

This is a repository copy of S1PR1 drives a feed forward signalling loop to regulate BATF3 and the transcriptional programme of hodgkin lymphoma cells.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/121322/</u>

Version: Accepted Version

Article:

Vrzalikova, K., Ibrahim, M., Vockerodt, M. et al. (19 more authors) (2018) S1PR1 drives a feed forward signalling loop to regulate BATF3 and the transcriptional programme of hodgkin lymphoma cells. Leukemia, 32 (1). pp. 214-223. ISSN 0887-6924

https://doi.org/10.1038/leu.2017.275

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ Accepted Article Preview: Published ahead of advance online publication

S1PR1 drives a feed forward signalling loop to regulate BATF3 and the transcriptional programme of hodgkin lymphoma cells

K Vrzalikova, M Ibrahim, M Vockerodt, T Perry, S Margielewska, L Lupino, E Nagy, E Soilleux, D Liebelt, R Hollows, A Last, G Reynolds, M Abdullah, H Curley, M Care, D Krappmann, R Tooze, J Allegood, S Spiegel, W Wei, C B J Woodman, P G Murray

Cite this article as: K Vrzalikova, M Ibrahim, M Vockerodt, T Perry, S Margielewska, L Lupino, E Nagy, E Soilleux, D Liebelt, R Hollows, A Last, G Reynolds, M Abdullah, H Curley, M Care, D Krappmann, R Tooze, J Allegood, S Spiegel, W Wei, C B J Woodman, P G Murray, S1PR1 drives a feed forward signalling loop to regulate BATF3 and the transcriptional programme of hodgkin lymphoma cells, *Leukemia* accepted article preview 7 September 2017; doi: 10.1038/leu.2017.275.

This is a PDF file of an unedited peer-reviewed manuscript that has been accepted for publication. NPG are providing this early version of the manuscript as a service to our customers. The manuscript will undergo copyediting, typesetting and a proof review before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://

Received 14 February 2017; revised 9 August 2017; accepted 14 August 2017; Accepted article preview online 7 September 2017

S1PR1 Drives a Feed Forward Signalling Loop to Regulate BATF3 and the Transcriptional Programme of Hodgkin Lymphoma Cells

K Vrzalikova¹, M Ibrahim¹, M Vockerodt^{1,2}, T Perry¹, S Margielewska¹, L Lupino¹, E Nagy¹, E Soilleux³, D Liebelt¹, R Hollows¹, A Last¹, G Reynolds⁴, M Abdullah^{1,5}, H Curley¹, M Care⁶, D Krappmann⁷, R Tooze⁶, J Allegood⁸, S Spiegel⁸, W Wei^{1,9}, CBJ Woodman¹, and PG Murray^{1,10}

¹Institute of Cancer and Genomic Sciences, University of Birmingham, UK

²Institute of Anatomy and Cell Biology, Georg-August University of Göttingen, Germany

³Department of Cellular Pathology, John Radcliffe Hospital, UK

⁴Institute of Immunology and Immunotherapy, University of Birmingham, UK

⁵Department of Pathology, Universiti Putra Malaysia, Malaysia

⁶Leeds Institute of Cancer and Pathology, University of Leeds, UK

⁷Institute of Molecular Toxicology and Pharmacology, Germany

⁸Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University School of Medicine, USA

⁹Sheffield Institute of Translational Neuroscience, University of Sheffield, UK

¹⁰Department of Clinical and Molecular Pathology, Palacky University, Czech Republic

Abstract

The Hodgkin/Reed-Sternberg (HRS) cells of classical Hodgkin lymphoma (HL) are characterised by the aberrant activation of multiple signalling pathways. Here we show that a subset of HL displays altered expression of sphingosine-1-phosphate (S1P) receptors (S1PR). S1P activates phosphatidylinositide 3-kinase (PI3-K) in these cells that is mediated by the increased expression of S1PR1 and the decreased expression of S1PR2. We also showed that genes regulated by PI3-K signalling pathway in HL cell lines significantly overlap with the transcriptional programme of primary HRS cells. Genes up-regulated by the PI3-K pathway included the basic leucine zipper

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms

Correspondence: Paul Murray, Institute of Cancer and Genomic Sciences, Vincent Drive, Birmingham, B15 2TT, UK, Tel: (44-121) 414 4021, Fax: (44-121) 414 4486, p.g.murray@bham.ac.uk.

Conflict of Interest Disclosures: Authors declare no competing financial interests.

Authorship Contributions:

K.V., M.V, P.G.M. designed research; K.V., M.I., M.V., T.P., S.M., L.L., E.N., D.L., A.L., G.R., M.A., S.S., J.A. performed research and analysed data; R.H., M.I., M.C., D.K., R.T., W.W., C.B.J.W., P.G.M. contributed to the statistical analysis; E.S. contributed clinical samples; K.V., S.S. and P.G.M. wrote the manuscript.

Vrzalikova et al.

transcription factor, ATF-like 3 (BATF3), which is normally associated with the development of dendritic cells. Immunohistochemistry confirmed that BATF3 was expressed in HRS cells of most HL cases. In contrast, in normal lymphoid tissues, BATF3 expression was confined to a small fraction of CD30-positive immunoblasts. Knockdown of BATF3 in HL cell lines revealed that BATF3 contributed to the transcriptional programme of primary HRS cells, including the up-regulation of S1PR1. Our data suggest that disruption of this potentially oncogenic feed-forward S1P signalling loop could provide novel therapeutic opportunities for patients with HL.

Introduction

S1P is a bioactive sphingolipid metabolite implicated in cancer growth, survival and invasion.1,2 S1P is generated by the enzyme, sphingosine kinase 1 (SPHK1), which is over-expressed in different cancer types, including some non-HL.3 Conversely, sphingosine-1-phosphate phosphatase (SGPP1), which degrades S1P, is down-regulated during tumour development and progression.4–6 Although the over-production of S1P is a characteristic of many cancers, the biological responses to S1P are governed by binding and activation of five cell surface S1P receptors (S1PR1-5); each coupling to a different repertoire of G proteins. In B cells, S1PR1 mediates mitogenic/pro-survival and chemotactic S1P functions by coupling to Gi to activate Ras/ERK, PI3-K/Akt and Rac,7–9 whereas S1PR2 couples to G12/13 to inhibit PI3-K/Akt activity leading to reduced cell growth, survival and migration. 10–14 S1PR1 has previously been reported to be over-expressed in HRS cells and to promote their migration *in vitro*.15 In contrast, S1PR2 may be a tumour suppressor in B cell lymphomas; previous studies show that S1PR2 is mutated in a subset of human diffuse large B-cell lymphoma (DLBCL) and that mice lacking S1PR2 expression develop DLBCL.16,17

Here we show that HRS cells are characterised by high expression of SPHK1 and S1PR1, but do not express S1PR2. This leads to enhanced PI3-K activation in response to S1P and to the increased expression of the dendritic cell transcription factor (TF), BATF3 (ref. 18,19). In turn, BATF3 contributes to the transcriptional programme of HL, including the increased expression of S1PR1. Interrupting this BATF3-regulated feed-forward loop, for example by targeting S1PR1, could provide novel therapies for HL patients.

