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Abstract 

The paper presents a relational study of correlating cooling energy use with local weather station and 

apartment price data in Seoul. The overall analysis at a macro-level shows monthly variations in the correlation 

coefficients of cooling energy use and local weather station data during summer months. A further analysis at 

a micro-level shows temporal and spatial variations in the correlation. As the August correlation appears the 

strongest across all city districts, up to r=.972, a simple bivariate regression (SBR) model is derived to predict 

peak cooling energy use for each district. Given the latest climate change projections for Seoul, we use the 

SBR models to estimate increases of cooling energy use for each city district in August 2050s. The largest 

predicted increase rate (IR) is 96.1% in one city district (from 124.5% in 2012 to 220.6% in 2047). The smallest 

IR is 6.0% in another city district (from 51.5% to 57.5%). In 2047, the city district with the highest predicted IR 

is up to 292.8%, while the lowest is up to 57.5%. We discuss the implications of the projected future peak 

cooling energy demands for sustainable resilience as well as citizen’s health and wellbeing. 
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1. Introduction 

Better understanding energy use in residential buildings for cooling is becoming increasingly important from 

the perspective of climate change even in heating-dominant countries. Intuitively, residential cooling energy 

use is largely related to weather conditions as buildings interact with their immediate surroundings. However, 

looking beneath the overall city level, the scene is much more complex. Not all cooling energy use can be 

neatly characterised into some uniformity. How does cooling energy use in urban residential buildings correlate 
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with urban weather? Can any such correlation be reliably drawn through collecting and examining field 

measurements? To what extent, is the correlation spatial-temporal specific? A better understating of these 

questions will improve our ability to project cooling energy demands in future climate scenarios to inform 

longer-term energy policy making. Furthermore, a robust projection capability is more likely to be applied to 

planning and design of urban neighbourhoods and buildings, either retrofitting or constructing new ones. 

 

We have identified that Seoul is the only city in the world where the datasets from field measurements required 

to address our research questions have been made publicly available. Our research aims to develop a 

methodological framework for analysing open heterogeneous datasets and deriving correlational models that 

could project future cooling energy demands of urban residential neighbourhoods at a micro-climatic scale (up 

to 1 km). Using Seoul’s city districts as case studies, we expect that the proposed methodological framework 

can be applicable to other cities for site-specific analyse and modelling as long as these cities start similar data 

collections and make them accessible to researchers.  

 

2. Theory and Open Data 

2.1. Factors affecting cooling energy use in residential buildings 

Yu and co-workers (2011) identified several factors as major determinants affecting energy use in residential 

buildings which can be categorised into three groups: (a) climate, e.g. external temperatures; (b) building 

physical environment, e.g. building envelop and service systems; and (c) user related aspects such as 

occupants’ behaviours, activities and socio-economic statuses. As informed by more recent studies, we 

consider climate change an important additional factor that takes into account the likely effects of rising outdoor 

ambient temperature and increased frequencies of heatwave on cooling energy demand. 

 

Firstly, climate is one of the most significant factors affecting building thermal and energy performance. Of the 

wide range of climate variables, air temperature, humidity, wind pattern (speed and direction) and solar 

radiation are considered the most significant parameters (Flor & Domınguez, 2004). Especially, dry-bulb 

temperature is one of the most influential climatic variables in measuring heating and cooling degree days 

(HDDs and CDDs) (Lee & Levermore, 2010), which affects building energy use. Flor and Dominguez (2004) 

investigated the impacts of microclimate on building energy use through modification of weather variables 

based on an integrated computational model. Allegrini et al. (2012) studied influence of microclimate, effect of 

neighbouring buildings in street canyon, on building heating and cooling demand using building energy 
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simulation. Moonen et al. (2012) reviewed and highlighted the importance of investigation of urban 

microclimate to assess building energy demand, and several other authors suggested outdoor and indoor 

integrated or coupling assessment methods based on computational model as a solution to improve building 

energy use and the accuracy of the assessment (He et al., 2009; Bouyer et al., 2011; Yang et al., 2012). 

Despite of the importance of microclimate for assessing building energy use, very few studies have been 

carried out to investigate interrelations between microclimate and building energy use (Asimakopoulos et al., 

2001), especially involving actual field measurements in residential buildings. Santamouris et al. (2001) 

investigated urban climate impacts on building energy use based on climatic measurements from almost 30 

urban and suburban stations, which was conducted with one representative office building for all locations. 

Other related studies for residential buildings have been carried out, using alternative inputs rather than 

location-specific weather data, e.g.  city-wide HDDs and CDDs for the energy modelling study (Aydinalp et al., 

2002) and weather normalization process based on equation of line-of-best fit between HDDs (and CDDs) and 

energy use dataset for energy correlation study (Touchie et al., 2013).  

 

The importance of microclimatic consideration on building energy use is owing to diversity of urban weather 

conditions such as Urban Heat Island (UHI). UHI is often considered as the most typical example of 

anthropogenic climate modifications, resulting from the energy (heat) interactions between urban surfaces and 

the ambient atmospheric layers (Arnfield, 2003; Rizwan et al., 2008). For the period 1999-2002 in Seoul, Lee 

and Baik (2010) found that the maximum daily UHII during non-precipitation days (and precipitation days) was 

observed to 4.5oC (2.6oC) in spring, 3.5oC (2.4oC) in summer, 4.8oC (3.2oC) in autumn and 4.5oC (3.2oC) in 

winter. At the building level, the effect of UHI creates site-specific microclimate conditions and they in turn have 

significant impacts on building energy use, especially on summer cooling. Santamouris et al. (2001) and 

Kolokotroni et al. (2006) studied the effect of urban heat island on cooling energy use in office buildings in 

Athens and London respectively: in Athens, where the mean UHII exceeded 10oC, the urban cooling load was 

double of rural buildings; in London, the cooling energy demand of rural reference building was 84% of urban 

and there was no cooling demand investigated in the optimised rural building, maintaining indoor temperature 

below 24oC. To improve building energy assessment, Chan (2011a) highlighted using the site-specific modified 

typical meteorological year (TMY) weather file as a weather input in building simulation to reflect diversity of 

urban weather, such as the UHI; applying the modified weather input in the Hong Kong case study, there was 

about 10% increase in air-conditioning demand compared to the existing TMY in both office building and 

residential flat. More closely related to our current study, Salvati et al. (2017) reported the UHI impacts on 
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residential cooling energy use in Barcelona: the maximum UHI intensity at street level was 4.3oC, and its 

impact on sensible cooling load was estimated to increase of 18%-28%.  

 

Secondly, energy use in the residential building sector is also affected by user-related factors, such as 

residents’ behaviour (Yun and Steemers, 2011), occupant age (Chen et al., 2013) and socio-economic 

circumstances (Schuler et al., 2000). However, the strength of these factors varies by location and the type of 

energy use (e.g. heating or cooling). Resident behaviour was influential for cooling in the US (Yun and 

Steemers, 2011), and occupant age was found more significant than income for both heating and cooling in 

Hangzhou, China (Chen et al., 2013). Socio-economic characteristics were found significant but less influential 

than building physical characteristics for heating in western Germany (Schuler et al., 2000). In the Netherlands, 

occupant characteristics and behaviour explained only 4.2% variation for heating while building characteristics 

explained 42% (Santin et al., 2009). As the literature reviewed have shown that user related aspects could 

play a role but such influence might be inconclusive depending on location and energy use type, our study 

therefore included the property price data of apartment buildings in Seoul as a socio-economic indicator 

reflecting to some extent the residents’ cooling energy use decisions. 

 

Thirdly, the impact of climate change on building energy use has been investigated by many researchers 

world-wide, some of which focussed on residential buildings. Wilde and Coley (2012) reviewed the known 

impacts on residential buildings in the UK (Gaterell & McEvoy, 2005; Hacker et al., 2008; Collins et al., 2010), 

in Switzerland (Frank, 2005), in Australia (Wang et al., 2010), and in Hong Kong (Chan, 2011b). Li et al. (2012) 

reviewed the impacts in different climate zones and highlighted the most significant impacts would be seen 

where hot summer and warm winter climates occur. Quantitatively, Crawley (2008) estimated that the overall 

energy use would increase by more than 20% from the current level in ‘tropical’ climates; and in middle latitude 

climates, it would reduce by 25% for heating and increase by 15% for cooling. In South Korea, Chung et al. 

