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a b s t r a c t

The future of carbon dioxide utilisation (CDU) processes, depend on (i) the future demand

of synthesised products with CO2, (ii) the availability of captured and anthropogenic CO2,

(iii) the overall CO2 not emitted because of the use of the CDU process, and (iv) the eco-

nomics of the plant. The current work analyses the mentioned statements through

different technological, economic and environmental key performance indicators to pro-

duce formic acid from CO2, along with their potential use and penetration in the European

context. Formic acid is a well-known chemical that has potential as hydrogen carrier and

as fuel for fuel cells.

This work utilises process flow modelling, with simulations developed in CHEMCAD, to

obtain the energy and mass balances, and the purchase equipment cost of the formic acid

plant. Through a financial analysis, with the net present value as selected metric, the price

of the tonne of formic acid and of CO2 are varied to make the CDU project financially

feasible. According to our research, the process saves CO2 emissions when compared to its

corresponding conventional process, under specific conditions. The success or effective-

ness of the CDU process will also depend on other technologies and/or developments, like

the availability of renewable electricity and steam.

© 2016 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications

LLC. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
Introduction

Carbon capture and utilisation (CCU) stands for the capture of

anthropogenic CO2 and its subsequent use in a synthesis

process that utilises CO2 as a carbon molecule carrier. A car-

bon dioxide utilisation (CDU) process, in this work, refers to
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the CO2 transformation process into another product with

commercial value. Note that CDU processes may consume

CO2 not only from power plants or heavy industries, but also

CO2 from the air, generated as by-product or naturally

occurring, as from natural gas extraction. Therefore, inde-

pendently of the development of capture in power plants, the

CDU processes can evolve towards a mature market, if CO2 is
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available, i.e. as by-product, or captured from other sources. A

variety of industrial synergies (as for CO2 “management”) may

be envisioned, yielding win-to-win situations, for example

with CO2 obtained as by-product. CO2 utilisation processes

involve a number of products to be synthesised, and as such,

the status of the technology varies according to each syn-

thesised product. CDU should be considered as part of the CO2

abatement options (i) preventing the use of fossil fuel as raw

material, and (ii) avoiding net CO2 emissions to the atmo-

sphere, if compared to the benchmark process.

Carbon capture and storage (CCS) and CCU have been

acknowledged as important research and development pri-

orities of the European Energy Union, to reach 2050 climate

objectives in a cost-effective way [5]. Moreover, it is one of the

research priorities of the Strategic Energy Technologies (SET)

Plan Action of the European Union (EU) [6] as well as a

research theme in the Integrated Road and Action Plan of the

SET Plan whose aim is to consolidate the updated technology

roadmaps of the SET Plan and to propose research and inno-

vation actions [7]. In this context, CCU is not only relevant to

the energy generation or to the heavy industry sectors, but

also in a number of areas: greenhouse gas emissions and

climate change, emissions of the transport sector, waste

disposal, chemical industry and technological development.

The potential of CCU is recognized; however, further research

is needed to evaluate this potential and to come up with the

most suitable strategies or business plans for its

implementation.

In CDU processes the CO2 molecule is chemically changed,

in contrast to the use of CO2 in storage, enhanced oil recovery

(EOR), or other uses like in food industry or as supercritical

solvent, where the molecule remains unchanged. The attrac-

tiveness of CDU stands for the replacement of non-

sustainable fossil fuels by CO2 [1,2]. This is the reason why

CDU for the production of fuels, chemicals and materials, has

emerged not only as a possible complementary alternative to

CO2 storage (at a much more lower scale), but as a promising

competitive advantage for the European industry. These pro-

cesses may contribute to CO2 emissions reduction, capped by

the demand of the synthesised product. Moreover, CO2-based

products imply a temporary storage of CO2 (except for min-

eralisation) [3]. Holistic approaches are therefore crucial to

evaluate each CCU or CDU technology contribution to CO2

emissions abatement, taking into account CO2 obtaining,

transport, transformation and product consumption, so as to

guarantee the environmental benefit of using CO2 as raw

material [4]. The current paper evaluates the potential of for-

mic acid (FA) synthesised by CO2 to decrease CO2 emissions if

compared to the conventional process of FA synthesis, and

analyses its competitiveness compared to current market

conditions.

Formic acid: overview and future prospects

Formic acid finds its applications in textiles, pharmaceuticals

and food chemicals, due to its strong acidic nature and

reducing properties. Traditionally, the leather and tanning

industry has been the biggest consumer of FA, accounting in

2003 for 25% of its global applications [8]. Since 2006, and due

to the total European ban on non-prescribed feed antibiotics,
its main application is as a preservative and antibacterial

agent in livestock feed [9,10]. In 2013, the global demand for FA

was 579 kt, of which 34% was attributed to animal feed.

Leather tanning accounted for 32% and textile dyeing for 13%

[11]. Its global production reached 620 kt in 2012 and it is ex-

pected to be more than 760 kt in 2019 [12]. The world capacity

of FA reached 697 kt in 2013. The global market is expected to

grow with an average annual growth rate of 3.8% up to 2019

[12,11]. In Europe, important FA producers are BASF, with sites

in Germany; Tamico (ex Kemira Oyj) with sites in Finland; and

Perstorp with sites in Sweden. The total installed capacity in

Europe is around 350 kt/yr, with about 60% of it located in

Germany [13,14] and 30% in Finland [15,16]. Formic acid can be

found in the market at concentrations of 85, 90, 95, 98 and

99 wt %, with 85% being the most common [10]. The impurity

content depends on the production process and it is a decisive

factor for its price. In 2014, FA 85% gradewas sold in Europe for

0.51e0.60 V/kg [11]. Formic acid is a high valued product, with

a concentrated, small and mature market, with low risk of

substitution.

Formic acid synthesis process from CO2 and H2 has a

technology readiness level (TRL) of 3e5 taking into account

homogeneous catalysis and electro-reduction, as summar-

ised in the following lines. Different patents on the synthesis

of FA from CO2 and H2 using homogeneous catalysts have

been granted to companies like BP (see for instance, [17e19])

and BASF (as for example, [20,21]). The most recent patents

were granted to BASF. The efforts are focused on decreasing

the overall energy consumption of the process. Det Norske

Veritas (DNV) [22] and Mantra Venture Group [23,24] have

reported their experiences with the electro-reduction of

water and CO2 to obtain FA as main product, with oxygen as

by-product. DNV (2007) [22] has a small-scale demonstration

electro-reduction plant, of 350 kg FA/yr. Mantra Venture

Group (2015) [23] have finished the engineering work on a

pilot plant, which produces 35 tFA/yr. Laboratory research on

the electro-reduction of CO2 to FA aims at a continuous

synthesis process; materials research is fundamental in the

field, as for the electrode and solvent, as studied in Ref.

[25,26].

Formic acid and hydrogen
Hydrogen market is growing due to regulations in transport

fuel desulphurisation, among others. It is estimated that its

global demand will be increasing in the next years [27].

Transport is a key area for hydrogen, and not only for road

transportation (as in fuel cell vehicles); see for instance the

European project Cryoplane [28], that studied the use of H2 to

replace kerosene in airplanes. Hydrogen is produced in large

quantities, both as main product and as by-product. Nearly

96% of all H2 is derived from fossil fuels: natural gas is the

fossil fuel most frequently used to synthesise H2 through

steam reforming (about 48% of the production by fossil fuels),

followed by liquid hydrocarbons (30%), coal (18%) and elec-

trolysis and by-product sources, such as gasification (4%)

[29,30].