Materials and Methods

Cells and tissues

Paediatric tonsils and tumour samples were obtained with informed consent under local ethics committee approval (06/Q2702/50; REC_RG_HBRC_12-071). Germinal center (GC) B cells were isolated and characterised as described earlier.20–22 Isolation of blood-derived B cells and preparation of lymphoblastoid cell lines (LCL) were described before21–23 and are detailed in SI Materials and Methods (M&M). KMH2, L428, L1236 and L540 are Epstein Barr virus (EBV)-negative HL cell lines and L591 is an EBV-positive HL cell line. DG75 is an EBV-negative Burkitt lymphoma cell line. HEK293 is derived from human embryonic kidney. Cell lines were cultured at 37°C in 5% CO₂ in either RPMI1640 or DMEM (HEK293) with 10% foetal calf serum (FCS) and 1% penicillin-streptomycin (all ThermoFisher Scientific, Waltham, MA, USA).

Vrzalikova et al.

S1P measurements

For measurement of S1P levels in cell lines and B cells, lipids were extracted and sphingolipids quantified by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS; 4000 QTRAP, AB Sciex, Framingham, MA, USA) as previously described.24

Treatment of cells

Preparation of S1P (Sigma-Aldrich, St. Louis, MI, USA) is detailed in SI M&M. For S1P treatment, KMH2 cells were washed twice, incubated in serum-free media for 1h, followed by addition of 1µM S1P. S1P receptor functional antagonists, Ozanimod (RPC1063, Selleckchem.com, Munich, Germany) or Siponimod (BAF312, Selleckchem.com), were added to cells 1h prior to 15min S1P stimulation. For measurement of viability, cells were stained using FITC Annexin V Apoptosis Detection Kit I (BD Pharmingen[™], Franklin Lakes, NJ, USA) and analysed by flow cytometry. For Akt inhibition, cells were cultivated in 10% FCS media with 1µM Ipatasertib (GDC-0068; Selleckchem.com) or vehicle (DMSO) for 6h. Cell-Titer Glo assay (Promega, Fitchburg, WI, USA) showed no cell death at this time point.

For PI3-K inhibition, cells were cultivated in 10% FCS media with 30μ M LY294002 or vehicle (DMSO). We have previously shown that LY294002 does not cause significant cell death at the time points and concentration used.25

Gene expression in KMH2 cells following 16h of LY294002/vehicle treatment was analysed with Affymetrix HG-Focus arrays (data available from GSE89759). The data was background subtracted and quantile normalized26,27 using the affy package of Bioconductor. Differentially expressed genes were identified using limma28 (p<0.05, absolute fold change >1.2). Probe sets with "Negative Strand Matching Probes" were removed from the significant gene list. Gene ontology analysis was performed using DAVID 6.7 http://david.abcc.ncifcrf.gov using GO-term BP-FAT; p<0.01, >=1.3-fold enrichment.

BATF3 knockdown

BATF3 knockdown was performed by nucleofection with Silencer® Select s195280 BATF3 siRNA or Silencer® Select Negative Control No.1 siRNA (ThermoFisher Scientific). 48h after BATF3 knockdown in L428 cells, samples were hybridized to Affymetrix PrimeView arrays (data available from GSE89760) and data analysed as described above.

Re-analysis of publicly available datasets is described in SI M&M. Chi-squared test was used to identify significant enrichment or depletion of either PI3-K or BATF3 target genes in these datasets using a threshold for significance of p<0.05.

Transfection of cells

 $^{\odot}$

GC B cells were nucleofected with pcDNA3.1-PRDM1 or empty vector, cultivated and enriched as before.20,21 HL cell lines and DG75 cells were transfected by nucleofection (Lonza, Basel, Switzerland) and HEK293 transfected by lipofectamine (ThermoFisher Scientific) using the following vectors and corresponding controls: pcDNA3.1-S1PR2-HA

Vrzalikova et al.

(UMR cDNA Resource Center University of Missouri-Rolla, MO, USA), pSG5-myc-p110α-CAAX (Julian Downward, Addgene, Cambridge, MA, USA), Akt1/PKBα cDNA (activated) in pUSEamp containing a MYC tag (Merck Millipore, Billerica, MA, USA), pcDNA3.1-S1PR1 (Dr Ian Paterson, University of Malaya) and pCMV6-SPHK1 (Origene technologies, Rockville, MD, USA).

Quantitative RT- PCR (Q-PCR)

RNA was extracted with RNeasy Mini/Micro Kit including genomic DNA removal with RNase-Free DNase Set (QIAGEN, Hilden, Germany). cDNA was generated with qScriptTM cDNA SuperMix (VWR International, Radnor, PA, USA). Gene transcripts were quantified with commercial assays (Table S1A, ThermoFisher Scientific) as before.21 The $2^{-\Delta Ct}$ method was used to quantify target expression relative to GAPDH housekeeping control (unless specified otherwise).

Immunoblotting

Immunoblotting was performed with the primary antibodies detailed in Table S1B and following standard techniques described in SI M&M.