(2004) found that the increase of annual mean temperature during 1974-2002 was 1.5oC in Seoul, while the 

increase in the rural area was 0.6oC. Also, there was 259 mm increase of precipitation during the last century. 

Wang et al. (2007) analysed 227 years daily precipitation records in Seoul and found that there was increase 

of mean summer precipitation between the Cheugugi period (1778-1907) and the modern period (since 1908): 

the former was 861.8 mm whereas the latter was 946.5 mm. Moreover, during the past 20 years, the torrential 

rain frequency data showed that the torrential rain was increased to 25% and heavy rain warning was increased 

to 60% (Seo & Lee, 2011). According to the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5, Grell 
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et al., 1994) climate change projection downscaling for South Korea, the temperature during the summer 

period of 2071-2100 was predicted to increase 5.5oC with reference to 1991-2000 (Boo et al., 2006).  

 

2.2. Seoul’s open data 

The City of Seoul consists in 25 “gu” (districts), and each city district contains a number of “dong” 

(administrative neighbourhoods). We first analyse Seoul’s open data to search for potential correlations 

between (a) the actual residential cooling energy use extracted from the energy bill data from the apartment 

neighbourhoods, and (b) the actual location-specific microclimate urban weather data as measured from the 

city district (CD) automatic weather stations (AWS). 

 

2.2.1. Urban microclimate data 

 

Figure 1. Locations of the 98 apartment neighbourhoods (AN) within 1km radius of the 19 city district 

(CD) automatic weather stations (AWS) in Seoul identified for the study. 

 

The urban microclimate data collected at the AWS of each city district in Seoul are publicly available (KMA, 

2017; MDOP, 2016). However, the scope of AWS data is limited to temperature (dry-bulb), wind 

direction/speed and precipitation (above 0.5mm). As dry-bulb temperature is the most influential weather 
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variable affecting building thermal conditions and energy use, it was chosen to represent the urban weather 

data in this study. Figure 1 shows the locations and boundaries of the 19 city districts identified, considering 

the sample size for statistical analyses (see 2.2.2). The boundary of 1km radius within the AWS location is set 

according to the spatial scale of urban microclimate (Oke, 2006). Thus, a total of 98 apartment neighbourhoods 

(Danji) are identified across the 19 district sites. Table 1 shows the locations of the 19 AWS, including height 

(above sea level), estimated street and building roof level and the associated neighbourhood information such 

as apartment building height and size. However, as the AWS data contain only location and height above sea 

level, the street level was estimated from the roof floor level with 3m for average floor height. As most of the 

CD AWS are installed on building roof tops, the collected temperature data could be regarded as an influential 

weather variable affecting cooling energy use of the associated neighbourhoods. It should be pointed out here 

that the CD AWS datasets encompass urban heat island (UHI) effects wherever and whenever present in the 

district areas.  

Table 1. The location information of City District (CD) Automatic Weather Station (AWS), and height 

and size information of the Apartment Neighbourhood (AN) within each CD-AWS 1km boundary 

                            CD AWS info.     AN info. 

 Location  Height info.      

 Lat. Long   Sea lv. 
(m) 

Street 
lv. (m) 

Roof lv. 
(Stories)  

 Avg. Top 
floor lv. 

Avg. Min 
floor lv. 

No. Apt. 
Building 

No. Apt. 

CD1 37.5134 127.0470  59.6 50.6 3  21 13 59 4193 
CD2 37.5555 127.1450  56.9 47.9 3  17 12 61 4977 
CD3 37.6397 127.0257  55.7 34.7 7  17 12 15 1517 
CD4 37.5499 126.8425  79.1 64.1 5  20 13 64 3519 
CD6 37.5336 127.0853  38.0 38.0 0  19 11 16 1692 
CD8 37.4655 126.9001  41.5 29.5 4  21 15 30 2156 
CD10 37.6661 127.0295  55.5 43.5 4  14 11 47 4862 
CD11 37.5846 127.0604  49.4 34.4 5  21 11 47 3387 
CD12 37.4937 126.9181  33.8 33.8 0  19 15 17 2049 
CD13 37.5655 126.9027  25.0 13.0 4  16 10 18 1192 
CD15 37.4889 127.0156  35.5 26.5 3  17 10 67 6565 
CD16 37.5472 127.0388  33.7 18.7 5  17 10 25 2065 
CD17 37.6117 126.9994  125.9 107.9 6  19 11 37 3033 
CD18 37.5115 127.0967  53.6 29.6 8  18 15 105 11276 
CD19 37.5296 126.8782  9.7 6.7 1  18 9 119 7892 
CD20 37.5271 126.9070  24.4 12.4 4  21 15 52 3980 
CD21 37.5204 126.9761  32.6 20.6 4  21 13 52 4681 
CD22 37.6077 126.9338  65.0 56.0 3  16 8 34 1976 
CD25 37.5855 127.0868  40.2 28.2 4  18 12 11 1087 

 

2.2.2. Cooling energy use data 

Similar to Hong Kong and other Asian mega cities, the typical type of residential buildings in Seoul is high-rise 

apartment buildings. According to the Korean Statistical Information Service (KOSIS, 2013), nearly 50% of 

residential buildings are of the apartment type nationally. In Seoul, 42.55% of residential buildings are 

apartments. Also, about 84% of apartments are tall buildings over 10-story high. The number of households in 

each apartment neighbourhood can be widely different from hundreds to thousands. Also, the floor area of an 



7 

 

apartment unit varies, typically from 59.4 m2 to 148.4 m2 according to KOSIS (2013), indicating diverse family 

sizes. Due to the very high ratio of apartment buildings in South Korea, the Ministry of Land, Infrastructure and 

Transport (MoLIT) established the Apartment Management Information System (AMIS, 2010). 

 

The AMIS was designed to inform the monthly energy bill of each apartment neighbourhood including gas and 

electricity usage. For our study, in order to extract cooling energy use data from the AMIS, the electricity bill 

data was chosen among other types of energy bills as only the electricity bill reflects energy use for summer 

cooling in Seoul (i.e. uses of household air-conditioning and electric fans). Notably, the AMIS energy bill data 

is an average monthly energy bill of each apartment neighbourhood not a single residential household’s 

monthly energy bill. Therefore, the collected electricity bill data from each apartment neighbourhood (Korean 

Won per square metre, KRW/m2) reflects collective energy use for summer cooling specific to the 

neighbourhood location. 

 

According to the Korea Electric Power Corporation (KEPCO, 2016), the only electric power supplier in South 

Korea, currently 95% of total apartments in South Korea have the same metre reading day (18th of each month). 

We therefore assume that 95% is sufficient for all apartments in our statistic relational study to have the same 

metre reading day. Considering their sample sizes, city districts containing less than 3 apartment 

neighbourhoods were not included in this study. Thus, 19 city districts and a total of 98 apartment 

neighbourhoods (approx. 72,000 apartment households) were identified for the study, each of which is within 

1 km radius of the city-district weather station. Furthermore, considering that the AMIS only started in 2010, 

going through the system testing period 2010-2013, 2012-14 were selected as the temporal scope for the 

AMIS energy (electricity) bill data. Finally, the locations of the 98 apartment neighbourhood (AN) sites together 

with the 19 city-district weather station sites selected for the relational study are identified (Figure1).  

