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The relationship between obesity and cognitive impairment is important given the globally
ageing population in whom cognitive decline and neurodegenerative disorders will carry
grave individual, societal and financial burdens. This review examines the evidence for the
link between obesity and cognitive function in terms of both the immediate effects on cog-
nitive performance, and effects on the trajectory of cognitive ageing and likelihood of
dementia. In mid-life, there is a strong association between obesity and impaired cognitive
function. Anthropometric measures of obesity are also associated with reduced neural integ-
rity (e.g. grey and white matter atrophy). Increasing age coupled with the negative metabolic
consequences of obesity (e.g. type 2 diabetes mellitus) are likely to significantly contribute to
cognitive decline and incidence of dementia. Stress is identified as a potential risk factor pro-
moting abdominal obesity and contributing to impaired cognitive function. However, the
potentially protective effects of obesity against cognitive decline in older age require further
examination. Finally, surgical and whole diet interventions, which address obesity may
improve cognitive capacity and confer some protection against later cognitive decline. In
conclusion, obesity and its comorbidities are associated with impaired cognitive perform-
ance, accelerated cognitive decline and neurodegenerative pathologies such as dementia in
later life. Interventions targeting mid-life obesity may prove beneficial in reducing the cog-
nitive risks associated with obesity.

Obesity: Dementia: Cognitive performance: Cognitive decline

Ageing and cognitive decline

In 2011, 17·5 % of the European population was aged
65 years or older and this is expected to rise to 30 %
by 2060(1). The increasing life expectancy across the
world necessitates urgent public health action aimed at
preserving the physical and mental health status and
autonomy of the elderly via optimal control of chronic
diseases and a focus on the various dimensions of quality
of life (physical, psychological, social). Ageing is accom-
panied, for a significant proportion of the population,
by cognitive decline which is the primary risk factor for
the development of neurodegenerative disorders, including
Alzheimer’s disease (AD)(2). The 2015 World Alzheimer
Report estimated 46·8 million cases of dementia in 2015

and projects that this number will double every 20
years(3), underscoring the magnitude of this problem in
terms of social and economic aspects, including towering
costs of disease management, caregiver burden, loss of
income and loss of productivity for the patient and the
caregiver, and palliative and terminal care. Therefore, pre-
serving normal cognitive capacities for as long as possible,
along with improving knowledge about the preclinical
phase in order to identify and target at-risk asymptomatic
individuals, are urgent public health challenges(4,5).

There is a genetic component to dementia(6). ApoE is
the strongest risk factor for late onset AD. ApoE encodes
three common alleles (ε2, ε3, ε4). ApoEε4 is associated
with increased AD risk in a cumulative fashion such
that one ApoEε4 allele increases AD risk 3-fold, and
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two ApoEε4 alleles increase AD risk 12-fold. The pres-
ence of the ApoEε4 allele is associated with decrease in
age at AD onset, whereas ApoEε2 is associated with
decreased risk for AD and later age at onset. Other fac-
tors may also contribute to the development of dementia
and factors which are modifiable require examination so
that we can make health and lifestyle interventions to
reduce the burden of dementia in the face of a globally
ageing population.

Curative treatments or therapies aiming to at least
decelerate cognitive decline are rather inefficient. At pre-
sent, neuroscientists working in the field of AD indicate
strong doubts that a cure will be found soon(7). When
significant cognitive loss has already taken place, the
respective neuronal networks are likely irreversibly com-
promised and their replacement, if it were to become
technically feasible, would not restore the individual’s
intellectual identity. Thus, prevention of cognitive
decline is the only sensible approach to meet the chal-
lenge of an ageing and dementing population(7–9). The
onset of cognitive decline is evident from as early as 45
years of age with a 3·6 % decline in mental reasoning
demonstrated in men and women aged 45–49(10).
Evidence of such early decline highlights the importance
of promoting healthy lifestyles in middle age, at the lat-
est, in order to slow the trajectory of age related cognitive
decline.

A confounding factor is the rising prevalence of obes-
ity in Europe(11), which is associated with impaired glu-
cose tolerance (IGT), subsequent type 2 diabetes
mellitus (T2DM) and low grade inflammation, culminat-
ing in metabolic syndrome, all of which are associated
with cognitive impairment in the short- and long-
term(12–15). Therefore, obesity and its comorbidities are
risk factors associated with impaired cognitive perform-
ance and cognitive decline.