Immunohistochemistry (IHC)

IHC was performed as before.29,30 Slides were blocked in 5x casein followed by primary antibody in 0.05% PBS/Tween (Table S1C). Multiplex immunofluorescence (IF) was performed using Opal[™] 7-Plex Kit (NEL791001KT; PerkinElmer, Waltham, MA, USA). For antibody stripping between each step, slides were microwaved in pH=6 citrate buffer, with controls omitting individual antibody steps to ensure adequate stripping. Slides were scanned using wide-range wavelength covering filters available in Vectra system 3.0.3 (For dyes-Cyanine 5, Cyanine 3, DAPI, Texas Red, Fluorescein). Antibodies were optimized with auto-exposure adjustment (100-150ms). Images were taken on Olympus BX-51WI microscope with 10x, 20x and 40x magnification. Multispectral images were analysed using InForm Automated Image Analysis software version 2.2.1 for phenotyping and quantification of co-expressed markers. Analysis was performed with a 20x objective on a minimum of three fields for cytospin preparations and five fields for tissue sections. For assessment of protein expression following S1P treatment the mean intensity and SD were calculated for each of three fields separately and statistical significance measured by Fisher exact test. For image analysis of TMA we used the 1x1 function covering approximately 75% of each core. Positivity in IHC was assessed with 40x objective using the whole TMA area, or ten representative hpf in the case of whole sections. To directly compare our results with those previously reported by Kluk et al,15 S1PR1 was scored as positive if >=25% of cells expressed S1PR1. The same cut-off was applied for all other markers. Validation of the specificity of SPHK1, S1PR1, S1PR2 and BATF3 antibodies is shown in Figure S1.

Results

Expression of SPHK1, SGPP1 and S1P receptors in HRS cells

We first studied the expression of SPHK1 and SGPP1, enzymes important for regulating S1P levels.3–5 We showed that SPHK1 was expressed in both normal GC B cells and in

Vrzalikova et al.

HRS cells in most cases (49/58; Figure 1A; Table S2). Owing to the lack of an internal positive control we could not reliably quantify SPHK1 expression by IHC. Therefore, we reanalysed a microarray dataset that compared global gene expression in B cell lymphomas with that in normal B cell subsets.31 This revealed significantly higher SPHK1 mRNA in micro-dissected HRS cells compared with isolated GC B cells (Figure S2A). Re-analysis of a second independent microarray dataset32 revealed higher expression of SPHK1 mRNA in both EBV-negative and EBV-positive HRS cells compared to micro-dissected GCs (Figure S2B). Q-PCR showed that SPHK1 mRNA expression was also higher in HL cell lines than in GC B cells (Figure 1B). We next used immunoblotting to show that SPHK1 was constitutively activated in HL cell lines (Figure 1C). Conversely, SGPP1 mRNA was decreased in primary HRS cells and HL cell lines compared with normal GC B cells (Figure S3). Indeed, S1P levels measured by mass spectrometry were higher in HL cells than in normal B cells (Figure 1D). We next studied the expression of S1PR1 and S1PR2. We showed that normal GC B cells expressed S1PR2, but not S1PR1 (Figure 2A, S4). In comparison, HRS cells frequently expressed S1PR1 (36/61), but not S1PR2 (2/61), an observation we confirmed by multiplex staining with CD30 (Figure 2B, S5; Table S2). We conclude that in contrast to their normal counterparts, HRS cells appear to express high levels of SPHK1 and S1PR1 but lack expression of S1PR2 and SGPP1.

S1P-induced PI3-K signalling in HRS cells is mediated by the differential expression of S1P receptors

We next studied the effects of S1P on PI3-K signalling in HRS cells using Akt phosphorylation as a read-out. We chose the KMH2 cell line for these experiments because it expresses S1PR1 and only low levels of S1PR2 in the absence of the other S1P receptors (Figure S6A,B). We observed that the addition of S1P increased Akt phosphorylation in KMH2 cells (Figure 3A). To examine the effect of S1PR1 on Akt phosphorylation, we stimulated KMH2 cells with S1P after targeting S1PR1 (and S1PR5) with their functional antagonists Ozanimod and Siponimod.33,34 The addition of either drug 1h prior to S1P treatment decreased Akt phosphorylation in a dose-dependent manner (Figure 3B). Furthermore, Ozanimod significantly reduced the viability of KMH2, L428 and L591 cells while Siponimod reduced the viability of KMH2 and L428 cells (Figure S7). L1236 was resistant to both drugs. To study the effect of S1PR2, we transfected KMH2 cells with an S1PR2-HA expression vector and used IF to detect phospho-Akt and the HA tag. Cells ectopically expressing S1PR2 were significantly more likely to be phospho-Akt negative than HA-negative cells in the same transfected population, an effect we observed with (p<0.0001; Figure S8) and without (p<0.0001; not shown) the addition of exogenous S1P. Taken together, our data suggests that binding of S1P to S1PR1 can activate PI3-K signalling in HRS cells.

Expression of the transcription factor, BATF3, is regulated by PI3-K signalling in HRS cells

To identify the transcriptional targets of PI3-K signalling pathway in HL cells, we used the pan-PI3-K inhibitor LY294002. KMH2 cells were treated with LY294002 for 16h under conditions that do not affect viability.25 The addition of LY294002 for 16h was followed by the up-regulation of 694 genes and the down-regulation of 330 genes (Table S3). We

Vrzalikova et al.

Page 6

validated a number of PI3-K targets genes in KMH2, and also in L428, L591 and L1236 cells (Figure S9).

Re-analysis of GSE12453 (Brune et al31) identified 743 genes up-regulated and 622 genes down-regulated in micro-dissected HRS cells compared with normal centrocytes (Table S4). Genes up-regulated in HRS cells (OR=2.15; p<0.0001), but not those down-regulated in HRS cells (OR=1.00; p=0.96), were significantly enriched in genes down-regulated following PI3-K inhibition. Similarly, genes down-regulated in HRS cells (OR=2.95; p<0.0001), but not those up-regulated in HRS cells (OR=1.28; p=0.056), were significantly enriched in genes up-regulated following PI3-K inhibition (Figure S10; Table S5). These data indicate that the activation of PI3-K signalling pathway contributes to the transcriptional programme of HRS cells. We next wanted to establish if this was also the case for both the EBV-positive and EBV-negative forms of HL. To do this we re-analyzed data from the second published microarray which had compared gene expression in microdissected HRS cells with that in micro-dissected normal GCs and which had reported EBV status for a subset of cases GSE39133 (Steidl et al32). The transcriptional targets of PI3-K signalling we had identified in primary HRS cells were significantly enriched in those genes differentially expressed in both EBV-positive and EBV-negative HRS cells (Figure S10; Tables S6-S9).