Hydrogen has potential to achieve near-zero CO2 perfor-

mances when used [30]; as such, its production must be

carbon-free to reduce the life cycle CO2 emissions. It is

therefore imperative to synthesise H2 from renewable

http://dx.doi.org/10.1016/j.ijhydene.2016.05.199
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sources: biomass gasification or electrolysis powered by “zero”

emissions sources, i.e. renewables and nuclear. The advan-

tage of nuclear and biomass sources towards intermittent

renewable sources, is that the generation of H2 can take place

at a continuous rate. However, for instance, the study by Lee

[31] demonstrates the situation in Taiwan, where nuclear re-

sults the less favourable source of electricity for the produc-

tion of H2. Biomass, wind and solar are currently the most

common renewable sources for electricity supply in water

electrolysis [33]. Wind and solar need from alternatives to

avoid reaching the threshold below which no electricity is

produced, and from alternatives to store electricity produced

and not used. In electrolysis, H2 may be produced through

alkaline or proton exchange membranes (PEM), or by steam

electrolysis in a solid oxide electrolyser cell (SOEC). Even if the

SOEC is themost efficient option, it is currently less developed

than the other types of cell [32]. Carton and Olabi [34] evalu-

ated a system of hydrogen synthesis and fuel cell technology

in Ireland, for wind power. The same power-to-gas system,

with fuel cells providing electricity when needed, is the sub-

ject of study in the work by Gahleitner [35]; a review of

worldwide pilot plants points out the interest of Germany in

this type of integrated systems. Samsatli et al. [36] performed

a mathematical optimisation of the a wind-hydrogen

network, to supply the hydrogen demand of Great Britain.

The work by Centi et al. [37] pointed out the link between (i)

the need for storage of the excess electrical energy, and (ii) the

need from the chemical industry to decrease its dependency

towards fossil fuel, as both raw material and energy supplier.

In this framework, CO2 use as rawmaterial, combinedwithH2,

is a mean to introduce renewable energy into the chemical

production chain.

The centralised production of H2 would require the devel-

opment of infrastructure for delivery to and storage for the

end user [38]. In general, H2 distribution needs to be more

energy efficient and reduce costs, reasons why H2 carriers

have a place in the market arena. A number of studies

describe the potential of FA for H2 storage, as a non-toxic and

easy-to-store chemical, i.e. as a liquid ([39e41]). As a ther-

mochemical process, FA synthesis from CO2 and H2 is an

energy-intensive process due to the necessary processes to

separate FA from the catalysts and solvents needed to syn-

thesise it. Different laboratory and fundamental research ap-

proaches analyse the use of supercritical CO2, ionic liquids,

ruthenium and rhodium based catalysts, in acid or basic

media [42e46], to increase the overall reaction efficiency. The

dehydrogenation of FA to provide H2 is similarly studied and

needs further R & D [47e50]. The research of the appropriate

catalysts is pointed out. Potentially, FA can be used as

hydrogen carrier. The so-called “hydrogen economy” aims at

increasing the penetration of hydrogen by means of

decreasing the use of fossil fuels. Indeed, the use of captured

CO2 from power plants and heavy industries to synthesise FA

can potentially reduce the emissions from energy and trans-

port sectors.

Formic acid can be directly used in fuel cells. The direct

formic acid fuel cell (DFAFC) is an attractive alternative for

small portable fuel cell applications [51e53]. In 2006, BASF and

Tekion (a developer of micro fuel cell for portable electronic

devices) signed a joined agreement to develop and test FA
formulations [54]. However, no further information has been

found regarding this project.

The aim of this paper is to evaluate the technological,

economic and environmental feasibility of FA synthesis from

captured CO2 and H2, not only as an individual process, but

also as compared to the benchmark conventional FA synthe-

sis plant. The process model is performed in the process

modeller CHEMCAD. Based on the simulation results (mass

and energy balances), the different key performance in-

dicators (KPIs) are calculated. The CDU plant is compared to

the equivalent conventional plant based on the data retrieved

from Ecoinvent. Univariate and bivariate sensitivity analyses,

implemented in Matlab, are performed to the main problem

variables, in order to determine the variables with the most

influence on profitability, and the conditions under which the

CDU plant becomes profitable. Finally, themarket penetration

of FA is evaluated through different pathways, used as usual

or used as hydrogen carrier, by year 2030.
Methodology

The systematic methodology applied in this paper follows the

same general guidelines than in Ref. [92], where methanol

(MeOH) synthesis from CO2 was evaluated.
Process modelling, total purchase cost and variable costs of
production

A conceptual design is implemented in the software modeller

CHEMCAD, according to an average commercial plant size. The

boundaries of the CDU plant, and thus of the model, are set on

theutilisationplant itself; CO2 capture and transport are outside

these boundaries. The CDU plant is compared with the bench-

markprocessofsynthesis,whichusesa fossil fuel insteadofCO2

as its raw material. Fig. 1 represents the boundaries and the

main inlet and outlet streams of both, CDU and conventional

plants. The analysis performed is gate-to-gate.

The carbon utilisation plant includes electrolysis to obtain

H2, CO2 purification to avoid catalyst poisoning and

compression previous to the synthesis process. Electrolysis

and CO2 purification units aremodelled as black box units and

their investment costs are estimated using available figures in

literature: Bolat and Thiel [56] for the electrolyser, and Heyne

and Harvey [57] for the purification unit. The total cost of

purchase of the equipments is estimated with CHEMCAD and

also using the design criteria of Towler and Sinnot for heat

exchangers cost estimation [58]. The currency used is V2014,

and currency conversion is performed using Eurostat data

[59]. The purchased equipment costs are estimated for carbon

steel, and adapted to consider the utilisation of 304 stainless

steel, by means of a material cost factor of 1.3 [58]. The

Chemical Engineering Plant Cost Index CEPCI published

monthly in the Chemical Engineering Magazine is used to

actualise each unit purchase cost, when needed, to July 2014

[60]. The plant is assumed to be built in Western Europe

(location factor of 104.3%, to transform the costs from US Gulf

Coast basis toWestern Europe [61]), and the production time is

8000 h per year.

http://dx.doi.org/10.1016/j.ijhydene.2016.05.199
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synthesis process in Europe.
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It is assumed that the required steam is at saturated con-

ditions for each required temperature, when no heat inte-

gration is possible among the cooling and heating needs of the

process, and that cooling water is available at 8 bar and 15 �C,
with a minimum temperature difference of 10 �C. Constant
ambient air temperature of 20 �C, and atmospheric pressure of

1.013 bar, are supposed.

Key performance indicators

The mass and energy balances from the model are the

starting point to calculate the following selected metrics or

KPIs. These represent different aspects of the process

which are relevant to the total CO2 emissions of the plant.

CO2 equivalent emissions are taken into account. The

different indicators are normalised to one tonne of FA.

Technological metrics
These metrics result directly from the model of the process.

� CO2 and H2 converted. These metrics evaluate, (i) the CO2

and H2 that are transformed in the reactor of the synthesis

process (CO2convR), and (ii) the CO2 and H2 that are trans-

formed into product through the whole process (CO2convP).

They are expressed as a percentage of the total amount of

CO2 and H2 that enters the process as raw material, as in

Eq. (1).

