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Abstract30

Brief epochs of beta oscillations have been implicated in sensorimotor control in the basal ganglia31

of task-performing healthy animals. However, which neural processes underlie their generation and32

how they are affected by sensorimotor processing remains unclear. To determine the mechanisms33

underlying transient beta oscillations in the local field potential (LFP), we combined computational34

modeling of the subthalamo-pallidal network for the generation of beta oscillations with realistic35

stimulation patterns derived from single unit data. The single unit data were recorded from36

different basal ganglia subregions in rats performing a cued choice task. In the recordings we37

found distinct firing patterns in the striatum, globus pallidus and subthalamic nucleus related38

to sensory and motor events during the behavioral task. Using these firing patterns to generate39

realistic inputs to our network model lead to transient beta oscillations with the same time course40

as the rat LFP data. In addition, our model can account for further non-intuitive aspects of beta41

modulation, including beta phase resets following sensory cues and correlations with reaction time.42

Overall, our model can explain how the combination of temporally regulated sensory responses43

of the subthalamic nucleus, ramping activity of the subthalamic nucleus, and movement-related44

activity of the globus pallidus, leads to transient beta oscillations during behavior.45

Significance Statement46

Transient beta oscillations emerge in the normal functioning cortico-basal ganglia loop during47

behavior. In this work we employ a unique approach connecting a computational model closely48

with experimental data. In this way we achieve a simulation environment for our model that49

mimics natural input patterns in awake behaving animals. Using this approach we demonstrate50

that a computational model for beta oscillations in Parkinson’s disease can also account for complex51

patterns of transient beta oscillations in healthy animals. Therefore, we propose that transient52

beta oscillations in healthy animals share the same mechanism with pathological beta oscillations53

in Parkinson’s disease. This important result connects functional and pathological roles of beta54

oscillations in the basal ganglia.55

Introduction56

Exaggerated cortico-basal ganglia oscillations in the beta band (15 to 30 Hz) are a common57

feature of Parkinson’s disease (PD; Brown et al., 2001; Hammond et al., 2007; Levy et al., 2002).58

However, beta oscillations are not always pathological. Brief epochs of beta oscillations have been59

implicated in sensorimotor control in the healthy basal ganglia (Berke et al., 2004; Leventhal et60

al., 2012; Courtemanche et al., 2003; Feingold et al., 2015). These studies suggest that temporally61

regulated transient beta oscillations are important for normal functioning of the motor system.62

The origin of beta oscillations in the cortico-basal ganglia system remains unknown. However,63

interactions between subthalamic nucleus (STN) and globus pallidus externa (GPe) can generate64

beta oscillations as has been shown in experimental (Bevan et al., 2002; Tachibana et al., 2011)65

and computational (Terman et al., 2002; Kumar et al., 2011, Pavlides et al., 2015; Wei et al., 2015)66

studies. Anatomically, STN and GPe are densely and reciprocally inter-connected (Shink et al.,67

1996). STN cells excite neurons in GPe (Kitai and Kita, 1987), which in turn receive inhibitory68
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input from GPe (Smith et al., 1990; Parent and Hazrati, 1995). Such recurrent excitation-inhibition69

can generate oscillations (Plenz and Kitai, 1999; Brunel, 2000), which may then propagate to other70

regions in the cortico-basal ganglia loop.71

Beta oscillations have been proposed to play a functional role in maintaining the status quo in72

the motor system (Engel and Fries, 2010; Gillbertson et al., 2005). This idea has been supported73

by increased cortical beta-band activity during maintenance of a static position (Baker et al.,74

1997), active suppression of movement initiation (Swann et al., 2009), and post-movement hold75

periods (Pfurtscheller et al., 1996). Accordingly, beta power decreases in the cortico-basal ganglia76

loop during movement preparation and execution (Sochurkova and Rektor, 2003; Pfurtscheller et77

al., 2003; Alegre et al., 2005; Kuhn et al., 2004). However, recent studies have indicated a more78

complex picture in which beta oscillations affect behavior through motor adaptation (Tan et al.,79

2014) and modulation of task performance (Feingold et al., 2015).80

Supporting a more complex picture of beta oscillations, we provided evidence that basal ganglia81

beta oscillations are involved in sensorimotor processing and the utilization of cues for behavior82

(Leventhal et al., 2012). In particular, we found that beta power increases following sensory cues83

and movement initiation depended on how fast the animals reacted to a sensory cue. For short84

reaction times, LFP beta emerged after movement initiation, whereas for long reaction times,85

two separate beta epochs occurred, one before and one after movement initiation. In addition86

to modulation of beta power, we also observed that beta phases were affected by task events87

differently. Sensory cues, but not movement initiation, lead to a short-latency phase reset in the88

beta band (Leventhal et al., 2012).89

These complex oscillatory dynamics present both a challenge, and an opportunity, for under-90

standing underlying cortico-basal ganglia circuit mechanisms. Currently, it is unknown whether91

pathological beta oscillations in Parkinson’s disease share the same mechanisms with transient92

beta oscillations in healthy animals. If this is the case, computational models for beta oscillations93

should be able to account for the complex beta dynamics in both healthy and Parkinsonian animals.94

Recent network models of beta oscillations in Parkinson’s disease have emphasized that besides95

structural changes (e.g. connection strengths), changes in spiking activity of external inputs can96

promote beta oscillations (Kumar et al., 2011), which might drive transient beta oscillations. Here97

we exploit this property by directly using activity patterns recorded in healthy rats during task98

performance (Schmidt et al., 2013; Mallet et al., 2016) as input to our computational model to99

study the resulting impact on the beta dynamics. Employing this novel approach we find that our100

model can account for the complex beta dynamics in the healthy rat LFP. Our results support101

overlapping mechanisms for pathological and healthy beta oscillations and provide the basis for102

studying the functional role of beta oscillations in network models.103

Materials and methods104

Network model. The basic model structure and the parameter settings are the same as in Kumar105

et al. (2011). Briefly, the model includes 1000 excitatory STN neurons, and 2000 inhibitory GPe106

neurons. Neurons were implemented as leaky integrate-and-fire neurons. Synaptic input was107

modeled as transient exponential conductance changes. All model neurons receive uncorrelated108