 

2.2.3. Property price data 

The AMIS data portal also provides apartment property price data by linking to the information service of 

publicly noticed value (PNV) of real estate price (KAB, 2015), which is maintained by the Korea Appraisal 

Board (KAB, 2017) under the MoLIT. Therefore, the apartment property price data in this study is not of market 

price, but of PNV for calculating household’s property tax. Like energy use data, the unit of the property price 

is Korean Won per square metre (KRW/m2) and the time period to collect was 2012-14.  
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2.2.4. Seoul’s climate change projection data 

Established by the Korea Meteorological Administration (KMA), the Climate Information Portal (CIP) provides 

climate change datasets projected by MK-PRISM (Modified Korean Parameter-elevation Regressions an 

Independent Slopes Model) (CIP, 2017; Kim et al., 2012; Kim et al., 2013a). The publicly available dataset 

contains daily maximum, minimum and mean temperature and precipitation data up to Year 2100 at the city-

district level. The MK-PRISM model was developed based on the historical weather dataset of each CD-AWS 

between 2001 and 2010 with 1 km horizontal resolutions, including topographic effect and data histogram. The 

climate change scenarios used in this projection were RCP (Representative Concentration Pathways) based, 

reflecting the recent trend of CO2 concentration change corresponding to global responses to climate change. 

There are four scenarios: RCP 2.6, 4.5, 6.0, 8.5 with the CO2 concentration reaching 420, 540, 670 and 940 

ppm in 2100 respectively. Of the four scenarios, RCP 4.5 and 8.5 were selected for this study. Also, the daily 

mean temperature data was collected for each city district in Seoul to generate future summer monthly average 

temperatures.  

 

3. Methodology 

3.1 Data mining 

Our initial survey of the above open datasets from the 19 city districts suggests a need for a systematic 

approach to analysing the data in relation to our research question. Hence, we developed a data mining 

method in three steps: extracting summer cooling energy use data, identifying the summer cooling period and 

data normalisation. 

 

Firstly, in searching for potential correlations between energy use (electricity bill) and urban weather data (air 

temperature etc.), it is necessary to minimize inclusion of the non-weather-dependent electricity bill 

(Asimakopoulos et al., 2001). In our study, the increasing rate (IR) of monthly electricity bill during summer 

period was proposed as a cooling energy use index which can be calculated by the increment of electricity bill 

of each summer month based on the non-weather-dependent electricity bill of the year. The non-weather-

dependent bill can be identified as the minimum electricity bill of the year, because it shows the operating costs 

of lighting and home appliances not affected by the external thermal conditions (Bronson et al., 1992). The 

equation for calculating the monthly IR of an apartment neighbourhood is simply as follows (Equation 1), where 

Bsm is the summer monthly electricity bill and Bmin is the non-weather-dependent electricity bill: ܴܫ ሺΨሻ ൌ ሺ஻ೞ೘ି஻೘೔೙ሻ஻೘೔೙ ൈ ͳͲͲ                                (1) 
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It may be debatable whether the minimum electricity month excludes any cooling and heating energy use or 

not. In reality, it is difficult to be sure of this differentiation due to the complexity of user behaviour and 

circumstances in residential energy use. Here we assumed that the month where the minimum electricity bill 

occurs was non-weather-dependent or, at least, it was minimal in cooling and heating energy use. Figure 2 

supports this assumption, showing that monthly temperature distribution and the monthly IR in 2012 as an 

example. For Seoul, the base temperature for HDD and CDD was determined at 17.1oC as a transition point 

of electricity demand from heating to cooling (Lee et al., 2014). As seen in monthly temperature distribution, 

May and October are placed on near the base temperature and therefore, about 60% of 98 ANs showed that 

the minimum electricity bill occurred in May (28%) and October (29%). Moreover, the minimum IR occurred in 

both months (about 60% of ANs), only 4.67% and 5.06% respectively. 

 

 

Figure 2. Monthly temperature distribution based on hourly dataset from city weather station for 2012 

(left) and monthly IR data of aggregate of all 98 ANs across the 19 CD’s boundaries (right). 

 

Secondly, the summer cooling period in Seoul was identified by the monthly IR distribution. The Korean 

Meteorological Administration (KMA) currently stipulates June, July and August as the official summer months 

(KMA, 2014). However, we propose to review the summer months in Seoul according to the distribution of the 

IRs during May and September 2012-2014. The distribution of the monthly IRs was calculated as the mean of 

monthly IR of all apartment neighbourhoods in Seoul. Notably, the time frame (day) in the IR-based analysis 

is set to the metre reading day of electricity billing: the 18th of each month, which is also applied to the city-

district weather station datasets. Through our monthly IR distribution analysis, July-September was identified 

as the summer cooling period in Seoul 2012-14, which was applied to the corresponding AWS datasets. 
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Finally, as the main statistical approach of this study would be parametric statistics (e.g. Pearson correlation 

and analysis of variance), normality of the IR values was checked first. Also, it was carried out by each summer 

month (July, August, and September) during 2012-2014 due to the monthly time base of each parametric 

analysis. The output of normality distribution of the IR is shown in Table 2.  

 

The normality of July and August IR was reasonably accepted as each value of skewness (the symmetry of 

the distribution) and Kurtosis (the ‘peakedness’ of the distribution) was less than 1. However, as the September 

IR and the Summer Period IR did not meet normality condition, which skewness and Kurtosis were 1.898 

(1.484) and 5.301 (2.299) respectively, the IR data was transformed using square root (Sqrt) transformation 

recommended by Tabachnick and Fidell (2007). Considering coherence of data transformation, all IR data was 

therefore Sqrt transformed. Figure 3 shows the normality distribution of original (left) and Sqrt transformed 

(right), taking the September IR as an example. 

 

Table 2. Normality distribution of IR (increase rate of energy use for cooling) of the 98 apartment 

neighbourhoods (ANs) by each of the summer months and the summer period 2012-2014. Values in 

() are square root transformed IR 

 N Mean Std. D Skewness Kurtosis Kolmogorov-
Smirnov Sig. 

Jul IR 294 
(98ANs x 1mon x 3yr) 

37.94 
(5.86) 

23.62 
(1.90) 

.942  
(.270) 

.508 
(-.449) 

.000  
(.077) 

Aug IR  294 
(98ANs x 1mon x 3yr) 

96.02 
(9.49) 

48.77 
(2.46) 

.803  
(.254) 

.446 
(-.519) 

.002  
(.004) 

Sept IR 294 
(98ANs x 1mon x 3yr) 

24.43 
(4.44) 

20.67 
(2.17) 

1.898  
(-.015) 

5.301 
(.662) 

.000  
(.000) 

Summer Period 
IR (Jul–Sept) 

882 
(98ANs x 3mon x 3yr) 

52.80 
(6.60) 

45.65 
(3.05) 

1.484  
(.393) 

2.299 
(.017) 

.000  
(.000) 
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Figure 3. Normality distribution of original (left) and Sqrt transformed (right) September IR of the 98 

apartment neighbourhoods (ANs). 

 

3.2. A statistic relational analysis framework 

To analyse the open data consistently, we develop a statistic relational analysis framework and the workflow 

for correlating cooling energy use with urban microclimate and property price data (Figure 4). Here we conduct 

statistic relational studies at two spatial scales: (a) at the macro-level, aggregating the 98 apartment 

neighbourhoods (ANs) within the AWS 1km boundaries across the 19 city districts, and (b) at the micro-level, 

aggregating only the ANs within each CD-AWS 1km boundary individually. The results from the correlational 

analyses provide a basis for projecting future summer peak energy demands given the climate change 

projections made available at the city-district level.  

 

Firstly, at a macro-level, for the 98 apartment neighbourhoods (AN) drawn from the 19 CDs’ AWS 1km 

boundaries, the relationships between cooling energy use (IR) and the two variables (urban weather and 

property price data) were explored by Pearson correlation analyses (RA1, RA2). Then, a multiple linear 

regression analysis was done to compare the impact of the two variables on IR (RA3).  

 

Secondly, at a micro-level, moving into each CD’s AWS 1km boundary individually, the number of apartment 

neighbourhoods varies from 3 to 10, the relationships between cooling energy use and urban weather data 

were examined in two aspects: (1) The diversity of IR by analysis of variance (SA1); (2) the relationship 

between IR and AWS data by Pearson correlation (RA4). Then, due to the varying strength of correlation in 

summer months and exceptionally strong correlation coefficients found in August (the hottest month of the 
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year), a simple bivariate regression (SBR) model was derived for each of the 19 city district AWS boundaries 

(RA5). The SBR models were evaluated by residual analysis (SA2). Finally, the SBR models were applied to 

estimate future peak energy demands of each city district using the climate change projection data for South 

Korea. 

