of central tendency when analysing health state values (Devlin, Shah, &
Buckingham, 2017).

The primary aim of this paper is to give a detailed report of the methods for modelling the English EQ‐5D‐5L value
set, these being quite different from earlier methods. The methods may also be relevant for modelling valuation data for
different versions of the EQ‐5D instrument, other countries' EQ‐5D valuation data, and valuation data for other health
outcome measures.

The remainder of this paper starts by describing the data collection procedure, exclusion criteria, and approaches to
interpreting the data. We then describe a variety of models tested: those that use DCE data only; those that use TTO data
only; and those that combine the TTO and DCE data. Special attention is paid to the error distribution in the TTO model,
acknowledging the limited range of the data, the fact that the data are actually in intervals, the fact that the variance
increases with worsening health states, and preference heterogeneity. We also discuss the criteria used to select the
“best” model. Findings are presented in Section 4, including modelling results from the various specifications as well
as the sensitivity analysis. The final section discusses the improvements in econometric modelling methods developed
in this study and compares these with methods used previously.
2 | DATA

In 2013, the EuroQol Valuation Technology (EQ‐VT)—computer‐assisted personal interview software—was developed
by the EuroQol Group together with a protocol for the collection of EQ‐5D‐5L valuation data using TTO and DCE tasks
(Oppe et al., 2014). For the TTO tasks, a composite approach (Janssen, Oppe, Versteegh, & Stolk, 2013) was followed
using “conventional” TTO for health states considered better than dead and “lead time TTO” for health states considered
worse than dead (Devlin, Buckingham, et al., 2013). Screenshots for the composite TTO and DCE tasks in the EQ‐VT are
presented in Oppe et al. (2014). A number of country‐specific value sets for the EQ‐5D‐5L are available: Netherlands
(Versteegh et al., 2016), Canada (Xie et al., 2016), Korea (Kim et al., 2016), Uruguay (Augustovski et al., 2016), and Japan
(Ikeda et al., 2015). These studies used only TTO data in the econometric modelling to produce the final value sets.
2.1 | Sampling

Primary data collection was carried out in England by the market research company Ipsos MORI. The valuation data
were collected via face‐to‐face interviews in respondents' homes by 48 trained interviewers. A sample of 2,020 addresses
from 66 primary sampling units (based on postcode sectors) across England was randomly selected, using the Post Office
small user Postcode Address File as the sampling frame. The sample was intended to be representative of adults aged
18 years and over living in private residential accommodation in England. One thousand and four individuals were
interviewed between November 2012 and May 2013, with 996 completing the valuation tasks in full.
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2.2 | Study design

Eighty‐six health states were valued using TTO. These were allocated to 10 blocks with 10 health states in each. Each
block included the worst health state in the EQ‐5D‐5L descriptive system (55555) and one of the least severe health
states. For the DCE tasks, 196 pairs of EQ‐5D‐5L health states were selected and organised into 28 blocks with seven
pairs in each. The selection of the health states is reported by Oppe and van Hout (2010). Each respondent completed
10 TTO and 7 DCE tasks. Devlin, Shah, Feng, Mulhern, and van Hout (2017) provide detailed descriptions of the pref-
erence elicitation methods used.
2.3 | Exclusion criteria

In the TTO tasks, 84 respondents were excluded because we judged their valuation data to be implausible. These include
23 respondents who gave the same TTO value for all 10 states and 61 respondents who gave 55555 a value no lower than
the value they gave to the mildest health state in their block. This was considered by the study team to represent a “clear
inconsistency.” See Engel, Bansback, Bryan, Doyle‐Waters, and Whitehurst (2016) for a review of exclusion criteria
applied in national valuation studies. The exclusions were applied to the raw data before any econometric analyses were
undertaken. They were not used to define the prior probability distributions in the Bayesian regression analyses.
2.4 | Final data set

The final TTO data set includes 912 respondents with 9,120 TTO observations. Summary statistics for the TTO values for
the 86 health states are reported in Table 1.

The final DCE data set includes 996 respondents with 6,972 observations. Each task involved a choice between two
health states, labelled “A” and “B.” Among the 996 respondents, five respondents always chose A and five always chose
B. For each health state, a “level sum score”—sum of the levels of the five dimensions; a proxy for severity ranging from 5
(for 11111) to 25 (for 55555)—can be calculated. Figure 1 shows the percentage of respondents who chose A, plotted
against the differences in the level sum score between the two options.
2.5 | Interpretation of values at −1, 0, and 1

2.5.1 | Censoring at −1

When respondents completing a TTO task value health state “x” as worse than dead, they may, at the extreme, prefer to
die now than to live for 10 years in full health (the lead time) followed by 10 years in “x.” In that case the resultant value,
given the variant of TTO used in the EQ‐5D‐5L valuation protocol, is −1. However, we cannot exclude the possibility that
respondents who respond in this way would have traded more time in full health had they been presented with a longer
lead time, in which case their value would be lower than −1 (Devlin, et al., 2013). As such, when a value of −1 is
observed it can be interpreted as −1 or lower, which makes these values, in a statistical sense, “left censored” at −1.
2.5.2 | Censoring at 0

When the TTO data for each respondent were plotted against the predicted TTO values from the 10‐parameter DCE tar-
iff, we found that most respondents' data followed a negative gradient as expected (i.e., valuing more severe health states
lower than less severe health states). However, some respondents use zero as the minimum value more than once,
including when valuing the worst health state 55555. This suggests that those respondents did not want to go below zero
(e.g., do not believe there is such a thing as a health state so bad that experiencing it for 10 years would be worse than
dead). Consequently, these respondents do not distinguish between 55555 and other health states that are logically better
than 55555, leading to a situation in which no value is attached to improvements from 55555 to less severe health states.
Our interpretation is that when a respondent valued more than one health state (almost always including 55555) at zero,
these values are not necessarily equal. This is captured by interpreting the observed zero values as being either zero or
less than zero. In statistical terms, those zeros are interpreted as being “censored at zero.” In the analysis reported here,
this concerns 150 respondents and 595 observed zero values.