Obesity and cognitive function

The relationship between obesity and an increased risk of
mortality and somatic morbidity is well documented(16).
An association between obesity and cognitive health is
receiving increasing recognition. Mid-life obesity is a
significant risk factor for developing AD and vascular
dementia in later life(17,18). In addition to an increased
risk of an accelerated trajectory of cognitive ageing (dis-
cussed later), evidence suggests early to mid-adulthood
obesity may have an immediate detrimental impact on
cognitive functioning.

A negative association between anthropometric mea-
sures of obesity (e.g. BMI, waist circumference) and a
number of cognitive domains has been reported. For
example, obesity is related to impaired performance on
tasks of episodic memory. Verbal learning, indexed by
delayed recall and recognition of words, is impaired in
those with higher v. lower BMI(19,20). Similar deficits are
demonstrated for visual modality episodic memory
tasks(21). Impaired working memory performance has
also been demonstrated in overweight and obese young
adults compared with healthy weight controls(22).

However, some studies report no difference in memory
performance between obese and non-obese individuals(23).

Performance detriments are additionally evident in
non-memory related cognitive domains. For example,
impaired psychomotor(19) and selective attention(24) per-
formance have been reported in obese cohorts; although
not consistently(25,26). Performance decrements in the
executive functions of concept formation and set-shifting,
measured by performance on the Wisconsin card sorting
test, are also shown in obese cohorts relative to normal
weight comparison groups(27,28).

Decision-making impairments exist across disordered
eating populations; for example, anorexia nervosa(29)

and bulimia(30). A number of studies have reported that
decision-making performance is also altered in obese
populations. Performance on the Iowa gambling task
suggests morbidly obese individuals have a reduced cap-
acity to maximise an immediate reward or programme a
delayed reward(31). Obese individuals also show impaired
performance on additional tasks that require the delay of
gratification (e.g. Delayed discounting task(32)). Impaired
processing of inter-temporal choices may contribute to
poor diet choices in obese individuals (e.g. an increased
sensitivity to the immediate reward of consuming highly
palatable, energy dense foods while discounting the nega-
tive health and metabolic consequences in the long term).
Such suboptimal decision-making processing can be con-
sidered a significant risk factor in an obesogenic environ-
ment in which effortful control of energy intake is critical
for the maintenance of a healthy body weight.

A negative relationship between obesity and cognitive
performance has not been consistently found, both within
and across cognitive domains. Inconsistency in the evi-
dence may be due to the potential moderating influence
of a number of obesity-associated comorbidities known
to adversely impact upon cognitive performance. This
includes T2DM, hypertension, hypercholesterolaemia
and insulin resistance, which may co-occur in individuals.
Two recent systematic reviews(33,34) of the effects of obes-
ity on cognitive performance in adults (aged 18–65 years)
concluded that while there is evidence of impaired cogni-
tive function in obese populations, there is insufficient evi-
dence to date to confirm that these impairments are
independent of obesity-related comorbidities and demo-
graphic variables (e.g. age, education). This lack of clarity
is largely due to many studies failing to adequately control
for potential confounding comorbidities

Effects of obesity on the brain

Brain imaging studies suggest that obesity is associated
with neural atrophy. Structural alterations in the neural
architecture of obese individuals have been reported.
For example, elevated BMI is linked to decreased brain
volume(35), independent of age and morbidity(36).
Increased BMI is also associated with grey matter atro-
phy in the temporal, frontal and occipital cortices, hippo-
campus, thalamus and midbrain(37), and reduced
integrity of white matter throughout the brain(38). It is
important to note that it is not always possible to
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disentangle the contribution of obesity to these structural
impairments from the effects of ageing and obesity-
related comorbidities (e.g. hypertension, metabolic
oversupply/dysregulation). However, obesity can be con-
sidered a considerable risk factor for reduced neural
integrity.

In addition to structural and morphological altera-
tions in the obese brain, neural imaging studies show
altered functional activity. This includes decreased
regional blood flow to the prefrontal cortex in healthy
adults with elevated BMI(39). Significantly reduced func-
tional activity in cortical areas associated with episodic
memory (hippocampus, angular gyrus and dorsolateral
prefrontal cortex) is associated with both obesity and
insulin resistance(21). Obese individuals also demonstrate
lower working memory task related activation in the
right parietal cortex(26).

