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SUMMARY

Microbial utilization of complex polysaccharides is a

major driving force in shaping the composition of the

human gut microbiota. There is a growing apprecia-

tion that finely tuned polysaccharide utilization loci

enable ubiquitous gut Bacteroidetes to thrive on

the plethora of complex polysaccharides that consti-

tute ‘‘dietary fiber.’’ Mixed-linkage b(1,3)/b(1,4)-glu-

cans (MLGs) are a key family of plant cell wall poly-

saccharides with recognized health benefits but

whose mechanism of utilization has remained un-

clear. Here, we provide molecular insight into the

function of an archetypal MLG utilization locus

(MLGUL) through a combination of biochemistry,

enzymology, structural biology, and microbiology.

Comparative genomics coupled with growth studies

demonstrated further that syntenic MLGULs serve

as genetic markers for MLG catabolism across

commensal gut bacteria. In turn, we surveyed human

gut metagenomes to reveal that MLGULs are ubiqui-

tous in human populations globally, which under-

scores the importance of gut microbial metabolism

of MLG as a common cereal polysaccharide.

INTRODUCTION

The composition and homeostasis of the human gut microbiota

have a profound and intimate connection to various aspects of

our physiology, health, and wellbeing (Littman and Pamer,

2011). Indeed, a multitude of diseases, such as type 2 diabetes,

inflammatory bowel diseases (IBDs), and cancer, have been

linked to alterations in the population and proportion of microbes

in this highly complex and dynamic ecosystem that exists in our

large intestine (Biedermann and Rogler, 2015; Fujimura et al.,

2010; Kau et al., 2011; Schwabe and Jobin, 2013). Themolecular

mechanisms by which the microbiota exerts influence on human

health are largely unresolved and undoubtedly complex yet may

hold the key to personalized medicine through therapeutics that

target the gut microbial ecosystem (Blanton et al., 2016; Haak

et al., 2017; Kootte et al., 2012; Subramanian et al., 2015).

A major factor in shaping the composition and physiology of

the gut microbiota is the influx of complex glycans—popularly

known as ‘‘dietary fiber’’—that evade degradation by the limited

set of human-genome-encoded glycoside hydrolases (Hamaker

and Tuncil, 2014; El Kaoutari et al., 2013; Koropatkin et al., 2012).

Indeed, regular ingestion of plant polysaccharides is integral to

maintaining a healthy balance of microbes in our lower gastroin-

testinal tract (De Filippo et al., 2010; Sonnenburg and Sonnen-

burg, 2014). Members of the Bacteroidetes, a dominant phylum

in the human gut, possess an arsenal of polysaccharide utiliza-

tion loci (PUL) to target a wide range of complex glycans (El

Kaoutari et al., 2013). Analogous to the archetypal Bacteroides

thetaiotaomicron starch utilization system (Sus), a hallmark of

all Bacteroidetes PULs is the organization of genes clustered

around tandem susC/susD homologs (encoding a TonB depen-

dent transporter [TBDT] and a cell-surface glycan-binding pro-

tein [SGBP], respectively; Martens et al., 2009). Additional co-

localized and co-regulated SGBP(s), a cohort of enzymes, and

a transcriptional regulator typically make up a machinery that

acts in concert to sense, break down, and import complex gly-

cans (Grondin et al., 2017; Hemsworth et al., 2016). Many such

PULs, each targeting specific glycan structures, have been iden-

tified by genomics and transcriptomics (see, e.g., the seminal

study by Martens et al., 2011), but detailed functional character-

ization lags severely behind (reviewed in Grondin et al., 2017;

Martens et al., 2014). Developing a precise understanding of

the molecular details of complex glycan utilization by individual

members of the microbiota is essential to designing targeted

therapies based on prebiotics, probiotics, and synbiotics

(Ciorba, 2012; Slavin, 2013), as well as novel therapeutic

interventions.

Recently, comprehensive functional analysis has revealed the

detailedmolecular mechanisms bywhich individual PULs enable
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human gut Bacteroidetes to utilize predominant plant polysac-

charides, including the matrix glycans, xyloglucan (Hemsworth

et al., 2016; Larsbrink et al., 2014; Tauzin et al., 2016), xylan (Ro-

gowski et al., 2015), b-mannan (Bågenholm et al., 2017), and

rhamnogalacturonan II (Ndeh et al., 2017). Mixed-linkage

b(1,3)/b(1,4)-glucans (MLGs) (Figure 1A) from cereal grains

constitute an additional key group of dietary glycans, whose uti-

lization by gut microbes was previously unresolved at the molec-

ular level. MLGs are abundant in the aleurone layer of common

cereals, including oats (3%–8% dry weight) and barley (2%–

20%dryweight; El Khoury et al., 2012). Beyond their obvious po-

tential to contribute to energy intake (Cummings andMacfarlane,

1997; McNeil, 1984), MLGs have been linked to a range of health

benefits, e.g., promoting healthy cholesterol and blood glucose

levels, ameliorating insulin resistance, and mitigating metabolic

syndrome (El Khoury et al., 2012). In particular, the cholesterol-

lowering effect of oat MLG has long been recognized by the

USA Food and Drug Administration (FDA) as well as the UK Joint

Health Claims Initiative (JHCI) and been confirmed by subse-

quent studies (Othman et al., 2011).

The mechanisms behind these systemic benefits of MLG are,

however, incompletely understood, in part due to a lack of un-

derstanding of MLG metabolism by individual members of the

human gut microbiota. Thus, we report here the molecular char-

acterization of a mixed-linkage glucan utilization locus (MLGUL)

in the common symbiont B. ovatus. Identifying syntenic MLGUL
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Figure 1. Cereal MLG and MLGUL Structures

(A) Chemical structure of MLG, consisting of a linear glucan chain of b(1,4)-linked cellotriosyl and cellotetraosyl units linked by b(1,3) bonds. MLGs from various

sources (barley, oat, lichenin, etc.) vary in the ratio of cellotriose to cellotetraose units (Lazaridou et al., 2004). Arrows indicate the specific site of hydrolysis by the

vanguard endo-glucanase of the MLGUL, BoGH16MLG.

(B) Genetic organization of the B. ovatus MLGUL and syntenic loci in select Bacteroidetes species. Homologous genes are connected by colored bars and the

locus tag of the TBDT of each syntenic MLGUL is given on the right as genomic reference points.

See also Figure S1 and Table S1.
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in other Bacteroidetes revealed that, as the archetype, this

MLGUL serves as a molecular marker for MLG utilization across

the Bacteroidetes phylum, thereby enabling future functional

prediction across species.