TABLE 1 Summary statistics for the 86 TTO health states (N = 9,120)

Health state N Mean SD Median Min Max Health state N Mean SD Median Min Max

11112 182 0.85 0.23 0.95 −0.65 1 22434 93 0.53 0.48 0.60 −1 1
11121 181 0.89 0.19 0.95 −0.20 1 23514 80 0.40 0.46 0.50 −1 1
11211 173 0.89 0.18 0.95 0 1 24342 99 0.36 0.51 0.50 −1 1
12111 184 0.87 0.21 0.95 0 1 31524 83 0.45 0.47 0.50 −1 1
21111 192 0.89 0.17 0.95 0 1 52215 80 0.35 0.48 0.50 −1 1
11122 91 0.79 0.28 0.90 0 1 52431 83 0.54 0.41 0.60 −1 1
11212 85 0.82 0.25 0.95 0 1 53412 99 0.44 0.46 0.50 −1 1
11221 93 0.84 0.22 0.95 0 1 54231 93 0.40 0.48 0.50 −1 1
12112 85 0.81 0.26 0.95 0 1 31525 107 0.43 0.46 0.50 −1 1
12121 80 0.81 0.29 0.90 −1 1 32443 80 0.29 0.49 0.50 −1 0.95
21112 74 0.83 0.22 0.90 0 1 33253 99 0.40 0.45 0.50 −1 1
11421 107 0.65 0.38 0.80 −1 1 35143 107 0.27 0.55 0.50 −1 1
13122 93 0.81 0.22 0.90 0.10 1 35332 93 0.59 0.39 0.70 −1 1
14113 83 0.69 0.33 0.80 −0.90 1 43315 83 0.42 0.44 0.50 −0.95 1
11414 107 0.41 0.53 0.50 −1 1 44125 74 0.32 0.51 0.50 −1 1
13313 107 0.69 0.33 0.75 −1 1 45133 80 0.36 0.51 0.50 −1 1
11235 93 0.53 0.42 0.50 −0.95 1 51451 93 0.26 0.45 0.35 −1 1
12513 74 0.61 0.42 0.80 −1 1 24443 83 0.33 0.47 0.40 −1 1
13224 91 0.49 0.48 0.60 −1 1 34244 85 0.26 0.48 0.30 −1 1
21315 83 0.54 0.46 0.60 −1 1 43514 85 0.36 0.53 0.50 −1 1
25122 107 0.52 0.48 0.60 −1 1 45233 107 0.33 0.52 0.50 −1 1
42321 91 0.54 0.44 0.70 −1 1 45413 93 0.34 0.57 0.50 −1 1
11425 93 0.53 0.48 0.60 −1 1 53243 107 0.23 0.58 0.30 −1 1
12244 107 0.32 0.51 0.50 −1 1 34155 80 0.24 0.52 0.35 −1 1
12334 99 0.44 0.49 0.50 −1 1 34515 93 0.32 0.55 0.50 −1 1
12514 93 0.44 0.48 0.50 −1 1 43542 80 0.23 0.45 0.30 −1 0.95
15151 83 0.42 0.45 0.50 −1 1 45144 93 0.17 0.44 0.20 −1 1
21334 99 0.50 0.43 0.60 −1 1 52335 91 0.33 0.51 0.50 −1 1
23152 85 0.39 0.43 0.50 −1 1 53244 107 0.12 0.53 0.10 −1 1
23242 99 0.44 0.47 0.50 −1 1 54153 83 0.27 0.48 0.40 −1 1
25222 107 0.59 0.38 0.65 −1 1 54342 74 0.18 0.55 0.30 −1 1
32314 99 0.51 0.46 0.50 −1 1 55233 107 0.28 0.58 0.50 −1 1
35311 91 0.51 0.50 0.60 −1 1 14554 74 0.15 0.52 0.10 −1 1
42115 93 0.41 0.48 0.50 −1 1 24445 91 0.16 0.57 0.30 −1 1
53221 74 0.58 0.42 0.70 −1 1 24553 93 0.33 0.50 0.50 −1 1
12344 74 0.25 0.50 0.33 −1 1 35245 93 0.18 0.48 0.30 −1 1
25331 107 0.53 0.52 0.70 −1 1 55225 99 0.17 0.57 0.20 −1 1
31514 107 0.39 0.53 0.50 −1 1 44345 74 0.21 0.50 0.25 −1 1
34232 91 0.55 0.44 0.60 −1 1 55424 85 0.25 0.53 0.35 −1 1
51152 93 0.35 0.55 0.50 −1 1 44553 85 0.09 0.54 0.10 −1 0.95
12543 80 0.32 0.52 0.50 −1 1 52455 107 0.07 0.57 0.10 −1 1
21345 85 0.43 0.47 0.50 −1 1 43555 91 0.06 0.59 0.10 −1 1
21444 107 0.15 0.52 0.30 −1 1 55555 912 −0.08 0.52 0.00 −1 0.95
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Further, a number of respondents valued 55555 at zero whilst valuing more than one other health state at less than
zero. This is logically inconsistent. We censored those negative values and associated zero values at zero. This concerns
27 individuals and 154 observations.

Figure 2 shows the number of observations for each TTO value. The red bars show the number of observations
censored at zero. In total, we censored 749 observations (595 + 154 = 749) at zero.
2.5.3 | Censoring at 1

Some respondents gave relatively low values, for example, 0.5 or 0, to the least severe states resulting in relatively large
differences between the mean and the median value. For example, the median and mean for health state 11211 are 0.95
and 0.89, respectively. The distribution of observed values is the result of a distribution of true values (different people



FIGURE 2 Number of observations censored and not censored at zero against the time trade‐off (TTO) value

FIGURE 1 Percentage choosing A or B in the discrete choice experiment tasks versus relative severities of A and B (N = 996)

FENG ET AL. 5
may have different values) and errors (each observed value may not be the true value). Although one can make an error
to the left of the scale and value this health state at 0, one cannot make an equivalent error to the right of the scale and
value it at, say, 2. As a result, the distribution is likely not to be normally distributed, which also explains why the mean
and median are quite different. Now, although the distribution of true values is “truncated” at 1, the distribution of true
values plus errors may be seen as “censored” at 1. In combination, values at 1 could be considered as being either 1 or
greater than 1 (i.e., “right censored”) and this is how we treat all values at 1. This may be considered arbitrary; however,
we feel that this fits the data generating process better than to assume that the errors follow a normal distribution (with-
out taking any account of truncation or censoring), as is traditionally done.
2.6 | Weighting

Our sample generally reflects the distribution of the English population in terms of key sociodemographic characteristics
(Appendix S1). However, there is a noticeable underrepresentation of individuals aged between 18 and 29 years old. To
adjust our sample to reflect the true distribution of the population in England, we apply a weight for each age band (Office
for National Statistics, 2016). Our sample is divided into eight age bands, that is, 18–29 years, 30–39 years, 40–49 years,
50–59 years, 60–69 years, 70–79 years, 80–89 years, and 90 years and above. Theweight for each band is calculated as the ratio
of the proportion of the general population in England/Wales in that band to the corresponding proportion in our sample.