 

 

Figure 4. A statistic relational analysis framework for correlating cooling energy use with urban 

weather and property price data as a basis for projecting future summer peak energy demand. 

 

4. Results and discussion 

4.1. Correlating cooling energy use with air temperature (RA1) 

The relationship between the cooling energy use (Sqrt IR) and the urban weather (monthly average 

temperature) of the 98 apartment neighbourhoods within the 19 CDs’ AWS 1km boundaries was examined by 

Pearson correlation analyses. To confirm no violation of the assumption of normality, linearity and 

homoscedasticity, a preliminary analysis was carried out for the whole summer period, and July, August and 

September of 2012-2014 (Figure 5). 
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Figure 5. Scatterplot between cooling energy use (Sqrt IR) and monthly average temperature. 

 

Table 3 shows that there was a very strong and positive correlation between the two variables for the whole 

summer period (r=.770). For individual months, July (r=.574) and August (r=.749) show strong or very strong 

positive correlations but September (r=-0.009) shows negative, no correlation and no significance. 

 

Table 3. Correlation between cooling energy use (Sqrt IR) and monthly average temperature. (** 

p<0.01; * p <0.05) 

 Sqrt of AN 
monthly IR  
(Whole Summer) 

Sqrt of AN 
monthly IR 
(July) 

Sqrt of AN 
monthly IR 
(August) 

Sqrt of AN 
monthly IR 
(September) 

monthly 
average 
temperature 

Pearson-C .770** .574** .749** -.009 

Sig. .000 .000 .000 .882 

r squared .593 .329 .561 .000 

N 882  
(98ANs*3Mon*3Yr) 

294  
(98ANs*1Mon*3Yr) 

294  
(98ANs*1Mon*3Yr) 

294  
(98ANs*1Mon*3Yr) 

 

 

To explore what might have contributed to the differences in the Pearson correlation coefficients seen in Table 

3, we looked into another possible urban weather parameter—changes in humidity. However, as no humidity 

data available at the AWS portal, the monthly temperatures were grouped into 2 types: monthly average 

temperature during Precipitation and Non-precipitation days (Table 4). It could be debatable if the humidity 

change can be simplified in those two temperature types. However, under the complexity of urban weather 

and limited data availability, it is assumed that the humidity condition in non-precipitation days is definitely drier 

than in precipitation days. 

 

Firstly, the cooling energy use over the whole summer period (N=882, 98ANs*3Mon*3Yr) had a stronger 

correlation with non-precipitation average temperature (r=.762) than precipitation (r=.738), implying that air 

temperatures in non-precipitation days may have been more influential on residential cooling energy use. This 

was also confirmed in the monthly correlation analysis: in July and August (N=294, 98ANs*1Mon*3Yr), the 

non-precipitation average temperature was more strongly correlated with IR than precipitation. Secondly, 
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comparing the two correlations in Table 3 and Table 4, the cooling energy use was more strongly correlated 

with monthly average temperature in all summer months. Therefore, our relational study was carried out using 

only the monthly average temperature. However, the September case still showed no correlation, suggesting 

that under the mildest summer condition, other parameters such as solar radiation may be more influential 

than temperature. 

 

Table 4. Correlation between cooling energy use (Sqrt IR) and monthly average temperature in 

precipitation and non-precipitation days. **. p <0.01 and *. p <0.05 

 Sqrt of AN 
monthly IR 
(Whole Summer) 

Sqrt of AN 
monthly IR  
(July) 

Sqrt of AN 
monthly IR 
(August) 

Sqrt of AN 
monthly IR 
(September) 

Precipitation 
monthly 
average 
temperature 

Pearson-C .738** .443** .693** .027 

Sig. .000 .000 .000 .647 

r squared .545 .196 .481 .001 

N 882  
(98ANs*3Mon*3Yr) 

294  
(98ANs*1Mon*3Yr) 

294  
(98ANs*1Mon*3Yr) 

294  
(98ANs*1Mon*3Yr) 

Non-
Precipitation 
monthly 
average 
temperature 

Pearson-C .762** .525** .746** -.059 

Sig. .000 .000 .000 .317 

r squared .580 .276 .556 .003 

N 882  
(98ANs*3Mon*3Yr) 

294  
(98ANs*1Mon*3Yr) 

294  
(98ANs*1Mon*3Yr) 

294  
(98ANs*1Mon*3Yr) 

 

 

4.2. Correlating cooling energy use with apartment property price data (RA2) 

To account for possible human behavioural factors of cooling energy use (i.e., factors associated with decision 

on using cooling energy or not and how much), we investigated if cooling energy use was correlated to 

apartment property price data. Here, we assume that the apartment property price is an overall indicator of the 

socio-economic circumstances of households, affecting residents’ cooling energy use decisions. Since the 

property price data was published as the average price of 2012-2014, the correlation analysis was carried out 

based on total cooling energy use (IR) of the whole summer period and each summer month during 2012-

2014; thus, the number of items in all cases was 98. The property price data was also Sqrt transformed for 

data normalization. 

 

Table 5. Correlation between cooling energy use (Sqrt IR) and Sqrt of property price 2012-2014. **. 

p<0.01 

 Sqrt of total AN 
monthly IR (Whole 
Summer Period) 

Sqrt of total AN 
monthly IR (July) 

Sqrt of total AN 
monthly IR 
(August) 

Sqrt of total AN 
monthly IR 
(September) 

Sqrt of 
AN 
property 
price  

Pearson-C .712** .698** .708** .101 

Sig. .000 .000 .000 .324 

R-squared .507 .487 .501 .010 

N 98 98 98 98 
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Table 5 shows that the two variables had positive and very strong coefficient during whole summer period 

(r=.712). However, the strength of the monthly coefficient varied, July (r=.698), August (r=.708), September 

(r=.101), suggesting higher cooling energy use correlated with higher apartment property prices. Interestingly, 

comparing the two correlations in Table 3 and Table 5, the July correlation coefficient of property price (r=.698) 

was much stronger than that of average temperature (r=.574). This could imply that under milder weather 

conditions (July in this case), the socio-economic factor, as reflected in the apartment property price data, can 

be more influential than the external weather conditions on cooling energy use. To explore this further, a 

multiple regression analysis was conducted to investigate the combined effect of urban weather data and 

property price data on cooling energy use in the next section. 

 

4.3. Effect of combined air temperature and property price on cooling energy use (RA3) 

Firstly, the multi-collinearity was assessed using tolerance and VIF (Variance inflation factor) in collinearity 

statistics. The tolerance and VIF in 4 cases were not less than .10 and not above 10 respectively, so the multi-

collinearity assumption was not violated: whole summer period (.969 and 1.032), July (.751 and 1.332), August 

(.951 and 1.052) and September (.820 and 1.220). Furthermore, a preliminary analysis for regression model 

was carried out to check outliers, normality, linearity, homoscedasticity and independence of residuals through 

inspecting the normal probability plot (P-P) of the regression standardised residual and the scatterplot. 

 

Table 6. Multiple regression analyses to investigate effect of combined monthly average temperature 

and Sqrt of property price on cooling energy use (Sqrt IR) 

Case regression  
model 

Dependent Independent B Std. error Beta p value 

Whole Summer 
Period 
 
R2 = .613,  
p = .000 

Sqrt of AN 
monthly IR for 
whole summer 
months 
 

(Constant) -29.656 .973  .000 

Monthly average  
temperature 1.332 .038 .744 .000 

Sqrt of AN property price .001 .000 .146 .000 

July 
 
R2 = .506,  
p = .000 

Sqrt of AN 
monthly IR 
for July 

(Constant) -28.245 3.964  .000 

July average  
temperature 1.162 .167 .331 .000 

Sqrt of AN property price .002 .000 .485 .000 

August 
 
R2 = .655,  
p = .000 

Sqrt of AN 
monthly IR 
for August 

(Constant) -30.282 1.808  .000 

August average  
temperature 1.304 .068 .679 .000 

Sqrt of AN property price .002 .000 .314 .000 

September 
 
R2 = .007,  
p = .224 

Sqrt of AN 
monthly IR 
for September 

(Constant) 6.422 3.839  .095 

September  
average temperature -.129 .172 -.048 .453 

Sqrt of AN property price .001 .000 .094 .147 
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Table 6 shows the result from the regression analysis. Firstly, the regression model explained 61.3%, 50.6% 

and 65.5% of the variance in the Sqrt of neighbourhood monthly IR for whole summer period, July, and August 

2012-2014 respectively; the statistical significance in all 3 models was .000 (p<.0005). Secondly, evaluating 

each of the independent variables, the impact of each variable on cooling energy use was different. In the 

whole summer period model, the impact of microclimate temperature (Beta, .744) on cooling energy use was 

much higher than the property price (.146). However, comparing the Beta values between July and August, 

while the impact of average property price (.485) was higher than that of monthly average temperature (.331) 

in July, the temperature (.679) was more influential on cooling energy use than the price (.314) in August. This 

suggests that under the high temperature of August, the influence of weather condition on cooling energy use 

is more dominant than that of the socio-economical (as reflected by the property price). But under the lower 

temperature of July, the socio-economic factor appears more dominant.  

