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Understanding hydrodynamic phenomena driven by fast electron heating is important for a range

of applications including fast electron collimation schemes for fast ignition and the production and

study of hot, dense matter. In this work, detailed numerical simulations modelling the heating,

hydrodynamic evolution, and extreme ultra-violet (XUV) emission in combination with experimen-

tal XUV images indicate shock waves of exceptional strength (200 Mbar) launched due to rapid

heating of materials via a petawatt laser. We discuss in detail the production of synthetic XUV

images and how they assist us in interpreting experimental XUV images captured at 256 eV using a

multi-layer spherical mirror. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.5000064]

I. INTRODUCTION

Strong, radiating shock waves are associated with the

most violent processes in nature, such as supernovae,1 black

hole mergers,2 and gamma-ray burst sources.1,3 Shock waves

may even be critical to the generation of protogalatic seed

magnetic fields.4 Shock waves play a crucial role in conven-

tional hot spot inertial confinement fusion (ICF)5 and alter-

native schemes such as shock6 and fast7 ignition. Producing

such shock waves in the laboratory has long been one of the

objectives of high power laser interaction experiments.8–11

The strongest shock waves that can be produced in the labo-

ratory are those that result from the interaction of an ultra-

high intensity (>1018 W cm�2 lm2), high energy (>100 J)

laser pulse with a dense target. In these interactions, solids

are isochorically heated to temperatures in the range of

0.01–0.8 keV,12 thus reaching transient pressures approach-

ing 1 Gbar. In comparison, typical drive pressures achieved

in the NIF ignition experiments peak above 100 Mbar.13

Such an interaction forms an integral part of the fast ignition

approach to inertial fusion,7,14,15 and as such an understand-

ing of the formation of such shock waves is important for the

further development of this approach to fusion.16 The pres-

ence of such ultra-strong shock waves, which may have

pressures of many hundreds of Mbar or more, can be inferred

from spectroscopic measurements.17

In this paper, we report the first images indicating such

shock waves in dense materials, formed from the extreme

ultra-violet (XUV) emission in the dense plasma. The rapidly

decaying nature of the shock wave as it propagates through

the plasma, coupled with the narrow acceptance wavelength

of the imager employed, produces a temporally gated ring-

like image of the expanding cylindrical shock front. This

shock front is centred upon the region in which a beam of

relativistic electrons, generated by the laser-plasma interac-

tion, produces intense Ohmic heating for <1 ps.12,18 Based

on simulations, we infer that the pressure associated with

this shock front at the time it is imaged is approximately 200

Mbar. The pressure earlier in time is thought to exceed 1

Gbar.

A fast electron transport code was used to predict target

heating patterns in thin solid foils (8 lm CH). The subse-

quent evolution of the target on the multi-ps timescale was

modelled using the radiation hydrodynamics code h2d, and

the data from this were post-processed using the collisional-

radiative atomic kinetics and spectral code SPECT3D,19 to

generate synthetic XUV images. These images predict a dis-

tinct ring-like feature in the XUV due to the shock wave
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launched by the strong explosion of the heated region. The

central region is heated supersonically by relativistic electron

propagation and associated return currents drawn in the

background plasma. These return currents, which are driven

by the requirement to locally conserve charge, result in

strong Ohmic heating of the dense plasma. Significant hydro-

dynamic motion only ensues after the heating process has

completed, due to the very short (600 fs) duration of the laser

pulse. XUV images obtained experimentally record a strong

ring-like emission feature which correlates with the shock

position around 20 ps after the laser pulse. The fully time-

integrated imager is effectively gated purely by the physical

behaviour of the system, as the emission in the narrow band-

width of the imager is only significant for a few picoseconds,

thereby capturing the shock wave at a particular moment in

time.

Work by Robinson et al.20 shows that it is possible to

use resistively structured targets, such as a wire of higher

resistivity buried in a lower resistivity substrate, as a driver

for hydrodynamic phenomena. The innovative diagnostic

approach which has been developed as a part of this study

may allow us to observe the resulting hydrodynamics in such

targets. More generally, it may also enable a wide range of

hydrodynamic phenomena that are launched by fast electron

heating to be observed and studied quantitatively.