All models in the econometric analyses applied these weights to adjust the distribution of the sample.
3 | METHODS

Both TTO and DCE data can be used individually to produce a value set. We present results using DCE data, TTO data,
and TTO/DCE data combinations.
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3.1 | Model parameter specification

Within each method, models were estimated with 5, 9, 10, and 20 parameters, with and without interaction terms, and
with and without terms capturing some degree of decreasing marginal severity, corresponding to the “N3 term” used in
the UK 3‐level EQ‐5D tariff (Dolan, 1997).

The five‐parameter model estimates one parameter for each dimension. The level descriptors (no, slight, moderate,
severe, and extreme/unable problems) are captured by five numbers, that is, 0, 1, 2, 3, and 4, respectively. The assump-
tion behind this model is that there is a linear relationship between the TTO values and the five dimensions. Within each
dimension, the utility decrements for moderate problems are assumed to be twice as large as for slight problems, the
utility decrements for severe problems are assumed to be three times as large as for slight problems, and so forth.

The nine‐parameter model estimates one parameter per dimension and one parameter per level (4 levels + 5 dimen-
sions = 9 parameters). In theory, the five dimension parameters could add up to one.1 To save the degrees of freedom, we
actually estimate four dimension parameters rather than five. Therefore, the nine‐parameter model could be viewed as
an eight‐parameter model (4 levels + 4 dimensions = 8 parameters) with the additional dimension parameter
constrained. The assumptions behind this model is that there is a linear relationship between the TTO values and the
five dimensions. The impact of each level is the same across all five dimensions.

Unlike the nine‐parameter model, the 10‐parameter model estimates two parameters for Level 5 (one for the mobil-
ity, self‐care, and usual activity dimensions where Level 5 describes being “unable” to do a certain function; the other for
the pain/discomfort and anxiety/depression dimensions where Level 5 described having “extreme” problems). As in the
nine‐parameter model, we estimate four dimension parameters. Therefore, we actually estimate nine parameters with
one dimension parameter constrained instead of 10 parameters.

The 20‐parameter model estimates four parameters for each dimension and one parameter per level, with the “no
problems” level used as the baseline (4 levels × 5 dimensions = 20 parameters). This model allows the coefficients to dif-
fer between dimensions, and for the importance of each level of problems to differ between dimensions.

Below, we use the 20‐parameter model without interactions to illustrate our methods.
3.2 | Modelling the discrete choice data

When considering the DCE data, respondents compare the utilities of two health states, that is, Vijl and Vijr. The term
Vijl (Vijr) refers to the utility gained individual i for health state xkijl (xkijr) presented on the left (right) hand side within
DCE pair j—see Equation 1.

Vijl ¼ α− ∑
20

k¼1
βkx

ijl
k þ elji <?> Vijr ¼ α− ∑

20

k¼1
βkx

ijr
k þ erji : (1)

The variable x represents the health state by 20 dummy variables. The first four dummies refer to the mobility dimen-
sion and take the value 1 if the description of mobility is with “slight,” “moderate,” “severe,” or “extreme/unable” prob-
lems. The second four dummies (5 to 8) relate to the self‐care dimension, the third four dummies (9 to 12) relate to the
usual activities dimension, the fourth four dummies (13 to 16) relate to the pain/discomfort dimension, and the fifth four
dummies (17 to 20) relate to the anxiety/depression dimension. The parameter α reflects the value for full health. β is a
20 × 1 vector of which the first four elements reflect the disutility associated with being in either “mild,” “moderate,”
“severe,” or “extreme” problems in mobility. The fifth to the eighth elements reflect the disutilities in the different levels

of self‐care, and so on such that the 17th to 20th elements reflecting the disutility considering anxiety/depression. e j
i

refers to the error term which we assume follows either an extreme value distribution (as in logistic regression) or a nor-
mal distribution (as in probit analyses). Both Vijl and Vijr are unobserved latent variables imagined to represent the value
attached to health states. The relationship between the utilities of the two health states in a pair is unknown (?). It is
assumed that respondents choose the left hand side health state in DCE pair j when the utility is larger (>) than that
of the right side health state (Vijl>Vijr). The right hand side health state is chosen when the utility is smaller (<) than
that of the right side health state (Vijl<Vijr). The value of α is assumed to be cancelled out and therefore cannot be
estimated.
1The estimated parameter for the anxiety/depression dimension (βad) is formalised as a function of the parameters for the other four dimensions
(βmo, βsc, βua, βpd) with βad= 1− βmo−βsc−βua−βpd.
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3.3 | Modelling the TTO data

When modelling the DCE data, the parameters only reflect relative values. The data provide information on the relative
preference of one health state over another. When using TTO data, the parameters can be interpreted as measuring a
deviation from full health on a scale anchored at 1 (representing full health) and 0 (the value for dead). As with the
DCE data, we assume a TTO value function that is linear between the TTO value and the description of the health state.
The specification is shown by Equation 2.

Vj
i ¼ 1− ∑

20

k¼1
βkx

ij
k

� �
þ e j

i : (2)

Vj
i is the TTO value for health state j for respondent i. Parameter βk reflects the decrement from full health for the health

state described by xk. The error term e j
i measures the difference between the observed TTO value and the mean value. It

captures random errors as well as differences of opinion between respondents about health states. In a linear regression
analysis, the random error term is assumed to follow a normal distribution with a mean of zero and constant variance.
We follow this assumption but, as indicated above, there may be censoring at −1, 0, and 1.