Poisson spike trains as inputs so as to achieve previously reported baseline activities for STN (15109

Hz) and for GPe (45 Hz; Bergman et al., 1994; Raz et al., 2000). All network simulations were110
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written in python using pyNN as an interface to the simulation environment NEST (Gewaltig111

and Diesmann, 2007). Analysis of the simulation results and the LFP and single unit data were112

performed using MATLAB R2013b (version 8.2.0.701; The MathWorks Inc., Natick, MA).113

For the model variant without recurrent connections in STN (Figure 8), we used slightly different114

parameters for the connection probabilities, synaptic weights and transmission delays (Table 1).115

Furthermore, the background Poisson input to the model neurons was adjusted so that the neurons116

had a broader distribution of baseline firing rates that closer matched the firing rate distribution117

in the rat data (Schmidt et al., 2013; Mallet et al., 2016).118

Table 1: Comparison of model parameters in Kumar et al. (2011) and the modified model without recurrent STN
connections.

  

CP
STN-STN

 = 0.02 CP
STN-STN

 = 0

CP
STN-GPe

 = 0.02 CP
STN-GPe

 = 0.022

CP
GPe-STN

 = 0.02 CP
GPe-STN

 = 0.035

CP
GPe-GPe

 = 0.02 Cp
GPe-GPe

 = 0.02

J
STN-STN

 = 1.2 J
STN-STN

 = -

J
STN-GPe

 = 1.2 J
STN-GPe

 = 1.2

J
GPe-STN

 = -1.135 J
GPe-STN

 = -0.8

J
GPe-GPe

 = -0.725 J
GPe-GPe

 = -0.725

d
STN-STN

 = 2 d
STN-STN

 = -

d
STN-GPe

 = 5 d
STN-GPe

 = 6

d
GPe-STN

 = 5 d
GPe-STN

 =6

d
GPe-GPe

 = 2 d
GPe-GPe

 = 3

Kumar et al., 2011 Modified model

CP: Connection Probability, J: Synaptic weight, d: Delay (in ms) 

Experimental design and statistical analysis. We combined previously recorded data sets of119

tetrode recordings in different basal ganglia subregions of rats performing a stop-signal task (for120

details see Leventhal et al., 2012; Schmidt et al., 2013; Mallet et al., 2016). To exclude potential121

multi-unit activity from our recordings, we only included units with less than 1% of inter spike122

intervals shorter than 1 ms in our data set. The combined data set contained 226 STN units123

from overall 40 recording sessions in 5 different rats, 149 putative prototypical GPe units from124

41 recording sessions in 4 different rats, and 326 putative MSNs from 97 recording sessions in 9125

different rats. Between two recording sessions tetrodes were typically moved by at least 80µm, and126

we therefore considered units recorded in different sessions as different units. Animals performed127

a stop-signal task, but here we only analyzed the subset of correct Go trials in which the animal128

moved contralateral to the recording site.129

To identify STN neurons responding to the Go cue instructing contralateral movement (Figures130

1C, D), we used a shuffle test to determine whether neural activity significantly increased within131
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150 ms after the Go cue. The time of each spike within -500 ms to +200 ms relative to the Go cue132

was changed to a random spike time within the same time window. Then we compared the number133

of actual spikes with the number of shuffled spikes in small time windows after the Go cue (15134

non-overlapping 10 ms windows from 0 to 150 ms after the Go cue). We repeated this procedure135

10000 times and used the fraction of shuffles in which the number of shuffled spikes exceeded the136

number of actual spikes as the p-value to estimate statistical significance. STN neurons showing137

a p-value less than 0.05/15 for at least one bin after the time of the Go cue were considered138

sensory responsive. We performed the same shuffling method on GPe neurons to select movement139

responsive GPe neurons (Figure 1F), using all spikes within -1s to +1s relative to movement onset140

to detect firing rate changes for 50 ms time windows from 0 to 250 ms after movement onset (i.e.141

5 non-overlapping time bins). GPe neurons showing a p-value less than 0.05/5 for at least one bin142

after movement onset were considered as movement responsive.143

To identify movement-responsive MSNs in our single unit data, average firing rates of MSNs144

were sorted based on their peak time within the interval from one second before to one second145

after movement initiation. MSNs with a peak firing rate between 150 ms before to 150 ms after146

movement onset were considered as movement-responsive MSNs (n = 100; see Figure 1E).147

To determine whether a recorded unit showed a ramping firing pattern, we computed the average148

firing rates of each unit from one subregion over trials with a 50 ms sliding time window moving149

in steps of 10 ms from 1 s before the time of Go cue to the time of Go cue. Each resulting150

average firing rate was then normalized to values between 0 and 1 and then mean-subtracted151

before applying principal component analysis. First, we computed the corresponding covariance152

matrix of all normalized zero-mean firing rates. and then performed eigendecomposition on the153

covariance matrix using the eig function of MATLAB. The projection p of each normalized zero-154

mean average firing rate r to the first eigenvector (corresponding to the maximum eigenvalue) was155

then computed as the normalized dot product: pi = 〈ri, v1〉/λ1, where i is the unit index and v1 the156

eigenvector with the largest eigenvalue λ1. This yielded one projection value pi for each recorded157

unit. As the first eigenvector had a positive ramp over time, positive and negative projection values158

corresponded to positive and negative activity ramps of a recorded unit over time, respectively.159

The standard deviation of the projection distribution from a random covariance matrix is 1/
√
n160

(Anderson, 2003), with n being the number of units. We considered neurons with a projection161

larger than 2/
√
n or smaller than −2/

√
n as positive and negative ramp neurons, respectively162

(Figures 2A, B). This analysis method was applied to determine positive and negative ramps in163

GPe and STN.164

Modeling of sensory responses. To simulate sensory responses of STN neurons to the Go cue165