Obesity has been associatedwith an increase in brain age,
in respect of cerebral whitematter atrophy, where the great-
est degree of atrophy has been identified in middle-age,
equating to an estimated increase in brain age of 10 years.
Importantly, middle-age may represent a critical period
for brain ageing, where vulnerability to obesity is particu-
larly acute comparedwith later life(40). Indeed, whitematter
atrophyhasbeen identifiedas starting inmiddle-age(41). The
action of proinflammatory cytokines is a possible mechan-
ism for these changes in white matter volume(40). Adipose
tissue secretes adipokines(42), manifesting either pro- or
anti-inflammatory properties(43). Importantly, in obesity,
there is a reduction in adiponectin(44), which is known to
protect against inflammation, cell proliferation and sup-
ports energymetabolism(45), and upregulation of other adi-
pokines, leading to a chronic inflammatory state and
metabolic disease(46). Consequently, a host of microphysio-
logical changes occur, which facilitate white matter
abnormalities(47).

Age, obesity and risk of dementia

The relationship between obesity and later cognitive
decline is far from clear. There is increasing evidence
that higher adiposity, both in respect of BMI and central
obesity, in mid-life is a risk factor for subsequent impair-
ment in cognitive functioning(18,48,49), and has been iden-
tified as a modifiable risk factor for cognitive decline and
impairment(50). However, obesity in later-life seems to
offer a level of protection against cognitive decline,
with some studies demonstrating slower decline in the
obese compared with those of a normal weight(51,52).

Associations between age and risk level for later
dementia show that obese individuals admitted to hos-
pital between ages 30 and 39 years showed a 3·5
increased relative risk ratio for AD and vascular demen-
tia in later life. This relative risk reduced in a stepped
fashion up to age 70 years in those obese on admission
but was still associated with a greater risk of subsequent
dementia compared with non-obese controls. The risk of
later vascular dementia was reduced in those obese from
age 80 years onwards(53). It has been estimated that being
obese at ages 40–45 years increases risk of later dementia

by 74 % relative to those of a normal weight(18).
Therefore, mid-life obesity increases risk of dementia in
later-life while greater BMI at increased age may attenu-
ate this risk. Thus, classification of obesity in septuagen-
arians appears to confer protection from dementia(54).
Obesity has been associated with the lowest odds ratio
for dementia relative to diabetes, hypertension and
dyslipidaemia in mid-(45–65 years) and late-life (above
65 years). However, the odds ratio is higher for mid-life
relative to later-life obesity (2·0 and 0·8, respectively)(55).
In a recent systematic review and meta-regression ana-
lysis of longitudinal studies examining BMI in mid-life
and risk of dementia in late life, being obese but not over-
weight in mid-life was found to lead to an increased risk
of subsequent dementia(56). Furthermore, a review of
empirical research found that the relationship between
obesity and risk of dementia was most consistent when
obesity was assessed during mid-life and cognition was
assessed in later-life, and in studies where there were
longer follow-up periods(55).

Importantly, the association between obesity and
dementia has been shown to vary as a function of adipos-
ity measure, the outcome of interest and the age at which
an individual is classed as obese(53,57,58). Indeed, using
BMI as a measure of adiposity is problematic given
that BMI fails to distinguish muscle from adipose tissue
and does not indicate distribution of adiposity(59).
Longitudinal studies have the benefit of following
cohorts of individuals over prolonged periods of time,
making them an ideal approach for observing disease
development(60) and identifying patterns, correlates and
possible causes of changes that occur with age(61). In
one such study, individuals aged 65 years and over
were followed for 5 years to assess the prospective asso-
ciation between adiposity, weight change and dementia,
as a function of age. Importantly, findings were adjusted
for sample demographics and ApoE ε4. BMI between
26·3 and 29·6 kg/m2 was related to a lower risk of demen-
tia including AD compared with BMI <23·4 kg/m2.
Waist circumference >97 cm was associated with an
increased risk of dementia associated with stroke.
However, age mediated the effects of BMI and waist cir-
cumference. In individuals below age 76 years BMI
between 23·4 and 29·6 kg/m2 was associated with lower
risk of dementia, with a higher risk for those with BMI
outside this range. In individuals over age 76 years, risk
of dementia decreased with increasing BMI. Waist cir-
cumference >97 cm was associated with a higher risk of
dementia and AD in those below age 76 years, but this
relationship disappeared for those aged over 76 years.
Weight loss was related to increased dementia risk rela-
tive to those who remained weight stable. However,
those that gained weight had a higher risk of dementia
associated with stroke(57).