Three further issues require consideration. First, it is observed that the variance of TTO values is larger for more
severe health states than for less severe health states. This is due to a divergence in preferences regarding these states,
but also increased respondent error. Second, there are only 41 unique TTO values between −1 and 1 available to respon-
dents. Third, we limit the parameter space such that coefficients are always logically consistent.
3.3.1 | Heteroskedasticity/heterogeneity

The variation of TTO values between more severe and less severe states means that the error terms in modelling the TTO
data show heteroskedasticity. One explanation is that values for the mildest health states could sensibly be in a relative
narrow range of 0.8 and 1 (for example), whereas the sensible range of values for the more severe health states could be
much larger, for example, between −1 and 0.5. This is because respondents could use 1 as a baseline to value the mildest
health states. However, for severe health states, respondents apply their own scale and there is no baseline value to use.
They can provide any value between −1 to 1. Furthermore, this might be explained by general public respondents' hypo-
thetical bias (Burström et al., 2014; Leidl & Reitmeir, 2011) as they were asked to value hypothetical health states that in
many cases will be more severe than those that they themselves have experienced to date. Respondents may therefore be
more likely to report bias in the valuation of severe states than in the valuation of mild states. This heteroskedasticity is
captured by applying an exponential relationship between the variance and the mean of the error terms per health state,
adding two parameters to the model. A positive relationship between the two variables is expected as it indicates that the
respondents use a smaller range of TTO values for mild health states than for severe health states.

An alternative and probably more fundamental way of capturing the increasing variance in the error terms with
the increasing level of severity in health states is to take into account the heterogeneity of respondents' opinions.
We observe that respondents effectively use different TTO scales, for example, some respondents never score negative
TTO values, some score both negative and positive TTO values, and some express “extreme” views about some health
states. It is expected that respondents disagree more about severe health states than milder health states. The hetero-
geneity of TTO scales that respondents used could be explained by disagreement about the value of dead between
respondents. This is captured by introducing a parameter for disutility scale γ, which may differ between respondents.
The specification is reported by Equation 3.

Vj
i ¼ 1−γi ∑

20

k¼1
βkx

i j
k

� �
þ e j

i (3)

We investigate three assumptions of the distribution in γ: (a) a normal distribution with mean 1 and variance that
follows a gamma distribution; (b) a lognormal distribution with mean 1 and variance that follows a gamma distribution;
and (c) a multinomial distribution with probability density on a number of discrete values. It is envisaged that the tail in
the lognormal distribution may well reflect the extreme values reported by some respondents. The multinomial model
corresponds to the notion that there may be a number of latent groups, each having their own mean and variance.
We allowed the number of probability density groups to vary from 2 to 10. For normalisation, the mean value of γ for
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one of the latent groups has its value constrained to 1. In this model, we also assume that there is heteroscedasticity
within and between each latent group by allowing the variance of the TTO data for each respondent's age category
within and between latent groups to be different.
3.3.2 | Continuity of the TTO data

Given the study protocol, respondents can only give 41 distinct values (Oppe et al., 2014). These range from −1 to 1 with
steps of 0.05 between each distinct value. Apart from the two boundary values −1 and 1, we assume each observed TTO
value x lies within the range [x − 0.025, x + 0.025]. The value 0.025 is the midpoint of the gap between two neighbouring
TTO values. For instance, when a respondent gives the value 0.5, it suggests a scale of 0.475 and 0.525, which are the
midpoints between 0.5 and the nearest available values 0.45 and 0.55. More subtle rules to define the scale for observed
TTO values are possible. Our decision is determined by the EQ‐VT design, in particular regarding the process that
respondents follow to arrive at their TTO values. In our case, the midpoint was considered as an appropriate rule for
defining the scales for observed values.

We analyse how the standard censored model changes when we treat TTO data points as intervals. The interval cen-
soring triggers the question about how to censor TTO values at −1 and 1. When we observe a TTO value at 1, the
observed value suggests a scale of 0.975 and 1. Instead of censoring the TTO value at the top end of 1, we censored it
at 0.975 when modelling the TTO data. The same analysis was applied to the bottom end. Therefore, we censored
TTO data at −0.975 rather than −1 when modelling the TTO data.
3.3.3 | Forcing consistency

Logically consistent estimates are observed when the absolute values for the parameters for higher level problems exceed
those for lower level problems. However, when estimating the parameters freely, “logically inconsistent” estimates may
be observed. It is hypothesised that although respondents may not always distinguish between different levels, they do
not intend to reverse the ordering. The estimated parameters should be logically consistent if respondents are able to cor-
rectly distinguish between different levels. The parameter space is used to reflect this. When defining our preferred
models, this is captured by first estimating the parameters for the “slight” levels and then estimating those for the more
severe levels by subsequently adding quadratic terms (which are non‐negative).2
3.4 | Hybrid model

Both the TTO and DCE data provide information about the values of health states. If the same value‐function dictates
the answers to both types of question, one would expect the beta coefficients to reflect the same relative weights and as
such to be identical up to a linear transformation between the TTO and DCE models. Following a hybrid modelling
approach introduced by Rowen, Brazier, and van Hout (2014), we use the TTO and DCE data together in a Bayesian
regression assuming that the beta parameters in the DCE model are a linear function of the beta parameters in the
TTO model.
3.5 | Model implementation

All models are fitted in WinBUGS with one chain, each with a burn‐in of 2,000 iterations followed by 7,000 iterations.
Convergence was assessed by visual inspection of the autocorrelation graphs and by assessing whether the last 2,000 iter-
ations gave different estimates (± than 0.01) from the average preceding 2,000 iterations.
2The estimated parameter for the moderate level in a given dimension d is formulised as the sum of the estimated parameter for the slight level and a
quadratic term, that is, β2d= β1d+ (r1d)

2; the estimated parameter for the severe level in a given dimension d is formulised as the sum of the estimated
parameter for the moderate level and a quadratic term, that is, β3d= β2d+ (r2d)

2; the estimated parameter for the extreme/unable level in a given dimen-
sion d is formulised as the sum of the estimated parameter for the severe level and a quadratic term, that is, β4d= β3d+ (r3d)

2. r1d, r2d, and r3d are also
parameters to be estimated.
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For the three hybrid models with different assumptions about the distribution in slope, we assume five Normal priors
N(0.1, 1) for the Level 2 parameters and wide Normal priors N(0.01, 1) for quadric parameters. Normal priors N(0, 0.1) and
N(1, 0.01) are assumed for the constant and slope terms, respectively, that link the TTO and DCE data together.