 

4.4. Correlating cooling energy use with air temperature within each CD’s AWS 1km boundary (RA4) 

Following the three relational analyses above at the macro-level (RA1-RA3 in Figure 4), we performed two 

further analyses at the micro-level (RA4, RA5), looking into the apartment neighbourhoods within each city 

district’s AWS 1km boundary. 

 

4.4.1. Characteristics of monthly IR for cooling energy use (SA1) 

Figure 6 shows the August average air temperatures (19 Jul – 18 Aug, 2012) recorded at each city district 

AWS in Seoul, the hottest period during 2012-2014. The highest average August cooling energy use appeared 

also in 2012. However, in that period the average temperatures varied, and the gap between the highest and 

lowest was about 2.65oC (the highest 29.61oC occurred at CD25, while the lowest 26.96oC at CD22). Moreover, 

some city district temperatures differed significantly from the Seoul City Weather Station temperature (28.21oC). 

Secondly, the August IR for cooling energy use also shows noticeable variations across the 19 city districts. 

Thirdly, these two measurements are not always in agreement with our intuition that higher air temperatures 

correspond to higher IRs and vice versa. As shown by the macro analyses above, socio-economic factor 

(reflected in the property price) could also affect cooling energy use significantly. For instance, CD25 is an 

example: low IR, high temperature, and low property price band. The highest IR occurred at CD21 (high 

temperature, high property price band), while the lowest IR occurred at CD17 (low temperature, low property 

price band). 
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Figure 6. The August average temperature (left) and August ANs’ IR (middle) in 2012, and AN’s 

property price (right) within each of the 19 CDs’ AWS 1km boundary. 

 

The difference in cooling energy use across the 19 CDs was explored by a one-way between-groups analysis 

of variance (ANOVA). As the climate conditions of each summer month were different, the ANOVA was carried 

out monthly for July, August, and September, 2012-2014. The ANOVA result in Table 7 shows that the 

difference in the monthly IR of the 19 CDs is statistically significant (p < 0.05). 

 

Table 7. Analysis of variance (ANOVA) of monthly IR of July, August and September, 2012-2014, 

across the 19 city districts 

 F Sig. (p) 

Sqrt July IR 26.308 .000 

Sqrt August IR 9.285 .000 

Sqrt September IR 14.708 .000 

 

 

Moreover, we observe that there appears a close similarity of monthly IR distribution within each CD boundary. 

Their internal consistency and the similarity was examined using Cronbach’s Alpha and correlation coefficients 

between inter-items (monthly IR of each AN) respectively. As seen in Table 8, the Cronbach’s alpha 

coefficients in all CDs were above 0.9 except CD17, but even CD17 was above 0.8. Furthermore, the average 

of correlation coefficients between inter-items was above 0.7 in all cases. This means high internal consistency 

and similarity in terms of the distribution of monthly cooling energy use within each CD-AWS 1km boundary. 

Therefore, it is reasonable to assume that the apartment buildings are mostly surrounded with homogeneous 

microclimatic conditions, especially air temperatures. 
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Table 8. Cronbach’s alpha coefficients and correlation coefficients between inter-items of monthly 

cooling energy use (IR) in each city district’s AWS 1km boundary: () standardised Cronbach’s alpha 

 Cronbach’s alpha 
coefficients 

Correlation coefficients between inter-items (N=9, Jul to Sep 2012-14) Number 
of ANs Avg Min Max Range Max/Min variance 

CD1 .982 (.985) .893 .741 .996 .255 1.344 .007 8 
CD2 .986 (.992) .945 .876 .994 .118 1.135 .001 7 
CD3 .948 (.949) .860 .742 .922 .180 1.243 .008 3 
CD4 .990 (.993) .978 .960 .992 .032 1.034 .000 3 
CD6 .989 (.995) .977 .952 .991 .038 1.040 .000 5 
CD8 .922 (.941) .799 .554 .962 .408 1.737 .018 4 
CD10 .992 (.993) .973 .959 .998 .039 1.041 .000 4 
CD11 .953 (.968) .860 .693 .953 .260 1.375 .008 5 
CD12 .985 (.991) .958 .912 .975 .063 1.069 .000 5 
CD13 .974 (.978) .936 .890 .991 .101 1.114 .002 3 
CD15 .984 (.985) .892 .638 .997 .359 1.562 .011 8 
CD16 .986 (.990) .961 .931 .989 .058 1.062 .001 4 
CD17 .839 (.880) .710 .453 .916 .462 2.022 .044 3 
CD18 .965 (.972) .896 .779 .981 .202 1.260 .008 4 
CD19 .990 (.994) .946 .737 .999 .262 1.355 .003 10 
CD20 .990 (.993) .946 .810 .996 .186 1.230 .003 8 
CD21 .988 (.989) .928 .828 .995 .167 1.202 .003 7 
CD22 .959 (.960) .857 .731 .984 .253 1.345 .007 4 
CD25 .947 (.974) .927 .882 .962 .080 1.090 .001 3 

 

 

4.4.2. Apartment building information 

Holistically speaking, energy use for cooling in the context of this study can be characterised as a human 

comfort and economic decision in response to the result of dynamic interaction between building envelope and 

surrounding urban microclimate. The variation or similarity of physical thermal properties of the apartment 

buildings play a certain role in the characteristics of cooling energy use seen at the city district level. However, 

here we adopt an “all in the energy bill” approach as a wrapper encompassing some aspects of the complex 

physical interactions. Nonetheless, some key building information is presented in this subsection. We first 

collated the building insulation criteria (U-value) according to the year of building regulation applied. Figure 7 

(left) shows that there is one dominant insulation regulation type in each CD boundary although some CDs are 

mixed (e.g. CD8 & 15). However, even those 2 CDs can be grouped into one dominant insulation type because 

the adjacent insulation criteria have similarity in terms of the U-value (see Table 9). Secondly, as seen in Figure 

7 (right), there appears one dominant size of apartment total floor area in each CD, representing similarity of 

the household size. 

 

Thirdly, an apartment building’s glazing ratio and its orientation can affect its internal solar gain to a large 

extent. However, the cost of collecting such detailed building information is prohibitive given the large sample 

size (72,104 apartment buildings in total). Here we referred to a previous study on glazing ratio (Kim et al., 
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2010). We assume that the 98 ANs may have similar glazing ratios (Table 10). However, given this limited 

information, the characteristic of glazing ratio within each CD boundary remains inconclusive.  

 

 

Figure 7. The number of apartment households (units) within each CD-AWS boundary according to 

the building insulation criteria applied in certain built years (left) and the ranges of floor area (right). 