A gene ontology (GO) analysis revealed that genes regulated by PI3-K signaling pathway in primary HRS cells were enriched for those with a function in 'transcription initiation from RNA polymerase II promoter', suggesting that PI3-K signalling might contribute to the aberrant expression of TFs observed in HRS cells (Figure 4A). To identify relevant TFs targets we compared genes regulated by PI3-K signalling in primary HRS cells with a comprehensive set of TFs described by Vaquerizas et al.35 This revealed the up-regulation of 12, and the down-regulation of 47 TFs by PI3-K signalling in HRS cells (Figure 4B). They included the dendritic cell TF, BATF3 (ref. 18,19), which was previously reported to be over-expressed at the mRNA level in HRS cells36,37 and which was also the PI3-K regulated gene most highly up-regulated in the re-analysis of global gene expression in primary HRS cells described above.31,32 We confirmed that LY294002 down-regulated BATF3 expression in HL cell lines (Figure S11A,B). Furthermore, the pan-Akt inhibitor, Ipatasertib, also decreased BATF3 expression (Figure S11C). To confirm these were not offtarget effects, we transfected KMH2 cells with a MYC-tagged plasmid containing a constitutively active p110 or Akt1 gene and performed IF, titrating the MYC antibody to detect only exogenous MYC. We found, that a larger proportion of cells ectopically expressing either p110 (Figure S11D) or Akt1 (not shown) were significantly more likely to be both phospho-Akt- and BATF3-positive (p<0.0001) than were un-transfected cells. Taken together, our data show that activation of PI3-K/Akt signalling pathway leads to aberrant BATF3 expression in B cell lymphoma.

BATF3 overexpression contributes to the transcriptional programme of HRS cells

We confirmed that BATF3 mRNA expression was higher in micro-dissected HRS cells compared with normal B cells (Figure S12A) and in both EBV-positive and EBV-negative HRS cells compared with micro-dissected GCs (Figure S12B). IHC of normal lymphoid

Vrzalikova et al.

tissues revealed that BATF3 protein was not present in GC B cells and only rarely in extrafollicular CD20-positive cells which were also CD30-positive (Figure 5A). In contrast, BATF3 protein was strongly expressed in both EBV-positive (7/10) and EBV-negative (29/42) HRS cells (Table S10) confirmed by CD30 co-staining (Figure 5B), and in HL lines (Figure 5C,D). BATF3 expression was also increased after EBV infection of B cells (Figure S13).

A microarray analysis following BATF3 knockdown in L428 cells revealed the upregulation of 960 genes and the down-regulation of 1066 genes (Table S11A,B). Taking genes only present on the Primeview platform and also on GSE12453,31 we found that genes down-regulated by BATF3 were significantly enriched in genes down-regulated in primary HRS cells (OR=1.8; p<0.0001). A GO analysis of BATF3 target genes revealed the enrichment of a number of HL-related GO terms which included 'lymphocyte differentiation', 'somatic diversification of immune receptors', 'regulation of cell motion', 'positive regulation of transcription from RNA polymerase II promoter' and 'B cell mediated immunity' (Figure 6A). We validated several BATF3 targets within different functional groups including genes down-regulated (JUN, FOS, ATF3, EGR1, EGR2, PTPRC, CASP7, CASP14, RGS1, RGS16) and genes up-regulated (BACH2, STAT5B, CXCL16) by BATF3 (Figure S14). We noted that BATF3 decreased the expression of PRDM1, which encodes BLIMP1 (Figure S14), a TF down-regulated in HRS cells and which is essential for plasma cell differentiation.21,38-41 Interrogation of our previous microarray dataset21 which described the transcriptional changes that follow the expression of BLIMP1 in primary GC B cells, also revealed a reciprocal regulation of BATF3 by BLIMP1 (Figure S15A). We confirmed the down-regulation of BATF3 by BLIMP1 by Q-PCR analysis of a further three donors (Figure S15B). These data show that the overexpression of BATF3 contributes to the aberrant transcriptional programme of HRS cells, including the down-regulation of BLIMP1.

BATF3 up-regulates S1PR1 expression

The knockdown of BATF3 significantly decreased S1PR1 mRNA and protein levels in L428, L1236 and KMH2 cells (all p<0.0001; Figure 7A, S16). In control and BATF3siRNA-treated cells (p<0.0001; Figure 7B) as well as in untreated cells (Table S12), BATF3 and S1PR1 levels were also significantly correlated at the single cell level. Next, we wanted to show that this pathway was directly regulated by S1P. To do this we treated the HL cell lines with S1P or control (BSA) for 24h and measured the levels of phospho-Akt, BATF3 and S1PR1 by IF. S1P significantly increased the levels of phospho-Akt, BATF3 and S1PR1 in L428, KMH2 and L591 cells (Figure S17). This regulation could be observed at the single cell level because S1P-treated cells were significantly more likely to co-express phospho-Akt, BATF3 and S1PR1 (all p<0.0001; not shown). S1P did not increase the expression of phospho-Akt and BATF3 in L1236 cells; most likely owing to the very high constitutively activated Akt in these cells and in keeping with their resistance to S1PR1 inhbition described above. Finally, we measured BATF3 and S1PR1 expression in primary HRS cells. We found that BATF3-positive primary HL were significantly more likely to be S1PR1positive than BATF3-negative HL (p=0.0006; Figure S18A, Table S10). Single cell image analysis of six representative HL cases showed that BATF3-positive HRS cells within each

Vrzalikova et al.

case were also significantly more likely to be S1PR1-positive than were BATF3-negative cells (Figure S18B). Taken together our results suggest the existence of a feed-forward S1P signalling loop that drives constitutive BATF3 expression leading to aberrant transcription in HRS cells.

Discussion

Here we show that HRS cells express BATF3, a TF that is important for the development of CD8α+ classical dendritic cells18 and related non-lymphoid CD103+CD11b- dendritic cells. 19 Re-analysis of existing global expression datasets and IHC showed that BATF3 expression was significantly higher in primary HRS cells compared with normal B cells. Our data also revealed that BATF3 is regulated by PI3-K/Akt signalling, a pathway we and others have shown is constitutively activated in HRS cells.25,42,43

We also showed that PI3-K/Akt signalling pathway is regulated by S1P in HRS cells and that this is dependent upon the increased expression of S1PR1 together with the decreased expression of S1PR2. The up-regulation of S1PR1 in HRS cells has been reported before15, albeit in only 7/57 cases, a lower proportion than we have reported here; despite the fact that we used the same cut-off employed by Kluk *et al*. Our observation that BATF3 induces the expression of S1PR1 identifies a feed-forward loop which leads to constitutive S1P signalling, activation of the PI3-K/Akt pathway and sustained BATF3 transcriptional activity (Figure 8). The major source of the S1P necessary to sustain this loop is likely to be the HRS cells, since they express SPHK1 in the absence of the S1P phosphatase, SGPP1. The feed-forward loop described here could be important for the pathogenesis of HL since it has been shown that the knockdown of BATF3 significantly reduces the survival of HL cell lines44 and that BATF3 can induce B cell lymphomas in a murine model (Weiser *et al*, personal communication).

