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Abstract 

This paper examines existing day-to-day models based on a virtual day-to-day route choice 

experiment using the latest mobile Internet technologies. With the realized day-to-day path 

flows and path travel times in the experiment, we calibrate several well-designed path-based 

day-to-day models that take the Wardrop’s user equilibrium as (part of) their stationary states. 

The nonlinear effects of path flows and path time differences on path switching are then 

investigated. Participants’ path preferences, time-varying sensitivity, and learning behavior in 

the day-to-day process are also examined. The prediction power of various models with 

various settings (nonlinear effects, time-varying sensitivity, and learning) is compared. The 

assumption of “rational behavior adjustment process” in Yang and Zhang (2009) is further 

verified. Finally, evolutions of different Lyapunov functions used in the literature are plotted, 

and no obvious diversity is observed. 
 

Keywords: day-to-day flow dynamics; virtual route choice experiment; regression analysis; 

model calibration; model comparison.  

1. Introduction and literature review 

It is believed that travelers’ historical traffic experience, as well as their prediction of future 

traffic conditions, would influence their trip decisions from day to day. Prediction of the 

traffic conditions in a future time epoch (e.g., traffic volume at the morning peak on a 

working day) can help transportation agencies arrange appropriate management and control 

strategies ahead of time. Prediction is especially useful when the network structure changes 

(Guo and Liu, 2011; He and Liu, 2012). To model the variation of traffic flows from epoch to 

epoch (Cascetta, 1989; Watling and Cantarella, 2015), a substantial stream of research on 

day-to-day dynamics has been developed. In general, two types of trip decision, i.e., route 

choice and departure time choice, are considered in the day-to-day context. This paper 

                                                           
* Corresponding author. 

E-mail address: evan.fxiao@gmail.com 



Author Accepted Manuscript 

2 

focuses solely on route choice. Readers interested in day-to-day departure time choices can 

refer to the work by Hu and Mahmassani (1997), Mahmassani (1990), Mahmassani and 

Chang (1986), Mahmassani et al., (1986), and more recently Xiao and Lo (2016), just to 

name a few. 

 

Starting from the pioneer work by Smith (1984) and Horowitz (1984), the day-to-day route 

choice models are established to study how aggregate traffic flow changes based on 

current/historical flows and travel costs. The day-to-day model is a deterministic-process 

model if it is formulated as ordinary differential equations or difference equations, and the 

steady states can be different kinds of user equilibrium (UE), including deterministic UE 

(DUE, i.e., Wardrop’s UE), stochastic UE (Cantarella and Cascetta, 1995; Smith and Watling, 

2016), and boundedly rational UE (Di et al., 2015; Guo and Liu, 2011; Mahmassani and 

Chang, 1987; Ye and Yang, 2017). On the other hand, the stochastic-process models 

formulate flow dynamics as stochastic processes, and the steady state is the equilibrium 

probability distribution (Cascetta, 1989; Cascetta and Cantarella, 1991; Davis and Nihan, 

1993; Hazelton, 2002; Hazelton and Parry, 2016; Hazelton and Watling, 2004; Parry and 

Hazelton, 2013; Watling and Cantarella, 2015). 

 

The interaction between day-to-day dynamic route flows and other components of the 

transportation system has been widely studied in an analytical way, including the traffic 

information system (Bifulco et al., 2016; Cantarella, 2013; Cho and Hwang, 2005; Friesz et 

al., 1994), fixed or responsive signal control strategies (Cantarella et al., 2012; Huang et al., 

2016; Liu and Smith, 2015; Smith et al., 2015; Smith and Mounce, 2011; Xiao and Lo, 2015), 

congestion pricing (Friesz et al., 2004; Farokhi and Johansson, 2015; Guo, 2013; Guo et al., 

2016; Han et al., 2017; Liu et al., 2017; Tan et al., 2015; Wang et al., 2015; Xu et al., 2016; 

Yang, 2007; Yang and Szeto, 2006; Yang et al., 2007; Ye et al., 2015), and tradable credit 

schemes (Ye and Yang, 2013). The day-to-day dynamics of other travel modes, such as rail 

(Wu et al., 2013) and transit (Bar-Yosef et al., 2013; Cantarella et al., 2015; Li and Yang, 

2016), were also studied.  

 

In addition to theoretical development, the day-to-day dynamics of route choices have also 

been studied through simulations and laboratory experiments. Most of these studies were 

concerned with how travelers’ route choices are affected by factors such as information, 

experience, risk, uncertainty, personality factors, as well as various transportation system 

components mentioned above (Avineri and Prashker, 2005, 2006; Ben-Elia et al., 2008, 2013; 

Hu and Mahmassani, 1997; Lotan, 1997; Lu et al., 2011; Mahmassani and Herman, 1990; 

Mahmassani and Stephan, 1988; Rapoport et al., 2014; Srinivasan and Mahmassani, 2003; 

Yang et al., 1993). The laboratory experiments were also used to test static UE theories such 

as the Braess Paradox and Downs-Thomson Paradox (Dechenaux et al., 2014; Morgan et al., 

2009; Rapoport et al., 2009).  
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Our paper focuses on another interesting question that has not yet received sufficient 

attention in the research community: Are the various route-choice-based day-to-day models 

proposed so far good enough to reflect the real-life situation, and, if yes, what are the relative 

performances of these models? Regarding this question, some early and recent empirical 

studies have been conducted, such as Avineri and Prashker (2005), He and Liu (2012), 

Mahmassani and Jou (2000), Meneguzzer and Olivieri (2013) and Rapoport et al., (2014). To 

answer our question, we conducted a virtual route choice experiment and collected the 

participants’ day-to-day route choice data via smart phone apps. Using the experimental data, 

we study a specific group of DUE-based day-to-day route choice models in the literature, 

which all have good stability and convergence properties but have not yet been empirically 

studied. The following aspects of these models are studied. First, these path-based day-to-day 

models are calibrated. Second, the nonlinear effects of path flows and path time differences 

on route switching are investigated. Third, the participants’ preferences for different paths, 

variation of their sensitivity over time, and their learning behavior are examined. Fourth, the 

assumption of “rational behavior adjustment process” is verified. Fifth, the predictive power 

of various day-to-day models is compared. Finally, various forms of Lyapunov functions 

used for stability analysis in the literature are examined.  