RESULTS

Identification of a Multi-gene Locus Responsible for

MLG Utilization by B. ovatus

A putative MLGUL was previously identified in B. ovatus (Fig-

ure 1B) based on the presence of a tandem susC/susD homolog

signature (Martens et al., 2009) and high-level expression of

select genes in the presence of bMLG (Martens et al., 2011). In-

dividual genes in the locus, BACOVA_02741-02745, were all

substantially upregulated (125- to 298-fold) during growth on

bMLG versus glucose as sole carbon sources (Table S1).

BACOVA_02742 and BACOVA_02743 encode the signature

TBDT/SGBP pair with 28% and 19% protein sequence identity

to SusC and SusD, respectively. The putative MLGUL was addi-

tionally predicted to encode a second, non-homologous SGBP

(BACOVA_02744), a hybrid two-component sensor/transcrip-

tional regulator (HTCS) (BACOVA_02740), and up to three glyco-

side hydrolases (GHs).

BoGH16MLG (BACOVA_02741) is a member of glycoside hy-

drolase family 16 (GH16) in the carbohydrate active enzymes

(CAZy) classification (Cantarel et al., 2009). GH16 notably

includes canonical bacterial MLG endo-glucanases (endo-

MLGase) (Planas, 2000), along with a diversity of endo-gluca-

nases and endo-galactanases (Eklöf and Hehemann, 2016).

BoGH3MLG (BACOVA_02745) is classified into glycoside hydro-

lase family 3 (GH3), whosemembers include exo-b-glucosidases

(Fincher et al., 2017). Notably, we have determined that

BACOVA_02738, which is predicted to encode a second GH3

exo-b-glucosidase, is unlikely to be part of the MLGUL for three

reasons: (1) BACOVA_02738 was not significantly upregulated

on MLG (1.6-fold versus glucose control; Table S1); (2) a corre-

sponding gene is not found among syntenic loci (Figure 1B);

and (3) the encoded enzyme was catalytically feeble compared

to BoGH3MLG on b-glucosides relevant to MLG saccharification

(vide infra).

To determine the correlation between the presence of the

predicted MLGUL and growth of B. ovatus on MLG, we con-

structed an isogenic mutant of B. ovatus Dtdk (Larsbrink et al.,

2014), in which a contiguous region of DNA-encoding genes

BACOVA_02738–02745 was deleted (B. ovatus DMLGUL).

Vis-à-vis the parent strain, the B. ovatus DMLGUL was able to

grow equally well on glucose as the sole carbon source; how-

ever, the ability to grow on bMLG was completely abolished

(Figure S1). Thus, the putative MLGUL is necessary to confer

B. ovatus the ability to utilize MLG.

Enzymology and Structural Biology of BoGH16MLG, the

Vanguard MLGase

Cellular Localization

The GH family membership of BoGH16MLG suggested a poten-

tial role as the vanguard enzyme catalyzing polysaccharide

backbone cleavage at the cell surface as the essential first

step in MLG utilization. Indeed, the presence of a predicted

type II signal sequence (determined with LipoP 1.0; Juncker

et al., 2003) suggested that the protein is membrane anchored

via lipidation of the N-terminal cysteine residue (Paetzel et al.,

2002). To validate this prediction, B. ovatus Dtdk was grown on

minimal medium with either glucose or bMLG as a sole carbon

source prior to immunolocalization of BoGH16MLG. As shown

in Figure 2A, BoGH16MLGwas clearly visualized on the outer sur-

face of cells in which the presence of the polysaccharide induced

MLGUL expression but was absent from cells grown on glucose

(Figures S2C and S2F). Further analysis of cellular fractions by

western blotting revealed the presence of BoGH16MLG in the

membrane fraction, corroborating its attachment to the outer

membrane (Figure 2C). Interestingly, BoGH16MLG was also de-

tected in the lysate supernatant (soluble periplasmic or cyto-

plasmic proteins) and in the culture supernatant (secreted
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Figure 2. Enzyme Localization Analysis

(A and B) Phase contrast microscopy and corresponding fluorescence mi-

croscopy images of B. ovatus Dtdk cells grown in minimal medium with bMLG

as the sole carbon source probed with custom polyclonal antibodies against

recBoGH16MLG (A) and recBoGH3MLG (B).

(C) Western blots of protein collected from the culture supernatant, cell lysate

supernatant, and cell lysatemembrane fraction ofB. ovatusDtdk cells grown in

minimal medium with glucose or bMLG as a sole carbon source.

See also Figure S2.
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protein; Figure 2C). Whereas the former may represent anchored

protein released into the soluble fraction during cell lysis, detec-

tion in the culture supernatant could result from packaging and

release in outer membrane vesicles, which has previously been

observed for other Bacteroidetes glycoside hydrolases (Elhe-

nawy et al., 2014).

Substrate and Product Specificity

To verify the leading catalytic role of BoGH16MLG in MLG utiliza-

tion and determine the specificity of the enzyme for individual

b-glucans, recombinant BoGH16MLG produced in E. coli (re-

cBoGH16MLG; Figures S3A and S3B) was screened for hydrolytic

activity against a library of polysaccharides. No activity was

observed on tamarind xyloglucan, beechwood xylan, wheat ara-

binoxylan, carob galactomannan, konjac glucomannan, syn-

thetic carboxymethylcellulose, synthetic hydroxyethylcellulose,

Xanthomonas campestris xanthan gum, or Ulva sp. ulvan. In

this initial screen, BoGH16MLG was minimally active on all-

b(1,3)-glucans, including Laminaria digitata laminarin, yeast

b-glucan, and Alcaligenes faecalis curdlan, but exhibited high

specific activity on bMLG. The optimum pH of 6.5 (consistent

with function in the distal human colon) and maximum tempera-

ture range of 45�C to 55�C was determined using bMLG as sub-

strate (data not shown).

Subsequent Michaelis-Menten kinetic analysis at the pH

optimum and 37�C demonstrated that BoGH16MLG is a highly

predominant mixed-linkage b(1,3)/b(1,4)-glucanase (MLGase),

with a 33-fold higher specificity constant, kcat/Km, for bMLG

(Figure 1A) over laminarin, an all-b(1,3)-glucan with single

b(1,6)-linked glucosyl branches (Figure 3A; Table S2; Martin

et al., 2007). BoGH16MLG was even less efficient on the other

two all-b(1,3)-glucans for which activity was initially observed:

the kcat/Km was 147-fold higher for bMLG than yeast b-glucan

(similar in structure to laminarin but with longer b(1,6)-linked

glucose branches; Lowman et al., 2011) and nearly four

orders of magnitude higher than that of high curdlan, a

22-kDa, non-branched b(1,3)-glucan (Harada et al., 1968; Fig-

ure 3A; Table S2).