Our studies revealed that BATF3 down-regulated expression of BLIMP1, a TF required for plasma cell differentiation and which is either mutated or transcriptionally down-regulated in B cell lymphomas, including HL.21,38–41 BLIMP1 also decreased the expression of BATF3, indicating a reciprocal regulation of BATF3 and BLIMP1. Furthermore, BATF3 increased the expression of BACH2 which has been shown to delay BLIMP1 expression and plasma cell differentiation in mouse lymphocytes.45,46 These data suggest that the constitutive expression of BATF3 could be important for the suppression of terminal B cell differentiation in HRS cell progenitors.

In keeping with the reported down-regulation of AP-1 signalling by BATF3 (ref. 47), we observed that BATF3 decreased the transcription of the key AP-1 components, JUN, FOS and ATF3. Furthermore, we showed that BATF3 regulated many other transcriptional changes characteristic of HRS cells. These included the down-regulation of PTPRC (CD45), an essential regulator of BCR signalling48,49 and a number of TFs, including STAT5B, NOTCH1 and EGR1, known to be aberrantly expressed in HRS cells.50–53

In a re-analysis of the BATF3 targets reported by Lollies *et al*44 (using the same cut-off as in our array, but using shRNA and different time point), we found that genes up-regulated (OR=1.62; p=0.003), but not those down-regulated (OR=0.96; p=0.89) by BATF3 in our

Vrzalikova et al.

Page 9

array were significantly enriched in those genes up-regulated by BATF3 in Lollies *et al.* Similarly, genes down-regulated (OR=2.7; p<0.00001), but not those up-regulated (OR=0.82; p=0.37), by BATF3 in our array were significantly enriched in those genes downregulated by BATF3 in Lollies *et al.* It is noteworthy that S1PR1 was among those genes significantly up-regulated by BATF3 in Lollies *et al.*

Both EBV-positive and EBV-negative HRS cells expressed BATF3, consistent with our observation that BATF3 expression was increased by *in vitro* EBV infection. Because the EBV lytic cycle has been shown to be induced upon terminal B cell differentiation54 leading to viral replication and cell death, the increased BATF3 expression observed in EBV-infected tumor cells could be important for suppression of the lytic cycle, in turn preventing replication-induced cell death. In keeping with this, several of the BATF3 targets we identified (e.g. AP-1, EGR1, BLIMP1), are known to induce the EBV lytic cycle.21,55–59

Our data also suggest that the therapeutic blockade of S1P signalling could inhibit the oncogenic effects of BATF3. The two functional antagonists of S1PR1, Ozanimod and Siponimod, which we showed can block the S1P-mediated activation of Akt, are already in phase II and III clinical trials of patients with inflammatory and autoimmune diseases. These and other S1PR1 modulators should be investigated for their therapeutic potential in HL.

Supplementary Material

Supplementary information is available at Leukemia's Website.

Acknowledgments

This work was supported by Bloodwise and in part by grants RVO: 61989592 and NPS I LO1304 from the Czech Ministry of Education to P.G.M. and by NIGMS grant R01GM043880 to S.S. The VCU Lipidomics Core was supported in part by NCI Grant P30 CA016059.

We wish to dedicate this work to the memory of an excellent scientist, a wonderful colleague and a kind friend, Professor Ciaran BJ Woodman, we had the privilege to work with.

References

- 1. Moolenaar WH. Bioactive lysophospholipids and their G protein-coupled receptors. Exp Cell Res. 1999 Nov 25; 253(1):230–238. [PubMed: 10579925]
- 2. Milstien S, Spiegel S. Targeting sphingosine-1-phosphate: a novel avenue for cancer therapeutics. Cancer Cell. 2006 Mar; 9(3):148–150. [PubMed: 16530698]
- Bayerl MG, Bruggeman RD, Conroy EJ, Hengst JA, King TS, Jimenez M, et al. Sphingosine kinase 1 protein and mRNA are overexpressed in non-Hodgkin lymphomas and are attractive targets for novel pharmacological interventions. Leukemia & Lymphoma. 2008; 49(5):948–954.
- Mandala SM, Thornton R, Galve-Roperh I, Poulton S, Peterson C, Olivera A, et al. Molecular cloning and characterization of a lipid phosphohydrolase that degrades sphingosine-1- phosphate and induces cell death. Proc Natl Acad Sci U S A. 2000 Jul 5; 97(14):7859–7864. [PubMed: 10859351]
- Le Stunff H, Giussani P, Maceyka M, Lepine S, Milstien S, Spiegel S. Recycling of sphingosine is regulated by the concerted actions of sphingosine-1-phosphate phosphohydrolase 1 and sphingosine kinase 2. J Biol Chem. 2007 Nov 23; 282(47):34372–34380. [PubMed: 17895250]

Vrzalikova et al.