CO2conv ¼
�
CO2in� CO2out

CO2in

�
R=P

(1)
where, CO2in is the inlet flow rate to the reactor (R) or to the

whole process (P), and CO2out is the outlet flow rate from the

reactor or from the whole process, in tonnes per tonne of FA.

Analogous calculations are performed for the H2 flow.
� CO2 used. It is defined as the net amount of CO2 that is

converted into the product, in our gate-to-gate analysis of

the CDU process. It takes into account the difference be-

tween the amount of CO2 that enters the process as raw

material and the direct and indirect emissions of CO2, this

last due to electricity and steamconsumptions, as in Eq. (2).

CO2used ¼ ðCO2in� ðCO2outþ CO2indirectÞÞP (2)

where, CO2in is the inlet flow rate of CO2 (in tonnes per
tonne of FA) that enters the whole process, CO2out is the

total outlet flow rate of CO2 in purge streams and in

product/by-product or residual streams, and CO2indirect are

the CO2 emissions in tonnes per tonne of FA due to elec-

tricity and steam consumptions. The metric CO2used is

employed as a design condition: it has to be positive for the

CDU process, to emit less CO2 than the CO2 that is used as

raw material.

The relevant energy andmass balances data from the CDU

plant are compared with conventional plant values to discuss

the technological features.

Economic metrics
Costs are estimated using a bottom-up approach with input

data from the process model. The approach used to calculate

the installed costs (ISBL) follows the detailed factorial meth-

odology described in Towler and Sinnott [58]. The calculation

of the total capital expenditure (CAPEX), variable costs of

production (VCP) and fixed costs of production (FCP) also

follow the methodology from Towler and Sinnott [58]. The

economic parameters and assumptions are provided in

Appendix A.

The gross margin (GM) is calculated as the difference be-

tween the revenues (REV), obtained from selling products and

by-products, and the cost of raw materials (RM) (as in Eq. (3))

http://dx.doi.org/10.1016/j.ijhydene.2016.05.199
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GM ¼ REV � RM (3)

The benefit/cost ratio (BCR) is defined as the ratio between

unitary benefit and unitary cost, as in Eq. (4). This metric re-

flects how much of the cost to synthesise a unit of product is

covered by the benefit of selling it.

BCR ¼ Total unitary benefit of selling the product
Total unitary cost to make the product

(4)

Environmental metrics
Two emission-based metrics are defined to compare the CDU

process with the conventional process in our gate-to-gate

approach. These compare direct and indirect CO2 emissions

of both plants, expressed in tonnes per tonnes of product,

without taking into account the inlet amount of CO2. In order

to evaluate the CO2 savings due to the non-use of fossil fuels

as raw material, the CO2not�emitted is calculated as in Eq. (5).

The CO2change, expressed as a percentage, relates the

CO2not�emitted to the CO2 emissions of the conventional plant

(Eq. (6)).

CO2not� emitted ¼ ðCO2outþ CO2indirectÞconv
� ðCO2outþ CO2indirectÞCDU (5)

CO2changeð%Þ ¼ CO2not� emitted
ðCO2outþ CO2indirectÞconv

(6)

where, CO2 for conventional and CDU plants take into account

direct and indirect emissions. The saving of fossil fuel due to

the use of CO2 as carbon carrier is also evaluated.
Sensitivity analysis

The net present value (NPV) is the metric used to evaluate the

profitability of the CDU plant from a private investor view-

point. The following assumptions are taken into

consideration:

� the economic CDU plant life is 20 years. A unique invest-

ment takes place at the beginning of the project;

� capital expenses occur during the first three years of the

life of the plant (30, 60 and 10% of the total fixed capital cost

e TFCC, respectively);

� there are revenues from year 3 of the project onwards. The

plant operates at 30, 70 and 100% of its capacity (91.3%,

which corresponds to 8000 h of operation per year) during

years 3, 4 and 5 and onwards;

� prices are estimated for year 2014, and are considered

constant along the 20 years; no inflation is considered;

� pre-taxation rates are of concern (neither taxes nor

depreciation are taken into account);

� the real discount rate ir is 8%.

Themarket feasibility or competitiveness of the CDU plant

is analysed through sensitivity analyses of selected costs and

prices, with the aim of determining the variables with the

most influence and the conditions under which the NPV of the

CDU plant becomes positive. First, univariate sensitivity
analyses and second, bivariate sensitivity analyses are

performed.

Market perspective

This analysis aims at evaluating (giving ranges of magnitude)

(i) the future demand of the product synthesised by CO2,

considering current and possible new uses; (ii) the captured

CO2 required as feedstock for the CDU process to supply the

assumed demand, and (iii) the overall CO2 not-emitted

because the product demand is supplied by the CDU process

instead of the conventional one. Different penetration path-

ways are defined up to year 2030. These are assumed for the

European market, and take into account the:

� provision of product demand increase by 2018, based on

market growth of current applications;

� replacement of product imports in Europe, by year 2018;

and

� provision of product demand due to emerging uses, in

2030, in the transport sector.

Note that the forecast of product demand and imports are

based on current market predictions, that do not provide

estimates beyond 2018. In the current paper we assume that,

due to the emerging nature of CDU, it is not realistic to as-

sume that the yearly increase, up to 2030, of the product

demand and/or imports will be completely provided by the

CDU process. Therefore, we have considered a maximum of

five years (as an optimistic point of view), and a minimum of

one year (as a pessimistic point of view), of product demand

increase provided by the CDU process. The competition with

other new, efficient and renewable synthesis processes (as

biomass routes, for instance, to produce H2), market satu-

ration risk and the analysis of the prices evolution, are

outside the scope of this section. Therefore, we assume the

simplest market case: the CDU process replaces conven-

tional FA, at current price, even in the newest penetration

pathways.
Formic acid evaluation

Conventional production of formic acid

Formic acid can be produced via four different chemical pro-

cesses: (i) methyl formate hydrolysis, (ii) oxidation of hydro-

carbons, (iii) hydrolysis of formamide, and (iv) preparation of

free FA from formates. In Europe, the methyl formate hydro-

lysis is the most common route [10]. The hydrolysis of methyl

formate is based on a two-stage process, according to Eq. (7)

and Eq. (8):

COþ CH3OH/HCOOCH3 (7)

HCOOCH3 þH2O4CH3OHþ HCOOH (8)

In the first reaction, about 95% of the carbon monoxide

and 30% of the MeOH are converted. In the second reaction,

the methyl formate is hydrolysed to form FA and MeOH,

http://dx.doi.org/10.1016/j.ijhydene.2016.05.199
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which is recycled. In order to shift the equilibrium towards

FA, excess of one of the reactants is needed. This leads to

higher conversions, but also causes a diluted final product.

Therefore, FA needs to be separated from the excess of

reactant [10]. The two main FA companies in Europe have

two different licensed processes, with identical first stage,

but with different strategies in the second one. In the

Kemira-Leonard process, the excess of methyl formate is

considered and FA is dehydrated by distillation, usually in

two columns, reaching maximum concentrations of 98 wt %

[10]. In the BASF process, excess of water is used, and the

separation is done via liquid e liquid extraction with a

secondary amide and the extract is separated via distillation

[13,10]. During the production of FA from hydrolysis of

methyl formate, CO2 emissions derive from steam and

synthesis gas productions. The syngas needed to obtain the

CO that reacts with MeOH, may come from steam reforming

of light ends, as natural gas, or from partial oxidation of

fossil feedstocks or gasification of coal [62,63]. The major

energy consumption step in FA synthesis is syngas pro-

duction, followed by steam needs. The consumption of

electricity is the lowest. The production in conventional FA

plants may range from 100 to 20 ktFA/yr [10]. The new plant

that is currently built in Louisiana (US) by BASF, due to

cheap shale gas availability, has a production of 50 ktFA/yr

[64].