 

The rest of this paper is organized as follows. Section 2 introduces the settings and processes 

of the virtual route choice experiment. Section 3 provides the findings from the quantitative 

analyses of the data. Section 4 draws the conclusions and discusses possible future directions. 

2. Introduction of the virtual route choice experiment 

To mimic travelers’ real-life decision-making processes from day to day, the traditional 

laboratory or virtual experiments usually involved a relatively small number of participants 

and/or required the participants to repeatedly make decisions within short periods of time. In 

order to better mimic the real world, we managed to involve a larger number of participants 

and allow longer periods for decision making with the help of the social networking app 

WeChat. The network in Figure 1 was used, where “O” and “D” are the origin and destination, 

respectively, and the link travel times were calculated as    40 1 0.15a a a a at v t v Y    , 

where av , 0
at  and aY  are respectively the flow, free flow time and capacity of link a ; the 

values of 0
at  and aY  are given in Table 1. In our experiment, 268 participants took part for 26 

rounds, where each round corresponded to a true calendar day. Most of the participants were 

students of Southwest Jiaotong University in China. On the first day, the route map and the 

free flow times on the three paths were provided to the participants at 8:00 a.m. The 

participants were asked to submit their route choice before 9:00 p.m. on the same day. When 

all the route choices were submitted, the path travel times were calculated based on the 
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predetermined travel time functions. Notably, the travel time functions were unknown to the 

participants. The participants choosing the shortest path(s) were the winners for that day and 

immediately rewarded monetarily. The reward given to each winner was random, but the 

total amount was equal to the number of winners multiplied by one Chinese Yuan per winner. 

On the second day and afterwards, both the route map and the path travel times of the 

previous day were provided (in minutes, rounded to one decimal place) to the participants at 

8:00 a.m. They then made and submitted decisions before 9:00 p.m. of the same day; the 

travel times were calculated at night and the winners were rewarded. This process continued 

until terminated by us.  

 

 
Figure 1. Network structure and paths. 

 

Table 1. Link characteristics 

Link no. (a ) 1 2 3 4 5 
Free flow time (0

at ) (min) 25 10 5 20 15 

Capacity ( aY ) 40 80 80 40 40 

 

To win the reward, the participants would have an incentive to choose the shortest path, 

which fits the participants’ behavior into the assumption of the DUE. Therefore, our analyses 

in this paper will only focus on those day-to-day models whose equilibrium states are DUE. 

With the parameters given in Table 1, we can calculate a unique equilibrium path flow 

pattern of [89, 89, 89], with an identical path travel time of 142 min. After plotting the 

observed day-to-day path flows and path travel times in Figure 2, we found that as the 

experiment proceeded, the fluctuations in path flows and path travel times became smaller 

and smaller; on the 26th round/day, the network state was close to the equilibrium, so we 

terminated the experiment. Furthermore, the average path travel time fluctuated even less and 

was very close to the equilibrium path travel time, even in the early stage of the experiment. 
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(a) 

 
(b) 

Figure 2. Day-to-day evolution of (a) path flows and (b) path travel times. 

3. Data analyses 

This section will be devoted to exploring the existing day-to-day models by calibrating the 

parameters of these models based on the collected data. For subsequent analyses, denote by 

268d   the fixed origin-destination demand,  1,2,3,4,5A   the link set, and  1,2,3R   

the path set. Let  n
rf  and  n

rc  be the flow and actual travel time on path r R  on day n , 

respectively, where n  1, 2, …, 26. Define     T,n n
rf f r R   and     T,n n

rc c r R   as 

the column vectors of path flows and path travel times, respectively, where “T” denotes the 

transpose operation.  

 

The focus of this section will be on the first-order day-to-day models, in which the path flows 

on day 1n   are uniquely determined by the flows and travel times on day n . Denoting  1
rs
ng   
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as the flow swapping rate from path r  to path s  on day 1n  , the general first-order day-to-

day flow dynamics can be expressed as 

         1 1 ,n n n
rs r
n

s fg c   , 0  , (1) 

where       1 ,n n n
rs f c  is a function specifying how  nf  and  nc  determine the flow 

changing rate from path r  to path s , and normally it satisfies    1 1n n
rs sr
    . The first-order 

day-to-day models investigated in this paper include the proportional-switch adjustment 

process (PSAP) in Smith (1984), 

              1n n n n n n n
rs r r s s s rf c c f c c

 
           , (2) 

where    max ,0x x

 ; the first-in-first-out (FIFO) dynamics in Jin (2007), 

           1n n n n n
rs r s r sf f c c  ; (3) 

the recent one in Xiao, Yang and Ye (2016), hereafter called XYY dynamics,  

      1n n n
rs r sc c  ; (4) 

the evolutionary traffic flow dynamics (ETFD) in Yang (2005), 

              1n n n n n n n
rs r s s rf c c c cf

 
           , (5) 

where      n n n
r rr R

cc f d


  is the average path travel time on day n ; and the simplex 

gravity flow dynamics (SGFD) in Smith (1983), 

  
           

   
1

n n n n n n
r s s rn

rs n n
ss R

f c c c c

c c

f
  

 

        
  




. (6) 

The network tatonnement process (NTP) (Friesz et al., 1994) and the projected dynamical 

system (PDS) (Zhang and Nagurney, 1996; Nagurney and Zhang, 1997) are not investigated 

here for two reasons: First, they will degenerate to XYY dynamics under mild conditions 

(Xiao et al., 2016); second, their parameters cannot be estimated by the regression method 

used in this paper. The parameter   in Eq. (1) can be calibrated by both simulation and 

regression, under different forms of  1n
rs
  in Eqs. (2)-(6). 