Detailed product analysis was employed to determine the

mode of hydrolysis, endo versus exo, and linkage specificity of

recBoGH16MLG to gain information on the nature of the MLG

cleavage products at the B. ovatus cell surface. High-perfor-

mance liquid chromatography (HPLC) analysis at selected time

points in the hydrolysis showed the initial production of very large

oligosaccharide fragments, which were progressively converted

into shorter species and ultimately to two distinct oligosaccha-

rides in the limit digest (Figure 3B). This product evolution indi-

cates that BoGH16MLG operates through an endo-dissociative

mode of action, in which the MLG polysaccharide is stochasti-

cally cleaved along the backbone.

Comparison with oligosaccharide standards (Figure 3B) and

additional liquid chromatography-mass spectrometry (LC-MS)

analysis (data not shown) revealed that the limit digest products

were the mixed-linkage trisaccharide, G4G3G (Glcb(1–4) Glcb

(1–3) Glc), and the mixed-linkage tetrasaccharide, G4G4G3G

(Glcb(1–4) Glcb(1–4) Glcb(1–3) Glc). Thus, BoGH16MLG specif-

ically hydrolyzes b(1,4)-linkages of glycosyl residues that are

immediately preceded by a b(1,3)-linked glucosyl residue (to-

ward the non-reducing chain end). This specificity is typical of
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Figure 3. BoGH16MLG Kinetics and MLGUL GHs Product Analysis

(A) BoGH16MLG initial-rate kinetics curves fitted to the Michaelis-Menten

equation for b-glucan polysaccharide substrates on which it is active. Lami-

narin was reduced to laminaritol by sodium borohydride reduction to reduce

background in the BCA assay. Curve fitting was done on OriginPro 2015, and

error bars represent SDs from the mean.

(B) Chromatograms of bMLG and its hydrolysis products by BoGH16MLG and

BoGH3MLG separated by HPAEC-PAD. Red, full-length bMLG polysaccharide;

dark blue, reaction progress time course and limit digest of bMLG hydrolysis

by 10 nM BoGH16MLG; cyan, reaction progress time course and limit digest of

BoGH16MLG products hydrolysis by 25 nM BoGH3MLG. Standards are shown

below in black: solid lines are those corresponding to limit digest products and

dotted line to intermediate products.

See also Figures S3–S5 and Tables S2 and S3.
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bacterial endo-MLGases within GH16 (Gaiser et al., 2006;

McGregor et al., 2017; Planas, 2000).

To provide more refined insight into BoGH16MLG substrate

specificity, Michaelis-Menten kinetics was determined for a se-

ries of chromogenic glycosides (Figures S4A and S4B; Table

S3). recBoGH16MLG had no activity on the ortho-chloro-para-ni-

trophenyl (CNP) b-glycosides of glucose (G-CNP), cellobiose

(G4G-CNP), cellotriose (G4G4G-CNP), or para-nitrophenyl

(pNP) b-glucoside (G-pNP). Weak activity was observed on the

pNP and CNP b-glycosides of laminaribiose (G3G), consistent

with a requirement for a b(1,3) linkage spanning the �2 to �1

active-site subsites (GH subsite nomenclature according to Da-

vies et al., 1997), as was indicated by the bMLG limit-digest anal-

ysis (vide supra). Likewise, G4G3G-CNP and G4G4G3G-CNP

were specifically and efficiently hydrolyzed to release the agly-

cone, with no cleavage of the internal glycosidic bonds. The

specificity constants (kcat/Km values) for CNP release from these

mixed-linkage tri- and tetrasaccharides were 800- and 1,500-

fold greater than that of G3G-CNP, respectively, which indicate

that potential �3 and �4 subsites contribute 17 kJ/mol and

1.6 kJ/mol to transition state stabilization (DDGz). Indeed, a

very significant contribution from the �3 subsite is a common

feature of GH16 endo-MLGases (Gaiser et al., 2006; McGregor

et al., 2016; Planas, 2000).

BoGH16MLG Tertiary Structure

Three-dimensional structures of recBoGH16MLG were solved by

X-ray crystallography to reveal the molecular basis for MLG

recognition and hydrolysis. The apo structure of recBoGH16MLG

was determined to a resolution of 1.8 Å by molecular replace-

ment using the structure of Zobellia galactanivorans laminarinase

ZgLamCGH16-E142S (PDB code 4CRQ; Labourel et al., 2015) as a

search model (see Table S4 for processing and refinement sta-

tistics). The crystal contained two polypeptide chains in the

asymmetric unit corresponding to residues I35–L271 of wild-

type BoGH16MLG for both chains (residue numbering is from

transcriptional start site according to the genomic sequence).

No electron density was observed for the N-terminal His6-tag

and subsequent 15 amino acids in either chain of the recombi-

nant protein, which suggests that residues C19–D34 of the

wild-type enzyme constitute a flexible linker sequence to dis-

tance the catalytic module from the outer membrane surface

(residues M1–S18 comprise the predicted signal peptide); the

sidechain of C19 would constitute the site of N-terminal lipida-

tion (Paetzel et al., 2002). The overall fold of BoGH16MLG con-

sists of a b-jelly roll architecture typical of other GH16 members

(Davies and Sinnott, 2008): two antiparallel b sheets stack on top

of each other with the concave face forming the polysaccharide

substrate binding cleft. The end-on arrangement of the two

chains in the asymmetric unit hinted at the possibility of the for-

mation of a dimer (Figure 4A). Size-exclusion chromatography,

however, indicated that BoGH16MLG exists as a monomer in

solution (data not shown), which, together with steric consider-

ations of polysaccharide binding through the active-site cleft, in-

dicates that end-on contacts observed between chains A and B

are artifacts of crystal packing.

The sidechains of the conserved GH16 catalytic residues (Pla-

nas, 2000), comprising Glu-143 (nucleophile), Asp-145 (electro-

static ‘‘helper’’), and Glu-148 (acid/base), are presented on the

same face of one b strand (b8), pointing into the active-site cleft.

Notably, these residues are contained in an EXDXXE consensus

sequence that is typical of bacterial GH16 laminarinases (b(1,3)-

specific endo-glucanases). The insertion of an extra amino

acid (underlined), typically methionine, results in a so-called

‘‘b-bulge’’ secondary structural motif that is not found among ca-

nonical bacterial MLGases, which instead possess a regular

b strand (Barbeyron et al., 1998; Michel et al., 2001).