For the multinomial slope model, we assume Gamma priors Γ(0.1, 0.1) for two slope parameters and the other slope
parameter constrained to be one with Gamma prior Γ(1,000, 1,000). The three parameters for the probabilities of being in
the three latent groups are assume with Dirichlet priors Dir(0.3, 0.3, 0.4). For the lognormal slope model, we assume the
slope ~ lnN(μ, σ2) with priors σ2 ~ Γ(1,1) and μ = −0.5/σ2. For the normal slope model, we assume the slope ~ N(1, σ2)
with prior σ2 ~ Γ(1,1).
3.6 | Criterion for the “best” model selection

We use the deviance information criterion (DIC) to compare performance of the models within each group. The best
models estimated using DCE data only, TTO data only, DCE/TTO data combined and taking account of
heteroscedasticity, and DCE/TTO data combined and taking account of heteroscedasticity and heterogeneity were
selected. The DIC is also used to compare the performance between the best models from each group. The coefficient
ordering and the face validity of the value range were also assessed.

It should be noted that the “best” model is not necessarily expected to predict the mean observed values from the
TTO data the best. That is because some observations are censored, and as a result, the mean is not the best measure
of central tendency. Furthermore, we use not only the TTO data but also the DCE data in the hybrid model, whereas
observed values are available only from the TTO data.
TABLE 2 Estimates using the 5‐, 9‐, and 10‐parameter models

TTO model DCE model Hybrid model

Coef SD Coef SD Coef SD

5‐parameter model
Mobility 0.055 0.004 0.332 0.016 0.061 0.002
Self‐care 0.043 0.004 0.238 0.014 0.044 0.002
Usual activities 0.050 0.004 0.201 0.014 0.043 0.002
Pain/discomfort 0.081 0.004 0.412 0.015 0.080 0.002
Anxiety/depression 0.077 0.004 0.389 0.016 0.077 0.002
DIC 56937.9 7728.2 64655.1
9‐parameter model
Mobility 0.195 0.012 0.213 0.007 0.205 0.007
Self‐care 0.159 0.012 0.162 0.007 0.161 0.006
Usual activities 0.148 0.012 0.134 0.007 0.139 0.006
Pain/discomfort 0.255 0.011 0.249 0.008 0.250 0.007
Anxiety/depression 0.244 0.011 0.241 0.007 0.244 0.006
Slight 0.259 0.021 1.475 0.146 0.289 0.015
Moderate 0.472 0.027 1.791 0.143 0.406 0.016
Severe 1.149 0.028 5.342 0.181 1.115 0.019
Unable/extreme 1.181 0.020 6.226 0.191 1.225 0.016

DIC 56860.3 7513.0 64371.5
10‐parameter model
Mobility 0.185 0.012 0.213 0.008 0.202 0.006
Self‐care 0.148 0.011 0.164 0.008 0.157 0.006
Usual activities 0.133 0.012 0.135 0.008 0.135 0.007
Pain/discomfort 0.269 0.013 0.248 0.009 0.256 0.007
Anxiety/depression 0.265 0.013 0.240 0.008 0.249 0.007
Slight 0.252 0.020 1.472 0.138 0.287 0.015
Moderate 0.456 0.028 1.792 0.146 0.404 0.017
Severe 1.132 0.029 5.355 0.181 1.108 0.019
Unable 1.368 0.067 6.210 0.244 1.270 0.033
Extreme 1.048 0.043 6.263 0.243 1.188 0.028

DIC 56851.1 7515.4 64370.8

Note. DCE = discrete choice experiment; DIC = deviance information criterion; TTO = time trade‐off.
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3.7 | Sensitivity analyses

Five sensitivity analyses are conducted to check the robustness of the 20‐parameter hybrid model results. Each analysis
reveals the impact of one potentially arbitrary decision we made. First, we check the impact of exclusion criteria on the
modelling results. We run the hybrid model without excluding any TTO observations from the data set. Second, we check
the impacts of censoring the TTO data on the modelling results by sequentially (once at a time) removing the TTO data
censoring at−1, 0, and 1. Finally, we run the 20‐parameter hybridmodel without censoring the TTO data at any data point.

R 3.2.0 and WinBUGS 14 are used for all modelling analyses. The operating system for producing all results was
Windows 10 Version 1607 for x64‐based systems. The results were produced on 10th January 2017.
4 | RESULTS

The results for the 5‐, 9‐, and 10‐parameter models for the DCE, TTO, and combined data sets are reported in Table 2.
The five‐parameter model indicates which dimensions get the highest weight, that is, pain/discomfort followed by anx-
iety/depression. The DCE data indicate a larger weight for mobility than for self‐care and usual activities, whereas the
TTO data indicate that self‐care gets the lowest weight of the five dimensions.

