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Abstract

This paper examines existing day-to-day medmsed on a virtual day-to-day route choice
experiment using the latest mobile Interrethinologies. With the realized day-to-day path
flows and path travel times in the experimem, calibrate several well-designed path-based
day-to-day models that take the Wardrop’s @sgiilibrium as (part of) their stationary states.
The nonlinear effects of path flows and péthe differences on path switching are then
investigated. Participants’ path preferencesetirarying sensitivity, and learning behavior in
the day-to-day process are also examinece prediction power of various models with
various settings (nonlinear effects, time-vagyisensitivity, and learning) is compared. The
assumption of “rational behavior adjustm@mnbcess” in Yang and Zhang (2009) is further
verified. Finally, evolutions of different Lyapundwnctions used in thiterature are plotted,
and no obvious diversity is observed.

Keywords: day-to-day flow dynamics; virtual route choice experiment; regression analysis,
model calibration; model comparison.

1. Introduction and literaturereview

It is believed that travelers’ historical traffexperience, as well aseih prediction of future
traffic conditions, would influece their trip decisions frorday to day. Prediction of the
traffic conditions in a future time epoch (g.¢raffic volume atthe morning peak on a
working day) can help transportation agen@esinge appropriate management and control
strategies ahead of time. Prediction is esfligciseful when the network structure changes
(Guo and Liu, 2011; He and Liu, 2012). To modelthgation of traffic flows from epoch to
epoch (Cascetta, 1989; Watling and Cantarella, 20d5ubstantial stream of research on
day-to-day dynamics has been developed. In génevo types of trip decision, i.e., route
choice and departure time choice, are considémethe day-to-day context. This paper
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focuses solely on route choice. Readers intedest day-to-day departure time choices can
refer to the work by Hu and Mahmassdhb97), Mahmassani (1990), Mahmassani and
Chang (1986), Mahmassani et, dl1986), and more recently Xiao and Lo (2016), just to
name a few.

Starting from the pioneer work by Smith (198&#%)d Horowitz (1984), the day-to-day route
choice models are established to study haggregate traffic flow changes based on
current/historical flows and travel costs. THay-to-day model is a deterministic-process
model if it is formulated as ordinary differgal equations or difference equations, and the
steady states can be different kinds of user equilibrium (UE), including deterministic UE
(DUE, i.e., Wardrop’s UE), stochastic UE (Garella and Cascetta, 99; Smith and Watling,
2016), and boundedly rational UE (Di et &015; Guo and Liu, 2011; Mahmassani and
Chang, 1987; Ye and Yang, 2017). On the othand, the stochastjmrocess models
formulate flow dynamics as stochastic processes, and the steady state is the equilibrium
probability distribution (Cascettal989; Cascetta and Cantarella, 1991; Davis and Nihan,
1993; Hazelton, 2002; Hazelton and Parryl&@0Hazelton and Watling, 2004; Parry and
Hazelton, 2013; Watling and Cantarella, 2015).

The interaction between day-to-day dynamic route flows and other components of the
transportation system has been widely studied in an analytical way, including the traffic
information system (Bifulco et al., 2016; @arella, 2013; Cho andwang, 2005; Friesz et

al., 1994), fixed or responsive signal control tefgges (Cantarella et al., 2012; Huang et al.,
2016; Liu and Smith, 2015; Smith et al., 2015; Smith and Mounce, 2011; Xiao and Lo, 2015),
congestion pricing (Friesz at., 2004; Farokhi and Johaws, 2015; Guo, 2013; Guo et al.,
2016; Han et al., 2017; Liu et.aP017; Tan et al., 2015; Wangadt, 2015; Xu et al., 2016;
Yang, 2007; Yang and Szeto, 2006; Yang et al., 20@7et al., 2015), and tradable credit
schemes (Ye and Yang, 2013). The-tla@day dynamics of otheravel modes, such as rail
(Wu et al., 2013) and transit §BYosef et al., 2013; Cantaleelet al., 2015Li and Yang,
2016), were also studied.

In addition to theoretical development, theyda-day dynamics of route choices have also
been studied through simulations and laboraexperiments. Most of these studies were
concerned with how travelers’ route choice® affected by factors such as information,
experience, risk, uncertainty, rgenality factors, as well agrious transportation system
components mentioned above (Avineri anddPker, 2005, 2006; Ben-Elia et al., 2008, 2013;

Hu and Mahmassani, 1997; Lotan, 1997; dtual., 2011; Mahmassani and Herman, 1990;
Mahmassani and Stephan, 1988; Rapoport.ef@ll4; Srinivasan and Mahmassani, 2003;
Yang et al., 1993). The laboratory experiments wese ated to test static UE theories such

as the Braess Paradox and Downs-Thomson Paradox (Dechenaux et al., 2014; Morgan et al.,
2009; Rapoport et al., 2009).
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Our paper focuses on another interestingstjon that has not yet received sufficient
attention in the research community: Are theiox#s route-choice-based day-to-day models
proposed so far good enough to reflie real-life situiion, and, if yes, what are the relative
performances of these modelRegarding this question, somearly and recent empirical
studies have been conducted, such as é&viand Prashker (2005), He and Liu (2012),
Mahmassani and Jou (2000), Meneguzzer aide®@ (2013) and Rapopoet al., (2014). To
answer our question, we conducted a virttmlte choice experiment and collected the
participants’ day-to-day routehoice data via smart phone appsing the experimental data,
we study a specific group of DUE-based day-&g-doute choice models in the literature,
which all have good stability and convergencepgrties but have ngtet been empirically
studied. The following aspects of these modeatsstmdied. First, these path-based day-to-day
models are calibrated. Second, ttanlinear effects of pathdlvs and path time differences
on route switching are investigatethird, the participants’ preferences for different paths,
variation of their sensitivity over time, andethlearning behavior are examined. Fourth, the
assumption of “rational behavior adjustmentqass” is verified. Fift, the predictive power
of various day-to-day models is compard-inally, various forms of Lyapunov functions
used for stability analysis ithe literature are examined.