3.1. Simulation-based calibration 

The simulation-based calibration is to find the values of the parameters under which the 

simulated evolution process can best fit the observed one (in the sense of minimizing the sum 

of squared error between the simulated and observed flow swapping rates). As shown in 

Figure 3, none of these five models can produce a fluctuation pattern close to the one 

observed, and the simulated trajectories of PSAP, FIFO and XYY almost overlap.  
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(a) 

 
(b) 

 
(c) 

Figure 3. Best-fit trajectories based on simulations: (a) Path 1; (b) Path 2; (c) Path 3. 
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3.2. Regression-based calibration 

The simulation-based calibration shows the difficulty of reproducing the day-to-day flow 

pattern by one particular model using only one parameter. Therefore, we turn to a relaxed 

problem: Given the path flows and costs of a particular day, how accurately can we predict 

the flows on the next day? For this problem, regression-based calibration can be used. The 

regression analyses are conducted with the help of the built-in function regstats in MATLAB 

R2016a. To clarify, ̂  denotes the calibrated value of parameter  ; the p-value associated 

with ̂  is obtained by a two-sided test and indicates that the null hypothesis ( 0  ) is 

rejected at a significance level higher than this p-value. The heteroscedasticity is tested by the 

White test. The first-order autocorrelation is tested by the Ljung-Box Q test (or Q test for 

short), and the higher-order autocorrelations are not tested. The p-value of the White test (Q 

test) indicates that the null hypothesis of homoscedasticity (autocorrelation-free) is rejected at 

a significance level higher than this p-value. In this study, we consider a significance level of 

5% when testing both heteroscedasticity and autocorrelation, so they might need to be dealt 

with if their associated p-values are smaller than 0.05. 

3.2.1. The five original day-to-day models 

For the convenience of model comparison, we define the day set  2,3, ,25N    throughout 

all of Section 3.2. We begin the analyses with the five day-to-day models given in Eqs. (2)-

(6). The regression is based on the following formulation: 

      11 1n n
rs rs
n

rsg     , n N ,        , 1,2 , 1,3 , 2,3r s  , (7) 

where  1n
rs
  is the random error, and  1n

rs
  is calculated by substituting the observed  nf  and 

user-informed  nc  into Eqs. (2)-(6). Notably, considering    1 1
s

n n
rs rg g    and    1 1n n

rs sr
    , 

only three path pairs are considered in the regression, and the intercept is excluded. The plots 

of  1
rs
ng   against  1n

rs
  (Figure 4) show an origin-centric pattern and an positive correlation 

between them.  

 

 

Figure 4. Plots of  1
rs
ng   against  1n

rs
 . 

 



Author Accepted Manuscript 

9 

The results of the ordinary least square (OLS) regression based on Eq. (7) are listed in Table 

2. The heteroscedasticity is detected in PSAP, XYY and ETFD. The autocorrelation is 

detected in SGFD. We will not try to correct for the autocorrelation of SGFD hereafter until 

we discuss the learning behavior in Section 3.2.5. 

 

Table 2. Calibration results of the original models (OLS) 

 PSAP FIFO XYY ETFD SGFD 

  
̂  6.35E-4 9.53E-6 7.51E-2 1.04E-3 7.83E-2 

p-value 2.16E-9 1.66E-10 7.51E-10 5.91E-8 6.32E-5 

White test (p-value) 0.007* 0.304 0.027* 0.036* 0.636 

Q test (p-value) 0.328 0.588 0.370 0.092 0.019**  
*  Homoscedasticity rejected at the significance level of 5% 
** Autocorrelation-free rejected at the significance level of 5% 

 

The first way to tackle heteroscedasticity is to modify the model forms. Comparing the forms 

of ETFD and SGFD in Eqs. (5) and (6), SGFD shares the same term as ETFD but includes 

extra functions of travel times in the denominator. Enlightened by this, we simply modify 

PSAP, FIFO, XYY and ETFD by dividing the average travel time, leading to 

 PSAP (new):  
           

 
1

n n n n n n
r r s s s rn

rs n

f c c f c c

c
  

       
  , (8) 

 FIFO (new):  
        

 
1

n n n n
r s r sn

rs n

f f c c

c



 , (9) 

 XYY (new):  
   

 
1

n n
n r s

rs n

c c

c
 

  , (10) 

 ETFD (new):  
           

 
1

n n n n n n
r s s rn

rs n

f c c c c

c

f
  

       
  . (11) 

The calibration (Table 3) of these four new models gives statistically significant ̂  (at the 

significance level of 1%), and the heteroscedasticity of PSAP, XYY and ETFD are corrected. 

Interestingly, the new ETFD model in Eq. (11) and the SGFD model in Eq. (6) have the same 

numerator but different denominators, while the former is autocorrelation-free but the latter is 

not. It is worth pointing out that model modification should not alter the properties of the 

original day-to-day model in terms of steady states and stability. Here, with our modifications, 

the steady states are unchanged, but the stability requires revisiting. 

 

Table 3. Calibration results of the modified models (OLS) 

 PSAP (new) FIFO (new) XYY (new) ETFD (new) 

  
̂  0.132 1.84E-3 14.5 0.221 

p-value 7.38E-10 3.22E-10 9.98E-10 1.69E-08 

White test (p-value) 0.062 0.162 0.186 0.410 
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Q test (p-value) 0.508 0.655 0.456 0.181 
 

Bearing in mind the restrictions of doing model modifications, we adopt the weighted least 

square (WLS) that does not need to change the model forms. In particular, the following 

WLS is used: 

 
 

 

 

 

 

 

1 1

1 1 1

1 n n
rs rs rs

n n n
rs rs rs

ng  

  

 


  
  , n N ,        , 1,2 , 1,3 , 2,3r s  . (12) 

Notably, the samples with  1 0n
rs
   will be ruled out in the WLS regression. The results are 

given in Table 4. Compared with the OLS results in Table 3, the heteroscedasticity of PSAP, 

XYY and ETFD are corrected, although the autocorrelation of SGFD holds up. However, the 

significance level of ̂  is only 5% for SGFD and even higher for the other four models; for 

the latter four models, the 95% confidence interval (CI) shows that there is a tiny chance for 

  to be zero or even negative. Based on these observations, we will adhere to OLS unless 

heteroscedasticity appears, and in this case, WLS will be applied instead. 