- Gao XY, Li L, Wang XH, Wen XZ, Ji K, Ye L, et al. Inhibition of sphingosine-1-phosphate phosphatase 1 promotes cancer cells migration in gastric cancer: Clinical implications. Oncol Rep. 2015 Oct; 34(4):1977–1987. [PubMed: 26239167]
- Takuwa Y, Okamoto H, Takuwa N, Gonda K, Sugimoto N, Sakurada S. Subtype-specific, differential activities of the EDG family receptors for sphingosine-1-phosphate, a novel lysophospholipid mediator. Mol Cell Endocrinol. 2001 May 25; 177(1–2):3–11. [PubMed: 11377814]
- Takuwa Y, Takuwa N, Sugimoto N. The Edg family G protein-coupled receptors for lysophospholipids: their signaling properties and biological activities. J Biochem. 2002 Jun; 131(6): 767–771. [PubMed: 12038970]
- Takuwa Y. Subtype-specific differential regulation of Rho family G proteins and cell migration by the Edg family sphingosine-1-phosphate receptors. Biochim Biophys Acta. 2002 May 23; 1582(1– 3):112–120. [PubMed: 12069818]
- Okamoto H, Takuwa N, Yokomizo T, Sugimoto N, Sakurada S, Shigematsu H, et al. Inhibitory Regulation of Rac Activation, Membrane Ruffling, and Cell Migration by the G Protein-Coupled Sphingosine-1-Phosphate Receptor EDG5 but Not EDG1 or EDG3. Molecular and Cellular Biology. 2000 December 15; 20(24):9247–9261. [PubMed: 11094076]
- Arikawa K, Takuwa N, Yamaguchi H, Sugimoto N, Kitayama J, Nagawa H, et al. Liganddependent inhibition of B16 melanoma cell migration and invasion via endogenous S1P2 G protein-coupled receptor. Requirement of inhibition of cellular RAC activity. J Biol Chem. 2003 Aug 29; 278(35):32841–32851. [PubMed: 12810709]
- Inoki I, Takuwa N, Sugimoto N, Yoshioka K, Takata S, Kaneko S, et al. Negative regulation of endothelial morphogenesis and angiogenesis by S1P2 receptor. Biochemical and Biophysical Research Communications. 2006; 346(1):293–300. [PubMed: 16756949]
- Sanchez T, Thangada S, Wu MT, Kontos CD, Wu D, Wu H, et al. PTEN as an effector in the signaling of antimigratory G protein-coupled receptor. Proc Natl Acad Sci U S A. 2005 Mar 22; 102(12):4312–4317. [PubMed: 15764699]
- 14. Du W, Takuwa N, Yoshioka K, Okamoto Y, Gonda K, Sugihara K, et al. S1P2, the G Protein– Coupled Receptor for Sphingosine-1-Phosphate, Negatively Regulates Tumor Angiogenesis and Tumor Growth In vivo in Mice. Cancer Research. 2010 January 15; 70(2):772–781. [PubMed: 20068174]
- Kluk MJ, Ryan KP, Wang B, Zhang G, Rodig SJ, Sanchez T. Sphingosine-1-phosphate receptor 1 in classical Hodgkin lymphoma: assessment of expression and role in cell migration. Lab Invest. 2013 Apr; 93(4):462–471. [PubMed: 23419711]
- 16. Cattoretti G, Mandelbaum J, Lee N, Chaves AH, Mahler AM, Chadburn A, et al. Targeted Disruption of the S1P2 Sphingosine 1-Phosphate Receptor Gene Leads to Diffuse Large B-Cell Lymphoma Formation. Cancer Research. 2009 November 15; 69(22):8686–8692. [PubMed: 19903857]
- 17. Green JA, Suzuki K, Cho B, Willison LD, Palmer D, Allen CD, et al. The sphingosine 1-phosphate receptor S1P₂ maintains the homeostasis of germinal center B cells and promotes niche confinement. Nat Immunol. 2011 Jun; 12(7):672–80. [PubMed: 21642988]
- Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, Kohyama M, et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science. 2008 Nov 14; 322(5904):1097–1100. [PubMed: 19008445]
- Edelson BT, Kc W, Juang R, Kohyama M, Benoit LA, Klekotka PA, et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8alpha+ conventional dendritic cells. J Exp Med. 2010 Apr 12; 207(4):823–836. [PubMed: 20351058]
- Vockerodt M, Morgan SL, Kuo M, Wei W, Chukwuma MB, Arrand JR, et al. The Epstein-Barr virus oncoprotein, latent membrane protein-1, reprograms germinal centre B cells towards a Hodgkin's Reed-Sternberg-like phenotype. J Pathol. 2008 Sep; 216(1):83–92. [PubMed: 18566961]
- 21. Vrzalikova K, Vockerodt M, Leonard S, Bell A, Wei W, Schrader A, et al. Down-regulation of BLIMP1α by the EBV oncogene, LMP-1, disrupts the plasma cell differentiation program and prevents viral replication in B cells: implications for the pathogenesis of EBV-associated B-cell lymphomas. Blood. 2011 June 2; 117(22):5907–5917. [PubMed: 21411757]

Vrzalikova et al.

- 22. Leonard S, Wei W, Anderton J, Vockerodt M, Rowe M, Murray PG, et al. Epigenetic and transcriptional changes which follow Epstein-Barr virus infection of germinal center B cells and their relevance to the pathogenesis of Hodgkin's lymphoma. J Virol. 2011 Sep; 85(18):9568–9577. [PubMed: 21752916]
- 23. Vrzalikova K, Leonard S, Fan Y, Bell A, Vockerodt M, Flodr P, et al. Hypomethylation and Over-Expression of the Beta Isoform of BLIMP1 is Induced by Epstein-Barr Virus Infection of B Cells; Potential Implications for the Pathogenesis of EBV-Associated Lymphomas. Pathogens. 2012 Oct 08; 1(2):83–101. [PubMed: 25436766]
- Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK, et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science. 2009 Sep 04; 325(5945): 1254–1257. [PubMed: 19729656]
- Dutton A, Reynolds GM, Dawson CW, Young LS, Murray PG. Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin's lymphoma cells through a mechanism involving Akt kinase and mTOR. J Pathol. 2005 Mar; 205(4):498–506. [PubMed: 15714459]
- Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003 Jan 22; 19(2): 185–193. [PubMed: 12538238]
- 27. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003 Feb 15.31(4):15.
- 28. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004; 3:Article3. [PubMed: 16646809]
- Flavell JR, Baumforth KR, Wood VH, Davies GL, Wei W, Reynolds GM, et al. Down-regulation of the TGF-beta target gene, PTPRK, by the Epstein-Barr virus encoded EBNA1 contributes to the growth and survival of Hodgkin lymphoma cells. Blood. 2008 Jan 1; 111(1):292–301. [PubMed: 17720884]
- 30. Reynolds GM, Billingham LJ, Gray LJ, Flavell JR, Najafipour S, Crocker J, et al. Interleukin 6 expression by Hodgkin/Reed-Sternberg cells is associated with the presence of 'B' symptoms and failure to achieve complete remission in patients with advanced Hodgkin's disease. Br J Haematol. 2002 Jul; 118(1):195–201. [PubMed: 12100148]
- Brune V, Tiacci E, Pfeil I, Döring C, Eckerle S, van Noesel CJM, et al. Origin and pathogenesis of nodular lymphocyte–predominant Hodgkin lymphoma as revealed by global gene expression analysis. The Journal of Experimental Medicine. 2008 September 29; 205(10):2251–2268. [PubMed: 18794340]
- Steidl C, Diepstra A, Lee T, Chan FC, Farinha P, Tan K, et al. Gene expression profiling of microdissected Hodgkin Reed-Sternberg cells correlates with treatment outcome in classical Hodgkin lymphoma. Blood. 2012 Oct 25; 120(17):3530–3540. [PubMed: 22955918]
- 33. Scott FL, Clemons B, Brooks J, Brahmachary E, Powell R, Dedman H, et al. Ozanimod (RPC1063) is a potent sphingosine-1-phosphate receptor-1 (S1P1) and receptor-5 (S1P5) agonist with autoimmune disease-modifying activity. Br J Pharmacol. 2016 Jun; 173(11):1778–1792. [PubMed: 26990079]
- 34. Pan S, Gray NS, Gao W, Mi Y, Fan Y, Wang X, et al. Discovery of BAF312 (Siponimod), a Potent and Selective S1P Receptor Modulator. ACS Med Chem Lett. 2013 Mar 14; 4(3):333–337. [PubMed: 24900670]
- Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. A census of human transcription factors: function, expression and evolution. Nat Rev Genet. 2009 Apr; 10(4):252–263. [PubMed: 19274049]
- Rosenwald A. DNA microarrays in lymphoid malignancies. Oncology (Williston Park). 2003 Dec; 17(12):1743–1748. discussion 1750, 1755, 1758-1749 passim.
- Schwering I, Brauninger A, Distler V, Jesdinsky J, Diehl V, Hansmann ML, et al. Profiling of Hodgkin's lymphoma cell line L1236 and germinal center B cells: identification of Hodgkin's lymphoma-specific genes. Mol Med. 2003 Mar–Apr; 9(3–4):85–95. [PubMed: 12865944]