Ageing, obesity and impairment in specific cognitive
domains

Impaired verbal fluency, memory and performance on
global screening measures have also been related to
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obesity; demonstrating an independent relationship
between cognitive performance and obesity. Individuals
aged 19–93 years were assessed on average 3·1 times,
every 2–3 years. On measures of global cognitive func-
tion, higher BMI, waist circumference and waist-to-hip
ratio (WHR) were associated with poorer performance;
poorer performance was seen with increasing age in
cases of larger waist circumference and WHR.
Executive function was assessed by trail making tests A
and B(12). Both tests measure mental flexibility, speed
of processing and visual search(62). With increasing age,
higher BMI and waist circumference were related to
quicker performance on trail making tests A(12), where
twenty-five numbered circles are connected sequen-
tially(62). However, higher WHR related to slower per-
formance with age on trail making tests B(12), where
numbers and letters are connected in order in an alter-
nate fashion (e.g. 1-A, 2-B, etc.)(62). Similarly, increasing
obesity as identified on all three obesity measures and
ageing were associated with declining performance in vis-
ual memory. The relationship between verbal functioning
and obesity varied depending upon the measure used but
did not vary with age. Specifically, poorer performance
for letter and category fluency was related to BMI,
waist circumference was related to poorer performance
for letter fluency and WHR was related to poorer per-
formance for category fluency. Only WHR was asso-
ciated with visuospatial skills with increasing age,
whereby a higher WHR was related to slower decline(12).
Similar relationships have been found between weight
change and cognitive performance. In a second prospect-
ive study, BMI was calculated across the adult lifetime
(early adulthood, and early and late mid-life).
Executive function, memory and performance on the
mini-mental state examination were examined in late
mid-life. Adjusting for age, sex and education, cumula-
tive obesity was related to poorer performance on the
mini-mental state examination and in inductive reasoning
and verbal fluency (phonemic and semantic) compared
with normal weight. The finding for mini-mental state
examination performance remained following further
adjustment for health behaviours and health measures
assessed in late mid-life. Conversely, cognition was also
associated with the cumulative effects of being under-
weight (BMI< 20). Being underweight on two or three
occasions was related to lower inductive reasoning, verbal
fluency and mini-mental state examination performance
also(63). Being underweight and a reduction in weight
may reflect the onset of pre-clinical dementia, which has
consequences of lowered food intake and changes in life-
style(64,65). This notion of cognitive dysfunction promoting
weight loss prior to clinical significance has been sup-
ported in a review of nineteen cohort studies(56).

Metabolic consequences of obesity

Adiposity is a risk factor for a range of health conditions
including vascular comorbidities, which in themselves
increase the risk of dementia. Chronic, low-grade inflam-
mation associated with obesity has been linked to insulin

resistance(66). Proinflammatory cytokines have been sug-
gested to cause insulin resistance in liver and adipose tis-
sue by interfering with insulin signalling. Specifically,
both autocrine/paracrine cytokine signalling and endocrine
cytokine signalling have been implicated in localised and
systemic insulin resistance(67). Insulin resistance is central
to the metabolic syndrome, which has been associated
with an increased risk of cognitive decline and demen-
tia(15,68–70). A number of consequences of insulin resistance
have been posited including, but not restricted to, lipid
metabolism and mitochondrial dysfunction, white matter
atrophy, and synaptic loss and neuro-inflammation(71,72).
Further, the administration of insulin for the treatment
of insulin resistance has produced promising results in alle-
viating cognitive impairment in cognitively healthy and
unhealthy samples; however, treatment effects have been
found to be modified by dose and ApoE genotype(73).
For example, improvements have been found in areas
such as visuospatial and verbal working memory(74,75).

Type 2 diabetes and cognitive function

Insulin resistance is predictive of subsequent develop-
ment of T2DM(76). This may reflect part of a sequential
relationship, which features adiposity and hyperinsuli-
naemia as appearing in a linear fashion prior to the
onset of glucose intolerance and T2DM(77).