 

Table 9. U-value of insulation criteria for Seoul by base-year’s building regulation (W/m2*K). (Source 

from Kim et al., 2013b) * Side wall represents the external wall without opening area, such as glazing 

Base year External 
wall 

External/ 
Ground Floor 

External 
Roof 

Side wall Window 

Sep 1979 1.05 1.05 1.05 - 2.56 
Dec 1980 .58 1.16 .58 - 3.49 
Dec 1984 .58 .58 .58 .47 3.49 
Jul 1987 .58 .58 .41 .47 3.37 
Jan 2001 .47 .35 .29 .35 3.84 
Nov 2008 .47 .35 .29 .35 3.0 
Jun 2010 .36 .30 .20 .27 2.1 

 

Table 10. Average glazing ratio (%) of the apartment building by type of apartment building. (Source 

from Kim et al., 2010) 

Faced 
orientation 

Tower 
type 

Flat  
type  

Total  
(Tower +Flat) 

South 61.48 34.98 41.91 
East 48.57 22.00 28.80 
West 70.19 25.65 36.10 
North 56.49 46.30 49.48 

 

 

4.4.3. Correlating cooling energy use with air temperature within each CD-AWS 1km boundary 
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Given the unique characteristics and internal consistency of monthly cooling energy use in each CD, a 

relational study between cooling energy use (Sqrt IR) and urban weather data was carried out within each CD-

AWS 1km boundary. Shown in Table 11, for the whole summer period, there were positive and very strong 

correlation coefficients between Sqrt IR and monthly average air temperature in most CDs (r>.700 and even 

r>.900 in some cases). However, several city districts stand out with relatively smaller correlation coefficients 

(r<.700), for instance, CD11, CD13, CD17 and CD22.  

 

Table 11. Correlation between cooling energy use (Sqrt IR) and monthly average temperature. (** 

p<0.01; * p <0.05) within each CD-AWS 1km boundary. **. p<0.01 and *. p<0.05 

 Whole summer months  

(Jul – Sept inclusive) 

 July  August  September  

 Pears-

C 

Sig. N  Pears-

C 

Sig.  Pears-

C 

Sig.  Pears-

C 

Sig. N 

CD1 .883**  .000  72, 8ANs  .306  .146   .913** .000  .143 .504 24, 8ANs 

CD2 .890**  .000  63, 7ANs  .523* .015  .877** .000  -.114 .624 21, 7ANs 

CD3 .850**  .000  27, 3ANs  .323 .397  .959** .000  .043 .912 9, 3ANs 

CD4 .909**  .000  27, 3ANs  .863**  .003  .937** .000  .001 .997 9, 3ANs 

CD6 .928**  .000  45, 5ANs  .691**  .004  .918** .000  .100 .723 15, 5ANs 

CD8 .819**  .000  36, 4ANs  -.055 .865  .836** .001  .118 .716 12, 4ANs 

CD10 .942**  .000  36, 4ANs  .742**  .006  .972** .000  .069 .831 12, 4ANs 

CD11 .628**  .000  45, 5ANs  .509 .052  .738** .002  -.088 .755 15, 5ANs 

CD12 .891**  .000  45, 5ANs  .552* .033  .943** .000  .006 .984 15, 5ANs 

CD13 .649**  .000  27, 3ANs  .869**  .002  .870** .002  -.084 .830 9, 3ANs 

CD15 .881**  .000  72, 8ANs  .283 .180  .931** .000  .415* .043 24, 8ANs 

CD16 .932**  .000  36, 4ANs  .802**  .002  .948** .000  .385 .217 12, 4ANs 

CD17 .267   .178 27, 3ANs  -.282 .462  .684* .042  -.432 .246 9, 3ANs 

CD18 .896**  .000  36, 4ANs  .263 .408  .960** .000  .401 .196 12, 4ANs 

CD19 .848**  .000  90, 10ANs  -.136 .475  .838** .000  .702** .000 30, 10ANs 

CD20 .829**  .000  72, 8ANs  -.339 .106  .909** .000  .213 .317 24, 8ANs 

CD21 .898**  .000  63, 7ANs  .696**  .000  .883** .000  -.210 .361 21, 7ANs 

CD22 .616**  .000  36, 4ANs  -.045 .890  .726** .007  .004 .990 12, 4ANs 

CD25 .739**  .000 27, 3ANs  -.861**  .003  .774* .014  -.328 .388 9, 3ANs 

 

 

Among the monthly correlation coefficients, the August correlations were the strongest and most consistent, 

while July varied and September were the weakest, showing no relation or even negative. Moreover, the 

August coefficients increased dramatically even in the aforementioned four districts, compared to whole 

summer correlation coefficients. This suggests that under extreme weather conditions, such as August (being 

the hottest month in Seoul), the external temperature can be the key parameter in affecting residential cooling 

energy use in most CDs. On the other hand, under relatively milder weather conditions (i.e. July or September), 

there may be other parameters affecting cooling energy use. 
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The results of the monthly correlation coefficients found at the micro-level are similar to those found at the 

macro-level (see section 4.1, Table 3): August (strongest, r=.749); July (strong, r=.574); September (negative 

and no correlation, r=-.009). However, seen at the micro-level, the strength of correlation coefficients varies 

among the CDs. We see that there are not only temporal variations in relationship between residential cooling 

energy use and urban microclimate data, but also spatial variations. 

 

4.4.4. Other parameters affecting residential cooling energy use 

Why did the 4 CDs (CD11, CD13, CD17 and CD22) show relatively smaller correlation coefficients (Table 11)? 

Firstly, common to these CDs is a relatively small sample size (3 to 5 ANs). As the statistical approaches used 

in this study are parametric, the output can be sensitive to sample size. For example, the internal consistency 

and the correlation coefficients between inter-items of those 4 CDs are relatively small (see Table 8), especially, 

the minimal coefficient in CD17 was only .453. With a small sample size, such a weak internal consistency 

could result in a weak relationship. 

 

 

Figure 8. The actually applied floor area ratio (FAR, left) and site coverage ratio (SCR, right) of ANs 

within each CD-AWS boundary. 

 

Secondly, there may be other variables (e.g. solar radiation) affecting cooling energy use in such CDs. As 

recent studies show that air temperature and solar radiation play a key role in residential cooling energy use 

at the same time (Flor & Domınguez, 2004; Salvati et al., 2017), we investigated the probability of solar 

radiation impacts on these 4 CDs, through analysing floor area ratio (FAR) and site coverage ratio (SCR) as a 

density indicator (Figure 8). Here both the FAR and SCR are the percentage ratios actually applied in the 98 

existing ANs, not inferred from the building regulation of land use. Interestingly, there appears characteristics 
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in the FAR of the four CDs: one or two ANs had exceptionally different FAR values. The different density may 

affect different internal solar gains and in turn, lead to different cooling energy use, resulting in weak internal 

consistency, and finally, it results in smaller correlation coefficients within a small sample size. However, the 

SCR plot is inconclusive. This implies that those four CDs, showing relatively weaker correlation coefficients, 

may need to take solar radiation into account in correlating cooling energy use. Finally, there may be socio-

economic factors (e.g. property price) common to these CDs that belong to a relatively lower property price 

band (see Figure 6, right). Here the socio-economic factor as represented by property price may be more 

influential than the external temperature even in August. 

 

4.5. Estimating future peak cooling energy demands (RA5) 

Given the result from the Pearson correlation analysis of IR to monthly average temperature (RA4), which was 

corroborated by ANOVA and Cronbach’s alpha coefficients analyses (SA1), we derive city-district specific 

models for estimating future peak cooling energy demands according to the latest climate change projection 

for Seoul. This is achieved by a bivariate regress analysis (RA5, section 4.5.1) checked by model accuracy 

and error statistics (SA2, section 4.5.2). The peak demand estimations for each city district are then presented 

in section 4.5.3. 