(Figures 1C, D), we used inhomogeneous Poisson generators, each of which targeted one STN166

neuron in the model. The firing rate modulation of each inhomogeneous Poisson generator was a167

half sine wave with a duration of 20 ms and maximum amplitude of 180 Hz. The latency of the168

sensory stimulation for each STN neuron in the model was considered as the time interval between169

the peak of the half sine wave and the time of the Go cue, which was taken randomly from the170

latency distribution of the sensory STN neurons in our experimental data (Figure 1D). Since in171

our single unit data 30% of the STN neurons responded to the Go cue, for each simulation we172

targeted 30% of randomly chosen STN neurons (as “sensory” STN neurons) in the network model.173

Thereby, sensory responses in STN neurons could propagate in our network model to GPe, similar174

to some short latency responses we previously reported in GPe (Schmidt et al.,2013).175
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Modeling of motor responses. Firing rates of the movement-responsive MSNs (Figure 1E) were176

summed up and used as the firing rate pattern of an inhomogeneous Poisson generator representing177

striato-pallidal movement-related inhibition in the network model. Since 38% of the GPe neurons178

in our experimental data showed movement-related inhibition (Figure 1F), for each simulation we179

targeted a randomly chosen 38% of the GPe neurons (as “motor” GPe neurons) in the network180

model.181

Modeling of firing rate ramps. To simulate the positive and negative ramps in the activity of182

the STN neurons observed before the Go cue (Figures 2A, B), for each simulation, we divided183

STN neurons in the network model into two non-overlapping subpopulations. The fraction of STN184

neurons in each subpopulation in the network model was similar to the fraction we obtained from185

our experimental data (i.e. 34% of neurons exhibited a positive ramp, 43% a negative ramp). We186

used an inhomogeneous Poisson generator with a positive ramp firing rate pattern as excitatory187

input to the positive ramp STN subpopulation in the model. The positive ramp in the firing rate188

of the inhomogeneous Poisson generator started 500 ms before the Go cue at 0 Hz and reached 250189

Hz at the time of the Go cue and stayed constant until the movement onset (Figure 3B). Such a190

stimulation lead to a 4 Hz increase in the activity of the positive ramp STN subpopulation in the191

network model during the 500 ms time interval preceding the Go cue, similar to what we observed192

in our experimental data (Figure 2A).193

Similarly, to simulate the negative ramp in the activity of STN neurons, we used another194

inhomogeneous Poisson generator with a positive ramp firing rate pattern as inhibitory input to195

the negative ramp STN model neuron subpopulation. The positive ramp in the firing rate of the196

inhibitory inhomogeneous Poisson generator started 500 ms before the time of Go cue at 0 Hz and197

reached 350 Hz at the time of the Go cue and stayed constant until the movement onset. Such a198

stimulation pattern lead to a 1 Hz decrease in the activity of the negative ramp STN neurons in199

the network model during 500 ms time interval preceding the Go cue, similar to what we observed200

in our experimental data (Figure 2B).201

Time-frequency analysis. The power spectrogram was computed by convolving 10 seconds of the202

GPe population firing rate (from -5 to +5 seconds relative to the time of movement onset) in the203

model with a standard Morlet wavelet (σ = 0.849/f) of integer frequencies (f = 1 to 500 Hz),204

and taking the logarithm of the squared magnitude of the resulting time series. To generate Figure205

3C, bottom, we computed the mean spectrogram across 400 simulations of the model. The same206

method was used for GPe LFP data to generate Figure 3C, top. For each time point in the207

spectrogram, we summed the power in the beta range (15 to 30 Hz) and divided it by the summed208

power across all frequencies (1 to 500 Hz) to obtain continuous relative beta power, shown in209

Figures 4A, 4B, 4E, 4F, and 6B.210

Mean resultant length. The GPe population firing rate in the network model was convolved with211

the standard Morlet wavelet of each integer frequency in the beta band (15 to 30 Hz). For each212

frequency, the Hilbert transform of the filtered signal was computed to obtain a phase over time.213

The phase spread for each time point was then calculated by computing the length of the mean214

resultant vector over all trials using MRL(t) = 1
n

∑

n
eiθ(n,t), where θ(n, t) is the phase of the nth215

trial at time t (n = 400 for the model). This results in a continuous measure of phase spread for216

each frequency in the beta range. The mean resultant lengths shown in Figure 4 were computed217

by taking the average across all beta frequencies.218
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Results219

To determine whether a computational model for pathological beta oscillations in the STN-220

GPe network (Kumar et al., 2011) can account for complex beta dynamics during behavior in221

healthy animals, we devised realistic stimulation patterns for the network model based on single222

unit recordings in rats performing a cued choice task (Schmidt et al., 2013; Mallet et al., 2016). At223

the beginning of each trial, the rat entered one of three center nose ports in an operant chamber224

(“Nose-in” event; Figures 1A, B). The rat was trained to then hold its position for a variable time225

interval (“Holding time”; 500-1200 ms) until a Go cue instructed the rat to quickly move its head226

to the adjacent left or right side port (“Nose-out” event; Figures 1A, B). Correct performance of227

the task was rewarded with a sugar pellet. While the animals performed the task we recorded228

in the striatum, GPe and STN to determine activity patterns of single units during the time of229

the Go cue and during movement initiation. Then we used these activity patterns to construct230

realistic input patterns for our network model. The network model we use here is a large-scale231

spiking network model consisting STN and GPe populations with conductance based synapses232

(Kumar et al., 2011; see Methods). Stimulating the network model via the realistic stimulation233

patterns allowed us to compare the resulting oscillatory dynamics in the model with properties of234

oscillations in the rat LFPs.235

Brief, short-latency sensory responses in STN. 30% (70/226) of STN units responded to the Go236

cue with an increase in firing rate (Figure 1C; shuffle test, p<0.05/15; see Methods). In line with237

our previous reports on a subset of the same data (Schmidt et al., 2013), this included units with238

a very short latency (around 10-30 ms), and responses of individual units were typically very brief239

(see Figure 1C, top panel). A potential source of such short latency sensory responses of the STN240

units is pedunculopontine tegmental nucleus (PPN; Pan and Hyland, 2005). In addition to the241

short latency responses of the STN units, some STN units responded with a longer latency (around242

40-100 ms), so that the overall distribution of peak response latencies had a bimodal shape (Figure243