IGT occurs prior to the development of diabetes and
may contribute to cognitive impairments (see(78) for a
review). Recent studies have shown that the performance
of ostensibly healthy middle-aged women with IGT was
impaired in cognitive tasks, which predominantly engage
the hippocampus(79). IGT in later life may confer a
greater risk for AD than T2DM(17) because IGT is likely
to be untreated and result in longer exposure to glucose
excursions. Indeed, higher glucose levels may increase
the risk of cognitive dysfunction in non-diabetic
individuals(80,81).

T2DM not only increases the risk of subsequent cogni-
tive dysfunction(82,83), but may also lead to an acceler-
ated rate of cognitive ageing(84,85). T2DM has been
associated with reduced performance in a number of cog-
nitive domains including verbal memory, processing
speed(86,87), attention(88), spatial working memory(89),
verbal fluency(85) and executive function(90). However,
glycaemic control may play a role in determining the
extent to which individuals experience cognitive
impairment(91,92).

T2DM is an independent risk factor for the develop-
ment of CVD(93). Similarly, hyperinsulinaemia and insu-
lin resistance may lead to an increased risk of CVD(94,95).
Cardiovascular risk factors present in mid-life increase
the risk of subsequent dementia(96). Hypoperfusion and
microemboli, both a consequence of cardiac disease,
have been implicated in the aetiology of dementia(97).
Additionally, multiple lacunar infarctions are common
in individuals with diabetes and these have been asso-
ciated with cognitive decline(98). Further, T2DM has
been associated with global brain atrophy(99), with the
rate of loss being greater than that found in normal
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ageing(100), supporting the notion of accelerated cogni-
tive ageing. Moreover, the abnormalities present in insu-
lin resistance in T2DM have also been observed in those
with AD(101,102). As insulin action has been implicated in
neuronal and synaptic formation, development, repair
and neuroprotection(103,104), this has important clinical
consequences.

Since obesity and subsequent T2DM increases the risk
of AD by 65 % (relative risk in T2DM is 1·46(60)) and
about 80 % of AD patients have problems with gly-
caemic control, AD has been referred to as type-3 dia-
betes(61). It has been proposed that AD is a metabolic
disease, mediated by impairments in brain insulin
responsiveness, glucose utilisation and energy metabol-
ism, which leads to increased oxidative stress, and inflam-
mation, which worsens insulin resistance(105). Advanced
glycation end-products are also elevated in both T2DM
and AD. The relative risk of vascular dementia in
those with T2DM is 2·49(83) and its development relates
to a history of hypertension and disturbances in cerebral
blood flow.

Further evidence for the potential role of insulin resist-
ance in dementia comes from evidence that an increase in
enzymes responsible for the generation of β-amyloid, as
well as increased levels of β-amyloid in the brain, have
been identified following induced insulin resistance in
animal studies(106,107). Additionally, impairments in insu-
lin signalling contribute to impairments and dysfunction
in mitochondrial structure and function due to energy
deficiency, having consequences for increased reactive
oxygen species production(108) and neuropathology in
AD(66).

The obesity paradox

It should also be noted that being underweight in middle
and old age has recently been associated with an increased
dementia risk. The incidence of dementia decreased as a
function of increasing BMI. Paradoxically, morbid obesity
in adult life was associated with a 29 % lower dementia
risk compared to healthy weight(109). In older adults, cur-
rent obesity levels have been inversely associated with
dementia(110). This could represent an ‘obesity paradox’
in which late life weight loss may precede dementia(52)

and occur before any presentation of cognitive impair-
ment. A recent retrospective cohort study of almost two
million individuals aged over 40 years in the UK, reported
that being underweight in middle age and old age carries
an increased risk of dementia(109). This assertion is contro-
versial and, in contrast to the evidence of an association
between obesity and dementia, may reflect the tendency
to underdiagnose dementia by general practitioners at
the time the data were collected, and over or under adjust-
ment for a number of factors such as competing risk of
mortality as well as selection bias, and bias in the diagno-
sis of dementia in those with lower BMI/age(111).

Collectively, these findings may go some way to
explain the relationship between mid-life obesity and
late-life dementia. There is less evidence available to
explain the unexpected finding that obesity in late life

confers protection against dementia. However, possible
mechanisms include larger leg lean mass promoting glu-
cose metabolism(112), which could avoid the pathogenic
consequences of increased glucose availability via glu-
cose uptake into muscle.