 

4.5.1 Simple bivariate regression (SBR) models  

As the cooling energy use (IR) shows strong correlation with the external temperature in August, a simple 

cooling energy use model for estimating peak cooling demand for each CD boundary can be derived from 

bivariate regression. The purpose of this modelling exercise is to estimate cooling energy use for each city 

district (within the AWS 1 km boundary), not for an individual apartment neighbourhood. Hence, the dependent 

variable (Sqrt IR) should be the sum or an average of all ANs' IR within each CD boundary as its peak cooling 

energy use. However, due to the small sample size (N=3, 2012-2014 August) imposed by the limited time 

period of the current AMIS data availability, an alternative was considered. As seen in section 4.4.1, the 

characteristic of ANs IR data shows that there is very good internal consistency and similarity in terms of the 

distribution of monthly cooling energy use (Sqrt IR) within each CD boundary. Based on these findings, the 

Sqrt IR of individual ANs within each CD boundary was used as a dependent variable. A preliminary bivariate 

regression analysis was carried out to check outliers, normality, linearity, homoscedasticity and independence 

of residuals through inspecting the normal probability plot (P-P) of the regression standardised residual and 

the scatterplot for each CD. The resultant 19 SBR models are presented in Table 12. 
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Table 12. Simple bivariate regression (SBR) models for estimating each CD’s peak cooling demand 

within its AWS 1km boundary 

Sqrt of AN 
Aug IR of 

Constant CD Aug average 
temp 

     

B p value  B  p value R R2 Adjusted R2 Sig. N 

CD1 -30.126 .000 1.505 .000 .913 .834 .827 .000 24 (8 ANs) 
CD2 -34.159 .000 1.632 .000 .877 .769 .757 .000 21 (7 ANs) 
CD3 -27.637 .000 1.315 .000 .959 .919 .908 .000 9 (3 ANs) 
CD4 -31.872 .001 1.526 .000 .937 .878 .860 .000 9 (3 ANs) 
CD6 -31.228 .000 1.466 .000 .918 .843 .831 .000 15 (5 ANs) 
CD8 -23.132 .005 1.148 .001 .836 .699 .669 .001 12 (4 ANs) 
CD10 -33.680 .000 1.603 .000 .972 .945 .940 .000 12 (4 ANs) 
CD11 -18.437 .017 .985 .002 .738 .544 .509 .002 15 (5 ANs) 
CD12 -31.226 .000 1.463 .000 .943 .889 .880 .000 15 (5 ANs) 
CD13 -14.240 .027 .895 .002 .870 .756 .722 .002 9 (3 ANs) 
CD15 -39.766 .000 1.828 .000 .931 .867 .861 .000 24 (8 ANs) 
CD16 -28.738 .000 1.427 .000 .948 .899 .888 .000 12 (4 ANs) 
CD17 -3.229 .439 .367 .042 .684 .468 .392 .042 9 (3 ANs) 
CD18 -34.153 .000 1.564 .000 .960 .921 .913 .000 12 (4 ANs) 
CD19 -34.035 .000 1.563 .000 .838 .702 .691 .000 30 (10 ANs) 
CD20 -42.146 .000 1.838 .000 .909 .826 .818 .000 24 (8 ANs) 
CD21 -35.252 .000 1.749 .000 .883 .780 .769 .000 21 (7 ANs) 
CD22 -9.425 .096 .657 .007 .726 .527 .480 .007 12 (4 ANs) 
CD25 -17.332 .067 .926 .014 .774 .599 .541 .014 9 (3 ANs) 

 

 

4.5.2. Model accuracy and error statistics (SA2) 

To evaluate the SBR model accuracy, error statistics between predicted and observed CD cooling energy use 

was calculated. The SBR model was derived from ANs’ IR data within each CD boundary for August 2012-14 

as the training data; the Sqrt of average ANs’ IR within each CD boundary for August 2015 (provided by the 

AMIS) was used as the testing data. We calculated five criteria using the following equations, where ݕ௜ is the 

predicted and ݕ௜ᇱ is the observed: mean absolute error (MAE); mean square error (MSE); root mean square 

error (RMSE); mean absolute percentage error (MAPE); coefficient of determination (R2) (Catalina et al., 2013). 

 

ܧܣܯ ൌ ෍ ห௬೔ି௬೔ᇲห೙೔సభ௡                                            (2) 

ܧܵܯ ൌ ෍ ൫௬೔ି௬೔ᇲ൯మ೙೔సభ ௡                                           (3) 

ܧܵܯܴ ൌ ඨ෍ ൫௬೔ି௬೔ᇲ൯మ೙೔సభ ௡                                      (4) 

ܧܲܣܯ ൌ ෎ ቤ೤೔ష೤೔ᇲ೤೔ ቤ೙
೔సభ௡                                          (5) 
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Table 13 shows the output of the error statistics calculation. The average residual was close to 0 (-.244) and 

the mean absolute percentage error (MAPE) was 6.2 %. Moreover, coefficient of determination from the scatter 

plot between the observed and the predicted was .882 (Figure 9), representing over 88% of variance in the 

observed CD IRs was explained by the corresponding bivariate regression model.  From this, the SBR models 

are considered reasonably acceptable. Also, the alternative way of using individual ANs IR within each CD 

boundary for estimating CD peak cooling energy uses was confirmed methodologically. 

 

Table 13. The error statistics between the predicted and the observed Sqrt of average CD IR for August 

2015 in each city district’s AWS 1km boundary 

Error statistics Sqrt CD Avg. IR 

MAE .538 
MSE .443 
RMSE .665 
MAPE .062 
R2 .882 
  
Residuals (%)  

Min. residual -1.294 
Max. residual 1.410 
Avg. residual -.244 

 

 

 

Figure 9. Scatter plot between the predicted and the observed Sqrt of average CD IR for August 

2015 in each city district’s AWS 1km boundary 

 

To assess the behaviour (bias) of the two residuals—relatively changed or unchanged, a comparative analysis 

between 2012-14 (training) and 2015 (testing) was conducted on the residuals between predicted and 
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observed AN IR in each CD. Figure 10 shows the outputs of the comparative analysis: the training residuals 

for 2012-14 are in black, and the testing for 2015 are in red. 

 

Figure 10. Comparative analysis of residuals between observed and estimated Sqrt average IR of 

each city district’s (CD’s) AWS 1km boundary for August 2012-14 (in black as the training set) and 

2015 (in red as the testing set) 

 

Firstly, we inspect bias between red and black line. Some CDs, such as CD4, 10, 12, 13, 17, 19, 20, show that 

all 2015 residuals (red) are to the left of 2012-14 (black), meaning 2015 had lower residuals than 2012-14. 

This suggests that the predicted energy use (Sqrt IR) for those CDs could be underestimated. CD2, 3, 8 might 
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be similar to those CDs because only one 2015 residual in each case was right-biased slightly towards 2012-

14. Secondly, some CDs had a very similar behaviour between the two residuals, such as CD1, 6, 15, 18, 

showing similar fit in 2015 to 2012-14 and most of the 2015 residuals were close to 0, meaning the predicted 

residuals were similar to the observed. This implies that the predicted energy uses in these CDs are reasonably 

confident. Hence, CD16 and CD22 could be similar to these CDs because their 2015 residuals were near to 

zero even though left-biased.  

 

Finally, some CDs (CD11, 21, 25) are inconclusive. In CD11, most of 2015 residuals were left-biased but the 

max residual was largely right-biased. Given the small sample size, it is difficult to draw any conclusion. In 

CD21, the 2015 residuals were more widely distributed compared to 2012-14, meaning that less variation 

explained by the model in 2015 than in 2012-14. CD 25 is a special case where very little can be said due to 

lack of data for 2015. 

 

4.5.3. Projection of future peak cooling demands incorporating climate change projections 

Bearing in mind the limitation on accuracy and reliability, the SBR models presented in Table 12 can be applied 

to estimating future summer peak energy demand if future urban climate projections are available. For the city 

districts in Seoul, climate change projections generated by MK-PRISM (Modified Korean Parameter-elevation 

Regressions on Independent Slopes Model) is available and two RCP (Representative Concentration 

Pathways) scenarios were selected for this study: RCP4.5 and RCP8.5. RCP4.5 is the scenario of CO2 

concentration reaching at 540 ppm in 2100, while RCP8.5 at 940 ppm. We identified the hottest August of the 

year in both scenarios within 2050s using monthly average temperature between 19th of July and 18th of August. 

Assuming the same meter-reading day for electricity bill, the temperature projections for 2045 (RCP 8.5) and 

2047 (RCP 4.5) were generated. 

 

Figure 11 shows the projected August average temperatures and future peak cooling demands predicted by 

the SBR models. The 2012 Temp-IR profiles (being the hottest year during 2012-14) are included for reference. 