II. THEORETICAL AND NUMERICAL STUDIES

In order to drive a strong cylindrical shock wave, a suffi-

ciently columnar heating pattern must be achieved during

the interaction of a PW laser pulse with a simple foil. The

ZEPHYROS 3D hybrid code was used to understand under

which conditions this was possible. ZEPHYROS21,22 is a 3D

particle hybrid code, mainly based on the methods of

Davies.23 The target studied was a homogeneous 8 lm thick

CH foil. A fast electron beam was injected that modelled

irradiation by a 600 fs laser pulse with a 10 lm FWHM spot

and a FWHM intensity of 5� 1020 W cm�2. The following

assumptions were made in this modelling: 20%–30% laser to

fast electron energy conversion efficiency,24,25 exponential

energy distribution with an average energy determined by

ponderomotive scaling, and a characteristic angular diver-

gence of 25�–45� for the fast electrons.26 The resistivity

curve used for the CH target is the one used by Davies in

Ref. 23. Reflective boundaries were used throughout. The

heating patterns after 1 ps typically showed heating right

through the thickness of the target, and the variation with

depth could be reasonably well fit by

T ¼ ðA exp ½�x=d� þ BÞ exp �r2=2L2
� �

; (1)

where x is in lm, d¼ 4 lm, A¼ 0.8–2 keV, B¼ 0.2–0.6 keV,

and L typically about 10 lm depending on the precise

assumptions made in the transport simulation. An example

of one of the results of these calculations is shown in Fig. 1.

Such a heating pattern should be sufficiently columnar to

launch a strong cylindrical shock wave, and this was con-

firmed by 2D radiation hydrodynamics simulations in which a

uniform 8lm slab of CH was initialized with the temperature

profile obtained from the fast electron transport calculations

[Eq. (1)]. These simulations were carried out using h2d,27 a

2D r � z Lagrangian radiation hydrodynamics code. The

“baseline” case that was used was A¼ 2 keV, B¼ 0.6 keV,

and L¼ 10lm. In general, the simulations showed that the

heated region would strongly cavitate and cause strong trans-

verse compression, leading to a strong shock wave propagat-

ing out from the central heated region for tens of ps after the

interaction. The results of the baseline simulation, in terms of

the mass density at 20 ps, are shown in Fig. 2. In this figure,

the cavitation of the heated region can be seen between r¼ 0

and 20lm (where zero is the centre of the heated region), and

the compressed region can be seen at r� 20lm. The initial

pressure of the heated region is close to 1 Gbar, and the pres-

sure of the shock wave is still>100 Mbar even after the shock

wave has propagated 10 s of lm outward. The combination of

the transport simulation and the radiation hydrodynamic simu-

lations leads to the conclusion that a strong cylindrical shock

front should be launched in experimentally accessible interac-

tions with thin foils.

The next consideration is whether or not this would lead

to a detectable signal in commonly used plasma diagnostics.

In this paper, we consider the possibility of using XUV

imaging to observe such shocks.

In order to ascertain whether observing signatures of

strong shocks via XUV imaging was possible, the output of

the radiation hydrodynamics simulations was post-processed

FIG. 1. Temperature profile from a 3D ZEPHYROS fast electron transport

simulation showing the background temperature in eV (red corresponding to

2000 eV) at 1 ps in the x–y midplane of the box.

FIG. 2. Mass density profile (in g cm�3; red corresponding to 1 g cm�3) at

20 ps from the baseline h2d radiation hydrodynamics simulation. The cavita-

tion of the heated region can be seen from r¼ 0–20lm in the foil where 0 is

the centre of the heated region, and the compressed region lies at around

r¼ 20lm.
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using the SPECT3D code.19 This was used to generate

“synthetic” time-integrated XUV images, specifically the

XUV emission at 256 eV that would be detected using the

XUV imaging system available for experiments (i.e., looking

at the target rear surface close to normal with multi-layer

mirrors with a magnification of�10–12 and a spatial resolu-

tion of �10 lm.). The synthetic image that is obtained from

the baseline case is shown in Fig. 3. This shows a bright ring

of emission associated with the radially expanding shock

front. The image is strongly correlated with a particular time

in the h2d simulation at which the shock front is at the same

radius and the shock pressure is approximately 200 Mbar.