Synthesis of formic acid using captured CO2

Chemical catalysis has been selected instead of the electro-

chemical route taking into account that, in general, chemical

catalysis has been performed for more years. The process

considered for the production of FA from captured CO2 is

based on a homogeneous catalysis and the layout follows the
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Fig. 2 e Process flow diagram for the synthesis
process described in the patent from Schaub et al. [21], spe-

cifically, in Fig. 2 from the mentioned patent. To the best of

our knowledge, this is the most detailed source found in

public bibliography. It is assumed that the plant, at full

market scale, works under the same conditions as the ones

reported for the laboratory tests from Ref. [21]. The effi-

ciencies, as calculated from the values stated in the patent,

have been used to calibrate and validate the CHEMCAD

model. The selected values to perform our process model

belong to examples A-12, B-3, D-1a and D-1b. The selected

scale for modelling is lower than the average scale for the

conventional FA synthesis plant, taking into account also the

existence of smaller electrochemical plants, as summarised

in the previous section.

The synthesis process can be divided into five sections: (i)

compression stage, (ii) reaction stage, (iii) liquideliquid sepa-

ration stage for catalyst recovery, (iv) stripping stage for MeOH

recovery, and finally, (v) reactive distillation stage for the

formation and purification of the FA product. The plant is

designed to produce 1500 kg/h (12 kt/yr) of FA at a purity of

85 wt % diluted in MeOH. Therefore, 1260 kg/h of CO2 and

90 kg/h of H2 are required as feed. In the reactor, the twomain

streams react in the presence of two catalysts (ruthenium-

and phosphino-based catalysts), a tertiary amine, and a polar

solvent (made by a mixture of MeOH and water); all of them

composing the group of consumables, to form a FA-amine

adduct, which has to be thermically separated to provide FA

in the last distillation step. The two catalysts and the tertiary

amine have been introduced into the software based on the

information from SigmaeAldrich and ChemSpider websites

[65e67]. The properties of the amine and the adduct (a com-

bination of one mole of FA þ one mole of amine) have been

estimated in CHEMCAD with the Elliot group contribution

method [68].
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The process is modelled in CHEMCAD 7 using the Predic-

tive Soave-Redlich-Kwong (PSRK) method for equilibrium and

property calculation. The PSRK subgroup parameters have

been taken from the UNIFAC consortium parameter set

distributed in 2015 [69]. Due to uncertainties in the thermo-

dynamic model at the pressures of the process (up to 105 bar),

conversion and consumption figures have been estimated, in

addition, from the patent [21]. Fig. 2 shows the process flow

diagram of the simulated process, and the different stages are

explained in the following lines.

Compression stage (Units 1e13)
As explained in the introduction, captured CO2 may come

from different sources. It is assumed that the captured CO2 is

available at ambient conditions, as a worst case scenario (i.e.

the CDU plant takes care of all the stream compression).

Therefore, the CO2 feed stream coming at atmospheric pres-

sure and ambient temperature (stream 1), is compressed in a

five-stage compression system up to 105 bar (units 1, 3, 5, 7, 9).

It is cooled down to 25 �C in the intermediate cooling stages

(units 2, 4, 6, 8) and to 30 �C in the after cooler (unit 10), that is

condensing the CO2 stream going to the reactor. The com-

pressors are assumed to operate at an isentropic efficiency of

75% which leads to an electricity consumption of 130 kW. The

H2 feed stream enters the process at 30 bar and ambient

temperature (stream 12), coming from the electrolyser. It is

compressed in two steps, up to 105 bar, consuming 35 kW of

electricity (units 11 and 13, with intermediate cooling, unit 12).

In the electrolyser, a stream of 900 kg/h of water is needed.

The electrolyser consumes 5.7MWof electricity, and produces

the required H2 and 720 kg/h of oxygen as by-product. It is

assumed that the oxygen is made available to the market,

without any further stream conditioning.

Reaction stage (Units 14e16)
The reactor size has been assumed proportional to the batch

reactor considered in the reported laboratory tests, scaled-up

based on the inlet CO2 flow rate; the resulting size is about

18.5 m3. In the reactor vessel (unit 14), the liquid reaction of

CO2 and H2 with the amine to form the FA-amine adduct,

takes place under the presence of a ruthenium- and phos-

phino-based catalyst. The simplified reaction is expressed as:

CO2 þ H2 þ C18H39N4C18H39N�HCOOH (9)

The reactor is designed to reach a conversion of 19% of the

incoming H2. The unconverted H2 leaves the reactor in the gas

phase, together with some unsolved CO2. The temperature of

the reactor is fixed at 93 �C. Even though the reaction is

exothermal, a small amount of steam is required to maintain

the temperature at 93 �C (around 300 kW at 110 �C). The gas

leaving the reactor is recycled back (stream 18) to the inlet

with a compressor (unit 16), while a small gas percentage is

purged to avoid the accumulation of unreacted (reactive and

inert) components (stream 19; splitting fraction 1% in mass

basis). The recycle rate is highly dependent on the reactor

temperature and the amount of CO2 solved in the liquid phase.

This liquid phase (stream 20) has twowell differentiated parts:

a heavy phase, enriched with the adduct and the polar sol-

vent, and a light phase, enriched with the tertiary amine (that
is not combined to form the adduct) and the homogeneous

catalyst. Free amine is present in both phases. See a diagram

of this two phase liquid in Appendix B, Fig. B. 8. The partition

coefficients have been estimated based on data from the

patent [21], example A-12.

Catalyst recovery (Units 17e22)
After cooling down (unit 18) the reactor liquid product, the

amine and catalyst can be recycled back to the reactor after

the separation of the light phase in a decanter (unit 19). The

pressure of the reactor liquid product is increased up to

130 bar (unit 17) in order to avoid a flashing of CO2 in the

decanter (to ease the downstream liquideliquid separation),

which can thus be operated at a separation efficiency of 85%:

this means that 15% of the light phase remains in the heavy

phase. This separation factor is based on the operation ranges

described in the patent [21], example B-3.

As the catalyst is very expensive (see Appendix C) and to

recover as maximum as possible, a second decanter is placed

downstream (unit 22). This is operated at 70 bar, after a sep-

aration of flashing gases in a flash vessel (unit 21). In order to

increase the catalyst recovery, the amount of amine is

increased in unit 22 by adding the recycled amine stream from

the purification stage (stream 39). In the model, a complete

recovery of the catalyst is assumed in order to simplify the

recycle calculations. As for costs purposes, it has been

assumed that the catalyst is renewed once per year (see Sec-

tion Results and discussion).

Methanol recovery (Units 23e26, 33 and 34)
Methanol is recovered in a stripping column working at 3 bar

(unit 26). Before feeding stream 29 to the column, light gases

are separated at atmospheric pressure in a flash vessel (unit

24). This keeps the temperature in the condenser (unit 34)

above the cooling water temperature.