As discussed in section 3.5.2, we highlighted the confidence level using different colours: red for 

underestimated; blue for reasonably confident: black for non-defined confidence.  

 

As the MK-PRISM climate change dataset was produced with a horizontal resolution of 1km x 1km and the 

CD-AWS data of 2000-2010, the range of temperature changes between 2012 and 2047 (or 2045) varies 
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across the city districts. For instance, the minimum increase of temperature between 2012 and 2047 occurs in 

CD25 (0.03oC) while the maximum occurs in CD2 (2.43oC). Secondly, the projection of cooling energy use (IR) 

is more dynamic and complex. For example, the predicted min and max IR increase occurs in CD17 (6%, 

underestimated) and CD2 (96.1%, underestimated) respectively, indicating that the predicted cooling energy 

increase may not always align with projected temperature increase in a linear manner (CD 17 is not projected 

to have the lowest temperature rise between 2012 and 2045/47, as seen in Figure 11). 

Finally, a comparison between the min (CD17) and max (CD21) cooling demands predicted for future years 

points to a potential challenge/threat to resident’s health and well-being living in CD17 if the neighbourhood 

environment stays largely unchanged. Although the August average temperature of CD17 and CD21 in 2012 

(2047) was 27.61oC (29.46oC) and 28.74oC (29.94oC), and the IR was 51.5% (57.5%) and 224.9% (292.8%), 

the cooling energy bill of CD21 was predicted to increase by 67.9% due to an increase of 1.2oC, while CD17 

was predicted to increase by merely 6% in response to an increase of 1.85oC. Here we see a potentially 

significant negative impact on the health and well-being of residents living in CD17: potential high indoor 

temperatures lasting for a protracted period of time without adequate cooling energy uses. 

 

 

Figure 11. Projected August average temperature (left) and predicted future peak (August) cooling 

demands (right) in each of city districts’ AWS 1km boundary using two different climate change RCP 

scenarios, RCP4.5 (2047) and RCP8.5 (2045): red for underestimated; blue for reasonably confident; 

black for non-defined confidence. 
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5. Conclusion and Further research 

5.1. The temporal (monthly) variations 

The relationship between cooling energy use and the two factors, urban microclimate data (i.e., monthly 

average temperature) and property price data, was explored in the analyses of all 98 ANs across the 19 CDs’ 

1km boundaries at the macro-level. The cooling energy use was very strongly correlated with both of the two 

factors for the whole summer period (July to September): urban microclimate (r=.770); property price (r=.712). 

However, there were significant temporal variations in the strength of correlation coefficients in each summer 

month. Firstly, it was found that there were temporal variations in correlating cooling energy use with urban 

microclimate data: July (r=.574); August (r=.749); September (r=-.009). Secondly, the correlation coefficients 

between cooling energy use and property price also had temporal differences: July (r=.698); August (r=.708); 

September (r=.101). Thirdly, the combined effect of urban microclimate and property price on cooling energy 

use varied in each summer month: in July, the impact of property price (Beta, .485) was more influential on 

cooling energy use than urban weather (.331) while the urban weather (.679) was more dominant than property 

price (.314) in August. This implies that under the high temperature of August, the influence of weather 

condition on cooling energy use is more dominant than that of the property price (as reflecting socio-economic 

backgrounds). But under lower temperature of July, the socio-economic factor appears more dominant. 

 

5.2. The temporal and spatial variations  

Zooming into the micro-level, there were unique characteristics of cooling energy use within each of the 19 CD 

boundaries. It was found that the difference in cooling energy use of the 19 CDs was statistically significant 

(p=.000 in all summer months). Moreover, there were very good internal consistency and similarity in terms of 

the distribution of monthly cooling energy use within each CD boundary. This implies that there are certain 

aspects which affect a similar range of cooling energy use in each CD boundary, such as homogeneous 

microclimatic conditions or socio-economic factors. Given the characteristics, the relational study between 

cooling energy use and microclimate data was explored within each CD’s AWS 1km boundary. There were 

not only temporal (monthly) variations in relationship between the two variables, but also spatial (each CD) 

variations. This suggests that the residential cooling energy use should be individually studied within each CD 

AWS boundary to reflect its own characteristics of cooling energy use. 

 

5.3. Implications of the projected future peak cooling demands 
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Despite the temporal and spatial variations, it was commonly found that all CDs had the strongest correlation 

coefficients for August. We generated simple bivariate regression (SBR) model for each CD to estimate future 

peak cooling energy demands. Given Seoul’s MK-PRISM climate change projections made at the CD level, 

we produce estimates of neighbourhood-specific peak cooling energy demands for future years. The range of 

temperature changes between 2012 and 2047 (or 2045) varied across the 19 CD boundaries. Moreover, 

following the temperature diversity and the SBR model in each CD boundary, the projection of cooling energy 

use was more dynamic and complex, for instance CD17 and CD21: while the increased temperature from 

2012 to 2047 (RCP4.5) was 1.85oC (CD17) and 1.2oC (CD21), the increased IR was predicted to only 6% at 

CD17 but 67.9% at CD21. Furthermore, the absolute amount of IR in 2047 was predicted to 57.5% (CD17) but 

to 292.8% (CD21). This implies that the internal thermal conditions of the apartment buildings in CD17 may be 

much poorer than those in CD21, affecting residents’ health and well-being if they are unable to increase 

cooling energy uses due to socio-economic constraints. 

 

5.4. Further research 

Firstly, the accuracy of energy model to predict peak cooling energy demands remains uncertain due to the 

small sample size. As the AMIS only started in 2010, going through the system testing period 2010-2013, the 

study is limited to the energy bill dataset of 2012-14. Also, as the spatial boundary of AWS 1km radius was set 

according to the urban microclimate scale, the selected number of apartment neighbourhoods within each CD 

boundary was also limited. So, the temporal and spatial scope set for data collection in this study resulted in 

small sample size for the statistical analyses. However, if the energy use data can be collected continuously 

into further years, the sample size will be large enough to conduct more relational analyses and identify other 

key parameters affecting residential cooling energy use. Therefore, prediction of peak cooling energy demands 

could perform better through model improvement with an increased sample size. 

 

Secondly, applying the proposed relational analyses framework, further SBR models can be produced at an 

individual apartment neighbourhood level if urban microclimate data is available for each apartment 

neighbourhood. In the microclimatic point of view, the scale of urban microclimate could be much smaller than 

1km. Although we assumed that the climatic condition within 1km radius of the CD AWS would be similar, in 

fact there could be diversity of climates even 1km boundary such as solar radiation. Moreover, the energy 

model can be generated for even single apartment household. The AMIS energy bill data used for extracting 

IR (%, as the cooling energy use index) was an average monthly energy bill of each apartment neighbourhood 
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not a single residential household’s monthly energy bill, reflecting collective energy use for summer cooling 

specific to the neighbourhood location. Therefore, this study did not reflect the diversity of households 

individually. If the energy use data is made accessible at single apartment household level, the proposed 

method for projecting energy demand in line with future climate can be applied into individual household. 

 

Finally, with regards to improvement of model accuracy, further research will explore multiple regression 

modelling and other non-linear statistical methods (Zhao & Magoulès, 2012). The extended study should 

include measurements of other climatic variables in affecting cooling energy use, such as humidity, wind 

pattern and solar radiation. However, inclusion of such climatic parameters may be challenging because it 

should meet certain conditions in terms of data homogeneity: temporal and spatial. The temporal scope of this 

study is monthly time-based and the spatial is of the neighbourhood scale. Assessing impacts of wind pattern 

and solar radiation on residential cooling energy use will require site-specific spatial data (i.e. around individual 

apartment complex building) and a narrower time line (i.e. hourly data), considering characteristics of these 

two parameters. From a microclimatic point of view, the variations of the two parameters are far more dynamic 

spatially and temporally than temperature. Within the neighbourhood scale and monthly time-line scope, wind 

pattern and solar radiation cannot be generalized into monthly value. Furthermore, the effect of those climatic 

variables should be considered incorporating the individual household’s building orientation and glazing ratio 

data. To obtain the data required at this spatial-temporal resolution, computation intensive CFD-based urban 

microclimate simulation may be necessary. 
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