Although the target opacity is not negligible, there is suffi-

cient transparency to allow clear observation of the emission

from this region. From this, it was concluded that the trans-

verse explosion of the heated region would lead to a clear

signal in time-integrated XUV measurements, which directly

corresponds to the emission from a strong outwardly expand-

ing cylindrical shock front at a time approximately 20 ps

after the laser-solid interaction.

The result can be understood by considering the limit of

an optically thin foil and then considering only the free-free

emission process. At a particular photon energy, h�, this will
vary / Zn2ee

�h�=kBT=
ffiffiffiffiffiffiffiffi

kBT
p

(neglecting the Gaunt factor). At

a fixed density, this function has a weak maximum at

T¼ 512 eV for h�¼ 256 eV and only falls sharply below

about 200 eV. If one now considers the effect that the n2e
scaling has on the emission as the heated region cavitates

and compresses the surrounding material, then one can see

that the dominant emission can actually come from the

slightly cooler shell of the compressed material, rather than

the hotter but decompressed centre. In reality, the emission

from the cooler region will be further enhanced by the car-

bon atoms retaining a substantial bound electron population.

III. UNDERSTANDING EXPERIMENTAL STUDIES

This theoretical and numerical study predicts the possi-

bility of clearly observing the transverse compression wave

under conditions that closely resemble an experiment that

was carried out using the Vulcan petawatt laser. The Vulcan

PW28 delivered up to 300 J of k¼ 1.05 lm light onto the tar-

get in a pulse duration of 700 fs. The laser was focused onto

the target using an F/3 off axis parabolic mirror to a spot size

of 7 lm in diameter. Approximately 20% of the energy was

contained within the central focal spot giving peak intensities

up to 2.5� 1020 W cm�2. The intensity contrast ratio of the

ASE to the peak power of the laser was 5� 10�8, 1.5 ns

ahead of the interaction pulse.29 The targets consisted of

either 10 lm of CH with a 50 nm layer of Al on the rear sur-

face or a front layer of CH of thicknesses 4lm, a thin tracer

layer of Al (0.2lm), and a layer of 4 lm CH at the rear.

Extreme ultra-violet radiation (XUV) emitted at 256 eV

from the back surface was imaged and time-integrated.30,31

The radiation was focused using a spherical multilayer mir-

ror (with a C-WC-Monel-W formulation) onto a Princeton

Instruments 16-bit charge coupled device (CCD). The mag-

nification was 12, and the spatial resolution was 10lm. A

series of XUV images were obtained in which the image

shows a ring structure with a size of 148 lm. The vertical

lineout shows very clearly that this ring structure is real and

distinct. This was observed in all types of targets. In Fig. 4,

an image and its accompanying lineout from a CH-Al-CH

target are shown.

There is very good agreement between the theoretical

predictions and the experimental observations, at least in

qualitative terms. In quantitative terms, the largest difference

is the diameter of the ring feature. The experimentally

observed images show a ring feature with a diameter of

100–150 lm, whereas the synthetic image shows a ring with

a diameter of only 50 lm. Although this is a noticeable dis-

crepancy, it is easy to identify a number of points in the com-

plex multi-stage numerical model that could give rise to this

discrepancy. One simple point, for example, is the accuracy

of fitting the temperature profile from the fast electron trans-

port simulation. Another is reproducing the exact energy dis-

tribution within the focal spot. We therefore believe that

increasingly accurate analysis will reconcile the difference

between the theoretical predictions and the experimental

results.

In order to gain a better understanding of the impact of

uncertainties in the temperature and focal spot profile, we

performed a parameter scan using a less computationally

expensive version of our synthetic diagnostic using axi-

symmetric 1-D radiation-hydrodynamics calculations instead

of the 2-D calculations. We used the 1-D radiation-hydrody-

namics code Hyades27 to generate 1-D temperature and den-

sity profiles in a range of time intervals and then converted

these to 2-D (r,z) data. These data were then post-processed

using SPECT3D in the same way as before to generate the

expected time-integrated XUV emission images. A range of

hot-spot radii, temperatures, and spatial geometries were

explored. Figure 5 shows one of the results of these calcula-

tions, which shows much better quantitative agreement with

the experiment. Here, the diameter of the ring-like XUV

emission features is 106 lm. The initial hot-spot here has a

Gaussian spatial structure with a FWHM of 60 lm and a

peak on-axis temperature of 2 keV. It may be noted that the

FIG. 3. A synthetic time-integrated XUV image obtained by post-processing

the baseline radiation-hydrodynamic simulation output using the SPECT3D

code (color scale is in arbitrary units). The imager is assumed to look at the

target’s rear surface along the target normal.
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“hollowed-out” effect in the ring-like XUV emission is sig-

nificantly less pronounced in these calculations as compared

to the original calculations. This is due to the use of 1-D

rather than 2-D radiation-hydrodynamics calculations which

results in a greater optical depth on axis.