 

Table 4. Calibration results of the original models (WLS) 

Model 
  White test 

(p-value) 
Q test 
(p-value) ̂  p-value 95% CI 

PSAP 6.75E-4 0.079 [-0.074, 1.3]×1E-3 0.376 0.587 

FIFO 8.97E-6 0.062 [-0.044, 1.7]×1E-5 0.310 0.583 

XYY 7.12E-2 0.054 [-0.012, 1.3]×1E-1 0.250 0.503 

ETFD 1.26E-3 0.061 [-0.054, 2.4]×1E-3 0.356 0.197 

SGFD 8.80E-2 0.038 [0.048, 1.6]×1E-1 0.137 0.003* 
* Autocorrelation-free rejected at the significance level of 5% 

3.2.2. Nonlinear effects of flows and cost differences on route switching 

Mounce and Carey (2011) suggested incorporating nonlinear effects in the original PSAP 

formulations. Following this idea, we define the following bivariate function  ,h x p ,  

  
 

0

, 0 0

0

p

p

x x

h x p x

x x

 


 

  

, (13) 

and extend Eqs. (2)-(5) as follows, 

 PSAP:                    1 , , , , ,n n n n n n n
rs r r s s s rp q ph f h c c f h c cq h p q

 
          , (14) 

 FIFO:               1 , , , ,n n n n n
rs r s r sh f hp q p h cpf qc   , (15) 

 XYY:         1 , ,n n n
rs r sh c cp q q   , (16) 
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 ETFD:                    1 , , , , ,n n n n n n n
rs r s s rh f h c c cp q p q h cf p h q

 
          , (17) 

where the parameters p  and q  capture the degrees of nonlinearity. Finding the best values of 

p  and q  in each model can be treated as the following nonlinear regression problem: 

      
 

2

, ,
,

1 1min ,n n
r

p q
n r s

s rs
N

g p q 




    . 

The results (Table 5) prefer an increasing and concave relationship between cost differences 

and swapping rates for all four models, while the relationships between path flows and 

swapping rates are quite different: Although they all suggest convex relationships, PSAP 

suggests a decreasing one, while FIFO and ETFD suggest an increasing one. The day-to-day 

models in Eqs. (14)-(17) with these optimal p  and q  values are then calibrated, and the 

results are shown in Table 6.  

 

Table 5. Optimal parameter values for capturing nonlinear effects 

 PSAP FIFO XYY ETFD
p  -0.69 1.20 - 3.12 
q  0.99 0.92 0.89 0.31 

 

Table 6. Calibration based on optimal p  and q  values (OLS) 

 PSAP FIFO XYY ETFD 

  
̂  2.07 2.35E-6 0.13 1.20E-6 

p-value 5.73E-10 1.42E-10 6.00E-10 1.21E-9 

White test (p-value) 0.084 0.475 0.073 0.057 

Q test (p-value) 0.369 0.629 0.406 0.483 

3.2.3. Path preferences 

Being curious about whether the participants treated paths differently when making route 

choices, we write 

      1 1 1n n
rs rs rs r
n

s rsg      , n N ,        , 1,2 , 1,3 , 2,3r s  , (18) 

where rs  represents participants’ preference between paths r  and s , and rs  is the path-

specific sensitivity. The following WLS is used if heteroscedasticity is detected (at the 

significance level of 5%) in OLS: 

 
 

   

 

 

 

 

1 1

1 1 1 1

1 1 n n
rs rs rs

rs rs
n n n n

rs rs rs r

n

s

g  

  





 
 

   
   , n N ,        , 1,2 , 1,3 , 2,3r s  .(19) 

The results are given in Table 7. The ˆ rs  values show that Path 2 is the most preferred path; 

however, this is not evident according to the p-value and the 95% CI. Again, autocorrelation 

is detected (at the significance level of 5%) in SGFD between the path pair (2,3).  
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Table 7. Calibration results on the path preference 

Model  ,r s  
rs  rs  Is 

OLS?*** 
White test 
(p-value) 

Q test 
(p-value) ˆ

rs  p-value 95% CI ˆ
rs  p-value

PSAP 
(1,2) 0.06 0.927 [-1.18, 1.29] 7.02E-4 0.0477 No 0.459 0.609 
(1,3) 0.13 0.934 [-3.08, 3.34] 5.10E-4 0.0009  0.793 0.891 
(2,3) -2.69 0.160 [-6.52, 1.14] 9.77E-4 0.0000  0.860 0.597 

FIFO 
(1,2) 0.09 0.887 [-1.21, 1.39] 9.46E-6 0.0369 No 0.397 0.595 
(1,3) -0.12 0.935 [-3.10, 2.86] 9.31E-6 0.0002  0.704 0.818 
(2,3) -2.32 0.233 [-6.23, 1.59] 1.15E-5 0.0001  0.858 0.455 

XYY 
(1,2) 0.03 0.956 [-1.17, 1.24] 7.37E-2 0.0360 No 0.353 0.583 
(1,3) 0.12 0.936 [-2.94, 3.18] 6.25E-2 0.0003  0.751 0.962 
(2,3) -2.97 0.132 [-6.90, 0.95] 1.16E-1 0.0001  0.927 0.550 

ETFD 
(1,2) 1.12 0.554 [-2.75, 4.99] 8.86E-4 0.0080  0.367 0.386 
(1,3) 0.63 0.691 [-2.61, 3.87] 8.58E-4 0.0008  0.838 0.862 
(2,3) -3.36 0.090 [-7.28, 0.56] 2.24E-3 0.0000  0.771 0.757 