Stress as contributing risk factor

Stress is experienced when an individual perceives a mis-
match between the demands of a stressor and their ability
to cope. In homeostatic terms: demand exceeds the regu-
latory capacity of the organism(113). The stress response
is primarily mediated by two neuroendocrine systems:
the sympathetic adrenal–medullary system and the
hypothalamic–pituitary–adrenal axis. Activation of these
systems ultimately results in the release of corticosteroids
(via the sympathetic adrenal–medullary system) and glu-
cocorticoids (via the hypothalamic–pituitary–adrenal
axis) which instigate adaptive survival responses to meet
the demands of the stressor. While stress responses are
adaptive, prolonged, excessive, or repeated response acti-
vation can result in a cumulative toll on the organism
which accelerates wear and tear on bodily systems(114).
Chronic psychosocial stress drives physiological dysregu-
lation that has been associated with multiple and pro-
found negative effects on human health and well-being,
ultimately affecting quality and longevity of life(115,116).

Stress, energy homeostasis and metabolic outcomes

Exposure to stress is associated with both metabolic
dysfunction(117) and impairment of cognitive perform-
ance(118). Therefore, stress is a potentially important
risk factor contributing to the relationship between
obesity and cognitive function. There is considerable
neurobiological overlap between stress and energy
homeostasis systems. The hypothalamus is sensitive to
the negative feedback action of glucocorticoids, and
also to energy balance and appetite hormones (e.g. insu-
lin, ghrelin, leptin)(119). Furthermore, the hypothalamic–
pituitary–adrenal axis is sensitive to most central and
peripheral neuropeptides involved in energy homeostasis
and appetite (e.g. orexigenic neuropeptide Y(120)).
Chronic stress also modifies peripheral metabolic and
adipose physiology. For example, cortisol (the primary
human glucocorticoid) increases plasma levels of leptin
and ghrelin and alters the expression of neuropeptides
that regulate energy intake(121). Glucocorticoids also
inhibit insulin release and decrease insulin sensitivity pro-
moting metabolic oversupply which contributes to the
development of hypertension, central obesity and glucose
intolerance, key features of metabolic syndrome(122).

The relationship between psychosocial stress and nega-
tive metabolic outcomes is gaining increasing recogni-
tion. Chronic stress prospectively predicts abdominal
fat accumulation(123), metabolic syndrome(124), and obes-
ity(125). Stress promotes irregular eating patterns and
physical inactivity and can bias food preferences towards
high-energy dense food(122). For example, stress increases
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the intake of sweet high-fat foods(126), fast-food(127), a
high-fat diet(128), unhealthy snacking(129,130), binge eat-
ing(131) and reduces vegetable intake(132).

Existing metabolic risk may increase vulnerability to
the negative effects of stress on body composition. For
example, cumulative stress is associated with higher
fasted glucose, insulin and insulin resistance in those
with high v. low BMI(119). Obese individuals are also
more vulnerable to being exposed to elevated gluco-
corticoid levels. Central obesity is associated with gluco-
corticoid excess(133), elevated basal cortisol(134), and
higher cortisol reactivity to acute stress exposure(135).

Such findings suggest stress promotes an internal
milieu and behaviours that increase the risk of metabolic
oversupply which have grave long-term consequences for
health. Conditions characterised by metabolic oversup-
ply (e.g. obesity and diabetes mellitus) are associated
with increased oxidative stress, systemic inflammation,
altered gene expression (e.g. shortening of telomeres)
and impaired cognitive performance(136).

Stress and cognitive function

Stress significantly impacts upon cognitive function
acutely and chronically via deleterious effects on neural
structures. The acute effects of stress on performance
are bidirectional with examples of both enhanced and
impaired function. The direction of the effect is mediated
by a number of variables, including cognitive domain,
proximity of stress to cognitive processes and individual
stress responsivity(137,138). Stress tends to impair cognitive
processes that are not directly relevant to the stressor
faced. For example, attentional resources needed to pro-
cess the stressor faced are prioritised. Similarly, priority
is given to memory consolidation of information likely
to permit future adaptive coping. Cognitive processes
extraneous to the immediate threat (e.g. peripheral atten-
tion, retrieval of non-stress relevant information) tend to
be impaired. Glucocorticoids have been identified as the
primary moderator of the acute effects of stress on cogni-
tive function. Glucocorticoids are also associated with
impairments to neural integrity in the long term. For
example, chronically raised plasma levels are negatively
correlated with hippocampal volume and hippocampal-
dependent memory deficits in older adults(139).
Evidence also suggests that glucocorticoids exert negative
effects upon the integrity and function of neurons in the
prefrontal cortex(140).