Commensurate with this observation, the closest eight struc-

tural homologs identified using the Dali server (Holm and Rose-

nström, 2010) feature a b-bulge active-site motif (Table S5).

Specifically, the top match (Z score = 29.3) was the structure

of laminarinase ‘‘ZgLamCGH16-E142S’’ from Zobellia galactani-

vorans (PDB code 4CTE; Labourel et al., 2015), which has

38% amino acid identity and superimposed with BoGH16MLG

with a root-mean-square deviation (RMSD) value of 2.0 Å

over 211 out of 231 Ca pairs. In comparison, the closest

GH16 homolog with a regular active-site b strand was the li-

chenase (MLGase) from Paenibacillus macerans (PDB code

1MAC; Hahn et al., 1995), which has a comparable Z score of

25.1 and an RMSD value of also 2.0 Å over 200 out of 212 Ca

pairs, despite having only 22% amino acid identity with

BoGH16MLG.

Soaking crystals of the wild-type enzyme with G4G4G3G

yielded a product complex with 1.8 Å resolution (Table S4).

The complete tetrasaccharide was modeled in electron density

spanning subsites �1 to �4 in the active-site cleft of chain A,

whereas the electron density for the fourth glucosyl residue in

subsite �4 was not resolved in chain B. This is most likely due

to disorder of this residue because the corresponding �4 Glc

in chain A is fully solvent exposed, makes no contact with the

enzyme, and has significantly higher B factors (Figure 4B). These

structural observations are consistent with kinetic data for chro-

mogenic MLG oligosaccharides (Table 1), which likewise sug-

gest the existence of three primary negative subsites, �1 to

�3, and a weakly interacting �4 subsite.

In both chains A and B, the three glucosyl residues spanning

subsites �1 to �3 are well defined and virtually identical. The

reducing-end glucosyl residue in the �1 subsite is in the

b-conformation, with the C1 hydroxyl hydrogen bonded to Tyr-

181, which is observed in a dual conformation in both chains

of the G4G4G3G complex (Figure 4C). Interestingly, this dual

conformation is not observed in the apo form of the enzyme;

Tyr-181 is ‘‘swung in’’ to the active site in chain B, whereas it is

‘‘swung out’’ in chain A, the sidechain from chain A stacking on

top of the chain B sidechain (Figure 4D). The conformation of

this sidechain will be key to determining the nature of the positive

substrate-binding subsites; indeed, comparison with other

GH16 endo-glucanases clearly suggests the presence of two

positive subsites (Gaiser et al., 2006; Planas, 2000). Whether

the dynamics observed for Tyr-181 are an artifact of crystalliza-

tion or perhaps play a role in substrate binding and product

release is unclear in the absence of an enzyme-substrate com-

plex spanning the positive subsites.

With regard to specific interactions in the negative subsites,

subsite �1 is further characterized by hydrogen bonds between

Glu-143 and the C2 hydroxyl, Trp-125 and the C6 hydroxyl, as

well as Glu-148 and the ring oxygen and the C1 hydroxyl. This
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glucose is also positioned by a stacking interaction with Trp-125

and Trp-129 (Figure 4E), both of which are conserved across all

GH16 laminarinases. At subsite �2, highly conserved Arg-97

forms a hydrogen bond with the C6 hydroxyl, and Asn-60

hydrogen bonds to the C2 hydroxyl as well as to the glucosidic

bond oxygen between the �1 and �2 sugars. Another

conserved residue, Trp-138, serves as a platform that stacks

with the subsite �2 glucose. In subsite �3, the main interaction

is stacking against Trp-58, which also forms a hydrogen bond to

the glucosidic bond oxygen between the�3 and�4 sugars (Fig-

ure 4E). Together, these interactions in subsite �3 are respon-

sible for 17 kJ/mol of transition-state stabilization (vide supra).

Downstream Saccharification of Mixed-Linkage

Oligosaccharides Produced by BoGH16MLG

To elucidate the mechanism for the downstream conversion

of the oligosaccharide products of BoGH16MLG to glucose

for primary metabolism, we examined the biochemistry of

the two predicted exo-b-glucosidases, BoGH3MLG and

BACOVA_02738(GH3), associated with the MLGUL.

Cellular Localization of BoGH3MLG and the

BACOVA_02738(GH3) Gene Product

BoGH3MLG andBACOVA_02738(GH3) were unambiguously pre-

dicted by SignalP 4.0 (Petersen et al., 2011) to contain a secre-

tion signal peptide, whereas LipoP 1.0 (Juncker et al., 2003)

additionally indicated a type II lipoprotein signal sequence (Paet-

zel et al., 2002) in BoGH3MLG only. The same B. ovatus Dtdk cul-

tures used for BoGH16MLG localization, containing glucose

or bMLG as the sole carbon source, were probed using poly-

clonal antibodies independently raised against recombinant

BoGH3MLG and the BACOVA_02738(GH3) gene product. Neither

protein was detected on the cell surface by fluorescence micro-

scopy, especially in the presence of bMLG, which induces

BoGH16MLG production (Figures 2B andS2A). BoGH3MLG induc-

tion by bMLG was confirmed by a western blot of cellular frac-

tions, which also confirmed that this enzyme is membrane

anchored (Figure 2C).

In contrast, the BACOVA_02738(GH3) gene product was de-

tected to a higher degree in B. ovatus cells grown in minimal me-

dium with glucose as a sole carbon source compared to cells

induced with bMLG (Figure S2B). The lack of upregulation by

bMLG is consistent with transcriptional analysis, which showed

a limited change in expression in bMLG versus glucose

(1.6-fold), which was two orders of magnitude lower than

definitive MLGUL genes (Table S1). The higher detection in unin-

duced cells is explained by the high basal expression of

BACOVA_02738(GH3) (more than an order of magnitude greater

than all MLGUL members; Table S1). The lack of detection in
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Figure 4. BoGH16MLG Structural Biology

(A) The overall structure of the BoGH16MLG:

G4G4G3G asymmetric unit containing two poly-

peptide chains shown from orthogonal views

with the bound oligosaccharides in yellow and

the transparent surface representation in white.

Chain A cartoon is shown in cyan, and chain

B cartoon is shown in slate blue throughout the

figure.