1D). To mimic this STN response pattern to salient sensory stimuli, individual STN units received244

brief excitatory pulses with a fixed latency sampled from the latency distribution. These pulses245

were then used as input to 30% randomly chosen STN model neurons (“sensory” STN neurons)246

to match the fraction of responding STN units in our single unit data.247

Movement-related activity in striatum and GPe. 30% (100/320) of putative medium spiny neu-248

rons (MSNs) in the striatum increased their activity during contralateral movements (Figure 1E;249

see Methods; also see Schmidt et al., 2013). We focused here on contralateral movements as most250

neurons typically responded more during contralateral than ipsilateral movements (Gage et al.,251

2010; Schmidt et al., 2013). In GPe, 38% (56/149) of the units decreased their activity during252

contralateral movements (Figure 1F; shuffle test, p<0.05/5; see Methods), possibly reflecting input253

from indirect pathway MSNs. Therefore, we assumed in the network model that striato-pallidal254

inhibition drives the GPe firing rate decreases during movement. We implemented this by gener-255

ating inhomogeneous Poisson spike trains with a rate modulation following the MSN firing pattern256

during movement (Figure 1E). These spike trains were then used as inhibitory inputs to 38% of257

the network model GPe neurons (“motor” GPe neurons) to match the fraction of GPe units with258

movement-related firing rate decreases in the single unit data. Note that we restricted our analysis259

of GPe units to putative prototypical neurons (Mallet et al., 2016) because they receive input from260

MSNs and project to STN, while arkypallidal GPe neurons probably receive different inputs and261

do not project to STN (Mallet et al., 2012; Dodson et al., 2015).262
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Ramping activity in STN and GPe while rats wait for the Go cue. In addition to single unit263

responses that could be classified as sensory or motor, in STN and GPe we found many units264

which exhibited a firing pattern that resembled a “ramp”, a continuous change in firing rate.265

A ramping pattern was present in the activity of 77% (176/226) of the STN units with either266

significantly increasing (positive ramp) or decreasing (negative ramp) firing rate while the animal267

was waiting for the Go cue (Figures 2A, B). Among the 176 ramping STN units, 44% (78/176)268

showed positive ramps (Figure 2A), whereas 55% (98/176) showed negative ramps (Figure 2B).269

However, the mean firing rate increase for the positive ramp units was four times as high as the270

mean firing rate decrease for the negative ramp units (4 Hz increase vs. 1 Hz decrease; inset in271

Figure 2B, bottom). The positive ramp was also observed in the average firing rate of the whole272

STN population starting 500 ms before the Go cue (data not shown). Functionally, these ramps273

may correspond to a brake signal, preventing premature movement initiation (Frank, 2006).274

We found a similar pattern in the GPe with 71% (106/149) of the units exhibiting a significant275

ramping activity before the Go cue (Figures 2C, D). Among these, 47% (50/106) showed positive276

ramps (Figure 2C) and 52% showed negative ramps (Figure 2D). Similar to the STN units, on277

average, the amplitude of the positive ramp in GPe was four times as high as the amplitude of278

the negative ramp, resulting in a net positive ramp in the population activity (data not shown).279

One property of the positive ramp STN and GPe units was that in long reaction time trials their280

activity remained elevated after the Go cue (Figures 2A, C, bottom panels). This property played281

a key role for the beta dynamics in the model below.282

Based on these ramping patterns in STN and GPe, we designed inputs to the model STN283

neurons that lead to similar activity ramps (see Methods). Due to the excitatory drive from STN284

to GPe, in the model the ramps in STN activity resulted in corresponding ramps in GPe.285

Sensorimotor model inputs modulate time course of beta oscillations. As a previous modeling286

study demonstrated that excitatory input to STN or inhibitory input to GPe can induce transient287

beta oscillations (Kumar et al., 2011), we hypothesized that the sequence of ramp, Go cue and288

movement-related activity patterns (Figures 3A, B) accounts for the complex beta dynamics in289

the LFP (Leventhal et al., 2012). First, we reproduced the time course of beta power modulation290

during movement initiation (Leventhal et al., 2012) using an extended data set of GPe recordings291

(Schmidt et al., 2013; Mallet et al., 2016). In the rat LFPs beta power started to increase before292

the time of movement initiation and then showed a pronounced peak just after movement onset293

(Figure 3C, top). The time course of beta power in the network model exposed to our single-unit294

stimulation patterns (Figure 3B) matched the experimentally observed results (Figure 3C, bottom),295

including the pre-movement beta power increase, the pronounced beta peak during movement, and296

the second beta peak related to the movement out of the side port (see Methods). The network297

model beta time course was in this case determined by the STN ramping activity, combined298

with the sensory responses of the STN neurons and the striato-pallidal motor inputs (Figure 3B).299

This is an important result because it connects single unit activity during task performance with300

oscillatory network dynamics.301

Here we compared the experimental LFP data with the model population firing rate (Figure302

3C). However, the origin of the LFP and its relation to spiking activity are not well understood in303

the basal ganglia. It seems that the LFP mostly reflects synchronized postsynaptic currents (Nie-304

dermeyer and Lopez da Silva, 1998; Nunez and Srinivasan, 2005; Jensen et al., 2005; McCarthy et305

al., 2011). However, we found that the time course of beta oscillations was very similar, irrespec-306
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tive of whether we used the population firing rate or the summation of inhibitory or excitatory307

postsynaptic currents to represent the experimental LFP data (data not shown). Therefore, to stay308

consistent with previous models (e.g. Kumar et al., 2011; Pavlides et al., 2015; Nevado-Holgado309

et al., 2014) we continue to use the population firing rate in the model to determine the presence310

of beta oscillations.311

Sensory responses in STN lead to a beta phase reset. In addition to the described changes in312

beta power, the phases of beta oscillations can be modulated by specific events in the behavioral313

task. Sensory cues (like the auditory Go cue) that did not lead to a distinctive increase in beta314

power were nevertheless followed by a short-latency phase reset in the LFP (Leventhal et al.,315