On the basis of the simulations that have been per-

formed, we are confident in claiming that the shock wave

inferred from the XUV image had a pressure in excess of

100 Mbar.

Measurements were also taken from CH-Al-CH layers

with a thicker front CH layer (8 lm, 30 lm, and 60 lm). A

faint ring pattern could be observed in the target with an

8 lm front layer but not in the case of a 30 lm front layer. In

order to make similar observations in such thick targets, one

would need columnar heating right up to the rear surface.

However, this would require a well collimated fast electron

flow, and in CH, this will only be possible if the fast electron

divergence half-angle (i.e., the characteristic half-angle of

the fast electron population at absorption) is less than the 30�

half-angle.32 This emerges from both fast electron transport

simulations and more basic criteria, such as the Bell-

Kingham condition.33 Therefore, the loss of the ring feature

in these thicker targets is simply an indicator of the expected

divergence in the fast electron flow. We also note that

experiments carried out with pure Al foils do not exhibit the

same time-integrated XUV emission patterns;31 however, it

is unlikely that the same XUV emission pattern would be

predicted by the composite numerical model due to differ-

ences in fast electron propagation, radiative cooling, and

opacity.

It is likely that the effects studied in this paper have

been observed in previous experiments, although on all pre-

vious experiments that report such annular XUV patterns,

the observation has been attributed to other mechanisms. For

example, the observations of ring-patterns in XUV images

obtained by both Lancaster et al.34 and Koch et al.35 are

attributed to the disruption of the fast electron propagation

by the Weibel instability. In the case of Lancaster’s results,

the similarity in target design and laser parameters means

FIG. 4. (a) Time-integrated XUV image obtained by imaging the rear sur-

face emission of a CH-Al-CH target showing a clear ring pattern. (b)

Lineout of this time-integrated XUV image showing the actual signal height

of ring relative to the centre.

FIG. 5. (a) A synthetic time-integrated XUV image obtained using the

SPECT3D code from initial conditions in the 1-D radiation hydrodynamics

calculations of Gaussian temperature profile HWHM of 30lm peaking at

2 keV (color scale is in arbitrary units) and (b) line out of the synthetic time-

integrated image shown in (a).
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that those results can be directly attributed to the mecha-

nisms that we describe in this paper.

This work is important to understanding the collimation

of fast electrons through various schemes and how this

impacts the heating of matter, especially material tens or

hundreds of microns away from the interaction. This tech-

nique could therefore be used as a test of fast electron colli-

mation strategies22,36,37 to complement the standard

approach of measuring K-alpha x-ray emission.

IV. CONCLUSIONS

In conclusion, we have described through a combination

of XUV imaging and numerical modelling measurements

consistent with the formation of strong cylindrical shock

wave solid targets irradiated by a PW laser launched by rapid

fast electron heating. Detailed numerical modelling indicated

that the shock wave should be observable as a ring-like fea-

ture in time-integrated XUV images when it is at a strength

of around 200 Mbar. This corresponded to an experiment

that was carried out in which these ring-like patterns were

very clearly observed in the XUV images. Such features are

not observed in thicker targets because of divergence in the

fast electron flow. Apart from the ability to produce images

of plasma behaviour that is extremely difficult to directly

observe, the methodology that has been employed here could

be used as a test of fast electron collimation strategies. Given

the early stage of development of the synthetic XUV diag-

nostic and the complexity of the chain of numerical calcula-

tions it requires, it is unsurprising that agreement to the

experiment is qualitative. On the basis of parameter scans

using 1-D radiation hydrodynamics calculations post-

processed using SPECT3D, it was possible to reproduce the

experimental XUV ring emission size more closely by mak-

ing the initial temperature distribution more experimentally

realistic.
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