The purity of the bottom product from the stripping col-

umn (stream 33), is adjusted in order to fit the desired product

purity of FA, approximately 85 wt % (stream 43). The top

product, which contains MeOH, water and dissolved CO2, is

condensed and recycled back to the reactor (stream 32). The

results from this step are checked with the values reported in

Ref. [21], example D-1a. In Appendix B, Fig. B.9 shows the

boiling point e dew point temperature curve for the binary

mixture of MeOH and amine of the separation occurring in the

stripping column (unit 26). For costs purposes, it has been

assumed that the MeOH-based solvent is renewed once every

ten years (see Section Results and discussion).

Formic acid formation and purification (Units 27e33)
By reducing the pressure to 250 mbar and increasing the

temperature to 180 �C, the dissociation of the adduct to FA and

amine is initiated. This happens in a reactive distillation col-

umn where, additionally, the separation of the amine from

the FA product is also taking place. For modelling purposes,

the reaction and the separation happen in two separated unit

operations. In an adiabatic reactor (unit 27), the adduct is

decomposed into FA and amine, as follows:

C18H39N� HCOOH4C18H39NþHCOOH (10)
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The endothermal reaction leads to a temperature reduc-

tion from 175 �C (in stream 33) to 88 �C (in stream 34). This heat

is added in the column (unit 28) in order to reach the bottom

temperature of 180 �C, since this is where the reaction actually

takes place.

The separation of FA from the amine (in unit 28) is com-

plex, as the mixture of FA, amine and MeOH may form two

liquid phases. In Appendix B, Fig. B.10 shows the conditions

under which the decomposition of the adduct occurs. At the

conditions selected in unit 28, the decomposition into two

liquids inside the column is avoided. The feeding stream

(stream 34) has a FA concentration of 11%, with 1% of MeOH,

and 88% of amine in mass basis. It forms two liquid phases.

However, as most of the FA flashes at the top of the column,

the liquid composition on the first tray is already outside the

3-phase region, with a composition of 3% FA, 0.5% MeOH and

96.5% amine, in mass basis. The column (unit 28) is modelled

with four equilibrium stages. This is enough, as the separation

of FA and amine is relatively simple due to the large difference

in vapour pressures, as shown in Appendix B, Fig. B.11. We

assume that the operation of the real column may be more

difficult, as the dissociation of FA and amine takes place at the

bottom of the column, where most probably two liquid phase

would happen. However, this effect is not considered in the

current model because the reaction (unit 27) was separated

from the separation step (unit 28).

The amine is recycled from the bottom of the column

(stream 35) to the secondary decanter (unit 22) to increase the

catalyst recovery. For modelling simplification, the remaining

fraction of FA (0.3% in mole basis) in stream 37 is separated

from the amine stream in unit 33 (which does not represent a

real physical unit operation). Different purge streams result

from the modelled flowsheet: stream 38 (as a result of the

separation in unit 33), stream 19 (as described in the reaction

stage section), stream 26 (as a result from the flash unit 21,

explained in the catalyst recovery unit) and stream 50 (as the

gas phase released in the flash unit 24, explained in the MeOH

recovery unit). The amine stream is not explicitly purged in

the model. For costs purposes, it has been assumed that the

amine is renewed once every ten years (see Section Results

and discussion).

Finally, the FA produced (stream 44), coming from the

condenser of the column, is cooled down (unit 29) and sent to
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Fig. 3 e Composite curves of the FA synthesis process

plotted for a minimum temperature difference of 20 K.
a product tank. The results from this step are checkedwith the

values reported in Ref. [21], example D-1b.

Fig. 3 depicts the composite curves of the overall process.

It is seen that heat integration can save up to 800 kW of

external provision. The only heat sinks of the process are the

reboilers of the two stripping columns, and thus integration

would require hybrid reboilers. This option is not considered

here, and therefore, all heating and cooling needs in the CDU

plant are provided by external supplies of cooling water and

steam (high pressure e HP and medium pressure e MP

steam), which are assumed to be available at the gate of the

plant.

Black-box units
There are two units which are evaluated but that are not

modelled in CHEMCAD: the CO2 purification unit and the

electrolyser, as depicted in Fig. 1. The unit selected to clean up

the CO2 is amembrane. It is assumed that the use of electricity

or steam of this purification unit is negligible in relation to the

needs of the rest of the plant. It is also assumed that the unit

can treat any type of inlet composition, under any conditions

of pressure and temperature. The total purchase cost of the

equipment is 434.6 V/m2, and it is sized according to a ratio of

3.9 m3/s, treated in 3335 m2 of membrane [57]. The FCP are

included in the costs of the plant estimation, as a percentage

of the investment costs.

The device selected to produce hydrogen is an alkaline

electrolyser (AE), as it is the most commercialised one to date

[56]. A small scale electrolyser (0.6 MW) is considered for the

CDU plant. It consumes 1.62 kWe/kWH2 and the investment

cost is 1980 V/kW [56]. A power law formula that takes into

account economies of scale, with a scale factor of 0.5, is

considered to calculate the cost of this equipment. The FCP

are included in the costs of the plant estimate as a percentage

of the investment costs. VCP are calculated according to its

electricity consumption.
Results and discussion

KPIs evaluation

Table 1 summarises FA CDU plant technological, economic

and environmental KPIs. For the consumption of catalysts,

solvent and amine it is assumed that the catalysts are

renewed once a year [70] and that solvent and amine are

completely renewed once every 10 years. The amount of cat-

alysts used in the reactor is 30 kg/yr for the ruthenium-based

catalyst, and 15 kg/yr for the phosphino-based catalyst based

on the reaction time and the turnover frequency of the cata-

lyst, reported in Ref. [21]. Appendix C shows the prices

considered for the estimation of operating costs. For the

evaluation of indirect CO2 emissions, the factors used are

0.508 tCO2/MWh for electricity consumption [71], and

0.072 tCO2/GJ of steam needed [72]. The steam needed results

in HP and MP steam (taking into account saturated steam),

with reboilers from units 26 and 28 as main consumers: 2

tMPsteam/tFA and almost 4 tHPsteam/tFA.

From the mass balance in Table 1, feed streams are H2 O

to the electrolyser and CO2. There is an amount of O2

http://dx.doi.org/10.1016/j.ijhydene.2016.05.199
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Table 1 e KPIs results for the FA CDU plant. * As resulted
in the model and including CO2, H2, water, solvent and
amine; however, for costs estimation, we have taken into
account the assumptions referred along the text,
regarding renewal periods and catalyst, solvent and
amine consumptions.