(B) Mixed-linkage tetrasaccharide ligand modeled

into chain A of BoGH16MLG with the opaque sur-

face representation in gray and the oligosaccha-

ride colored according to B factors. The glucose in

subsite�4 is outside of the active site cleft and has

significantly higher B factor than the glucose units

in subsites �1 to �3.

(C) Tyr-181 rotamers observed in the complex

structure with the 2Fo-Fc map of the tyrosines

shown contoured at 0.5s in gray.

(D) Tyr-181 residues observed in the apo structure

with the 2Fo-Fc map of the tyrosines shown con-

toured at 0.5s in gray.

(E) Wall-eyed stereo view of the active site of

chain A of the BoGH16MLG:G4G4G3G complex.

Hydrogen bonding interactions are shown as

dashed black lines, sugars are shown in yellow

with its 2Fo-Fc map contoured at 1s in orange,

and the conserved GH16 active site residues are

shown in purple. Hydrophobic stacking in-

teractions in addition to hydrogen bonds position

the mixed-linkage oligosaccharide in the negative

subsite of BoGH16MLG.

See also Figures S5–S7 and Tables S4 and S5.
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minimal medium containing bMLG is due to high amounts of

induced MLGUL proteins diminishing the presence of the

BACOVA_02738(GH3) gene product when normalized to total

protein (Figure S2B).

Substrate Product Specificity of BoGH3MLG and

BACOVA_02738(GH3)

Initial activity screening on chromogenic pNP glycosides

(see Experimental Procedures) revealed that both recBoGH3MLG

and recBACOVA_02738(GH3) are specific exo-b-glucosidases

(activity on other pNP glycosides was undetectable at micro-

molar enzyme concentrations). However, recBACOVA_02738

(GH3) is strikingly feeble compared to recBoGH3MLG on G-b-

pNP (kcat/Km values of 0.084 mM�1 s�1 versus 20 mM�1 s�1;

Figures S4C and S4D; Table 1). Further, measuring Michaelis-

Menten kinetic parameters on cello- and laminari-oligosaccha-

rides was not feasible due to overall poor activity and low protein

production yields (data not shown). These kinetic results corrob-

orate the above comparative genetic and transcriptional

analyses, collectively suggesting BACOVA_02738(GH3) is not

integral to the MLGUL. Hence, this enzyme was not character-

ized further.

To investigate oligosaccharide substrate preference of the

BoGH3MLG, we conducted initial-rate kinetics analyses on a se-

ries of gluco-oligosaccharides of distinct linkage composition

and degrees of polymerization (d.p.). The non-reducing-end

glucose was hydrolyzed from all-b(1,4)-linked cello-oligosac-

charides (d.p. 2–6), all-b(1,3)-linked laminari-oligosaccharides

(d.p. 2–5), and mixed-linkage b(1,3)/b(1,4)-gluco-oligosaccha-

rides (d.p. 3 to 4; 5 examples) with comparable efficiencies, ac-

cording to classic Michaelis-Menten saturation kinetics (Figures

S4E and S4F; Table 1). In this series, only cellobiose (G4G) was

poorly hydrolyzed by BoGH3MLG vis-à-vis the b(1,3)-linked

congener laminaribiose (G3G) and all other gluco-oligosaccha-

rides (e.g., G4G has a kcat/Km value 20-fold lower than G3G;

Table 1). The b(1,6)-linked diglucoside gentiobiose (G6G) was

also a very poor substrate, with a kcat/Km value 260-fold lower

than that of G3G. Gluco-oligosaccharides with a b(1,3)-linked

glucosyl unit at the non-reducing end all have slightly higher

kcat values compared to those with a b(1,4) linkage in this posi-

tion, which typically contributes to higher kcat/Km values for the

former when substrates of equal d.p. are compared. However,

the magnitude of these differences, which are often less than

2-fold, indicate that BoGH3MLG is essentially agnostic to b(1,3)

versus b(1,4) linkages. These results also suggest that, in addi-

tion to a single negative subsite (�1) commensurate with its

exo activity, BoGH3MLG has only two positive subsites that

contribute to catalysis: in each gluco-oligosaccharide series, tet-

rasaccharides and larger are hydrolyzed with identical kcat/Km

values to the corresponding trisaccharides.

Product analysis following extended incubation of BoGH3MLG

with G4G4G3G and G4G3G demonstrated that BoGH3MLG

completely degrades the BoGH16MLG limit digest products to

glucose. HPLC also revealed that laminaribiose (G3G) is the

only new intermediate formed during the course of hydrolysis

(Figure 3B). This demonstrates that BoGH3MLG sequentially hy-

drolyzes one glucose unit at a time from the non-reducing end

of MLG oligosaccharides, viz.: G4G4G3G/ G + G4G3G (also

present in the starting mixture)/ G + G3G/ G + G. Notably,

the individual kcat andKm values for each step are nearly identical

(Table 1).

Table 1. Kinetic Parameters for the Hydrolysis of Various Substrates by BoGH3MLG and BACOVA_02738(GH3)

Enzyme Substrate kcat (s
�1) Km (mM) kcat/Km (s�1 mM�1) Assay

BoGH3MLG b-Glc-pNP 59.5 ± 1.46 2.95 ± 0.14 20.2 pNP

gentiobiose (G6G) ND ND 0.0571 HK/G6PDH

cellobiose 5.52 ± 0.19 7.47 ± 0.48 0.739 HK/G6PDH

cellotriose 22.1 ± 0.3 0.859 ± 0.033 25.7 HK/G6PDH

cellotetraose 17.3 ± 0.5 0.687 ± 0.044 25.2 HK/G6PDH

cellopentaose 19.4 ± 0.8 0.777 ± 0.060 25.0 HK/G6PDH

cellohexaose 17.4 ± 0.4 0.747 ± 0.041 23.3 HK/G6PDH

laminaribiosea 28.0 ± 1.1 1.90 ± 0.12 14.7 HK/G6PDH

laminaritriose 34.2 ± 1.0 0.911 ± 0.052 37.5 HK/G6PDH

laminaritetraose 31.3 ± 2.3 0.898 ± 0.135 34.9 HK/G6PDH

laminaripentaose 39.5 ± 3.4 1.27 ± 0.20 31.1 HK/G6PDH

MLGO3 A (G3G4G) 61.6 ± 1.6 0.997 ± 0.040 61.8 HK/G6PDH

MLGO3 B (G4G3G)a 24.7 ± 1.3 0.521 ± 0.064 47.4 HK/G6PDH

MLGO4 A (G3G4G4G) 55.7 ± 2.7 1.33 ± 0.12 41.9 HK/G6PDH

MLGO4 B (G4G4G3G)a 30.8 ± 2.0 0.736 ± 0.106 41.8 HK/G6PDH

MLGO4 C (G4G3G4G) 15.7 ± 0.3 0.601 ± 0.031 26.1 HK/G6PDH

BACOVA_02738 (GH3) b-Glc-pNP 0.212 ± 0.004 2.53 ± 0.13 0.0838 pNP

ND, not determined (in cases where Michaelis-Menten curve fitting was not feasible, individual kcat and Km values are not reported and kcat/Km value

was determined from linear curve fit to initial-rate data in the [S] < < Km(apparent) range). Data are represented as the fitted parameters ± SD. See also