The rest of this paper is organized as follo@&sction 2 introduces élsettings and processes
of the virtual route choice expment. Section 3 provides thenflings from the quantitative
analyses of the data. Section 4 draws the ceimis and discusses possible future directions.

2. Introduction of the virtual route choice experiment

To mimic travelers’ real-life decision-making processes from day to day, the traditional
laboratory or virtual experimesntusually involved a relativelgmall number of participants
and/or required the participarts repeatedly make decisiongthin short periods of time. In
order to better mimic the real world, we marédge involve a larger maber of participants

and allow longer periods for decision makinghahe help of the social networking app
WeChat. The network in Figure 1 was used, wheré &0d “D” are the origin and destination,

respectively, and the link travel times were calculatedaé\ssa):tg[H O.1E(va/Ya)4},

wherev,, t2 andY, are respectively the flow, de flow time and capacity of lin&; the

a’ "a
values oft? andY, are given in Table 1. In our expeent, 268 participant®ok part for 26

rounds, where each round corresponded to actlendar day. Most of the participants were
students of Southwest Jiaotong University innf@h On the first day, the route map and the
free flow times on the three paths were predido the participga at 8:00 a.m. The
participants were asked to submit their eoahoice before 9:00 p.m. on the same day. When

all the route choices were submitted, the path travel times were calculated based on the
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predetermined travel time functions. Notably, the travel time functions were unknown to the
participants. The participants choosing the sisoqath(s) were the winners for that day and
immediately rewarded monetlyti The reward given toaech winner was random, but the

total amount was equal to the number of winmeudtiplied by one Chinese Yuan per winner.

On the second day and afterwards, both thaer map and the path travel times of the
previous day were provided (in minutes, rounded to one decimal place) to the participants at
8:00 a.m. They then made and submitted decisions before 9:00 p.m. of the same day; the
travel times were calculated at night andwheners were rewarded. This process continued
until terminated by us.

Figure 1. Network structure and paths.

Table 1. Link characteristics

Link no. (a) 1 2 3 4 5
Free flow time ¢) (min) 25 10 5 20 15
Capacity ) 40 80 80 40 40

To win the reward, the participants would heaa incentive to choose the shortest path,
which fits the participants’ behavior into taesumption of the DUE. Therefore, our analyses

in this paper will only focus on those day-to-day models whose equilibrium states are DUE.
With the parameters given in Table 1, we can calculate a unique equilibrium path flow
pattern of [89, 89, 89], with aidentical path travel timef 142 min. After plotting the
observed day-to-day path flows and path @tavmes in Figure 2, we found that as the
experiment proceeded, the fluctuations in pidlvs and path travel times became smaller
and smaller; on the 26th round/day, the network state was close to the equilibrium, so we
terminated the experiment. Furthermore, theayepath travel time fluctuated even less and
was very close to the equilibrium path travel time, even in the early stage of the experiment.
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Figure 2. Day-to-day evolution of (a) paftows and (b) path travel times.

3. Data analyses

This section will be devoted to exploring the existing day-to-day models by calibrating the
parameters of these models based on theatell data. For subsequent analyses, denote by

d =268 the fixed origin-destination demané={1,2,3,4,5 the link set, aniR={1,2,3

the path set. Lefr(”) and cf") be the flow and actual travel time on patd R on dayn,
T T

respectively, where=1, 2, ..., 26. Definef (”):(fr(”),reR) and C(”):(Cﬁn),reR) as

the column vectors of path flows and path travel times, respectively, where “T” denotes the
transpose operation.

The focus of this section will be on the firstdler day-to-day models, iwhich the path flows

n+1)
s

on dayn+1 are uniquely determined by the flows and travel times onnddyenoting gf
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as the flow swapping rate from patho paths on dayn+1, the general first-order day-to-
day flow dynamics can be expressed as

g =g (17,cV), a>0, @)

S

n+1)
s

where ¢! (f(”),c(”)) is a function specifying howf™ and ¢ determine the flow

changing rate from path to paths, and normally it satisfieg!"™ =—¢"?. The first-order

day-to-day models investigated this paper include theroportional-switch adjustment
process (PSAP) in Smith (1984),

o = f<n)[c<n) —c(”)] _ f<n>[c<n> —c(”)] , @)
where[x], = max(x,0; the first-in-first-out (FI) dynamics in Jin (2007),

oY = f g™ (c(“) _ c(”)) ; 3)
the recent one in Xiao, Yang and {2916), hereafter called XYY dynamics,

¢(n+1) — C(n) _ C(n) ’ (4)
the evolutionary trdic flow dynamics (ETFD) in Yang (2005),

o — () [Em) —c(”)] 0 [E(m —c(")} , 5)
wherec!” = ZreR f,(”)cf”)/d is the average path travel time on day and the simplex

gravity flow dynamics (SGFD) in Smith (1983),

oy (e -] 10" "]

S WG|

The network tatonnement process (NTP) (Eries al., 1994) and the projected dynamical
system (PDS) (Zhang and Nagurney, 1996; Nagyiand Zhang, 1997) are not investigated
here for two reasons: First, they will degeate to XYY dynamics under mild conditions

(Xiao et al., 2016); second, their parametenmsnoh be estimated by the regression method
used in this paper. The parameterin Eq. (1) can be calibrated by both simulation and

(6)

regression, under different forms @fﬁl) in Egs. (2)-(6).