Technological Metrics

Mass balance (t/tFA)

Inlet CO2 0.834

Inlet H2 O 0.595

Make-ups* 0.266

Outlet FA 1

Outlet H2 O 0.060

Outlet O2 0.477

Off-gases 0.158

Energy balance (MWh/tFA)

Electricity consumption 4.054

Electricity consumption (w/o electrolyser) 0.296

Heating needs 2.783

Cooling needs 2.962

CO2 convR (%) 81

CO2 convP (%) 96

H2 convR (%) 19

H2 convP (%) 62

CO2 used (tCO2/tFA) (renewable electrolyser and steam) 0.668

Economic Metrics

ISBL (MV) 6.7

CAPEX (MV) 16.2

VCP (MV/yr) 14.8

FCP (MV/yr) 3.5

GM (MV/yr) 7.7

BCR (�) 0.43

Environmental Metrics

CO2 not-emitted (tCO2/tFA) 2

CO2 change (%) 92

Table 2 e Variation of CO2 used, combining zero
emissions allocated to electricity and/or steam, and
emissions derived from 0.508 tCO2/MWh electricity [71],
and 0.072 tCO2/GJ steam [72].

tCO2/tFA

Indirect CO2 emissions are allocated to steam

and electricity needs of the electrolyser

�1.970

Indirect CO2 emissions are only allocated to

electricity needs of the electrolyser

�1.249

Indirect CO2 emissions are only allocated to

steam needs

�0.054

Indirect CO2 emissions are zero 0.668

Fig. 4 e Estimated installed costs and operating costs for

the FA CDU plant.
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produced from the electrolysis process, sold as a by-product,

a certain amount of unreacted water which is considered a

by-product for disposal, and off-gases or purge gases result-

ing from the FA separation processes. The energy needs

outlined in Table 1, indicate that the FA CDU plant requires

electricity, cooling water and steam. The total electricity

consumption for compression (CO2, H2 and recycled gas

streams) and pumping, and the requirement of the electrol-

ysis process is about 4 MWh/tFA. The cooling water needed is

252 t/tFA, while steam needs are 3.7 t/tFA for HP steam, and

2 t/tFA for MP steam. The reactor conversion is 19% for H2

and 81% for CO2; while the whole process converts 98% of

inlet CO2 and 63% of inlet H2. From this is derived an amount

of CO2 used of 0.668 t/tFA, only if renewable steam and

electrolysis are considered (as described in the methodology,

the metric CO2 used is employed as a design condition of the

CDU process, and it has to be positive). The current work

assumes as a simplifying hypothesis that electricity and

steam coming from renewable sources, contributes with zero

CO2 emissions to the overall emissions balance. This hy-

pothesis will be further discussed in Section Discussion.

Table 2 summarises the value of the CO2 used if steam and/or

electricity do not come from renewable sources. Note that

“zero emissions” sources are crucial to achieve an FA CDU

process with net CO2 emissions reduction. Otherwise, the
process generates more CO2 emissions than the ones utilised

as feedstock. From now on, the emissions related to the FA

CDU process will consider zero emission sources for the

electricity needed for electrolysis and for the generation of

steam.

Fig. 4 depicts the breakdown of costs. Among the invest-

ment needed, in Fig. 4 (a), the electrolyser represents 43% of

the total ISBL. It is followed by the contributions from the

compression system and the separation processes. Fig. 4 (b)

points out that consumables and utilities (electricity and

steam) are the main contributors to the production costs. As

shown in Table 1, the calculated BCR, at 0.43, underlines the

need to compensate the high variable costs (production costs

are more than twice the benefits obtained). The GM is 7.7 MV/

yr, which means that revenues and by-product benefits are

larger than raw materials cost.
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The final balance of CO2 emissions is positive for the FA

CDU plant if compared to the conventional plant, with elec-

trolysis and steam using zero emissions sources (see the

environmental metrics in Table 1). Note that the reference

values for the conventional plant do not take into account

renewable sources, but European averages for electricity and

steam emissions [73,63]. This leads into an optimistic com-

parison for the CDU plant, towards the conventional plant.

Table 3 compares the FA CDU plant and the methyl formate

hydrolysis process to produce FA, including generation of CO.

Whereas the CDU plant consumes less steam than the con-

ventional plant and the final balance of CO2 emissions shows

a clear advantage for the CDU plant (mainly because of the use

of zero emissions sources for electricity and steam produc-

tion), the production costs are notably higher than for the

conventional plant. This is mainly due to the contribution of

consumables (mainly catalysts), the higher consumption of

electricity due to the electrolyser needs, and steam, due to

process heating needs. An emission change (reduction) of

almost 92% exists when producing FA with a CDU process,

corresponding to 2 tCO2/tFA not emitted. The production

of 12 ktFA/yr with a CDU plant saves almost 5 kt/yr of heavy

fuel oil.

As main differences with the conventional FA synthesis

configuration, (i) the electrolyser is the main responsible of

electricity consumption, (ii) the expensive catalyst, solvent

and amine, impact operating costs, and (ii) electricity for

electrolysis and steam needs have to be supplied by zero

emissions sources in order to have a positive CO2 used.

Overall, it is important to point out the uncertainty linked to

the layout of the FA CDU process, and to the relatively new

catalyst use, due to its current low TRL. This may lead to

under or over estimations of the KPIs in the current

analysis.

Sensitivity analysis

The NPV for the FA plant is evaluated in �91 MV, under the

hypotheses outlined in SectionMethodology. In order to know

the situations in which the project could become profitable,

different sensitivity analyses have been performed.
Table 3 e Main metrics comparison between the FA CDU
plant and the conventional methyl formate hydrolysis
process. The conventional pathway includes (i) CO
synthesis and (ii) FA production [73,63]. The conventional
production costs have been estimated assuming a 27% of
benefits.

CDU plant Conventional
plant

Electricity needs (MWh/tFA) 4.07 1.55

Steam needs (MJ/kg FA) 10.03 19.25

Cooling water needs (tH2O/tFA) 251.53 375.50

Process water needs (tH2O/tFA) 0.59 0.60

Production costs (V/tFA) 1524 475

Total CO2 emissions (tCO2/tFA) 0.166 2.18

Inlet CO2 (tCO2/tFA) 0.834

Heavy fuel oil savings (t/yr) 4863
The selected variables: prices of FA, O2 and CO2, are

widely varied in order to obtain a NPV equal to zero. Elec-

tricity price, HP steam price, ISBL and consumables contri-

bution have upper bounds (current values or plus 10% in the

case of consumables) and lower bounds (zero for electricity

and steam prices, down to 12 and 45% of current values for

consumables and ISBL) and are depicted in orange in Fig. 5. It

can be seen that the most important influence on NPV

comes from consumables contribution and FA price. These

are followed by the price of electricity and ISBL. Contribu-

tions from O2, steam and CO2 prices seem to have less

impact on the NPV. Table 4 summarises the values that

make NPV equal to zero; electricity price, HP steam price,

ISBL and consumables cannot reach alone a NPV equal to

zero. Based on these results, different circumstances may

result in the FA plant becoming profitable. For FA, the

breakeven price is 2.5 times the reference price. However,

the numbers in Table 4 depicts unrealistic prices for the

tonne of O2 and CO2.

Taking into account the importance of the FA and elec-

tricity prices, Fig. 6 (a) summarises a bivariate sensitivity

analysis, with the price of electricity as independent vari-

able and the price of FA that make NPV equal to zero (at the

given electricity price), as the dependent variable. Consid-

ering the reference price of FA, 650 V/t (Table 4), even at low

electricity prices, the prices needed to make the plant

profitable are far from market conditions. As outlined in

Fig. 5, the price of consumables has an important bearing on

the NPV. If this price is decreased by a factor of 6 (Fig. 6 (b)),

the prices of FA that make NPV equal to zero, at lower

electricity prices, are closer to the market reference value. A

combination of favourable conditions will be thus needed

for FA from CO2 to become competitive. Particularly

important is R & D, to achieving a decrease in catalysts

costs.
Market perspective

The following market penetration possibilities assume that

the FA CDU plant is fully commercial and available for

implementation (in year 2015). The depicted penetration
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Fig. 5 e NPV variation with prices of FA, oxygen, CO2,

electricity, steam and consumables and ISBL. These are

represented by relative increments/decrements towards

the original values considered.
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Table 4 e Breakeven prices for NPV ¼ 0.