Figure S4.
aBiologically relevant substrates that BoGH3MLG encounters in the periplasmic space.
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BoGH3MLG and BACOVA_02738(GH3) Primary

Structures

Despite extensive efforts, we were unable to crystallize the key

b-glucosidase BoGH3AMLG for experimental tertiary structure

determination. However, BoGH3MLG has 63% sequence identity

to a B. ovatus b-glucosidase (BoGH3B; PDB code 5JP0; Hems-

worth et al., 2016) from the xyloglucan utilization locus (Fig-

ure S5A) and, as such, was amenable to tertiary structure homol-

ogy modeling. Phyre2 (Kelley et al., 2015) utilized PDB code

5JP0 as the sole template, and 728 out of 742 residues (98%

of the sequence, excluding the signal peptide) were modeled

with 100% confidence. The model suggests that BoGH3MLG

possesses a homologous three-domain architecture with the

active site being formed at the interface of the (a/b)8 triosephos-

phate isomerase (TIM) barrel and a/b sandwich domains (Fig-

ure S5B). The predicted catalytic nucleophile and acid/base res-

idues are Asp-309 and Glu-453, respectively, based on primary

and tertiary alignment (Figures S5A and S5C). Two tryptophan

residues were modeled on opposite sides of the entrance to

the active site pocket (Figure S5D), forming a narrow ‘‘coin

slot,’’ which may confer a preference toward b(1,3)- and b(1,4)-

linked glucans and poor activity against b(1,6)-linked gentiobiose

(Table 1). In contrast, enzymes that lack a homologous Trp-453

have amore open entrance to the active site and show broad ac-

tivity against b(1,2)- and b(1,6)-linked glucans in addition to

b(1,3)- and b(1,4)-linked glucans (Karkehabadi et al., 2014;

Pozzo et al., 2010).

In comparison, BACOVA_02738(GH3) possess catalytic resi-

dues homologous to BoGH3MLG and similar GH3 members,

despite having only 31% sequence identity to BoGH3MLG (Fig-

ure S5A). The most similar characterized GH3 member to

BACOVA_02738(GH3) among �300 members identified in the

CAZy Database is a Chrysosporium lucknowense b-glucosidase

with 39% sequence identity (Dotsenko et al., 2012).

Syntenic MLGULs Are Molecular Markers of MLG

Utilization across the Bacteroidetes

Refined functional characterization of the catalytic specificity of

GH components significantly increases confidence in the use of

individual PULs as genetic markers of complex carbohydrate

metabolism among Bacteroidetes (Cuskin et al., 2015; Lars-

brink et al., 2014; Rogowski et al., 2015; Sonnenburg et al.,

2010). The MLGUL characterized here represents the only

PUL in B. ovatus that confers growth on MLG from cereals.

To understand the wider distribution of MLG metabolic capac-

ity among symbiotic Bacteroidetes in the human gut, we corre-

lated the presence of a syntenic MLGUL with growth on bMLG

for 354 individual Bacteroidetes strains representing 29

different species.

A total of 121 strains across just 7 of the species were able

to grow on bMLG (Figure 5). In particular, 33 of 33 B. ovatus

strains (including the type strain ATCC 8483) grew well on

bMLG, as did 44 of 45 strains of the closely related B. xylani-

solvens. The majority of B. uniformis strains tested (33 out

of 35) were also competent bMLG utilizers. The limited pene-

trance of the MLGUL across the genus clearly demonstrates

nutrient-niche specialization among individual Bacteroidetes

species.

Comparative analysis of available genomic sequences re-

vealed that strains able to grow on bMLG as the sole carbon

source harbor a syntenicMLGUL (Figure 1B). Previous transcrip-

tional analysis demonstrated that the syntenic MLGUL found in

B. cellulosilyticus is also activated during growth on bMLG

(McNulty et al., 2013). Concordance between the presence of

a syntenic MLGUL and the ability to utilize MLG is further high-

lighted by the lack of a MLGUL in the B. uniformis ATCC 8492,

one of only two strains of B. uniformis that could not grow on

bMLG. Based on this analysis, we can also predict MLG utiliza-

tion ability in two sequenced species ofPrevotella,Pr. copriDSM

18205 and Pr. multiformisDSM16608, important members of the

Bacteroidetes from the human gut and oral cavity, respectively

(Figure 1B).

DISCUSSION

A Molecular Model for MLG Utilization by B. ovatus

Our current suite of data suggests a model by which the MLGUL

gene products work in concert to enable the utilization of MLG

(Figure 6), analogous to that of other PUL-encoded systems

(Grondin et al., 2017). Thus, BoGH16MLG is anchored to the outer

membrane, where it plays a leading role in fragmenting large

MLG polysaccharide chains (typical d.p. 700–5,000, depending

upon the plant species of origin; Lazaridou et al., 2004; Zheng

et al., 2011) into oligosaccharides that can be imported into

the periplasm via the TBDT. Notably, the specific limit digest

products of BoGH16MLG endo-hydrolysis identified here, viz.

the trisaccharide G4G3G and the tetrasaccharide G4G4G3G

(Figure 3B), have been shown previously to bind the periplasmic

sensor domain of the HTCS encoded by BACOVA_02740 (KD

300 mMand 400 mM, respectively), whereas the intact MLG poly-

saccharide does not (Martens et al., 2011). Monomeric glucose,

all-b(1,4)-linked cello-oligosaccharides, and all-b(1,3)-linked

laminari-oligosaccharides are also not bound by the HTCS (Mar-

tens et al., 2011), indicating that the unique linkages present in

MLG are central to inducing the MLGUL system. Thus, there is

an essential yet distant interplay between the outer-mem-

brane-localized MLGase and the HTCS in specific nutrient

sensing.