The nine‐parameter model offers a substantial improvement in the DIC for the DCE data and the TTO data. The
decrements from slight to moderate and from severe to unable/extreme are much smaller than the decrements from
moderate to severe. Having different parameters for Level 5 based on descriptor (i.e., separating the unable and extreme
descriptors) improves the TTO model but not the DCE model. The coefficient for unable is larger than that for severe in
all three 10‐parameter models but this is not the case for the coefficient for extreme in the TTO model, which suggests an
“inconsistency.”
TABLE 3 The 20‐parameter model with and without restriction

TTO model DCE model
Unrestricted
hybrid model

Restricted
hybrid model

Coef SD Coef SD Coef SD Coef SD

Mobility
Slight 0.036 0.015 0.358 0.057 0.060 0.009 0.062 0.008
Moderate 0.079 0.018 0.440 0.066 0.080 0.010 0.080 0.010
Severe 0.202 0.020 1.107 0.067 0.215 0.010 0.213 0.010
Unable 0.246 0.018 1.430 0.074 0.266 0.010 0.266 0.011

Self‐care
Slight 0.044 0.013 0.240 0.060 0.051 0.009 0.053 0.009
Moderate 0.078 0.018 0.417 0.069 0.084 0.011 0.083 0.010
Severe 0.147 0.018 0.983 0.068 0.181 0.010 0.184 0.010
Unable 0.227 0.017 1.025 0.063 0.208 0.010 0.207 0.009

Usual activities
Slight 0.051 0.015 0.232 0.059 0.049 0.009 0.051 0.008
Moderate 0.106 0.018 0.226 0.065 0.067 0.010 0.066 0.009
Severe 0.182 0.017 0.784 0.066 0.168 0.010 0.163 0.008
Unable 0.156 0.019 0.816 0.067 0.163 0.010 0.168 0.008

Pain/discomfort
Slight 0.050 0.012 0.359 0.061 0.058 0.009 0.059 0.009
Moderate 0.067 0.018 0.415 0.068 0.082 0.010 0.080 0.010
Severe 0.283 0.018 1.222 0.070 0.259 0.011 0.258 0.010
Extreme 0.301 0.018 1.613 0.073 0.311 0.011 0.308 0.011

Anxiety/depression
Slight 0.073 0.013 0.327 0.062 0.068 0.009 0.069 0.009
Moderate 0.126 0.018 0.374 0.068 0.097 0.010 0.094 0.010
Severe 0.313 0.017 1.338 0.070 0.288 0.009 0.282 0.008
Extreme 0.269 0.017 1.454 0.073 0.283 0.010 0.286 0.008

DIC 56842.9 7510.9 64359.4 64102.9

Note. DCE = discrete choice experiment; DIC = deviance information criterion; TTO = time trade‐off.
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The results for the 20‐parameter model are presented in Table 3. There is an improvement in the DIC in the
20‐parameter models for estimations that use the TTO data only and the DCE data only in comparison to the correspond-
ing 10‐parameter models. Results from the unrestricted hybrid model are characterised by two logical inconsistencies:
one between Levels 4 and 5 on the usual activities dimension and one between Levels 4 and 5 on the anxiety/depression
dimension. The inconsistencies are not observed when applying restrictions to limit the parameter space (last column).
The DIC improves in the restricted hybrid model, although the coefficients of the restricted and unrestricted hybrid
models show little change.

Table 4 reports results from three 20‐parameter hybrid models with different assumptions of distribution in slope.
The last column reports the results from multinomial slope model with three latent groups that divided respondents
based on the similarity of their slopes for disutility in health. Increasing the number of latent groups from 2 to 10 in
the multinomial model improves the DIC statistics. The largest DIC improvement is observed between two and three
latent groups. Other improvements in DIC between groups are relatively small and increasingly so as the number of
groups increases. The ranges of the predicted TTO values (difference between the lowest and the highest value) are sim-
ilar when comparing 3‐ and 10‐group models. On grounds of parsimony and to avoid having the chosen model overfit the
data, the model with three groups is preferred and reported. All models have their 5, 9, and 10 parameters specifications
estimated. Further details are available upon request from the authors.
TABLE 4 Estimates using all data 20‐parameter model with different slope distributions

Normal slope Lognormal slope Multinomial slope

Coef SD Coef SD Coef SD

Mobility
Slight 0.057 0.008 0.051 0.009 0.027 0.004
Moderate 0.081 0.010 0.078 0.010 0.035 0.005
Severe 0.209 0.010 0.211 0.011 0.096 0.006
Unable 0.256 0.011 0.261 0.011 0.127 0.006

Self‐care
Slight 0.058 0.008 0.058 0.008 0.023 0.004
Moderate 0.088 0.010 0.086 0.010 0.037 0.005
Severe 0.173 0.010 0.179 0.011 0.076 0.006
Unable 0.210 0.010 0.215 0.010 0.094 0.006

Usual activities
Slight 0.051 0.009 0.048 0.008 0.023 0.004
Moderate 0.073 0.009 0.067 0.009 0.029 0.004
Severe 0.167 0.009 0.169 0.009 0.075 0.005
Unable 0.174 0.009 0.177 0.009 0.085 0.005

Pain/discomfort
Slight 0.068 0.008 0.064 0.008 0.029 0.004
Moderate 0.088 0.009 0.090 0.010 0.039 0.005
Severe 0.262 0.010 0.268 0.011 0.128 0.007
Extreme 0.323 0.011 0.334 0.012 0.155 0.007

Anxiety/depression
Slight 0.093 0.007 0.091 0.009 0.036 0.004
Moderate 0.122 0.009 0.123 0.010 0.048 0.005
Severe 0.295 0.009 0.301 0.010 0.132 0.006
Extreme 0.297 0.009 0.304 0.010 0.134 0.006

Variance 3.065 0.200 3.029 0.179
P(Group1) 0.332 0.018
P(Group2) 0.388 0.020
P(Group3) 0.281 0.020
Slope (Group 1) 0.992 0.031
Slope (Group 2) 2.091 0.073
Slope (Group 3) 3.625 0.151
DIC 16732.6 16502.3 15826.5

Note. DCE = discrete choice experiment; DIC = deviance information criterion; TTO = time trade‐off.
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When comparing the predicted EQ‐5D index from the least severe and most severe health states based on three
models that account for heterogeneity and heteroscedasticity in Table 4, we find that the prediction of health state
11211 scores at or above 0.949. This is higher than its mean observed value of 0.89, which we believe to be biased due
to the asymmetry of the error distribution (see Section 2.5.3). The score for 55555 varies across models: −0.260 for the
normal slope model, −0.291 for the lognormal slope model, and −0.285 for the multinomial slope model. The lower
values reflect the potential of the latter two models to capture more extreme values.

The DIC is used to compare the performance between the three 20‐parameter hybrid models with different assump-
tions of distribution in slope. Among the three models, the lowest DIC is achieved in the multinomial slope model, that
is, 15826.5. We compared two sets of estimated coefficients between the 20‐parameter multinomial slope model and
20‐parameter restricted model with TTO data treated as interval values. The coefficients are very close to each other
with mean of absolute differences of 0.003. The multinomial slope model that accounts for heterogeneity and
heteroscedasticity is considered as the best performing model for the data from the EQ‐5D‐5L value set for England
project.