2012). By contrast, beta power increases during movement were not accompanied by a phase316

reset in the beta band (Leventhal et al., 2012). Here, we confirm this result for GPe recording317

sites using an extended data set (Figures 4A, E; Schmidt et al., 2013; Mallet et al., 2016). To318

determine which properties of the neural signal lead to a phase reset or to a power increase in the319

beta band, we calculated grand averages of raw LFP traces (Figure 4C). We found that briefly320

after the Go cue a single beta cycle was visible. This short oscillation was rather weak and could321

only be visible when looking at the mean of the LFP data over many trials (Figure 4C). This322

brief beta epoch was associated with beta phase reset in the LFP data, following the Go cue323

(Figure 4A). Interestingly, providing brief stimulation to the “sensory” STN neurons in the model324

leads to a brief low-amplitude beta oscillation, which also only became visible when inspecting325

the mean population firing rate over many stimulations (Figure 4D). Similar to the experimental326

data, “sensory” stimulation of the model STN leads to beta phase reset in the ongoing activity327

of the network model (Figure 4B). Therefore, we conclude that brief excitatory inputs to STN328

can induce weak and brief, phase-locked beta oscillations in the STN-GPe network, mimicking the329

experimentally observed results.330

Beta elevation around the time of movement onset was not accompanied by a phase reset in both331

the rat LFP data and in the model (Figures 4E, F). It might seem counterintuitive that a strong332

stimulation leading to a clear increase in beta power did not reset the phase, whereas a weaker333

stimulation did. However, STN neuronal responses to the Go cue are brief, compared to the longer334

movement-related increases in the activity of MSNs (Figures 1C-E). Therefore, we hypothesized335

that the duration of neural responses to sensory and motor events might be the key difference. To336

test this, we systematically varied the duration of the inputs to the model “sensory” STN neurons337

and “motor” GPe neurons (note that the inputs are inhomogeneous Poisson spike trains with firing338

rate patterns of a half cosine wave; see Methods). We found that for brief inputs (leading to brief339

changes in the neuronal activity) there was a phase reset in the ongoing activity of the network340

model (Figure 5). Longer stimulations of “motor” GPe neurons elevated the beta power without341

phase reset (Figures 5C, D). For stimulation durations longer than a single beta period in the model342

(i.e. about 50 ms), we only observed beta power elevation without phase reset (Figures 5C, D). In343

fact, the maximal phase reset in the network model occurred when the stimulation duration was344

25 ms, equaling half the beta cycle (Figures 5B, D). For the short stimulation duration the time to345

get to the maximum of the half cosine firing rate pattern is short (i.e. the slope is steeper). This346

effectively leads to no trial-to-trial variability because all realizations of the Poisson process with347

such a brief firing rate pattern are very similar (with respect to the spike times). This similarity348

in the input then leads to a similar response in the network model and therefore a phase reset349

across trials. In contrast, for longer stimulation the time to get to the maximum of the half cosine350

firing rate pattern is longer (with shallower slope). This leads to more trial-to-trial variability351

with respect to the spike times in the realization of the Poisson process. Correspondingly, this352
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translates into trial-to-trial variability in the response of the network model to the long stimulation353

and therefore a random phase across trials.354

Longer stimulations of the “sensory” STN neurons did not elevate the beta power in the network355

model (Figure 5A). This is because “sensory” STN units made up a smaller fraction (30%) of356

the STN population in our model compared to 38% “motor” GPe units (see above). The long357

stimulation of a small fraction of the STN neurons was not sufficient to bring the network model358

into the oscillatory state. In general, for a certain stimulation strength, the fraction of stimulated359

neurons in the network model is a key parameter determining the amount of evoked beta power360

(Kumar et al., 2011).361

Disentangling the complex relationship between reaction time and beta dynamics. The time362

course of beta oscillations depends on how fast the animal initiates movement in response to the363

Go cue (Leventhal et al., 2012). For short reaction times, the mean LFP beta power shows a single364

peak after movement initiation. For long reaction times, the mean LFP beta power shows two365

peaks, with the first peak before and the second peak after movement initiation (see highlighted366

300 ms epochs preceding and following Nose Out in Figure 6A, right; see also Leventhal et al.,367

2012). The bimodal shape of the mean beta power for long reaction time trials is also visible when368

aligned to the Go cue (Figure 6A, left). A straightforward idea would be that the first peak of the369

mean beta power for long reaction time trials is mostly driven by the Go cue or, alternatively, by370

the upcoming movement. However, if the beta peak was driven by the Go cue, we would expect371

a higher peak for the data aligned to the Go cue than for the data aligned to movement onset.372

Accordingly, if the beta peak was related to the movement, we would instead expect a higher373

peak for the data aligned to the movement onset. In contrast, despite variability in reaction time,374

this peak had a similar shape and amplitude for both alignment to the Go cue and to movement375

onset. Therefore, this beta peak does not seem to be simply driven by a sensory or motor event.376

With the help of our network model, we disentangle the mechanisms underlying these reaction377

time-dependent complex features of beta.378

Using our stimulation patterns based on single unit recordings, we studied how different reaction379

times affect the time course of beta power. We found a strikingly similar effect of reaction time380

on the time course of beta power in the network model (Figure 6B). For long reaction time trials381

the model exhibited two separate peaks in the mean beta power with the same time course as the382

experimental LFP data (Figure 6B). Furthermore, the peak of the mean beta power in the model383

after movement onset for short reaction time trials had a higher amplitude than in long reaction384

time trials, similar to the experimental LFP data (see right panels in Figures 6A and 6B). The385

ability of the model to capture the fine details of the complex beta power modulation became386

visible even at the single-trial level (Figures 6C, D). As in the experimental data, changes in mean387

power modulation were reflected as a change in the probability of a transient beta oscillation,388

rather than as only a gradual increase in the oscillation amplitude.389

To understand the mechanisms underlying the complex relationship between beta and reaction390

times, we can now use our network model to determine the contribution of each stimulation391

component. Before the Go cue, ramping activity of the STN neurons in the model causes a392

gradual increase in beta power (mostly because of an increase in the probability of a beta event),393

starting almost 600 ms before the Go cue (Figures 6B, D and Figure 7). At the time of the Go cue394

the sensory responses of the STN neurons generate a weak and brief beta oscillation in the model395