It is therefore likely that the BoGH16MLG limit digest products,

or minimal repeats of these structures ((G4G4G3G)m(G4G3G)n),

comprise the main products transported through the TBDT

in vivo. Recent studies on inulin (b(2,1)-fructan) utilization sug-

gest that some TBDTs are able to import longer polysaccharide

chains (e.g., d.p. > 20; Rakoff-Nahoum et al., 2016). Regardless

of length, the efficient exo-hydrolytic activity of BoGH3MLG in the

periplasm is sufficient to completely saccharify all imported

oligosaccharides to glucose (Figure 3B), to feed primary meta-

bolism in the cytosol. In this process, the trisaccharide substrate

of the HTCS, G4G3G, will always be generated, regardless of

the imported saccharide chain length, ensuring continual

production of the MLGUL upregulation signal until substrate is

exhausted. Interestingly, BoGH3MLG will never encounter

cellobiose (G4G), toward which it has relatively weak activity

(Figure S4F; Table 1), in this process; the final step of sacchar-

ification of MLGOs is the hydrolysis of the competent substrate

laminaribiose (G3G).
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Structural Enzymology Reveals Complex Trajectories

for the Evolution of MLG Activity in GH16

Previous phylogenetic analyses of GH16 have suggested that

the evolution of the active-site b-bulge motif EXDXXE, which is

widespread among clan GH-B (comprising GH16 and GH7), to

a regular b strand motif EXDXE is a defining feature that delin-

eates endo-b(1,3)-glucanases (laminarinases; EC 3.2.1.39 and

EC 3.2.1.6) from mixed-linkage endo-b(1,3)/b(1,4)-glucanases

(licheninases; EC 3.2.1.73), respectively (Barbeyron et al.,

1998; Michel et al., 2001). In this context, the observation that

BoGH16MLG is highly specific for MLG, despite having a b-bulge

motif, was surprising.

Using the CAZy Database as a starting point (http://www.

cazy.org/GH16_characterized.html), together with mining of

the primary literature, we generated a contemporary maximum-

likelihood phylogeny of all biochemically characterized GH16

members (Figure S6). This analysis indicates that, although ca-

nonical, normal b strand MLGases do form a monophyletic

group as previously observed, MLGase activity is in fact wide-

spread among the historical ‘‘laminarinase’’ group, in which

BoGH16MLG is itself positioned. Despite currently limited and

disparate kinetic data for individual enzymes, it also appears

that it is not possible to define further substrate-specific clades

within this group based on molecular phylogeny alone, in light

of weak bootstrap support. This precludes defining any single

evolutionary event giving rise to unique trajectories for the further

diversification of extant laminarinases and MLGases in this

clade. Instead, it appears that diverse, subtle mutations have

allowed the independent evolution of predominant laminarinase

or MLGase activity numerous times across a flat evolutionary

landscape. As such, we suggest that this GH16 subgroup should

be more generally referred to as the ‘‘laminarinase/MLGase

group’’ going forward.

Detailed tertiary structural comparison of 10 b-bulge-contain-

ing members of this laminarinase/MLGase group revealed,

however, that predominant laminarinases harbor a significantly

more protruding loop (which is often, but not always, longer)

connecting strands b2 and b3 than predominant MLGases

(Figures S7A and S7B). Structural superposition with the

BoGH16MLG:G4G4G3G complex indicates that this loop in pre-

dominant laminarinases would clash with MLG in the negative

subsites, instead favoring binding of an all-b(1,3)-glucan that

curves away from this loop. Such curvature is exemplified by

the ZgLamCGH16-E142S:thio-b-1,3-trisaccharide structure (Fig-

ure S7A; PDB code 4CTE; Labourel et al., 2015). Indeed, Ilari

et al. (2009) observed that shortening the homologous loop in
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Figure 5. Penetrance Map of MLG Utilization Ability across Diverse Human Gut Bacteroidetes

The phylogenetic tree was constructed from fully sequenced strains of the species shown. The number of strains of each species tested for growth is depicted to

scale as a black circle at each leaf. The number of those strains that grew on bMLG as a sole carbon source is shown to scale in red within the black circle.
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LamA from the archeon Pyrococcus furiosus (Figure S7A; PDB

code 2VY0) by 4 amino acids increased the activity toward

MLG by 10-fold. Likewise, BglF from Nocardiopsis sp. F96 (Fig-

ure S7B; PDB code 2HYK) and LamR from Rhodothermus mar-

inus (Figure S7B; PDB code 3ILN), which have a 3.3- and 8.5-fold

greater specificity constant and specific activity, respectively,

toward MLG than laminarin, also have a smaller loop, similar to

BoGH16MLG, in this position. The canonical, regular b strand

MLGase from Paenibacillus macerans (Figure S7C; PDB code

1MAC) and Bacillus licheniformis (Figure S7C; PDB code

1GBG) similarly have a small loop at this position.

Taken together, these analyses reveal a complex evolutionary

landscape that computational phylogenetic analysis fails to

resolve. Despite using a manually curated, structure-based

sequence alignment as input, the maximum-likelihood numeri-

cal approach did not delineate the members of the laminari-

nase/MLGase group on the basis of the distinct active-site

loop differences observed in tertiary structures (Figure S7).

Instead, the phylogeny was likely obfuscated by diverse,

random variations in amino acid composition across the entire

b sandwich domain, which clearly limits large-scale, unsuper-

vised phylogenetic analysis of theseGH16members.Moreover,

analysis of both MLG and laminarin specificity (as a minimum)

for individual members of this group, in light of their tertiary

structures, is essential to avoid potential mis-annotation of

these enzymes.

Mining Metagenomic Data Reveals the Ubiquity of MLG

Utilization in the Human Gut and Beyond

Using syntenic MLGULs as genetic markers, we surveyed the

publicly available metagenome data of 426 adults to under-

stand the capacity of human populations to derive nutrition

Figure 6. Model of Mixed-Linkage b-Glucan Saccharification by the Concerted Action of the MLGUL Machinery

Gene products are colored analogously to the gene locus in Figure 1. The cell-surface-localized endo-MLGase BoGH16MLG cleave large mixed-linkage b-glucan

polysaccharides into shorter fragments, which are imported into the periplasm via the TonB-dependent transporter, BoTBDT. This glycan capture and transport

process at the cell surface is aided by the two surface glycan-binding proteins BoSGBP-A and BoSGBP-B. The smaller mixed-linkage b-glucan fragments in the

periplasm bind the sensor domain of the hybrid two-component sensor BoHTCS to induce upregulation of the system. Periplasmic exo-b-glucosidases