3.1. Smulation-based calibration

The simulation-based calibration is to fincethalues of the parameters under which the
simulated evolution process chest fit the observed one (iretense of minimizing the sum
of squared error between the simulated abderved flow swapping rates). As shown in
Figure 3, none of these fivmodels can produce a fluctiat pattern close to the one
observed, and the simulated trajectorieB8AP, FIFO and XYY almost overlap.
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Figure 3. Best-fit trajectories bagdeon simulations: (a) Path () Path 2; (c) Path 3.
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3.2. Regression-based calibration

The simulation-based calibration shows the difiy of reproducing the day-to-day flow
pattern by one particular model using only gra@ameter. Therefore, we turn to a relaxed
problem: Given the path flows and costs gdaaticular day, how accurately can we predict
the flows on the next day? For this problaegression-based calibration can be used. The
regression analyses are conducted withhelp of tk built-in functionregstats in MATLAB
R2016a. To clarifyo denotes the calibrated value of parameterthe p-value associated
with a is obtained by a two-sided test amdlicates that the null hypothesis € 0) is
rejected at a significance level higher than fhiglue. The heteroscedasticity is tested by the
White test. The first-order autocorrelationtésted by the Ljung-Box Q test (or Q test for
short), and the higher-order autocorrelations are not testep-Vdlee of the White test (Q
test) indicates that the null hypothesis of homoscedasticity (atttation-free) is rejected at

a significance level higher than thgsvalue. In this study, we coider a significance level of
5% when testing both heteroscedasticity anarrelation, so they mht need to be dealt
with if their associateg-values are smaller than 0.05.

3.2.1. Thefive original day-to-day models

For the convenience of model comparison, we define the day 36{2,3,--- ,25} throughout

all of Section 3.2. We begin theayses with the five day-to-day models given in Egs. (2)-
(6). The regression is based on the following formulation:

n+l

o =agl +el” ne N, (rs)=(12 (13 (2.3, (7)

n+1)
s

n+1

where g(rs ) is the random error, ar‘(p{ is calculated by substituting the observid and

user-informedc"™ into Egs. (2)-(6). Notably, considerirg)’™ =—g{"™* and ¢{"* = —¢""

s S s ’

only three path pairs are considered in tlgression, and the interagp excluded. The plots

n+1

of gfs ) againstcb(,;‘”) (Figure 4) show an origin-centrigattern and an pitve correlation

between them.
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Figure 4. Plots of gf
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The results of the ordinary least square (Otegyession based on Eq. (7) are listed in Table
2. The heteroscedasticity getected in PSAP, XYY and ETFD. The autocorrelation is
detected in SGFD. We will naty to correct for the autocorrelation of SGFD hereafter until
we discuss the learning lgvior in Section 3.2.5.

Table 2. Calibration results of the original models (OLS)

PSAP  FIFO XYY ETFD  SGFD
a 6.35E-4 9.53E-6 7.51E-2 1.04E-3 7.83E-2
p-value 2.16E-9 1.66E-10 7.51E-10 5.91E-8 6.32E-5
White test p-value) 0.007  0.304 0.027 0.036  0.636

Q test p-value) 0.328 0.588 0.370 0.092 0.019

" Homoscedasticity rejected thie significance level of 5%
Autocorrelation-free rejected #te significance level of 5%

a

The first way to tackle heteroscedasticityadsmodify the model forms. Comparing the forms
of ETFD and SGFD in Egs. (5) and (6), SGEBRares the same term as ETFD but includes
extra functions of travel times in the denoator. Enlightened by thisve simply modify
PSAP, FIFO, XYY and ETFD by dividing treverage travel time, leading to

(e -] 1]

PSAP(new): "V = - - 8)
C
) (n)(Cm)_C(n))
FIFO (new): ¢\" = > _(nr) * /7, (9)
C
(n) _ ()
XYY (new): ¢!™ % (10)
C
(n) [Em) _ c(“)] _ g [Em) _ c(“)]
ETFD (new): 0 = s + (11)
C

The calibration (Table 3) ahese four new modelswgs statistically significané (at the
significance level of 1%), antthe heteroscedasticity of PSAP, XYY and ETFD are corrected.
Interestingly, the new ETFD model in Eqg. (Hhd the SGFD model in Eq. (6) have the same
numerator but different denominasprvhile the former is autocorrelation-free but the latter is
not. It is worth pointing out #t model modification should neatlter the properties of the
original day-to-day model in terms of steadgtes and stability. Hergith our modifications,
the steady states are unchangeditistability requires revisiting.

Table 3. Calibration results of the modified models (OLS)
PSAP (new) FIFO (new) XYY (new) ETFD (new)

o a 0.132 1.84E-3 14.5 0.221
p-value 7.38E-10 3.22E-10 9.98E-10 1.69E-08
White test p-value) 0.062 0.162 0.186 0.410
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Q test p-value) 0.508 0.655 0.456 0.181

Bearing in mind the restrictions of doing mbdeodifications, we adopt the weighted least
square (WLS) that does not need to chatige model forms. In particular, the following

WLS is used:
g£n+1) ¢(n+1) 8(n+1)

s _—g—2 42 neN,(r,5)=(12) (13 ( 2,3. (12)
e

J

Notably, the samples witlpﬁ”*l) =0 will be ruled out in the WLS regression. The results are

S

given in Table 4. Compared with the OLS resint3able 3, the heteroscedasticity of PSAP,
XYY and ETFD are corrected, although the @otoelation of SGFD holds up. However, the
significance level ofx is only 5% for SGFD and evendhier for the other four models; for
the latter four models, the 95% confidence inaé{C1) shows that theris a tiny chance for
o to be zero or even negative. Based ondlmsservations, we will adhere to OLS unless
heteroscedasticity appears, and in this case, WLS will be applied instead.