Breakeven price (V/t) Reference price (V/t)

FA 1656 650

O2 3322 54

CO2 �1100 38

Fig. 6 e Prices of FA that make NPV equal to zero, for a

range of electricity prices (x axis) (a) taking into account the

FA plant as studied, and (b) considering that the price of

consumables is decreased by a factor of 6.
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pathways of FA (PF) are inspired by current legislation in

Europe and state-of-the-art research. These are defined to

complement each other. As a hydrogen carrier, once FA is

converted back to H2, the CO2 spent to synthesise the mole-

cule of FA is released. This CO2 can be used again to synthesise

FA with new inlet H2, in the so-called circular approach. The

current paper does not consider this circular approach, and as

a result, when calculating the PFs as hydrogen carrier, a “net”

CO2 demand is assumed. Therefore, the following results

remain optimistic on the side of CO2 demand. Seven PFs have

been identified:
� yearly increase of FA demand (PF1);

� use as hydrogen carrier, in gas and fuel cell vehicles (FCV)

(PF2-3);

� use as hydrogen carrier, to supply part of an assumed

growing demand of MeOH (PF4);

� use as hydrogen carrier, to cover the increase of merchant

H2 demand (PF5);

� stationary applications, in fuel cells (PF6-7).

The assumptions taken in each PF are described in

Appendix D, according to a conservative and an optimistic

point of view. In order to estimate PF1, the predictions of

Section Formic acid: overview and future prospects for the

FA market are used. For the stationary sector (PF6-7), the

information is from the EC Roadmap 2050 [74]. In order to

evaluate the potential of H2 as transport fuel, the in-house

Powertrain Technology Transition Market Agent Model

(PTT-MAM) is used to depict the 2030 panorama [75,76]. This

is a comprehensive system dynamics model of the EU-28

light duty vehicle sector which accounts for interactions

and feedback between manufacturers, infrastructure pro-

viders, authorities and users. The model includes a realistic

share of fuels (i.e. gasoline, diesel, electricity, liquefied pe-

troleum gas, compressed natural gas (CNG), hydrogen, bio-

diesel and bioethanol) for passenger and light commercial

fleet and different powertrains according to the Council

Regulation (EU) number 630/2012 amending Regulation (EC)

No 692/2008, Directive 2009/30/EC and Directive 2014/94/EU,

and takes into account the EC Clean Power for Transport

package from the EC Roadmap 2050 [74]. Input data are ob-

tained from numerous sources and expert judgements,

mainly Eurostat and the EU Reference Scenario 2013

TRACCS.

Taking into account representative current policies and

techno-economic trends, BASE scenario is obtained, as

depicted in Fig. 7, left column. This scenario, for passenger

and light commercial vehicles by 2030, highlights a domi-

nance of gasoline and diesel vehicles. This is not unexpected,

as turnover of stock is limited by the reactively long lifespan
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of vehicles, and the alternative powertrain market is still in

its infancy. In order to have a contribution from FCV to

motivate FA penetration, an ad-hoc scenario has been per-

formed. The scenario FCVþ (Fig. 7, right column) motivates

FCV deriving from the BASE scenario premises. In order to

achieve this, the scenario is highly optimistic, including early

introduction of FCV models, high infrastructure and FCV

purchase subsidies with no electric vehicles subsidies, and

the removal of alternative fuel options for conventional

powertrains to prevent competition. See Appendix D for

further detail.

Table 5 summarises the total amount of FA needed, the

corresponding tonnes of CO2 required as inlet raw materials

and the amount of CO2 not-emitted. FA has a current demand

of 0.62 Mt/yr. According to the results obtained for year 2030,

the overall demand of FA may be in the range of 5e24 Mt/yr

(embracing both scenarios and points of view). To satisfy this

demand, CO2 provision is in the range of 4e21 Mt/yr. The

amount of CO2 not-emitted is between 10 and 47 Mt/yr. These

numbers underline that the proposed PFs are overall opti-

mistic, if comparedwith the current demand of FAworldwide,

and that it would depend on the explicit stimulation of the

hydrogen economy.

Discussion

FA is a candidate to be used as a hydrogen carrier, thus

hydrogen demand could lead to a notable increase in the de-

mand for FA. Themodelled process is composed by a catalytic

reactor that combines H2 and CO2, and the following product

separation steps; liquideliquid separation and two distillation

columns. The technology is at TRL 3e5. The assumed plant

scale used is 12 ktFA/yr. The electrolyser and the steam

generator have to be powered by renewables to have a net

amount of CO2 used, as a design condition in this work. The

simulated process is highly efficient in terms of CO2 conver-

sion, and less efficient for H2 conversion. It entails less CO2

emissions when compared to the benchmark conventional

process considered (i.e. methyl formate hydrolysis with CO

synthesis using heavy fuel oil), about 92% of CO2 change

(reduction), where the use of renewables have an important

role. Operating costs are higher than benefits, with the vari-

able costs of consumables (mainly catalysts) and electricity,

followed by steam, as main contributors. In order to have a

positive NPV, the sensitivity of the NPV to variations of the

prices of FA, O2, CO2, electricity, steam, consumables and to
Table 5 e Main values calculated for all PFs, BASE and
FCVþ scenario, and conservative and optimistic points of
view in Europe.

Points of
view
for BASE/
FCVþ
scenarios

FA
demand
(Mt/yr)

CO2

needed
(Mt/yr)

CO2 not-
emitted
(Mt/yr)

Heavy
fuel oil
savings
(Mt/yr)

Conservative 5/8 4/7 10/16 2/3

Optimistic 14/24 13/21 29/47 6/10
the variation of the ISBL have been evaluated. The most

important variables are consumables (particularly, the speci-

alised catalysts), FA and electricity prices. Prices of FA higher

than 1700V/t (reference price, 650V/t), or an income fromCO2

higher than 1100V/t, would allow positive NPVs. The bivariate

analysis demonstrates that the price of electricity by itself,

cannot make the CDU plant competitive. A lower price of

consumables is crucial, and this may be only achieved by

sustained R&D. FA has a current global production of 0.62 Mt/

yr (2012). The estimate of different PFs, as in the fuel cells

market for stationary applications and its use as a hydrogen

carrier in the transportation sector (in FCV and combinedwith

CNG) results in a total European demand for FA of a minimum

of 5 Mt/yr of FA, entailing a demand of 4 MtCO2/yr, or a

maximum of 24 Mt/yr of FA, involving 21 MtCO2/yr. This

means that there are 10e47 MtCO2/yr that would not be

emitted because of the hypothetical use of the CDU process,

instead of the conventional one. This would also imply sav-

ings in heavy fuel oil consumption: a total amount of 2e10 Mt/

yr.

As order ofmagnitude comparisons, a project like ROAD (in

The Netherlands) aims at storing 1.1 MtCO2/yr, and the newer

White Rose (in UK) has as objective to store 2 MtCO2/yr. A

conventional coal power plant of 750 MW of net power, emits

about 6 MtCO2/yr [77]. Urea is the most important product

synthesised from CO2, using it as carbon carrier; about

112 MtCO2/yr were used in 2011 as feedstock [78]. FA CDU

process would demand 4e21 MtCO2/yr in Europe. Note that 1

to 4 coal plants (with partial capture) would supply the cor-

responding CO2 for FA synthesis.