BoGH3MLG andBACOVA_02738(GH3) act from the non-reducing ends to liberate individual glucosemonomers, which are imported into the cell andmetabolized.
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from cereal MLGs. We were able to distinguish the species of

origin based on nucleotide sequence except for MLGULs from

B. ovatus and B. xylanisolvens, which were strikingly similar at

97% nucleotide identity. The B. ovatus/B. xylanisolvens and B.

uniformis MLGULs are the most prevalent; both are observed

in about 70% of the total human cohort (Figure 7). The Pr. copri

MLGUL is more often the sole MLGUL of an individual than that

of B. cellulosilyticus when only one is present (Figure 7, cyan

lines), despite the latter being more frequent in total. Overall,

92.5% of the subjects harbor at least one of the five different

MLGULs identified in this study, irrespective of nationality

or whether they are diseased. MLGULs are ubiquitously

detectable despite variability in sampling depth across different

metagenomics sequencing projects (Figure 7). The prevalence

of MLGULs across different nationalities is consistent with

MLG from cereal grains being a ubiquitous component of the

human diet. Indeed, the importance of MLG utilization is under-

scored by the upregulation of theMLGUL in the ceca ofmice fed

a complex plant cell wall diet (Martens et al., 2011). Similar

widespread global distribution in human populations has been

observed for xyloglucan utilization loci (Larsbrink et al., 2014).

These observations are sharply contrasted by the PUL that me-

diates utilization of the red algal polysaccharide porphyran,

which is essentially confined to subjects from Japan, where

seaweed is a common part of the diet (Hehemann et al., 2010;

Larsbrink et al., 2014). Interestingly, we were unable to detect

MLGULs in four unweaned infants sampled in the Japanese

metagenome project (data not included in our analysis of adult

metagenomes). This is consistent with a dearth of Bacteroi-

detes in infants who receive the bulk of their nutrition from

milk and are not yet consuming plant polysaccharides (Kuro-

kawa et al., 2007).

Moving beyond the humanmicrobiota, we can likewise predict

MLG utilization ability in Dysgonomonas gadei and Pr. oryzae

(formerly Xylanibacter oryzae) based on the presence of a syn-

tenic MLGUL. These species are commonly found in the termite

hindgut and decomposing rice straw, respectively. This provides

direct evidence that an analogous MLG utilization system is em-

ployed by Bacteroidetes operating in environments beyond the

human gut.

Conclusions

Complex carbohydrates that promote the growth of beneficial

microbes in our distal large intestine are a cornerstone of a

healthy diet. MLGs in particular have long been known to impart

healthful effects (Othman et al., 2011), yet its mechanism of uti-

lization for fermentation by gutmicrobeswas unknown. Our work

here sheds light on the fine-tuned mechanism that B. ovatus and

other Bacteroidetes has evolved to efficiently utilize MLGs in the

highly competitive environment of the human gut microbiota.

The finding that a majority of humans possess microbes that

can utilize this ubiquitous cereal polysaccharide highlights the

relevance of potential therapeutic interventions based on MLG

utilization to the general population. The present study also

sets the stage for future work to understand the quantitative con-

tributions of individual members of the microbiota and their

cognate enzymes to MLG utilization in the human gut (Patrascu

et al., 2017; Zhong et al., 2015).

EXPERIMENTAL PROCEDURES

Microbiology

B. ovatus gene deletions were constructed using allelic exchange as previ-

ously described (Koropatkin et al., 2008). Anaerobic growth profiles were

B. ovatus or

xylanisolvens MLGUL

North American

(healthy, n=148)

Chinese

(diabetic, n=71)

(healthy, n=74)

Frequency (%)

Japanese

(healthy, n=9) 
European

(ulcerative colitis, n=27)

(Crohn’s disease, n=12)

(healthy, n=85)

B. uniformis MLGUL

B. cellulosilyticus MLGUL

 MLGUL

Pr. copri MLGUL

All species MLGULs

67.8

73.7

29.8

16.9

10.6

92.5

5 PULs

4 PULs

3 PULs

2 PULs

1 PUL

0 PULs

Sequencing depth

(Mbp)

Figure 7. Bacteroidetes MLGULs from a Survey of 426 Adult Human Gut Metagenomes

Vertical lines represent the presence (cyan when unique; blue when one of multiple) or absence (black) of a corresponding species-related MLGUL in a single

individual. The total number of MLGULs observed in an individual is shown in the bottom row, colored according to the legend in the top left corner. The frequency

of MLGUL occurrence across all 426 individuals is shown on the right. Variation in sequencing depth in megabase pair is illustrated in the graph below: gray lines

show the depth for individual subjects and black lines show the average depth of each metagenomics project.
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measured as previously described (Martens et al., 2011). Details of localization

analysis by immunofluorescence microscopy and immunoblotting are pro-

vided in the Supplemental Experimental Procedures.

Cloning, Expression, and Purification of Recombinant Enzymes

The genes encoding BoGH16MLG, BoGH3MLG, and BACOVA_02738(GH3)

were cloned into expression vectors for recombinant production in E. coli. De-

tails of cloning strategies, production, and purification are provided in the Sup-

plemental Experimental Procedures.

Enzyme Kinetics and Product Analysis

Thorough kinetic analysis was conducted on a panel of polysaccharides, oli-

gosaccharides, and chromogenic substrates. Products of enzymatic reactions

were analyzed by HPAEC-PAD and HILIC-MS. Details of enzymatic assays,

analytical methods, as well as sources of commercial substrates are provided

in the Supplemental Experimental Procedures.

X-Ray Crystallography

Crystals of BoGH16MLG were screened and optimized by sitting drop vapor

diffusion method. The structures of the apo- and G4G4G3G-BoGH16MLG

were solved by molecular replacement. Details of crystallization, data collec-

tion, and structure solution are provided in the Supplemental Experimental

Procedures.

Bioinformatics

Phylogenetic analysis of select GH16 and GH3 sequences was conducted

based on structure-guided alignment. Metagenomic survey was carried out

by nucleotide BLAST of MLGUL sequences against various metagenome

sequence data. Details are provided in the Supplemental Experimental

Procedures.

Statistical Analysis

All kinetic assays were done in triplicate. Michaelis-Menten parameters are re-

ported as fitted values ± SD throughout the article. All growth experiment re-

sults are averages of two biological replicates.

DATA AND SOFTWARE AVAILABILITY

The accession numbers for the atomic coordinates and structure factors of

apo- and G4G4G3G-complexed BoGH16MLG reported in this paper are

PDB: 5NBO and PDB: 5NBP, respectively.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and five tables and can be found with this article online at

https://doi.org/10.1016/j.celrep.2017.09.049.
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