We made a number of decisions about how to interpret the data, and these were subjected to sensitivity analysis
(Table 5). Column 2 reports results from our best model with data exclusion and censoring. Column 3 shows the
results if we had not applied any exclusion criteria to the raw data set. Hence, there are 996 individuals included in
the analysis. Health state 11211 has the highest index value of 0.949. The lowest value is reported as −0.189 for health
state 55555. Columns 4 to 7 show the results without censoring at −1, without censoring at 1, without censoring at 0,
and with no censoring at all, respectively. Calculations from the four sets of results in columns 4 to 7 all suggest that
health state 11211 has the highest value. The lowest EQ‐5D index value is for health state 55555. The EQ‐5D index is
in a range of [−0.217, 0.950] if the TTO data are not left censored at −1; [−0.277, 0.940] if TTO data are not right
censored at 1; [−0.147, 0.948] if the TTO data are not censored at 0; and [−0.110, 0.938] if the TTO data are not
censored at all.
TABLE 5 Effects of different interpretations of the hybrid model data

Multinomial
slope

No
exclusions

No censoring at
−1

No censoring
at 1

No censoring
at 0

No censoring at
all

Coef SD Coef SD Coef SD Coef SD Coef SD Coef SD

Mobility
Slight 0.027 0.004 0.014 0.002 0.026 0.004 0.029 0.004 0.030 0.004 0.032 0.004
Moderate 0.035 0.005 0.016 0.002 0.032 0.004 0.035 0.005 0.038 0.005 0.037 0.004
Severe 0.096 0.006 0.043 0.004 0.087 0.006 0.095 0.005 0.097 0.006 0.092 0.005
Unable 0.127 0.006 0.055 0.005 0.111 0.006 0.124 0.006 0.122 0.007 0.114 0.006

Self‐care
Slight 0.023 0.004 0.012 0.002 0.024 0.004 0.028 0.004 0.028 0.004 0.032 0.004
Moderate 0.037 0.005 0.016 0.002 0.036 0.004 0.037 0.005 0.041 0.005 0.040 0.004
Severe 0.076 0.006 0.034 0.003 0.069 0.005 0.076 0.005 0.078 0.006 0.075 0.005
Unable 0.094 0.006 0.041 0.004 0.086 0.005 0.096 0.005 0.091 0.005 0.088 0.005

Usual activities
Slight 0.023 0.004 0.011 0.002 0.022 0.004 0.028 0.004 0.026 0.004 0.031 0.004
Moderate 0.029 0.004 0.013 0.002 0.028 0.004 0.031 0.004 0.034 0.005 0.035 0.004
Severe 0.075 0.005 0.032 0.003 0.069 0.005 0.076 0.005 0.078 0.005 0.076 0.005
Unable 0.085 0.005 0.034 0.003 0.075 0.005 0.086 0.005 0.083 0.005 0.080 0.005

Pain/discomfort
Slight 0.029 0.004 0.014 0.002 0.027 0.004 0.035 0.004 0.032 0.004 0.037 0.004
Moderate 0.039 0.005 0.018 0.002 0.037 0.005 0.041 0.004 0.041 0.005 0.041 0.004
Severe 0.128 0.007 0.055 0.005 0.113 0.007 0.126 0.006 0.125 0.007 0.117 0.006
Extreme 0.155 0.007 0.066 0.006 0.137 0.007 0.157 0.007 0.148 0.008 0.140 0.006

Anxiety/depression
Slight 0.036 0.004 0.017 0.002 0.033 0.004 0.045 0.004 0.040 0.005 0.047 0.004
Moderate 0.048 0.005 0.021 0.003 0.043 0.005 0.052 0.005 0.052 0.005 0.054 0.005
Severe 0.132 0.006 0.059 0.005 0.120 0.006 0.135 0.006 0.132 0.007 0.129 0.006
Extreme 0.134 0.006 0.059 0.005 0.122 0.006 0.137 0.006 0.134 0.007 0.130 0.006

DIC 15826.5 18098.5 15365.9 13393.4 15177.7 11959.7

Note. DCE = discrete choice experiment; DIC = deviance information criterion; TTO = time trade‐off.
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5 | DISCUSSION AND CONCLUSIONS

The primary aim of this study was to develop the modelling methods to be used to produce value sets for EQ‐5D‐5L,
using data generated from the newly designed elicitation protocol, comprising a different type of TTO task and with
the addition of DCE data. Additionally, a number of developments in the modelling approaches were made which,
compared to earlier approaches, arguably bring the models closer to the nature of the data.

The new study design combined TTO data with DCE data. The variant of lead time TTO approach that was used
meant that the minimum value respondents could score was −1 without information about whether that value or a
lower value represented respondents' genuine preferences. The data were seen as censored as true values were not
observed. Therefore, an assumption should be made for the left tail of the distribution of the TTO data.

In contrast to the EQ‐5D‐5L value set studies published so far from the international protocol, we use both TTO and
DCE data to generate a value set for England. We experimented with a number of hybrid modelling specifications that
assumed a normal distribution with errors and accounting for the heteroscedasticity of TTO values between health
states. We experimented with three hybrid modelling specifications that account for the heterogeneity of respondents.
The assumption of normal distribution with errors is still applied. Among the three models assessing heterogeneity,
we experimented with modelling specifications that assumed the slope parameter for disutility of health with a normal
distribution, a lognormal distribution, and a multinomial distribution. Our results suggest that the assumptions of distri-
butions affect the value of severe health states, as well as the predicted TTO values in particular for values where the real
data points in our data set are limited. In contrast, the respondents in the Measurement and Valuation of Health (MVH)
study could score TTO values as low as −39 (Dolan, 1997). In order to minimise the effect of extreme values in that study,
a decision was taken to rescale the TTO values to a range of [−0.975, 1]. The data show that extreme negative values in
TTO are possible. Indeed, some respondents may want to avoid—coûte que coûte—certain health states and their values
may have great impact on the averages. The solution may be to use medians or to exclude extremes at both the lower and
upper end of the scale.