Stress, obesity and cognitive function

Stress can promote the accumulation of excessive weight,
particularly central adiposity, via alterations to energy
homeostasis systems and feeding behaviour. Further,
obese individuals may be more vulnerable to the cogni-
tive impairing effects of stress due to increased basal
and reactive glucocorticoid levels. The combination of
increased vulnerability to the deleterious effects of stress,
and the risk associated with existing metabolic

oversupply that characterises the obese state, suggests
obese individuals may be more vulnerable to impaired
cognition under conditions of stress. Our laboratory
examined the impact of stress exposure on cognitive per-
formance in centrally obese, middle-aged adults. Cortisol
responsivity and cognitive performance were assessed
after exposure to a laboratory psychosocial stressor or
non-stress control in sixty-six high or low WHR adults.
Males, particularly of high WHR, tended to exhibit
greater cortisol responsivity in response to the stressor.
Exposure to the stressor and increasing WHR were asso-
ciated with poorer performance on tasks of declarative
memory; specifically spatial recognition memory and
paired associates learning (Cambridge automated neuro-
psychological test battery(141)). Our findings tentatively
suggest a reduction in cognitive performance in those
with central adiposity under conditions of acute stress.
Therefore, the increased risk of impaired cognition evi-
dent in obese populations may be exacerbated by an
increased vulnerability to the negative effects of stress.

Can obesity related deficits in cognitive function be
reversed?

Weight loss via diet and/or exercise is advisable to reduce
obesity and there is some evidence that such interven-
tions may also restore or prevent further decline in cogni-
tive function. Weight loss maintenance requires enduring
behaviour change and is likely to be more successful in
those who have the cognitive capacity to do this. Some
interventions such as bariatric surgery promote rapid
loss, while others such as dietary change result in slower
body weight reduction. There have been a number of
studies which evaluate cognitive function following
these interventions.

Bariatric surgery and cognitive function

Interventions which address cerebrovascular risk factors
during middle age may be prophylactic for cognitive age-
ing. One such intervention is bariatric surgery which has
been shown to promote rapid improvements in memory
and executive function that persist for several years post-
operatively(142). This post-operative improvement in
memory performance is not seen in individuals with a
family history of AD(143), which suggests that genetic vul-
nerability or family history may attenuate cognitive
recovery post bariatric surgery.

Dietary intervention studies and cognitive function

Whilst the effects of specific nutrients on cognitive perform-
ance have been investigated experimentally(144,145), com-
paratively less is known about the effects of whole
dietary patterns which more accurately reflect the complex-
ity of daily eating behaviour as well as the synergistic effects
of nutrients in the food matrix.(146). Experimentally con-
trolled whole diet approaches which reduce postprandial
glucose excursions and inflammation by increasing the
fibre content of the diet in line with Nordic Nutrition
Recommendations have demonstrated cognitive benefits
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within as little as 1 month in middle-aged adults(147). The
Dietary Approaches to Stop Hypertension diet, which is
high in fruit and vegetables and low-fat dairy foods and
low in saturated fat, showed a positive effect on psycho-
motor performance in 124 middle-aged adults with hyper-
tension with diet alone(148).

Consumption of a Mediterranean dietary pattern
(MDP) rich in olive oil, fruit and vegetables, whole
grains, legumes, nuts, low-fat dairy, fish, moderate alco-
hol (red wine) and low red meat intake has been asso-
ciated with a reduced risk of pathology and mortality
in the general population(149). This dietary pattern has
been identified as a healthy model of eating that should
be promoted in non-Mediterranean populations(150,151).
The MDP has also been investigated in relation to cogni-
tive health, decline and dementia. Epidemiological,
prospective(152–156), cross-sectional(157–160), and meta-
analytic studies(161–163) suggest that adherence to this
dietary pattern is associated with less cognitive decline,
dementia and AD; although with some disparity
amongst the findings(157,164,165).