(I)(n+l)

rs

¢(n+1)

rs

¢(n+1)

rs

Table 4. Calibration results of the original models (WLS)

a White test Q test
Model —;

a p-value  95%CI (p-value)  (p-value)
PSAP  6.75E-4  0.079 [-0.074,3]x1E-3  0.376 0.587
FIFO 8.97E-6  0.062 [-0.044,7]x1E-5  0.310 0.583
XYY 7.12E-2  0.054 [-0.0121.3]x1E-1  0.250 0.503
ETFD 1.26E-3  0.061 [-0.054, 2.4]x1E-3  0.356 0.197
SGFD 8.80E-2 0.038 [0.048, 1.6]x1E-1 0.137 0.003

" Autocorrelation-free rejected tte significance level of 5%

3.2.2. Nonlinear effects of flows and cost differences on route switching

Mounce and Carey (2011) suggested incorporating nonlinear effette ioriginal PSAP
formulations. Following this idea, waefine the following bivariate functioh(x, p),

xP x>0
h(x, p)= 0 x=0, (13)
-(-x)*  x<0

and extend Egs. (2)-(5) as follows,

PsAP:¢2” (p.a) =h( ", p)n([c"” ~c”] .a)-n("p)n(["-c"] @), @4
FIFO: ¢ (p,a) =h( ", p)h( ", p)h(c™ -cl" q), (15)

S

XYY: ¢ (p,a)=h(c"” -c”,q), (16)

S

10
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ETFD: 40 (p,q) = h( £, p)h([c" -] ,q) ~h(1",p) h([f(") -¢"| ,Q) ,(17)

where the parametens and g capture the degrees of nonlinearity. Finding the best values of
p andq in each model can be treated asfibllowing nonlinear regression problem:

. (n+1) _ (n+1)
min > Z)[grs o™ (p,a)]

* neN (r.s

2

The results (Table 5) prefer an increasing aoncave relationship between cost differences
and swapping rates for all four models, while relationships between path flows and
swapping rates are quite difémt: Although theyall suggest convexelationships, PSAP

suggests a decreasing one, while FIFO and E3#dyest an increasing one. The day-to-day
models in Egs. (14)-(17) with these optimaland g values are then calibrated, and the

results are shown in Table 6.

Table 5. Optimal parameter values for capturing nonlinear effects
PSAP FIFO XYY ETFD
P -069 120 - 3.12
q 099 092 089 031

Table 6. Calibration based on optimal and q values (OLS)

PSAP FIFO XYY ETFD
o a 2.07 2.35E-6 0.13 1.20E-6
p-value 5.73E-10 1.42E-10 6.00E-10 1.21E-9
White test p-value) 0.084 0.475 0.073 0.057
Q test p-value) 0.369 0.629 0.406 0.483

3.2.3. Path preferences

Being curious about whether the participatmesated paths differély when making route
choices, we write

n+l

g0 =y, + o, 00 +e neN, (r,8)=(12),(13),(2,3), (18)
wherey,, represents participants’ preference between pathisd S, and o, is the path-

specific sensitivity. The following WLS is used lifeteroscedasticity is detected (at the
significance level of 5%) in OLS:

g(n+l) 1 (I)(n+l) 8(n+1)
r?n = = Vs ot s r?n =+ rs(n = ne N, (r,s)=(12) (13 ( 2,3.(19)
Joo| e e e

The results are given in Table 7. The values show that Pathi® the most preferred path;

however, this is not evident according to fRealue and the 95% CI. Again, autocorrelation
is detected (at the significe@ level of 5%) in SGFD bewen the path pair (2,3).

11
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Table 7. Calibration results othe path preference

Trs Ors Is White test Q test

Model (1) Vs p-value 95% ClI G pvalue OLS?"  (p-value) (p-value)
(1,2) 0.06 0.927 [-1.18,.29] 7.02E-4 0.0477 No 0.459 0.609

PSAP (1,3) 0.13 0.934 [-3.08.34] 5.10E-4 0.0009 0.793 0.891
(2,3) 269 0160  [-6.52.14] 9.77E-4  0.0000 0.860 0.597

(1,2) 009 0887  [1.21.39]  9.46E-6 00369 No 0.397 0.595

FIFO (1,3) -012 0935 [-3.10.86] 9.31E-6  0.0002 0.704 0.818
(2,3) -2.32  0.233 [-6.23,.59] 1.15E-5 0.0001 0.858 0.455

(1,2) 0.03 0.956 [-1.17,.24] 7.37E-2 0.0360 No 0.353 0.583

XYY (1,3) 0.12 0.936 [-2.948.18] 6.25E-2 0.0003 0.751 0.962
(2,3) -2.97 0.132 [-6.9@.95] 1.16E-1 0.0001 0.927 0.550

(1,2) 112 0554  [2.7%.99]  8.86E4  0.0080 0.367 0.386

ETFD (1,3) 0.63 0.691 [-2.613.87] 8.58E-4 0.0008 0.838 0.862
(23) 336 0.090  [7.28.56] 2.24E-3  0.0000 0.771 0.757

(1,2) 0.60 0.749 [-3.231.44] 7.94E-2 0.0136 0.136 0.084
SGFD (1,3) -0.36 0.819 [-3.5@.84] 8.50E-2 0.0010 0.212 0.886
(23) -2.65 0.347  [8.3B.06] 8.83E-2 0.1235 0.870 0.031

" Null hypothesisa,, =0 not rejected at the significance level of 5%

™ Autocorrelation-free rejected at the significance level of 5%
™ Blank cells indicate “Yes”