(green traces in Figure 7). In short reaction time trials this brief beta oscillation overlaps with beta396

10



oscillations driven by “ramp” and “motor” inputs (as sensory and motor events are temporally397

close). This overlap results in an interaction of ongoing beta (driven by “ramp” input) with beta398

driven by “motor” input, leading to high beta power around the time of movement onset (Figures399

6B and 7, top). For long reaction time trials, after the Go cue, but before movement initiation, the400

“sensory” and “ramp” inputs determine the beta dynamics in the model. The interaction between401

the “sensory” and “ramp” inputs leads to the first, high-amplitude beta peak for long reaction402

time trials (Figures 6B and 7, bottom). As Go cue and Nose Out events are temporally distant403

for long trials, this high-amplitude beta power starts to decay before the time of movement onset.404

This is followed by another beta epoch due to “motor” input which leads to the second peak of405

beta power, after the time of movement onset, for long reaction time trials (Figures 6B, D and406

7). The amplitude of this second peak is smaller, compared to the peak after movement onset for407

short reaction time trials (Figure 6B, right), because it lacks the interaction with STN excitation408

due to the Go cue (Figure 7). Functionally, the first beta peak in long reaction time trials may be409

linked to the prolongation of movement initiation in high beta states (Levy et al., 2002; Brown et410

al., 2001; Chen et al., 2007; Pogosyan et al., 2009). Thereby our model connects “ramp” activity411

in STN with the generation of beta oscillations and potential functional roles as a “brake” (Frank,412

2006).413

Our results are robust to the STN-STN recurrent connectivity in the network model. In the414

network model we used, the STN neurons received excitatory synaptic inputs from other STN415

neurons with a connection probability of 2% (Kumar et al., 2011). However, several experimental416

studies indicate that the STN-STN recurrent connectivity is very rare or do not exist (Hamond417

and Yelnik, 1983; Sato et al., 2000; Parent and Parent 2007; Koshimizu et al., 2013). Therefore,418

we modified the network model parameters to test if the model without STN-STN connections419

is also able to capture the behaviorally relevant dynamics of the LFP beta oscillations. Indeed,420

with slight modifications of parameters (see Methods), all key results, including the time course of421

beta around the time of movement preparation and execution (Figure 8A), the beta phase reset422

(Figures 8B, C), and the complex relationship between beta and reaction time (Figures 8D, E),423

were reproduced. This demonstrates that our model account of transient beta oscillations does424

not depend on STN-STN recurrent connectivity.425

In summary, our results show that the combination of 1) sensory responses of STN neurons,426

2) movement-related inhibition of GPe neurons, and 3) ramping activity in STN, account for the427

complex properties of beta power modulation over time, beta phase reset and correlations with428

reaction time of rat electrophysiological recordings in the basal ganglia. Thereby, the model allows429

us to make clear predictions about the underlying mechanisms and provides the basis for studying430

functional consequences on neural processing and behavior.431

Discussion432

Oscillations in the LFP often reflect sensory, cognitive and motor aspects of neural processing,433

but we lack understanding of how and why network oscillations emerge. Furthermore, we face434

a gap between firing patterns of single neurons and network dynamics. Here we addressed this435

by combining experimental data with computational modeling to study how firing patterns in436

single units of task-performing healthy rats affect basal ganglia network dynamics. Although our437

computational model was originally used to describe beta oscillations in Parkinson’s disease, this438

model also accounted for properties of beta in healthy animals. Thereby, we characterize potential439

11



neuronal mechanisms underlying oscillations, relate healthy to pathological beta oscillations, and440

provide avenues for studying functional roles of beta in behavior.441

Neuronal mechanisms of beta oscillations442

Computational and experimental studies have implicated the STN-GPe network in beta oscil-443

lations in Parkinson’s disease (Brown et al., 2001; Magill et al., 2001; Terman et al., 2002; Bevan444

et al., 2002; Rubin and Terman, 2004; Brown and Williams, 2005; Mallet et al., 2008a; Tachibana445

et al., 2011; Stein and Bar-Gad, 2013; Nevado-Holgado et al., 2014; Pavlides et al., 2015; Wei446

at al., 2015). Moreover, cortico-subthalamic excitation as well as striato-pallidal inhibition can447

generate beta oscillations in network models of the subthalamo-pallidal loop (Gillis et al., 2002;448

Kumar et al., 2011; Nevado-Holgado et al., 2014; Pavlides et al., 2015; Wei at al., 2015; Ahn at449

al., 2016). Consistently, we show that temporally regulated subthalamic excitation and pallidal450

inhibition reproduces the dynamics of transient beta oscillations observed in the healthy basal451

ganglia during behavior. Therefore, the same network that is responsible for beta oscillations in452

Parkinson’s disease may also be involved in the generation of healthy beta.453

As an alternative to the STN-GPe network, striatal MSNs (McCarthy et al., 2011), feedback454

projections from GPe back to striatum (Corbit et al., 2016), or spread of cortical beta to STN455

may be involved in basal ganglia beta oscillations. However, our model supports the role of the456

STN-GPe network due to the close correspondence between single unit activity and the resulting457

complex time course of beta oscillations. Whether other models for the generation of beta would458

be able to account for the complex time course and behavioral correlates of beta remains to be459

shown. While increased striatal spiking increases beta oscillations in several models (McCarthy460

et al., 2011; Kumar et al., 2011; Corbit et al., 2016), our model emphasizes the role of excitatory461

inputs to STN for the transient dynamics of beta oscillations. Overall, as beta oscillations are a462

heterogeneous phenomenon (Szurhaj et al., 2003; Kilavik et al., 2012; Feingold et al., 2015), cortical463

and subcortical circuit may contain several mechanisms for the generation of beta, e.g. to permit464

long range communication (Fries, 2005). Therefore, these models are not necessarily exclusive and465

a key future challenge will be to disentangle the different circuits and their interaction. Nonetheless466

we have shown that the STN-GPe network is sufficient to explain many features of beta oscillations467

in awake behaving animals.468

Direct and indirect pathway MSNs469

Activity of direct pathway MSNs (striato-nigral) promote actions, while indirect pathway MSNs470