The Prevencion con Dieta Mediterranea(166) study
supplemented older Spanish adults (mean age 67 years)
prescribed the MDP with either extra virgin olive oil or
mixed nuts and compared cognitive function after
4 years with a non-intervention control who received
advice to reduce dietary fat. Better verbal memory was
found in those consuming olive oil than controls, and
composite memory, frontal and global performance
was maintained in both MDP arms relative to the con-
trols whose performance declined over the follow-up per-
iod. Although cardiovascular risk was also reduced, no
synergistic mechanism of the whole MDP definitively
explains the maintenance of cognitive function observed.
However, different biological mechanisms have been
proposed. These include reduction of vascular risk fac-
tors and white matter lesions, metabolic abnormalities
(e.g. insulin resistance), oxidative stress, inflammation
and advanced glycation end products(161–163).

Limitations of studies examining the association between
obesity and dementia

The measure of adiposity employed to indicate obesity
influences the relationship found with risk of dementia.
The lack of differentiation between muscle and fat tissue
in BMI measurement makes this a problematic assess-
ment of body fat(59), which also varies in relation to
age and sex. For example, in a cross-sectional validation
study, females had a greater percentage of body fat rela-
tive to males despite having the same BMI. Furthermore,
race, age and race-by-BMI interaction were independ-
ently associated with the percentage of body fat for
females(167). The use of self-report data for weight and
height at an earlier time of life may be affected by recall
bias(110). Length of follow-up period also makes drawing
conclusions regarding risk factors difficult when this is
limited. Indeed, in those studies that included a longer
follow-up time, the association between obesity and
risk of dementia has been found to be most consistent(55).

Heterogeneity in study designs further contributes to the
difficulty of forming conclusions about relative risk. In a
meta-analysis assessing risk of AD in obesity, diabetes
and related disorders, differences in study designs may
have contributed to statistical heterogeneity seen in the
pooled effect size for obesity. Moreover, no conclusion
could be made regarding the effects of the timing of
exposure to obesity on risk. Additionally, a lack of
adjustment for ApoE status in some studies does not
reflect the potential of this to modify the relationship
between obesity and dementia risk(168). Other studies
have failed to adjust for other important variables in
their analyses including education, cerebrovascular dam-
age and stroke. Also, significant attrition rates are not
addressed in some longitudinal studies. Importantly, a
meta-regression revealed the association between being
underweight in mid-life and risk of later dementia was
more likely to have been reported in studies prone to out-
come ascertainment bias, selection bias, involving shorter
follow-up periods, suffering a greater rate of attrition and
where control of potential confounding variables was less
adequate(56). Differences in the diagnostic criteria of
dementia and diabetes, in the length of follow-up peri-
ods, in the sample sizes and in the recruitment of specific
populations have all been reported to contribute to het-
erogeneity in study findings(169). Similarly, wide age
ranges in respect of study samples and the inclusion of
some participants above age 65 years when assessing
mid-life exposure further complicates the issues(56). The
lack of inclusion of brain imaging outcomes and autopsy
reports means that it is not possible to determine how the
severity of subclinical vascular disease features in the risk
for dementia with obesity(168). Cohort effects are also
acknowledged in some studies, such as differences in
the survival rate due to dementia, obesity-related mortal-
ity(17) or perhaps being less vulnerable to the adverse
effects of obesity, termed the ‘survivor effect’(55).

Conclusions

There is clearly an association between mid-life obesity
and cognition and cognitive decline in later life. This is
an issue of concern against the background of an ageing
population and the failure to stem the rise in obesity. The
impact of obesity on cognitive decline and risk of demen-
tia merits further investigation. Investigations into the
association between obesity and cognitive health should
also consider the contributing effects of psychosocial
stress on this relationship. More consistent methodo-
logical approaches will likely reduce some of the hetero-
geneity in the existing data. For example, the selection of
an appropriate and reliable measure of obesity, adjusting
for important variables (e.g. ApoE status, education, car-
diovascular risk) and adequately accounting for attrition.
Interventions which reduce obesity are promoted for
physical health reasons but the demonstration that
weight loss and weight loss maintenance at mid-life can
prevent cognitive decline may present a persuasive mes-
sage to the middle aged who generally fear dementia.
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