3.2.4. Time-varying parameters

Horowitz (1984) assumed that teders’ sensitivities to the gatime differences can change
during the evolution process. Under thigcamstance, the parameters calibrated from
historical data may not work well for pretig future traffic conditions. To examine this
effect, we set up a time window of 15 days arlibcate the day-to-dagrocesses in Egs. (2)-
(6) with observations in th time window, to see how changes as the time window rolls

forward. The time window i ={m-14,m-13;--,m}, andm rolls from 16 to 25. Again,
WLS

A A

=0 =0, =0 + = neM, (r,s)=(1,2) (13 ( 2,3, (20)
will be used if OLS rejects homoscedasticity at the significance level of 5%. Here, the
denominator is different fro ¢E2+1) used in earlier subsections in order to obtain a

statistically significant and heteroscetigit/-free result. For all regressiong, =0 is
rejected at the significance level of 5%mndahomoscedasticity is not rejected at the
significance level of 5%. Unfarhately, autocorrelation-free is rejected at the significance
level of 5% in 4 out of 10 regressions for SGFD. The evolutioh @ demonstrated in
Figure 5. As we can se@, in the SGFD model has an obus decreasing trend, which is
less obvious in the other four models. Howewse stress that the trend in SGFD is
problematic due to the existence of autocorrelation.
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Figure5. Evolution of & with a rolling time window.

To confirm this trend, we assumdirgear relationship between parameterand dayn as

a=o(n)=6n+p. (21)
Substituting it into Eq. (1) leads to
gie? =0x(n+ 1) +pxe”. (22)

The following WLS is used if heteroscedasticity is detected (at the significance level of 5%)
in OLS:

(n+1) n+1 (n+1) (n+1) (n+2)
g_f?n) =0x ( _()rj)’s + X 4’_7“) + g_rs(n) . (23)
C C C C

The calibration results of Eq. (2@)ith respect to the five models in Eqgs. (2)-(6) are given in

Table 8. Thed values indicate a decreasing trendxgfhowever, it is not significant at the 5%
level in all models except &D; however, not surprisingly, $® is not autocorrelation-free.
An interesting finding is that by compag the formulations of ETFD and SFGD, the

inclusion of the denominatoZ%R[E(”)—cgn)] changeso. from time-invariant to time-

varying. The explanation mighie that as the experiment proceeded, the system evolved

closer to the equilibriugmand thus the value CESER[E(”) —cﬁ”)] gradually decreased. Such

a decreasing trend would counteract the decreasing tremd s the ETFD model shows no
time-dependency. It is unclear why ETFaigocorrelation-free while SGFD is not.

Table 8. Calibration results on time-varying parameters

0 u White test  Q test
Model OLSIWLS — ovalue  95% CI i pvalue (p-value)  (p-value)
PSAP  WLS -1.13E-5 0595  [5.37, 3.201E-5 B.04E-4 B8.30E-4 0.416 0.477
FIFO  WLS -339E-7 0.222  [-8.89,10] x1E-7 1.32E-5 8.65E-5 0517 0.581
XYY  WLS -2.36E-3 0291  [-6.78,@7] x1E-3 01019  1.82E-4 0518 0.451
ETFD  WLS -2.69E-8 0.999  [-7.74,7] x1E-5 00012  7.72E-3 0.260 0.220
SGFD OLS -8.00E-3 0.004 [-1.34, -0.26] x1E-2 01932  250E-5 0.437 0.022

13



Author Accepted Manuscript

" Null hypothesiso =0 rejected at the significance level of 1%

" Autocorrelation-free rejected tite significance level of 5%
To confirm our conjecture above on the sawf the difference between ETFD and SGFD,
we redo the regression of Eq. (22) Wi[ii’i+1) from Eqgs. (8)-(11).The results in Table 8

suggest a time-varying for the new FIFO model. What vean learn from this subsection is
that the assumption of time-varying parameigictually associated with the model.

Table 9. Calibration results on time-varying paraters in new models (OLS only)

Model 0 K White test  Q test

0 p-value  95% CI a p-value (p-value) (p-value)
PSAP (new)  -4.61E-3  0.173  [1.1821] x1E-2 0.18 7.88E-6  0.029 0.413
FIFO (new)  -9.44E-5 0032 [-1.80, -0.08] x1E-4 2.78E-3 3.65E-7 0.076 0.509
XYY (new)  -0.68 0.057  [-1.38,02] 2139  1.6366 0.097 0.378
ETFD (new) -4.97E-3  0.429 [-1.7478] x1E-2 0.27 2.02E-4  0.078 0.155

" Null hypothesist =0 rejected at the significance level of 5%
™ Homoscedasticity rejected at the significance level of 5%

3.2.5. User learning in the day-to-day process

Previous research also tried to explicitly model how travelers predict future travel costs based
on their experience, and usually the exponéstizoothing rule is used (Bie and Lo, 2010;
Cascetta and Cantarella, 19€3ntarella and Cascetta, 1995; Horowitz, 1984; Watling, 1999;
Xiao et al., 2016; Ye and Yang, 2013). In Xiabal. (2016), the XYY model in Eq. (4) is

modified by replacing the experienced travel tinﬁré with the perceived/predicted travel

n+1

time C on pathr e R on dayn+1, i.e.,
g =a(C"?-C"™), a>0, (24)
and Cr(””) is updated through the follomg exponential smoothing rule,
c™ =pd” +(1-p)C, 0<p<1. (25)
Substitutlng Eq. (25) into Eq. (24) yields
g = (1-B) g + aB(cﬁ”) - cg”)) ,a>0,0<B<1. (26)