(striato-pallidal) suppress actions (Albin et al., 1989; Alexander and Crutcher, 1990; Kravitz et al.,471

2010; Freeze et al., 2013; Roseberry et al., 2016). Here we considered movement-related increases472

in MSN activity (Figure 1E) as inhibitory input to the model GPe (Figures 3A, B), without473

knowing whether the recorded MSNs are part of the direct or indirect pathway. This assumption474

is supported by evidence that direct and indirect pathway MSNs are concomitantly active during475

movements (Cui et al., 2013; Isomura et al., 2013). Nevertheless, there might be important476

activity differences between direct and indirect pathway neurons coordinating behavior. Whether477

co-activation of indirect pathway MSNs during movement reflects the suppression of alternative478

actions (Hikosaka et al., 2006; Redgrave et al., 2010) or activates specific neural assemblies in479

motor cortex (Oldenburg and Sabatini, 2015) remains unclear. Furthermore, almost 60% of direct480
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pathway MSNs, possess collateral terminal fields in GPe (Cazorla et al., 2014). Therefore, during481

movements GPe likely receives increased inhibitory input from striatal MSNs as incorporated in482

the model.483

STN as a brake484

We found ramps in the activity of STN units while the animal was waiting for the Go cue.485

During this time the animal has to prevent premature movements to receive the food reward.486

Building on “hold-your-horses” models of STN (Frank, 2006), these ramps might prevent or delay487

movements. Correspondingly, in our experimental data the ramps reached a plateau after the488

Go cue, which was linked to the reaction time (i.e. the plateau persisted longer in trials with a489

long reaction time; Figure 2A, bottom). Therefore, these ramps might modulate the readiness for490

movement initiation. However, we also observed (data not shown) that the population activity of491

the STN ramps did typically last until movement initiation, indicating that the offset of this STN492

ramp does not provide a motor command itself. Instead, high STN activity might ensure that only493

coordinated movement commands (potentially signaled by striatal output), but not premature494

movement impulses, lead to motor output.495

Conceptually, our model provides an important link between putative “hold-your-horses” ramp-496

ing activity in STN, beta oscillations and reaction times. The ramping activity increased spiking497

activity of the STN neurons and, consequently, lead to also more beta oscillations in the model498

(Kumar et al., 2011). This was key in accounting for the bimodal shape of the mean beta power499

for long reaction time trials (Figure 6B).500

The STN ramps might be due to cortical drive. For example, in the motor cortex of mon-501

keys ramping activity has been observed while the animals anticipated sensory cues and needed502

to prevent premature movements (Confais et al., 2012). Furthermore, other cortical areas includ-503

ing right inferior frontal cortex and the pre-supplemental motor area project to STN and have504

been implicated in motor suppression (Wessel and Aron, 2017). In general, cortico-subthalamic505

excitation has previously been proposed to be important for the generation of beta oscillations506

(Tachibana et al., 2011; Pavlides et al., 2015). Importantly, the STN ramps during the hold period507

increased the probability of transient beta in our model. This fits well with anti-kinetic aspects of508

beta (Brown and Williams, 2005), and with STN activity correlating with slowness of movement509

observed during the progression of Parkinson’s disease (Bergman et al., 1994; Remple et al., 2011).510

511

Behavioral relevance and predictions512

Beta oscillations seem to comprise a heterogeneous phenomenon with potentially different func-513

tions and mechanisms depending on the brain region (Szurhaj et al., 2003; Kilavik et al., 2011;514

Feingold et al., 2015). Here we extend this view by proposing that transient, non-pathological515

basal ganglia beta can be driven by two distinct inputs. Firstly, beta oscillations were driven516

by excitatory inputs to STN, including the ramping activity that might be linked to preventing517

premature movements. Secondly, beta oscillations were also driven by striato-pallidal inhibition518

during movement. Therefore, our model provides an explanation for why beta in some cases can519

be “antikinetic” (Brown and Williams, 2005), but in other cases can also appear during movement520
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(Leventhal et al., 2012). Whether and how these two modes of beta make different functional521

contributions, e.g. by differential communication with other brain regions (Fries, 2005), is an open522

question.523

Based on our model we make several experimentally testable predictions. Firstly, the two modes524

of beta generation, via GPe inhibition and STN excitation, might have different signatures in LFP525

recordings. If the beta is generated by GPe inhibition, the oscillation begins with a decrease in526

GPe activity. If beta is generated by STN excitation, the beta oscillation begins with an increase in527

STN. Although we do not know yet how spiking in the STN and GPe relates to patterns in the LFP,528

these two modes could translate into different onset phases of beta. Therefore, we presume that529

transient beta oscillations could be classified based on their onset phase, and that this is indicative530

of whether the oscillation was driven by input to GPe or STN. Despite practical challenges, such531

as detecting the exact onset phases of beta in noisy LFPs, this might provide valuable insights532

into whether the two modes of beta generation have distinct behavioral correlates.533

Secondly, our model makes specific predictions about the relation between activity of MSNs534

projecting to GPe and the timing of beta oscillations (McCarthy et al., 2011). In recordings of535

identified direct and indirect pathway MSNs, our model predicts that the activity of the D2 MSNs536

predicts the timing of beta more accurately than the activity of the D1 MSNs. One complicating537

factor is that this distinction does not apply to beta driven by cortical excitation of STN.538

Another model prediction arises from our observation that the duration of excitatory inputs539

to STN determines whether a phase reset occurs in the LFP or not. Sensory neuronal responses540

(Figures 1C, D) are typically brief. We propose that sensory cues from other modalities have the541

same effect, so that e.g. visual cues that lead to brief excitations of STN also lead to a phase reset542

in the LFP signal. Furthermore, in addition to sensory cues, brief optogenetic stimulation of STN543

might yield the same effect. Whether these cue-induced beta phase resets play also a functional544

role, e.g. in the temporal coordination with inputs from other regions, remains to be shown.545

Finally, we predict that changes in the structure of the STN ramping activity affects the prob-546

ability of beta oscillations. If the STN ramps indeed reflect a “hold your horses” signal (Frank,547