Vrzalikova et al.

- Buettner M, Greiner A, Avramidou A, Jack HM, Niedobitek G. Evidence of abortive plasma cell differentiation in Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma. Hematol Oncol. 2005 Sep-Dec; 23(3–4):127–132. [PubMed: 16342298]
- Cattoretti G, Angelin-Duclos C, Shaknovich R, Zhou H, Wang D, Alobeid B. PRDM1/Blimp-1 is expressed in human B-lymphocytes committed to the plasma cell lineage. J Pathol. 2005 May; 206(1):76–86. [PubMed: 15772984]
- 40. Garcia JF, Roncador G, Garcia JF, Sanz AI, Maestre L, Lucas E, et al. PRDM1/BLIMP-1 expression in multiple B and T-cell lymphoma. Haematologica. 2006 Apr; 91(4):467–474. [PubMed: 16585013]
- 41. Nie K, Gomez M, Landgraf P, Garcia JF, Liu Y, Tan LH, et al. MicroRNA-mediated downregulation of PRDM1/Blimp-1 in Hodgkin/Reed-Sternberg cells: a potential pathogenetic lesion in Hodgkin lymphomas. Am J Pathol. 2008 Jul; 173(1):242–252. [PubMed: 18583325]
- 42. Jucker M, Sudel K, Horn S, Sickel M, Wegner W, Fiedler W, et al. Expression of a mutated form of the p85alpha regulatory subunit of phosphatidylinositol 3-kinase in a Hodgkin's lymphomaderived cell line (CO). Leukemia. 2002 May; 16(5):894–901. [PubMed: 11986952]
- 43. De J, Brown RE. Tissue-microarray based immunohistochemical analysis of survival pathways in nodular sclerosing classical Hodgkin lymphoma as compared with Non-Hodgkin's lymphoma. Int J Clin Exp Med. 2010 Jan 30; 3(1):55–68. [PubMed: 20369041]
- 44. Lollies A, Hartmann S, Schneider M, Bracht T, Weiß A, Arnolds J, et al. An oncogenic axis of STAT-mediated BATF3 upregulation causing MYC activity in classical Hodgkin lymphoma and anaplastic large cell lymphoma. Leukemia. accepted article preview online June 29, 2017. [PubMed: 28659618]
- 45. Muto A, Ochiai K, Kimura Y, Itoh-Nakadai A, Calame KL, Ikebe D, et al. Bach2 represses plasma cell gene regulatory network in B cells to promote antibody class switch. EMBO J. 2010 Dec 1; 29(23):4048–4061. [PubMed: 20953163]
- Ochiai K, Katoh Y, Ikura T, Hoshikawa Y, Noda T, Karasuyama H, et al. Plasmacytic transcription factor Blimp-1 is repressed by Bach2 in B cells. J Biol Chem. 2006 Dec 15; 281(50):38226– 38234. [PubMed: 17046816]
- 47. Iacobelli M, Wachsman W, McGuire KL. Repression of IL-2 promoter activity by the novel basic leucine zipper p21SNFT protein. J Immunol. 2000 Jul 15; 165(2):860–868. [PubMed: 10878360]
- Lane PJ, Ledbetter JA, McConnell FM, Draves K, Deans J, Schieven GL, et al. The role of tyrosine phosphorylation in signal transduction through surface Ig in human B cells. Inhibition of tyrosine phosphorylation prevents intracellular calcium release. J Immunol. 1991 Jan 15; 146(2): 715–722. [PubMed: 1702814]
- Justement LB, Campbell KS, Chien NC, Cambier JC. Regulation of B cell antigen receptor signal transduction and phosphorylation by CD45. Science. 1991 Jun 28; 252(5014):1839–1842. [PubMed: 1648262]
- Scheeren FA, Diehl SA, Smit LA, Beaumont T, Naspetti M, Bende RJ, et al. IL-21 is expressed in Hodgkin lymphoma and activates STAT5: evidence that activated STAT5 is required for Hodgkin lymphomagenesis. Blood. 2008 May 1; 111(9):4706–4715. [PubMed: 18296629]
- 51. Jundt F, Anagnostopoulos I, Forster R, Mathas S, Stein H, Dorken B. Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood. 2002 May 1; 99(9):3398–3403. [PubMed: 11964309]
- 52. Vockerodt M, Wei W, Nagy E, Prouzova Z, Schrader A, Kube D, et al. Suppression of the LMP2A target gene, EGR-1, protects Hodgkin's lymphoma cells from entry to the EBV lytic cycle. J Pathol. 2013 Aug; 230(4):399–409. [PubMed: 23592216]
- 53. Han H, Xue-Franzen Y, Miao X, Nagy E, Li N, Xu D, et al. Early growth response gene (EGR)-1 regulates leukotriene D4-induced cytokine transcription in Hodgkin lymphoma cells. Prostaglandins Other Lipid Mediat. 2015 Sep; 121(Pt A):122–130. [PubMed: 26115646]
- Laichalk LL, Thorley-Lawson DA. Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol. 2005 Jan; 79(2):1296–1307. [PubMed: 15613356]

Vrzalikova et al.