Unrigorously, the general day-to-day model in Eq. (1) can be extended in a similar way,
which leads to a general d&y-day model wth learning:

g0 = (1-B) g +apel”, a>0, 0<B<1, 27)

where<|>,2 can take those forms in Egs. (2)-(6) €Tdalibration results of this learning model

are given in Table 10, where the WLS is based on
(n+1) ¢(n+l) 8(n+l)

grs — ng

n+l \/d) (n+1) \/d) (n+1) \/d) (n+1) '

Again, we have some interesting observations.
(1) The assumption of learning is not supporited®SAP, FIFO, XYY or ETFD. If we only

(28)
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look at the value 01/—\[3, all four methods sugge$t-f3 <0, or equivalently >1. In
particular, for the XYY model, according to Eq. (2B)> 1 obviously violates the widely
used assumption df<B <1in the literature. However, is this completely impossible?
By rewriting Eq. (25) into the following form,

c = +p(c” -c), (29)

r

the learning process can now be interpreted in this manner: travelers will correct their

previous perception/prediction @adding or subtracting a proportiinof the difference
between actual and perceived/predicted tréiveks. As a result, the perceived/predicted
time would increase it!” > C!" and decrease otherwise. Franpractical point of view,
bothO<B <1 andf >1 could happen in reality: WitB<p <1, travelers are relatively
“conservative” when learning the travel timesd they are relatile “aggressive” if
B>1.

(2) The SGFD model also suggedtsf3=-0.317, which is statistically significant at the
significance level of 1%. T95% CI also shows thdt3 is quite likely to be negative,
which reveals a learning-like pattern. Hoxee different from the XYY model, such

n+1)

“learning” is not ortravel cost but or!”

(3) The SGFD is finally autocorrelation-freee&alling the autocorrelation of SGFD in Table
2, such a learning formulation in Eq. (27) is actually a standard form of correcting for

autocorrelation. Moreover, since the other four models in Table 2 are autocorrelation-free,

it is not surprising that they show no leamibehavior here. Thdifferent results for
ETFD and SGFD again tell us that the teag behavior is @lo model-dependent.

Table 10. Calibration results for the user learning assumption

Model OLS/MWLS el @ White test Q test
1-B p-value 95% CI af p-value (p-value) (p-value)
PSAP  WLS -0.086 0.379 [-0.28,0.11] 5.47E-4 0.131 0.609 0.681
FIFO OLS -0.107 0.300 [-0.31,0.10] 8.55E-6 9.39E-7 0.309 0.736
XYY OLS -0.109 0.308 [-0.32,0.10] 6.67E-2 4.35E-6 0.122 0.498
ETFD OLS -0.185 0.090 [-0.40,0.03] 8.35E-4 1.35E-4 0.195 0.262
SGFD OLS -0.317 0.002 [-0.52,-0.12] 5.42E-2 5.65E-3 0.806 0.420

" Null hypothesisl-p = 0 rejected at the significance level of 1%

We can now go back to handle the autocotimtareported earlier irsGFD (Table 7 and
Table 8). The path-specific SGFD wigarning is constructed as follows,

gfgﬂ) = yrs +(1_Brs) 952) + arsBrsd)(r;Hl) » Ne N ! (r’S) = (1’ 2) ’( 1’3 ( 2’ $’ (30)
and the OLS results are givenTiable 11. The autocorrelationtieen the patipair (1,3) is
corrected. Path preferences are fmind according to the statistics of, . The path

switching between path pairs (1,2) and (1sBpws no obvious learning behavior but is
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n+1)

positively correlated tcd)ES , although for the path pair (1,2)ette is a small possibility that
o,,3,, could be zero or negative. For the path (2i8), the learning-likgattern is possible,

with 1-B,, < 0; however, its flow swapping now seems not quite determinaﬁ’;ﬁﬁl.

Table 11. Calibration of SGFD with userdening and path preference (OLS)

White test  Q test
(p-value) (p-value)

(r,s) parameter calibratedp-value 95% CI

Yre 0.163 0.928 [-3.523.84]

12 1-B. -0.296 0.083 [-0.6310.040] 0.176 0.326
o, B 0.061 0.056 [-0.0010.123]
Vi -0.356 0.824 [-3.63.92]

(1,3) 1-B,. -0.014 0.935 [-0.36(.332] 0.294 0.943
o, B, 0.084 0.003  [0.031,0.137]
Vi -1.597 0.523 [-6.683.48]

(2,3) 1-B,. -0.550 0.012  [-0.965, -0.135] 0.581 0.392

o, Bre 0.012 0.838 [-0.104).127]
"Null hypothesisa, 8, =0 rejected at the significance level of 1%

" Null hypothesisl— . = 0 rejected at the significance level of 2%

The SGFD with learing, time-varyinga. and constan is written as

O =(1-B) g +0Bx(n+1) o2 +upo”, (31)
and the OLS result is given in Table 12. Not sisipgly, the autocorrakion is corrected, and
the homoscedasticity persists. The hixag-like behavior is possible, with- < 0. It is also

possible thatx decreases with time sine>1 and 6 < 0.

Table 12. Calibration of SGFD witluser learning and time-varying parameter (OLS)

White test Q test
(p-value) (p-value)

parameter calibrated p-value  95% CI

1-B -0.26 0.0113 [-0.46,-0.06]
op -6.38E-3  0.0204 [-11.71.0]x1E-3  0.627 0.267
up 0.15 0.0012 [0.06,0.24]

3.3. Model comparison based on regression results

To evaluate and compare the predictive powealbthe day-to-day wdels that we have
investigated so far, the root meansquare error (RMSE), defined as

RMSE:\/Z%N Z(rls)(gg*” —g§g+l>)2/(3x 24) , is a standard indicator, whegs!™ is the

predicted flow swapping rate based on the calibrated parameter value(s). Since RMSE is not
intuitive in explaining the accacy of prediction, we funier define an indicator AE-(x=10
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or 20) as the proportions of those samples that saﬁéﬁ})— f" < x in the total 72

n+1)

samples, wherefr( is the predicted path flow based the calibrated parameter value(s).