2006), changes in the behavioral paradigm that manipulate the readiness for movement initiation548

should directly affect the ramping activity. For example, if the cost for the animal of a premature549

response is increased, the corresponding ramping activity might change its time course and ampli-550

tude. In the model this would directly translate into changes in the time course and probability551

of transient beta.552

In conclusion, the direct combination of our computational model with experimental data pro-553

vides a connection between single unit activity and network oscillations. This helps us to study the554

functional contributions of transient beta oscillation during sensorimotor processing in a behavioral555

context.556
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Figure 1: Single unit responses to sensory and motor events during performance of the behavioral task. A, Sequence
of behavioral events during the experiment. Thick black bars show the position of the animal and thick green bar
shows the occurrence of the sensory cue. Holding time refers to a random time delay (500 to 1200 ms) in which the
animal waits in one of the three central ports for the sensory cue. Reaction time is measured as the time between
the onset of the Go cue and movement initiation (Nose Out). B, Scheme of the operant chamber with five nose
ports in front and a food port in the back. C (top) Normalized mean firing rates of single STN units responding to
the Go cue with an increase in firing rate (sorted by peak latency; each row shows activity of one unit). Bottom,
corresponding mean firing rate of the STN subpopulation. D, Distribution of peak latencies relative to the time
of Go cue for STN neurons shown in C. E (top) Normalized firing rates of single units in the striatum (putative
MSNs) increasing their activity around movement onset (sorted by time of peak activity). Bottom, corresponding
mean firing rate of the subpopulation. F, Same as E, for GPe subpopulation decreasing activity around movement
onset.
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Figure 2: Ramping activity in STN and GPe while the animal is waiting for the Go cue. A (top) Normalized mean
firing rate of single STN units with a positive ramp in firing rate before the Go cue. Bottom, corresponding mean
firing rate of the STN subpopulation in all trials (black) and subsets of long (cyan) and short (magenta) reaction
time trials. B, Same as A, for single STN units with a negative ramp in their firing rate before the Go cue. Inset,
direct comparison between average firing rates of neurons in A, and B, corresponding to the areas inside the black
rectangles. C, D, Similar to A and B, respectively, for GPe units.
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the network model during simulation of the behavioral task. C (top) Mean spectrogram of GPe LFP data showing
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Figure 4: Sensory cues lead to a beta phase reset in both experimental data and in the network model. A, B,
Time resolved beta mean resultant length (left axes, green) and beta power (right axes, gray) of GPe LFP data
during correctly performed contralateral go trials averaged across all rats (A) and of the network model GPe
population firing rate (B; average of 400 simulations). Note that sensory input is associated with a phase reset in
both experimental data and in the model, shown as a brief increase in the value of the mean resultant length after
the Go cue. C, Mean of the raw experimental STN LFP data, over all correctly performed contralateral go trials,
aligned to the Go cue. D, Mean of the STN population firing rates in response to the Go cue in the network model
(average of 400 simulations). E, F, The same analysis and simulations as in A and B, respectively, but aligned to
movement onset. Note that the phase distribution is random during initiation and execution of movement in both
the rat and the network model (no increase in the mean resultant length around movement onset).
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Figure 5: Effect of stimulation duration on beta power and phase reset in the network model. A, B, Relative beta
power (A) and beta phase reset (B; measured by the mean resultant length) in the model GPe caused by excitatory
input to the 30% “sensory” STN neurons of varying duration (x-axis) and strength (y-axis). C, D, Relative beta
power (C) and phase reset (D) in the model GPe caused by inhibitory input to the 38% “motor” GPe neurons (see
Methods) of varying duration (x-axis) and strength (y-axis). Note that in all panels we measure beta oscillations
based on the GPe population firing rate.
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Figure 6: Relationship between beta oscillations and reaction time. A, Mean beta power of striatal LFP data
for short (<500 ms) and long (>500 ms) reaction time trials aligned to the Go cue (left) and movement onset
(right), averaged across rats (adapted from Leventhal et al., 2012, with permission from Elsevier). B, Mean relative
beta power of GPe population firing rates in the network model (averaged over 400 simulations), exposed to ramp,
sensory and motor stimulation patterns (solid lines). For comparison, if the striatal motor input to GPe is withheld
in the model (dashed lines), the second beta peak disappears for long reaction time trials (see blue dashed line in
right panel). C, Single-trial striatal LFP traces from a single recording session, sorted by reaction time, aligned to
the Go cue (left) and movement onset (right) with beta epochs marked in red (adapted from Leventhal et al., 2012,
with permission from Elsevier). D, Same visualization for single-trial model simulations with each trace showing
the population firing rate of GPe neurons in the network model. For simulation of each trial, the model reaction
time was randomly selected from the experimental data.
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Figure 7: Scheme of contribution of each stimulation component to the generation of beta oscillations in short
(A), and long (B) reaction time trials. Red, green, and blue schematized beta oscillations show the contribution of
each individual input (ramp, sensory, and motor inputs, respectively) without the other one. Note that for short
reaction time trials, interaction between beta oscillations due to ramp, sensory, and motor inputs leads to transient
increase in beta power around the time of movement onset (black trace shows the net effect of the interaction). For
long reaction time trials, interaction between beta oscillations due to sensory and ramp inputs leads to transient
increase in beta power before the time of movement onset which is followed by another beta epoch due to motor
input (black traces show the net effect of the interaction).
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Figure 8: The network model without recurrent connections in STN reproduces all key results. A, Mean spectrogram
(over 400 simulations) of GPe average firing rates for simulation of correct Go trials in the modified network model
matching the time course of beta power in the experimental data. B, C, Time resolved beta mean resultant length
(left axes, green) and beta power (right axes, gray) of the GPe population firing rate in the modified network
model, aligned to the movement onset (B) and to the Go cue (C; average of 400 simulations). D, Mean relative
beta power of GPe population firing rates in the modified network model aligned to the Go cue (left), and movement
onset (right), averaged across 400 simulations. E, Single-trial simulations of the modified network model, sorted by
reaction time, with each trace showing the population firing rate of GPe neurons, aligned to the Go cue (left) and
movement onset (right; beta epochs are marked in red).
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