By censoring at −1, the information was used that the value was either −1 or below −1. In such cases, the error dis-
tribution, which defines the left tail under −1, may have an important effect on the final estimates. Usually, normal error
distributions are assumed, despite the fact that any test on the data would reject such assumption. The model estimated
here, which includes heteroscedasticity, fits into this tradition. This means that if one imagines an ordered, decreasing,
line of all health states, that the uncertainty surrounding each health state follows a normal distribution, which gets
wider the worse the health state is.

As alternatives, we experimented with three models that assumed the slope of the imagined line differs per individual,
which also implies that confidence intervals widen for lower health state values. Subsequently, we assumed that the shape
of the line would follow a normal distribution, a lognormal distribution, and a multinomial distribution. When assuming a
normal distribution, one has to imagine that the slope follows a normal distribution that is topped by a normal distribution
surrounding each answer. This allows for a slightly thicker tail towards lower values thanwhen assuming a heteroskedastic
model. When assuming a lognormal model, one allows for much thicker tails towards negative values, but in both cases,
one assumes a relatively smooth error distribution. Themodel that assumes amultinomial distribution of the errors is more
flexible in capturing a multimodal error distribution, which is more pronounced with worsening values. And indeed, our
results suggest that the choice of the distribution affects the predicted TTO values, in particular the lower values.

Respondents' opinions are truncated at the upper end of the TTO scale. We interpret the data as being censored at 1.
This does not suggest that we believe the true TTO values are greater than one but rather that a combination of respon-
dents' true TTO values plus a measurement error might be. The observed average TTO value for the mild health states is
clearly very low and may not reflect the true average value for such states in the English population. Fitting the TTO data
into a normal distribution with assumption of right censoring at 1 (which is not too different from taking the median)
could better represent the “real” average values. It is therefore arguable that the TTO values for mild health states in
the MVH study were too low, as those data are also right censored at 1.

Another aspect that has been given attention is the fact that respondents can only give 41 distinct values in the TTO
data. Therefore, when a respondent scores 0.9, instead of 0.85 or 0.95, it might indicate that the true value lies between
0.875 and 0.925. Furthermore, respondents typically have a digit preference. They are more likely to provide a valuation
of 0.1 than 0.05 or 0.15, for example. We used the simple correction for our heteroskedasticity model by censoring the
upper end of TTO value at 0.975 rather than 1. Together with the left censoring at −0.975, this censoring exercise is also
applied to the heterogeneity models, which are estimated without defining intervals for other TTO values. This character-
istic of the TTO data was not recognised by the MVH study, although respondents could score more (80) unique values.



14 FENG ET AL.
With the addition of the DCE data, we choose to combine the information into a single likelihood function, assum-
ing that the underlying preference function that dictates the answers to the DCE comparisons also dictates the answers
to the TTO questions. It should be noted that analysis of the DCE data assumes that difference in errors, or differences
of opinion, follow an extreme value distribution. The difference in errors between two health states in a DCE pair
follows a logistic distribution (similar to a normal distribution but with longer tails to take into account extreme
values). This might be true for errors, but is unlikely to be true for differences in opinion. In the multinomial model,
we identify a group of respondents who always score positive values, a group of respondents who score both positive
and negative values, as well as a group of respondents with extreme values. The DCE data, in this design, are not rich
enough to pick up such clear differences. Therefore, estimations that are based on DCE data only might be criticised
for applying such an assumption regarding the error distributions. However, in contrast to some of the findings of
modelling TTO data only, there is only one logical inconsistency in all parameters in the DCE modelling results. Also,
the results from the DCE models show the general structure of the value set, that is, with small steps between the
slight and moderate levels, large steps between the moderate and severe levels, and again small steps between the
severe and extreme/unable levels. It is observed that the TTO data and the DCE data lead to different parameter esti-
mates. The TTO method is arguably the closest to the decision making context where trade‐offs need to be made
between length of life and quality of life. One may criticise the error distribution of the DCE model, but this may also
apply to the TTO data.

The last remark refers to our decision to censor some of the data at zero. Some respondents show clear inconsis-
tencies, scoring health state 55555 at zero and more than one other state below zero. Others used zero multiple times
as their minimum value, including in the valuation of 55555, failing to prioritise between health states that follow a log-
ical ordering. Our solution to censor these data reflects a (admittedly rather arbitrary) judgement that in such cases
respondents only provided information that the value of the health state is either zero or below zero. These responses
may be a consequence of the interview process, or of interviewer and/or respondent comprehension.

Another aspect that requires further justification is that we formulated the prior distributions of the level parameters
to guarantee that in each dimension, the coefficients between two adjacent levels are logically consistent. Indeed, when
estimated without constraint, the TTO data may suggest that the severe level is worse than unable/extreme level in the
usual activities and anxiety/depression dimensions. One explanation for this may relate to the selection of the 86 health
states in the TTO exercise. Additionally, we find justification of our priors by referring to the research underlying the
choice of the labels in the EQ‐5D‐5L instrument (Luo, Wang, Thumboo, & Herdman, 2015).

Our study excluded respondents whose TTO data contained strong inconsistencies. We recognise that these exclusion
criteria could have been extended to exclude still further data that exhibited various types of weaker inconsistencies. It
is possible that the results may have been different had different levels of judgements about excluding logically inconsis-
tent data been applied (Devlin, Hansen, Kind, & Williams, 2003). There are no agreed rules to guide researcher decisions
about this. We balanced the desire to base modelling on plausible data with a desire to minimise exclusions from the
sample, both to protect the representativeness of the sample and to guard against excluding data that are inconvenient
but not entirely implausible.

In the end, we find that a model that splits the population into three groups of preference “types” appeals both intu-
itively and in terms of the statistical performance of the models. The result captures the idea that the groups have differ-
ent attitudes towards death when making trade‐offs between quality and length of life. This may help people identify
themselves when considering the outcomes of a value function. The final model is not one model for all; rather, it is a
compromise of different opinions, statistics, and trying to capture the opinions of a nation with different—sometimes
very different—opinions.
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