SGFD 
(1,2) 0.60 0.749 [-3.23, 4.44] 7.94E-2 0.0136  0.136 0.084 
(1,3) -0.36 0.819 [-3.56, 2.84] 8.50E-2 0.0010  0.212 0.886 
(2,3) -2.65 0.347 [-8.37, 3.06] 8.83E-2 0.1235*  0.870 0.031**  

* Null hypothesis 0rs   not rejected at the significance level of 5% 
** Autocorrelation-free rejected at the significance level of 5% 
*** Blank cells indicate “Yes” 

3.2.4. Time-varying parameters 

Horowitz (1984) assumed that travelers’ sensitivities to the path time differences can change 

during the evolution process. Under this circumstance, the parameters calibrated from 

historical data may not work well for predicting future traffic conditions. To examine this 

effect, we set up a time window of 15 days and calibrate the day-to-day processes in Eqs. (2)-

(6) with observations in this time window, to see how ̂  changes as the time window rolls 

forward. The time window is  1 ,4, 13,M m m m    , and m  rolls from 16 to 25. Again, 

WLS 

 
 

 

 

 

 

 

11 1n n
rs rs rs

rsn n n

ng

c c c

 


 

 , n M ,        , 1,2 , 1,3 , 2,3r s  , (20) 

will be used if OLS rejects homoscedasticity at the significance level of 5%. Here, the 

denominator is different from  1n
rs
  used in earlier subsections in order to obtain a 

statistically significant and heteroscedasticity-free result. For all regressions, 0   is 

rejected at the significance level of 5%, and homoscedasticity is not rejected at the 

significance level of 5%. Unfortunately, autocorrelation-free is rejected at the significance 

level of 5% in 4 out of 10 regressions for SGFD. The evolution of ̂  is demonstrated in 

Figure 5. As we can see, ̂  in the SGFD model has an obvious decreasing trend, which is 

less obvious in the other four models. However, we stress that the trend in SGFD is 

problematic due to the existence of autocorrelation. 
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Figure 5. Evolution of ̂  with a rolling time window. 

 

To confirm this trend, we assume a linear relationship between parameter   and day n  as 

  n n    . (21) 

Substituting it into Eq. (1) leads to 

        1 11 1 n n
rs rs r
n

sng         . (22) 

The following WLS is used if heteroscedasticity is detected (at the significance level of 5%) 

in OLS: 

 
 

 
   

 

 

 

 

 

1 1 1 11 n n n
rsrs rs rs

n n n n

ng

c c c c

n   
 





 


. (23) 

The calibration results of Eq. (22) with respect to the five models in Eqs. (2)-(6) are given in 

Table 8. The ̂  values indicate a decreasing trend of  ; however, it is not significant at the 5% 

level in all models except SFGD; however, not surprisingly, SGFD is not autocorrelation-free. 

An interesting finding is that by comparing the formulations of ETFD and SFGD, the 

inclusion of the denominator    n n
ss R

cc
 
    changes   from time-invariant to time-

varying. The explanation might be that as the experiment proceeded, the system evolved 

closer to the equilibrium, and thus the value of    n n
ss R

cc
 
    gradually decreased. Such 

a decreasing trend would counteract the decreasing trend of  , so the ETFD model shows no 

time-dependency. It is unclear why ETFD is autocorrelation-free while SGFD is not. 

 

Table 8. Calibration results on time-varying parameters 

Model OLS/WLS 
   White test 

(p-value) 
Q test 
(p-value)̂  p-value 95% CI ̂  p-value 

PSAP WLS -1.13E-5 0.595 [-5.37, 3.10] ×1E-5 8.04E-4 8.30E-4 0.416 0.477 
FIFO WLS -3.39E-7 0.222 [-8.89, 2.10] ×1E-7 1.32E-5 8.65E-5 0.517 0.581 
XYY WLS -2.36E-3 0.291 [-6.78, 2.07] ×1E-3 0.1019 1.82E-4 0.518 0.451 
ETFD WLS -2.69E-8 0.999 [-7.74, 7.74] ×1E-5 0.0012 7.72E-3 0.260 0.220 
SGFD OLS -8.00E-3 0.004* [-1.34, -0.26] ×1E-2 0.1932 2.50E-5 0.437 0.022**  
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* Null hypothesis 0   rejected at the significance level of 1% 
** Autocorrelation-free rejected at the significance level of 5% 

 

To confirm our conjecture above on the cause of the difference between ETFD and SGFD, 

we redo the regression of Eq. (22) with  1n
rs
  from Eqs. (8)-(11). The results in Table 8 

suggest a time-varying   for the new FIFO model. What we can learn from this subsection is 

that the assumption of time-varying parameters is actually associated with the model. 

 

Table 9. Calibration results on time-varying parameters in new models (OLS only) 

Model 
   White test 

(p-value) 
Q test 
(p-value) ̂  p-value 95% CI ̂  p-value 

PSAP (new) -4.61E-3 0.173 [-1.13, 0.21] ×1E-2 0.18 7.88E-6 0.029**  0.413 
FIFO (new) -9.44E-5 0.032* [-1.80, -0.08] ×1E-4 2.78E-3 3.65E-7 0.076 0.509 
XYY (new) -0.68 0.057 [-1.38, 0.02] 21.39 1.63E-6 0.097 0.378 
ETFD (new) -4.97E-3 0.429 [-1.74, 0.75] ×1E-2 0.27 2.02E-4 0.078 0.155 
* Null hypothesis 0   rejected at the significance level of 5% 
** Homoscedasticity rejected at the significance level of 5% 

3.2.5. User learning in the day-to-day process 

Previous research also tried to explicitly model how travelers predict future travel costs based 

on their experience, and usually the exponential smoothing rule is used (Bie and Lo, 2010; 

Cascetta and Cantarella, 1993; Cantarella and Cascetta, 1995; Horowitz, 1984; Watling, 1999; 