The values of RMSE, AE-10 and AE-20 aralculated based on the calibrated parameter
values in Section 3.2 and given in Table 13foBe discussing them, we must emphasize that
our conclusion given below is very rough. Theéehescedasticity and tacorrelation are not
corrected in some cases. Sometimes WLS repl&@l_S for tackling heterogeneity; however,
the WLS forms used in different places candiféerent, and WLS does not necessarily have
the same sample set as that of OLS. @hiSimizes the RMSE, but WLS does not. All of
these affect the numbers listed in TehB. The comparisons are made below.

(1) Regarding RMSE, FIFO>PSARYY>ETFD>SGFD (where “>" means “better than”),
but the gaps between the first three models are small. Regarding AE-10 and AE-20,
FIFO~PSAP~XYY>ETFD>SGFD (where “~" means “similar to”).

(2) From (1) and (I1), altering the function form tife day-to-day models does not necessarily
improve the prediction power comued with the original form.

(3) From (1) and (Ill), WLS does not necessarilyiprove the prediction power compared
with OLS.

(4) From (1) and (1V), compared with the originddy-to-day models, the forms incorporating
nonlinear effects unsurprisingly reduce the RM8ad the AE-20 is also better off, but
the AE-10 is worse off.

(5) Although considering the assumptions of tiwagying parameter olearning behavior
ought to lead to smaller RMSE values (but not necessarily smaller AE-10 and AE-20)
than without considering them, such improent is mild in our study, which might be
because neither assumptions are detectedhand/LS also counteracts the improvement.

Table 13. Performance of different models in prediction

PSAP FIFO XYY ETFD SGFD
RMSE 8.247 7.959 8.127 8.631 9.490
AE-10 70.8% 722% 722% 68.1% 55.6%
AE-20 93.1% 944% 944% 90.3% 83.3%
RMSE 8.125 8.032 8.159 8.484 -
AE-10 75.0% 66.7% 65.3% 69.4% -
AE-20 95.8% 91.7% 93.1% 91.7% -
RMSE 8.248 8.013 8.172 8.662 9.493
AE-10 722% 73.6% 70.8% 69.4% 55.6%
AE-20 93.1% 93.1% 93.1% 88.9% 83.3%
RMSE 8.096 7.942 8.102 8.180 -
AE-10 68.1% 68.1% 694% 653% -
AE-20 95.8% 944% 95.8% 93.1% -
RMSE 8.331 7.984 8.188 8.664 8.953
AE-10 70.8% 73.6% 70.8% 69.4% 59.7%
AE-20 93.1% 944% 944% 88.9% 87.5%

(1) Original form (OLS)
Egs. (2)-(6)

(I New form (OLS)
Egs. (8)-(11)

(1) Original form
(WSL)

(IV) Nonlinear effect
(OLS)

(V) Time-varying
(original form)
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RMSE 8.017 7.770 7.948 8.446 -
AE-10 75.0% 722% 75.0% 72.2% -
AE-20 944% 97.2% 97.2% 91.7% -
RMSE 8.177 7.897 8.066 8.454 8.885
(V) User learning AE-10 73.6% 70.8% 70.8% 69.4% 61.1%
AE-20 93.1% 944% 95.8% 91.7% 86.1%

(VI) Time-varying
(new form)

3.4. Rational behavior adjustment process

The evolution processes in E¢®)-(6), as well as NTP arfdDS, have commonality that the
total travel cost of the netwlomwould decrease based on the poesiday’s patliravel costs,

ie., (f(“”) - f(“))-c(”) <0, until DUE is reached. This property was noticed by Zhang et al.

(2001) and Yang and Zhang (2009) and named'rdt@nal behavior adjustment process”
(RBAP) by the latter. Guo et.g2013, 2015) pointed out thatetlsame feature can be found

in the link-based models such as those in He et al. (2010), Han and Du (2012) and Smith and
Mounce (2011). The RBAP-likenodels with elastic demand were proposed in Sandholm
(2002, 2005), Yang (2007nd Li et al. (2012).

To verify the RBAP property, we pIo(tf(””)—f(”))-c(”) againstn in Figure 6: the

maximum value is 510 and the minimumluais -14072. Among the 25 points, only 8
(marked as “x”) are nonnegative. Therefore #ssumption of RBAP is well satisfied in our

experiment. An additional observatida that the absolute value ﬁﬁ(”*l)— f(”))-c(”)

gradually shrinks to zero@ig the day-to-day process.

x 10
2 T T T T T
OF------- - —— X--x---%--x—x——x—*——**x--
*
> x x S
- *
~ « '
[
—%\ * x Nonnegative
— 10+ _ _
% Negative
_15 * 1 1 1 1 1
0 5 10 15 20 25

n
Figure 6. Verification of RBAP.
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3.5. Perspective of Lyapunov function

Lyapunov’s second theorem is widely usedthe literature for mving the stability and
convergence of a day-to-day model, withamrece on strictly de@asing Lyapunov functions.

As pointed out by Xiao et al. (2016), the Lyapunov functions can represent the energies of the
transportation networks; conversely, the energidbe transportation networks, once defined,
can be used as the Lyapunov fuoos to investigate the stabilitf a day-to-day model. In

this subsection, we examine the evolutioh different Lyapunov dnctions that were
previously used in the literature.