- 55. Farrell PJ, Rowe DT, Rooney CM, Kouzarides T. Epstein-Barr virus BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to c-fos. EMBO J. 1989 Jan; 8(1):127– 132. [PubMed: 2540954]
- 56. Lieberman PM, Hardwick JM, Sample J, Hayward GS, Hayward SD. The zta transactivator involved in induction of lytic cycle gene expression in Epstein-Barr virus-infected lymphocytes binds to both AP-1 and ZRE sites in target promoter and enhancer regions. J Virol. 1990 Mar; 64(3):1143–1155. [PubMed: 2154599]
- 57. Heather J, Flower K, Isaac S, Sinclair AJ. The Epstein-Barr virus lytic cycle activator Zta interacts with methylated ZRE in the promoter of host target gene egr1. J Gen Virol. 2009 Jun; 90(Pt 6): 1450–1454. [PubMed: 19264650]
- 58. Ye J, Gradoville L, Miller G. Cellular immediate-early gene expression occurs kinetically upstream of Epstein-Barr virus bzlf1 and brlf1 following cross-linking of the B cell antigen receptor in the Akata Burkitt lymphoma cell line. J Virol. 2010 Dec; 84(23):12405–12418. [PubMed: 20861250]
- .a dife and Bells .eb; 89(3):1731-59. Reusch JA, Nawandar DM, Wright KL, Kenney SC, Mertz JE. Cellular differentiation regulator BLIMP1 induces Epstein-Barr virus lytic reactivation in epithelial and B cells by activating transcription from both the R and Z promoters. J Virol. 2015 Feb; 89(3):1731-1743. [PubMed:

Vrzalikova et al.

Page 14

Figure 1. Expression of SPHK1 in normal lymphoid tissues and HRS cells

Accepted manuscritic

A) SPHK1 expression in GC B cells and primary HL. Black arrows show HRS cells. GC=germinal center, MZ=mantle zone B) SPHK1 mRNA and C) protein expression in HL cell lines. T1-4 are GC B cells isolated from 4 donors. Note, SPHK1 is phosphorylated in all HL cell lines. D) S1P levels in HL cell lines and B cells (mean of three different donors) measured by mass spectrometry.

© 2017 Macmillan Publishers Limited. All rights reserved.

Vrzalikova et al.

Figure 2. Expression of S1PR1 and S1PR2 in normal lymphoid tissues and HRS cells

A) Normal tonsil. Upper panels: S1PR1 expression in MZ B cells, but not in GC B cells, confirmed by co-staining for CD20. Lower panels: S1PR2 was expressed in normal GC B cells, confirmed by co-staining with CD20 (white arrow) and BCL6 (Figure S4). B) HRS cells expressed S1PR1 but not S1PR2 (white arrows) confirmed by CD30 co-staining. Endothelial cells and red blood cells were strongly positive for S1PR1 and S1PR2, respectively (black arrows). Further examples of S1PR1 staining in HRS cells indicating the presence of both membrane and cytoplasmic staining are shown in Figure S5.

nuscril

Leukemia. Author manuscript.

Accepted

Vrzalikova et al.

Figure 3. S1P activates Akt in HRS cells mediated by differential expression of S1P receptors A) Immunoblot of KMH2 cells following S1P stimulation and B) following 1h pre-treatment with increasing concentrations of Ozanimod or Siponimod.

anuscile

Leukemia. Author manuscript.

Accepted

© 2017 Macmillan Publishers Limited. All rights reserved.

Vrzalikova et al.

Figure 4. PI3-K signalling up-regulates BATF3 in HRS cells

A) GO analysis of genes regulated by PI3-K signalling in primary HRS cells (GSE1245331 or GSE3913332 data or both; total of 137 up-regulated and 443 down-regulated genes) revealed enrichment of several functions including 'transcription initiation from RNA polymerase II promoter' B) Comparison of genes regulated by PI3-K signalling in primary HRS cells with a comprehensive set of TF revealed the up-regulation of 12 TF and the down-regulation of 47 TF by PI3-K signalling in HRS cells.

Accepted manuscrip

Europe PMC Funders Author Manuscripts

Vrzalikova et al.

Page 18

Europe PMC Funders Author Manuscripts

Figure 5. BATF3 is overexpressed in HRS cells

A) IHC of normal tonsil. BATF3-positive cells were mainly located outside the GC some of which expressed CD20 and CD30 but not BCL6 (arrowed). MZ=mantle zone, IF=interfollicular. B) BATF3 expression in CD30-positive HRS (arrowed) C) BATF3 mRNA and D) protein expression in HL cell lines. T1-T5 are GC B cells isolated from 5 donors.

.*sia.* Author manuscript

Vrzalikova et al.

Figure 6. BATF3 over-expression contributes to the transcriptional programme of HRS cells GO analysis of BATF3 targets in L428 cells. Immunoblotting shows knockdown of BATF3 in L428 cells.

NUSCIP

Leukemia. Author manuscript.

Accepted

Vrzalikova et al.

Page 20

Figure 7. BATF3 regulates S1PR1 expression

Lower levels of S1PR1 protein were observed following BATF3 knockdown in L428 cells (p<0.0001) shown here by IF (A) and confirmed by single cell image analysis (B). BATF3 knockdown also significantly decreased S1PR1 protein in L1236 and KMH2 cells (both p<0.0001; not shown).

Accepted manuscring

Vrzalikova et al.

Figure 8. Proposed model for the regulation of BATF3 by S1P signalling in HRS cells

S1P levels are regulated by SPHK1, which is upregulated in HRS cells and catalyses S1P production, and SGPP1, which is down-regulated in HRS cells and degrades S1P. S1P acts on the S1P receptor, S1PR1 and in the absence of S1PR2 this drives PI3-K/Akt signalling pathway leading to increased BATF3 expression and downstream aberrant transcription. S1PR1 expression is increased by BATF3 leading to a feed-forward loop to sustain S1P signalling and constitutive BATF3 transcription.

Accepted manuscritic

Α

В

D

Figure 2

Figure 3

В

© 2017 Macmillan Publishers Limited. All rights reserved.

☑ % of genes in regulated list with given GO term (Observed) □% of genes in regulated list with given GO term (Expected)

Transcription factors on all arrays

1

© 2017 Macmillan Publishers Limited. All rights reserved.

■% of genes in regulated list with given GO term (Observed)
□% of genes in regulated list with given GO term (Expected)
© 2017 Macmillan Publishers Limited. All rights reserved.

Figure 7

Α

В

© 2017 Macmillan Publishers Limited. All rights reserved.

© 2017 Macmillan Publishers Limited. All rights reserved.