Xiao et al., 2016; Ye and Yang, 2013). In Xiao et al. (2016), the XYY model in Eq. (4) is 

modified by replacing the experienced travel time  n
rc  with the perceived/predicted travel 

time  1n
rC   on path r R  on day 1n  , i.e.,  

       11 1n n
rs r s
ng C C    , 0  , (24) 

and  1n
rC   is updated through the following exponential smoothing rule, 

        1 1n n n
r r rC c C    , 0 1  . (25) 

Substituting Eq. (25) into Eq. (24) yields 

           1 1 n n
rs rs r s
n ng g c c     , 0  , 0 1  . (26) 

Unrigorously, the general day-to-day model in Eq. (1) can be extended in a similar way, 

which leads to a general day-to-day model with learning: 

        1 11rs rs s
n n n

rg g    , 0  , 0 1  , (27) 

where  n
rs  can take those forms in Eqs. (2)-(6). The calibration results of this learning model 

are given in Table 10, where the WLS is based on 

 
 

 
 

 

 

 

 

 

 

1 1 1

1 1 1 1
1rs rs rs rs

rs rs

n n n n

r
n n n

s r
n

s

g g  

   

 
  

 






. (28) 

Again, we have some interesting observations. 

(1) The assumption of learning is not supported in PSAP, FIFO, XYY or ETFD. If we only 



Author Accepted Manuscript 

15 

look at the value of 1 , all four methods suggest 1 0  , or equivalently 1  . In 

particular, for the XYY model, according to Eq. (25), 1   obviously violates the widely 

used assumption of 0 1   in the literature. However, is this completely impossible? 

By rewriting Eq. (25) into the following form, 

         1n n n n
r r r rC C c C    , (29) 

the learning process can now be interpreted in this manner: travelers will correct their 

previous perception/prediction by adding or subtracting a proportion   of the difference 

between actual and perceived/predicted travel times. As a result, the perceived/predicted 

time would increase if    n n
r rc C  and decrease otherwise. From a practical point of view, 

both 0 1   and 1   could happen in reality: With 0 1  , travelers are relatively 

“conservative” when learning the travel times, and they are relatively “aggressive” if 

1  .  

(2) The SGFD model also suggests 01 .317   , which is statistically significant at the 

significance level of 1%. The 95% CI also shows that 1  is quite likely to be negative, 

which reveals a learning-like pattern. However, different from the XYY model, such 

“learning” is not on travel cost but on  1
rs
n .  

(3) The SGFD is finally autocorrelation-free. Recalling the autocorrelation of SGFD in Table 

2, such a learning formulation in Eq. (27) is actually a standard form of correcting for 

autocorrelation. Moreover, since the other four models in Table 2 are autocorrelation-free, 

it is not surprising that they show no learning behavior here. The different results for 

ETFD and SGFD again tell us that the learning behavior is also model-dependent. 

 

Table 10. Calibration results for the user learning assumption 

Model OLS/WLS 
1    White test 

(p-value) 
Q test 
(p-value)1  p-value 95% CI   p-value 

PSAP WLS -0.086 0.379 [-0.28, 0.11] 5.47E-4 0.131 0.609 0.681 

FIFO OLS -0.107 0.300 [-0.31, 0.10] 8.55E-6 9.39E-7 0.309 0.736 

XYY OLS -0.109 0.308 [-0.32, 0.10] 6.67E-2 4.35E-6 0.122 0.498 

ETFD OLS -0.185 0.090 [-0.40, 0.03] 8.35E-4 1.35E-4 0.195 0.262 

SGFD OLS -0.317 0.002* [-0.52, -0.12] 5.42E-2 5.65E-3 0.806 0.420 
* Null hypothesis 1 0   rejected at the significance level of 1%

 

We can now go back to handle the autocorrelation reported earlier in SGFD (Table 7 and 

Table 8). The path-specific SGFD with learning is constructed as follows, 

        1 11rs rs rs rs rs rs r
n

s
n ng g        , n N ,        , 1,2 , 1,3 , 2,3r s  , (30) 

and the OLS results are given in Table 11. The autocorrelation between the path pair (1,3) is 

corrected. Path preferences are not found according to the statistics on rs . The path 

switching between path pairs (1,2) and (1,3) shows no obvious learning behavior but is 
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positively correlated to  1
rs
n , although for the path pair (1,2), there is a small possibility that 

12 12   could be zero or negative. For the path pair (2,3), the learning-like pattern is possible, 

with 231 0  ; however, its flow swapping now seems not quite determined by  1
12
n .  

 

Table 11. Calibration of SGFD with user learning and path preference (OLS) 

 ,r s  parameter calibrated p-value 95% CI 
White test 
(p-value) 

Q test 
(p-value) 

(1,2) 
rs  0.163 0.928 [-3.52, 3.84] 

0.176 0.326 1 rs  -0.296 0.083 [-0.631, 0.040] 

rs rs   0.061 0.056 [-0.001, 0.123] 

(1,3) 
rs  -0.356 0.824 [-3.63, 2.92] 

0.294 0.943 1 rs  -0.014 0.935 [-0.360, 0.332] 

rs rs   0.084 0.003* [0.031, 0.137] 

(2,3) 
rs  -1.597 0.523 [-6.68, 3.48] 

0.581 0.392 1 rs  -0.550 0.012**  [-0.965, -0.135] 

rs rs   0.012 0.838 [-0.104, 0.127] 
*Null hypothesis 0rs rs    rejected at the significance level of 1% 
** Null hypothesis 1 0rs   rejected at the significance level of 2% 

 

The SGFD with learning, time-varying   and constant   is written as 

            1 1 111rs rs rs rs
n n n nng g          , (31) 

and the OLS result is given in Table 12. Not surprisingly, the autocorrelation is corrected, and 

the homoscedasticity persists. The learning-like behavior is possible, with 1 0  . It is also 

possible that   decreases with time since 1   and 0  . 