The purpose of this paper was to provide an overview and

rough values for the FA CDU process. The main questions to

answer were about technological feasibility, economic

viability and possible environmental impact. As for the

technological feasibility, the modelling work has demon-

strated its feasibility, however, with some uncertainty, due to

the low TRL of the process and the low publicly available

information. The consumption of electricity and steam is

important in the process (note that electrolysis and steam are

also dominant in the electrochemical synthesis of FA [79]). In

the current work we proposed as a design condition the

positive value of the metric CO2 used; this made integrating

renewables in the FA CDU process. Regarding the economic

viability, a price of FA 2.5 times the current market price,

would allow revenues for such an investment. Moreover, this

price increase would not be that important if catalysts are

available at lower price, and if electricity is also available at a

lower price. CO2 emissions available for CDU processes are

not limited to power plant flue gases. A variety of synergies

(as for captured CO2 “management”) may be envisioned,

yielding win-to-win situations, not only for power plants or

industrial plants, but also for renewable plants that would

like to store electricity as part of their strategy. Under the

depicted conditions, the use of the FA CDU plant instead

of the conventional plant, emits less CO2 and saves heavy

fuel oil.

Overall, this study remains an optimistic evaluation of the

situation, since different simplifications were taken into

account:
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� The emissions allocated to renewable sources are zero.

These are different from zero, if taking into account a

complete life cycle approach.

� The study is a gate-to-gate study. For a holistic and accu-

rate view, an LCA has to be taken into account, to consider

upstream (for instance, environmental impact allocation

to the captured CO2, becoming feedstock CO2), and down-

stream echelons (as the CO2 storage duration, and the

specific circular approach for FA as an hydrogen carrier)

[80,81]. Note that different CDU products, will have

different environmental impact [82].

� Market simplification. The CO2-based FA will have to

compete in the market with already existing products,

synthesised from fossil fuel at lower production cost.

The introduction of CO2-based FA, assuming that this is

completely equivalent to the one that has been syn-

thesised through the conventional process, could

saturate the market, and could increase the price of

CO2 as product. Moreover, for the calculation of CO2

not-emitted, only one conventional process has been

considered, as benchmark. As H2 demand increases,

also alternative processes to synthesise it will prolif-

erate and could be also contrasted with the CDU

process.

These points will be addressed in future works.
Conclusions

Based on the FA case study, it can be concluded that CDU has

potential to be part of the CO2 abatement options of the

future, entailing less fossil fuel consumption and a way of

electricity storage. Overall, carbon utilisation processes can

provide a net contribution to CO2 emissions reduction, at

plant level (i.e. other echelons of the supply chain are not

taken into account). There is a need of R & D for electrolysers

to become more mature (and thus, less expensive), and there

is a need to link CDUwith renewable energies. In general, CO2

utilisation processes consuming H2 as raw material will be

favoured from specific renewable/energy storage advance-

ments. Under the hypotheses of this study, currently, the FA

CDU plant is technically feasible but it is not economically

sustainable. Different favourable conditions may help the FA

CDU plant to reach its profitability, and a combination of

them is desirable: lower electricity and steam prices and

higher prices for the tonne of FA are needed. R & D is also

crucial to decrease the operating costs, especially linked to

the use of catalysts.
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Acronyms

AE alkaline electrolyser

BCR benefit/cost ratio

CAPEX capital expenditure

CCS carbon capture and storage

CCU carbon capture and utilisation

CDU carbon dioxide utilisation

CEPCI Chemical Engineering Plant Cost Index

CNG compressed natural gas

DNV Det Norske Veritas

DFAFC direct formic acid fuel cell

EOR enhanced oil recovery

EU European Union

FA formic acid

FCP fixed costs of production

FCV fuel cell vehicle

GM gross margin

HP high pressure (steam)

ICE internal combustion engine

ir interest rate

ISBL inside battery limits investment

KPI key performance indicator

MeOH methanol

MP medium pressure (steam)

NPV net present value

OSBL offsite battery limits investment

P process

PEM proton exchange membrane electrolysis

PEMFC proton exchange membrane fuel cell

PF penetration pathway for FA market analysis

PTT-MAM Powertrain Technology Transition Market Agent

Model

R reactor

REV revenues

RM raw materials

SET Strategic Energy Technologies

SOEC solid oxide electrolyser cell (SOEC)

t tonne (metric tonne)

TFCC total fixed capital cost

TRL technology readiness level

VCP variable costs of production

wt weight

yr year
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Appendix A. Economic evaluation parameters
Table A.7 e Costs breakdown and assumed parameters, taking into account a process with a low TRL [58].

Total fixed capital cost (TFCC) ISBL capital costs Factorial methodology

OSBL capital costs 35% of ISBL

Engineering costs 30% of ISBL and OSBL

Contingency 30% of ISBL and OSBL

Working capital 20% of ISBL and OSBL

CAPEX TFCC þ Working capital

Variable costs of production (VCP) Raw materials costs

By-products disposal

Catalyst consumption [21]

Utilities consumption

Market prices (Appendix C) and model results

Fixed costs of production (FCP) Salaries and overheads 4 operators [70], 3 shift positions

78 000 V/yr [83]

Supervision is 25% of operating labour

Overhead is 45% of labour and supervision

Plant overhead is 65% of labour and maintenance

Tax and insurance are 2% of TFCC

Maintenance 3% of ISBL

Interest 6% of working capital

None
Appendix B. Further modelling information

Royalties
Fig. B.8 e Diagram representing the product from the

hydrogenation reactor: a two phase liquid, with a lower

phase that is heavier than the upper phase.

Fig. B.9 e Phase diagram for the separation of methanol and amine in column 26.
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Fig. B.10 e Residue curve plot with binodal plot separation of methanol and FA from the amine in column 28.

Fig. B.11 e Phase diagram for the separation of FA and amine in column 28.
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Appendix C. Production costs and revenues e
prices
Table C.8 e Prices, in V2014.

Item Price

CO2 captured 38.4 V/tCO2 [84]

Water 1 V/tH2O [58,61]

Cooling water 0.025 V/tH2O [58,61]

HP steam 25.12 V/tH2O [58,61]

MP steam 22.83 V/tH2O [58,61]

Electricity 95.09 V/MWh [61,38]

Oxygen 54.2 V/tO2 [85]

Formic acid 650 V/tFA [11,86]

Ruthenium-based catalyst 210 000 V/kgcat [87]

Phosphino-based catalyst 84 900 V/kgcat [88]

Methanol 350 V/tMeOH [89]

Amine 724 V/kg [90]
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Appendix D. Market analysis and penetration
pathways
Table D.9 e Description of each penetration pathway for FA synthesis from CO2. Conservative and realistic points of view
differ in the percentages of energy demand replaced by the product synthesised by CO2, and in the years of accumulated
growing demand. PF2 considers the mixture H2/CNG proposed in Ref. [91]. PF5 considers the market bounds for MeOH
depicted in Ref. [92].
Table D.10 e Hypotheses and parameters assumed for each penetration pathway for FA, based in Europe. For PF5, H2

production is estimated in Ref. [93]. Penetration percentages of fuel cells in stationary markets are from Ref. [74]. The
conversion of the fuel cell for PF6 and PF7 is from Ref. [94].
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