The most widely used Lyapunov functiortie Beckmann’s transformation, given as

W v,
v :Zjoa ta(m)d(o—z.[oata(m)dm, (32)

aeA

whereV, is the DUE flow on linkae A, as in Guo et al. (2013Han and Du (2012), Jin

(2007), Peeta and Yang (2003) and Smith and Mounce (2011). Other forms of Lyapunov

functions include the following one in Smith (1984),
2

VO =3y 0 -cM ] (33)

reR seR *
and the Euclidean distance between the dand DUE path flows (Nagurney and Zhang,
1997) or link flows (Guo et al., 2015), i.e.,
«\2
v = Z(vg”) —va) (34)

acA

or

£\2
v = Z( fr(n) —f ) , (35)
reR
where f is the DUE flow on patit € R. Notably, all four otthese Lyapunov functions are
originally used for continuousme day-to-day models. When being used here for the
discrete-time models, they may not be diyiclecreasing with time anymore. To compare

these Lyapunov functions, we pr”)/maan(”) againstn in Figure 7. The four different

forms in Egs. (32)-(35) evolve quite simibadnd all gradually approach zero with obvious
fluctuations. An unexpected peak appears othalay, consistent with the peak of flow on
Path 2 on the same day (see Figure 2), which is mainly caused by the massive flow switch
from Paths 1 and 3 to Patiw&hout explicable reasons.
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Figure 7. Evolution of the Lyapunov functions.

4. Conclusions and futureresearch directions

In this paper, we adopted regression analisigivestigate the exiag day-to-day models
based on a virtual route choice experiment. Vmtified some issuesush as heterogeneity
and autocorrelation) to which attention shouldplaéd in such qualitative research; we also
observed some interesting propestad the day-to-day model that can be considered in both
empirical and theoretical research. The tmjeneity and autocorrelation found in the
regression analyses could hiat missing features in a day-to-day model. Modifying the
model form can help reduceetineterogeneity and autocorteda; however, it may deprive a
day-to-day model of the key mathematicabperties such as steady states and stability.
Alternatively, we adopted the WLS methodathkeeps the model forms intact. Various
assumptions on participants’ route choice bedra are examined. The findings include:

(1) The influence of the path cost difference the flow swapping ratés increasing and
concave in PSAP, FIFO, XYY and ETFD; howevie influence of path flow varies.

(2) The path preference was not detected, whioght be due to the experimental settings.
The participants were encouraged to achitiaee minimum travel time, so they had no
reason to prefer one path to others.

(3) The parameter is time-varying in SGFD bot in PSAP, FIFO, XY or EGFD, while an
altered form of FIFO showed a time-varying parameter. This implies that whether the
model parameters are time-varying or isalependent also on the model form.

(4) The learning-like behavior was found only BGFD, which is consistent with the
autocorrelation found in the original €6 form. Such an observation links the
autocorrelation in an econometric analygigh the cognitive assumption in decision
making. The failure to detect the learning bebau most models may be attributed to
the fact that we did not explicitly provide thestorical travel times when the participants
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were making choices, or that their cognitive behaviors during decision making were much
more complex than the simple learning process assumed.

(5) The comparison between ETFD and SGFDstllated how the modification of model
forms can lead to distinct conclusioms the time-varying parameter and learning
behavior.

(6) PSAP, FIFO and XYY showed similar predieipower with acceptable accuracy for the
path flow prediction, while ETFD and SGFD performed only slightly less well.

(7) The assumption of the rational behavadjustment process is well satisfied.

(8) The four Lyapunov functions used in the literatfior stability analysis evolve similarly
and all tend to approach zero.

Among the findings are some unsolved questisash as the assumptions of participants’

path preference and learning behavior, as a&lhether and how the flows will affect the

flow swapping, although intuitively they should be related to each other. Answering these
guestions requires richer dataither from the virtual expenents under more practical
settings, or from real urban road networks.

Owing to the experimental settings, we areyale to examine the DUE-based day-to-day
models. For future research, \@ee also interested in invesiing those day-to-day models
based on broader behavioral settings, suckt@shastic UE antioundedly rational UE. In
addition, it is good to exploreja virtual experiments, how ¢hday-to-day models perform
when modeling the scenarios thvitraffic disruptions or with the provision of traffic
information. The demand can be well fixed itaboratory experiment; keever, this is never
the case in the real world. Thus, another irgiiang extension is toonsider an environment
with varying-demand which coulbde either elastic with respect to cost or varying with
departure time. Interestingly, there are leskastic-demand day-to-day models than
fixed-demand models in the literature; theref empirical studiesnay help enrich the
elastic-demand models in lottom-up manner. Moreover, dorporating departure time
choice (Mahmassani, 1990; Mahmassani angtate, 1988; Mahmassani et al., 1986; Xiao
and Lo, 2016) would add another dimensiorthe route choices considered in a general
network.

We are also enlightened by another idearefealing individual-leel characteristics by
investigating aggregate-level models. It would be particularly interesting to develop a
methodology for incorporating individual-level teeogeneity in a model which is based on
aggregate-level measurements (such as sfijovand detecting such heterogeneity from
empirical data. Also, as some day-to-day n®adee built upon the assumption of travelers’
perceiving behavior on travel timeand such perception is generally difficult to measure, it
would be valuable to figure out a way to cedite such models based on measurable variables
such as flows and travel timdsnally yet importantly, quantitate analysis at the individual
level, as the conventional way of studying eoehanging behavior, otd provide valuable
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information for analysis at the macroscopavel. Unlike the above-mentioned idea of
detecting individual-leel heterogeneity in an aggregate-level model, the microscopic
analysis could conversely provide a refece for macroscopic-level analysis.
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