 

Table 12. Calibration of SGFD with user learning and time-varying parameter (OLS) 

parameter calibrated p-value 95% CI 
White test 
(p-value) 

Q test 
(p-value)

1  -0.26 0.0113 [-0.46, -0.06] 

0.627 0.267   -6.38E-3 0.0204 [-11.7, -1.0]×1E-3 
  0.15 0.0012 [0.06, 0.24] 

3.3. Model comparison based on regression results 

To evaluate and compare the predictive power of all the day-to-day models that we have 

investigated so far, the root mean square error (RMSE), defined as 

       
21 1

,
243ˆ n n

n r s rs rsN
g gRMSE



     , is a standard indicator, where  1ˆ rs
ng   is the 

predicted flow swapping rate based on the calibrated parameter value(s). Since RMSE is not 

intuitive in explaining the accuracy of prediction, we further define an indicator AE-x (x=10 
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or 20) as the proportions of those samples that satisfy    1 1ˆ n n
r rf f x    in the total 72 

samples, where  1ˆ n
rf

  is the predicted path flow based on the calibrated parameter value(s).  

 

The values of RMSE, AE-10 and AE-20 are calculated based on the calibrated parameter 

values in Section 3.2 and given in Table 13. Before discussing them, we must emphasize that 

our conclusion given below is very rough. The heteroscedasticity and autocorrelation are not 

corrected in some cases. Sometimes WLS replaces OLS for tackling heterogeneity; however, 

the WLS forms used in different places can be different, and WLS does not necessarily have 

the same sample set as that of OLS. OLS minimizes the RMSE, but WLS does not. All of 

these affect the numbers listed in Table 13. The comparisons are made below. 

(1) Regarding RMSE, FIFO>PSAP>XYY>ETFD>SGFD (where “>” means “better than”), 

but the gaps between the first three models are small. Regarding AE-10 and AE-20, 

FIFO~PSAP~XYY>ETFD>SGFD (where “~” means “similar to”). 

(2) From (I) and (II), altering the function form of the day-to-day models does not necessarily 

improve the prediction power compared with the original form. 

(3) From (I) and (III), WLS does not necessarily improve the prediction power compared 

with OLS. 

(4) From (I) and (IV), compared with the original day-to-day models, the forms incorporating 

nonlinear effects unsurprisingly reduce the RMSE, and the AE-20 is also better off, but 

the AE-10 is worse off. 

(5) Although considering the assumptions of time-varying parameter or learning behavior 

ought to lead to smaller RMSE values (but not necessarily smaller AE-10 and AE-20) 

than without considering them, such improvement is mild in our study, which might be 

because neither assumptions are detected, and the WLS also counteracts the improvement.  

 

Table 13. Performance of different models in prediction 

  PSAP FIFO XYY ETFD SGFD 

(I) Original form (OLS) 
Eqs. (2)-(6) 

RMSE 8.247 7.959 8.127 8.631 9.490 
AE-10 70.8% 72.2% 72.2% 68.1% 55.6% 
AE-20 93.1% 94.4% 94.4% 90.3% 83.3% 

(II) New form (OLS) 
Eqs. (8)-(11) 

RMSE 8.125 8.032 8.159 8.484 - 
AE-10 75.0% 66.7% 65.3% 69.4% - 
AE-20 95.8% 91.7% 93.1% 91.7% - 

(III) Original form 
(WSL) 

RMSE 8.248 8.013 8.172 8.662 9.493 
AE-10 72.2% 73.6% 70.8% 69.4% 55.6% 
AE-20 93.1% 93.1% 93.1% 88.9% 83.3% 

(IV) Nonlinear effect 
(OLS) 

RMSE 8.096 7.942 8.102 8.180 - 
AE-10 68.1% 68.1% 69.4% 65.3% - 
AE-20 95.8% 94.4% 95.8% 93.1% - 

(V) Time-varying 
(original form) 

RMSE 8.331 7.984 8.188 8.664 8.953 
AE-10 70.8% 73.6% 70.8% 69.4% 59.7% 
AE-20 93.1% 94.4% 94.4% 88.9% 87.5% 
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(VI) Time-varying 
(new form) 

RMSE 8.017 7.770 7.948 8.446 - 
AE-10 75.0% 72.2% 75.0% 72.2% - 
AE-20 94.4% 97.2% 97.2% 91.7% - 

(VII) User learning 
RMSE 8.177 7.897 8.066 8.454 8.885 
AE-10 73.6% 70.8% 70.8% 69.4% 61.1% 
AE-20 93.1% 94.4% 95.8% 91.7% 86.1% 

3.4. Rational behavior adjustment process 

The evolution processes in Eqs. (2)-(6), as well as NTP and PDS, have commonality that the 

total travel cost of the network would decrease based on the previous day’s path travel costs, 

i.e.,       1 0n n nf f c    , until DUE is reached. This property was noticed by Zhang et al. 

(2001) and Yang and Zhang (2009) and named the “rational behavior adjustment process” 

(RBAP) by the latter. Guo et al. (2013, 2015) pointed out that the same feature can be found 

in the link-based models such as those in He et al. (2010), Han and Du (2012) and Smith and 

Mounce (2011). The RBAP-like models with elastic demand were proposed in Sandholm 

(2002, 2005), Yang (2007) and Li et al. (2012). 

 

To verify the RBAP property, we plot       1n n nf f c    against n  in Figure 6: the 

maximum value is 510 and the minimum value is -14072. Among the 25 points, only 8 

(marked as “×”) are nonnegative. Therefore, the assumption of RBAP is well satisfied in our 

experiment. An additional observation is that the absolute value of       1n n nf f c    

gradually shrinks to zero along the day-to-day process. 

 

 
Figure 6. Verification of RBAP. 
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3.5. Perspective of Lyapunov function 

Lyapunov’s second theorem is widely used in the literature for proving the stability and 

convergence of a day-to-day model, with reliance on strictly decreasing Lyapunov functions. 

As pointed out by Xiao et al. (2016), the Lyapunov functions can represent the energies of the 

transportation networks; conversely, the energies of the transportation networks, once defined, 

can be used as the Lyapunov functions to investigate the stability of a day-to-day model. In 

this subsection, we examine the evolution of different Lyapunov functions that were 

previously used in the literature. 

 

The most widely used Lyapunov function is the Beckmann’s transformation, given as 

    
 

 
*

0 0
d d

n
a av vn

a a
a A a A

V t t
 

       , (32) 

where *
av  is the DUE flow on link a A , as in Guo et al. (2013), Han and Du (2012), Jin 

(2007), Peeta and Yang (2003) and Smith and Mounce (2011). Other forms of Lyapunov 

functions include the following one in Smith (1984), 

         2n n n n
r r s

r R s R

V f c c
 

    , (33) 

and the Euclidean distance between the actual and DUE path flows (Nagurney and Zhang, 

1997) or link flows (Guo et al., 2015), i.e., 

     2
*n n

a a
a A

V v v


   (34) 

or 

     2
*n n

r r
r R

V f f


  , (35) 

where *
rf  is the DUE flow on path r R . Notably, all four of these Lyapunov functions are 

originally used for continuous-time day-to-day models. When being used here for the 

discrete-time models, they may not be strictly decreasing with time anymore. To compare 

these Lyapunov functions, we plot    maxn n
nV V  against n  in Figure 7. The four different 

forms in Eqs. (32)-(35) evolve quite similarly and all gradually approach zero with obvious 

fluctuations. An unexpected peak appears on the 9th day, consistent with the peak of flow on 

Path 2 on the same day (see Figure 2), which is mainly caused by the massive flow switch 

from Paths 1 and 3 to Path 2 without explicable reasons.  
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Figure 7. Evolution of the Lyapunov functions. 

4. Conclusions and future research directions 

In this paper, we adopted regression analysis to investigate the existing day-to-day models 

based on a virtual route choice experiment. We identified some issues (such as heterogeneity 

and autocorrelation) to which attention should be paid in such qualitative research; we also 

observed some interesting properties of the day-to-day model that can be considered in both 

empirical and theoretical research. The heterogeneity and autocorrelation found in the 

regression analyses could hint at missing features in a day-to-day model. Modifying the 

model form can help reduce the heterogeneity and autocorrelation; however, it may deprive a 

day-to-day model of the key mathematical properties such as steady states and stability. 

Alternatively, we adopted the WLS method that keeps the model forms intact. Various 

assumptions on participants’ route choice behaviors are examined. The findings include: 

(1) The influence of the path cost difference on the flow swapping rate is increasing and 

concave in PSAP, FIFO, XYY and ETFD; however, the influence of path flow varies. 

(2) The path preference was not detected, which might be due to the experimental settings. 

The participants were encouraged to achieve the minimum travel time, so they had no 

reason to prefer one path to others. 

(3) The parameter is time-varying in SGFD but not in PSAP, FIFO, XYY or EGFD, while an 

altered form of FIFO showed a time-varying parameter. This implies that whether the 

model parameters are time-varying or not is dependent also on the model form.  

(4) The learning-like behavior was found only in SGFD, which is consistent with the 

autocorrelation found in the original SGFD form. Such an observation links the 

autocorrelation in an econometric analysis with the cognitive assumption in decision 

making. The failure to detect the learning behavior in most models may be attributed to 

the fact that we did not explicitly provide the historical travel times when the participants 
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were making choices, or that their cognitive behaviors during decision making were much 

more complex than the simple learning process assumed. 

(5) The comparison between ETFD and SGFD illustrated how the modification of model 

forms can lead to distinct conclusions on the time-varying parameter and learning 

behavior.  

(6) PSAP, FIFO and XYY showed similar predictive power with acceptable accuracy for the 

path flow prediction, while ETFD and SGFD performed only slightly less well. 

(7) The assumption of the rational behavior adjustment process is well satisfied. 

(8) The four Lyapunov functions used in the literature for stability analysis evolve similarly 

and all tend to approach zero. 

Among the findings are some unsolved questions, such as the assumptions of participants’ 

path preference and learning behavior, as well as whether and how the flows will affect the 

flow swapping, although intuitively they should be related to each other. Answering these 

questions requires richer data, either from the virtual experiments under more practical 

settings, or from real urban road networks.  

 

Owing to the experimental settings, we are only able to examine the DUE-based day-to-day 

models. For future research, we are also interested in investigating those day-to-day models 

based on broader behavioral settings, such as stochastic UE and boundedly rational UE. In 

addition, it is good to explore, via virtual experiments, how the day-to-day models perform 

when modeling the scenarios with traffic disruptions or with the provision of traffic 

information. The demand can be well fixed in a laboratory experiment; however, this is never 

the case in the real world. Thus, another interesting extension is to consider an environment 

with varying-demand which could be either elastic with respect to cost or varying with 

departure time. Interestingly, there are less elastic-demand day-to-day models than 

fixed-demand models in the literature; therefore, empirical studies may help enrich the 

elastic-demand models in a bottom-up manner. Moreover, incorporating departure time 

choice (Mahmassani, 1990; Mahmassani and Stephan, 1988; Mahmassani et al., 1986; Xiao 

and Lo, 2016) would add another dimension to the route choices considered in a general 

network. 

 

We are also enlightened by another idea of revealing individual-level characteristics by 

investigating aggregate-level models. It would be particularly interesting to develop a 

methodology for incorporating individual-level heterogeneity in a model which is based on 

aggregate-level measurements (such as flows), and detecting such heterogeneity from 

empirical data. Also, as some day-to-day models are built upon the assumption of travelers’ 

perceiving behavior on travel times, and such perception is generally difficult to measure, it 

would be valuable to figure out a way to calibrate such models based on measurable variables 

such as flows and travel times. Finally yet importantly, quantitative analysis at the individual 

level, as the conventional way of studying route changing behavior, could provide valuable 
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information for analysis at the macroscopic level. Unlike the above-mentioned idea of 

detecting individual-level heterogeneity in an aggregate-level model, the microscopic 

analysis could conversely provide a reference for macroscopic-level analysis. 
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