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ABSTRACT

Context. Observations have shown that twisted magnetic fields naturally occur, and indeed are omnipresent in the Sun’s atmosphere. It
is therefore of great theoretical interest in solar atmospheric waves research to investigate the types of magnetohydrodynamic (MHD)
wave modes that can propagate along twisted magnetic flux tubes.
Aims. Within the framework of ideal MHD, the main aim of this work is to investigate small amplitude incompressible wave modes
of twisted magnetic flux tubes with m ≥ 1. The axial magnetic field strength inside and outside the tube will be allowed to vary, to
ensure the results will not be restricted to only cold plasma equilibria conditions.
Methods. The dispersion equation for these incompressible linear MHD wave modes was derived analytically by implementing the
long wavelength approximation.
Results. It is shown, in the long wavelength limit, that both the frequency and radial velocity profile of the m = 1 kink mode are
completely unaffected by the choice of internal background magnetic twist. However, fluting modes with m ≥ 2 are sensitive to the
particular radial profile of magnetic twist chosen. Furthermore, due to background twist, a low frequency cut-off is introduced for
fluting modes that is not present for kink modes. From an observational point of view, although magnetic twist does not affect the
propagation of long wavelength kink modes, for fluting modes it will either work for or against the propagation, depending on the
direction of wave travel relative to the sign of the background twist.

Key words. Sun: atmosphere – Sun: general – Sun: oscillations

1. Introduction

An axially symmetric, vertical and magnetically twisted flux
tube is a convenient model for analytical studies of vari-
ous magnetohydrodynamic (MHD) perturbations. For a long
time this approximation was the focus of investigations of
MHD wave propagation in solar and space plasmas (see e.g.
Priest & Hood 1991; Bennett et al. 1999; Erdélyi & Fedun 2007;
Ruderman 2007; Ladikov-Roev et al. 2013; Cheremnykh et al.
2014) and high-temperature (see e.g. Suydam 1958; Bateman
1978; Galeev & Sudan 1989; Cheremnykh 1989; Burdo et al.
1994) plasmas. This geometry is also a useful approximation
in solving fundamental problems of plasma physics (see for ex-
ample Trubnikov 1966; Filippov 2007; Cheremnykh et al. 1994;
Zagorodny & Cheremnykh 2014), to name but a few. In spite
of many previous theoretical studies of wave propagation in so-
lar magnetic flux tubes many questions still remain open. There
are at least two contradictory opinions on how the radial de-
pendence of the equilibrium azimuthal component of the mag-
netic field outside of the flux tube should be modelled. Filippov
(2007) and Vršnak (2008) assume that external magnetic field
decreases with distance from the tube boundary inversely pro-
portional to the radius, that is, as a function of 1/r. This approx-
imation was previously used by, for example, Erdélyi & Fedun
(2006), Ruderman (2015), Giagkiozis et al. (2015). Recently,
Giagkiozis et al. (2015) has shown that the wave solution for
a background constant twist outside the tube is actually very
close to the solution when the twist is proportional to 1/r. From

another point of view, by taking into account plasma conductiv-
ity, the external magnetic field does not penetrate significantly
through the tube boundary and, therefore, can be neglected (see
e.g. Parker 2007; Solov’ev 2011, 2012). In these papers authors
applied simple electromagnetic assumptions confirming the ab-
sence of azimuthal components of the magnetic field outside the
tube.

In the present work, we will examine MHD wave
propagation in a magnetic flux tube with an internal twist only.
To go beyond cold plasma equilibria conditions the axially
aligned magnetic field inside and outside the flux tube are al-
lowed to be different. A similar background model has been used
previously by Bennett et al. (1999) and thereafter in a number of
other papers, for example Erdélyi & Fedun (2007, 2010). In the
framework of ideal MHD, we will assume incompressible linear
perturbations and implement the thin tube approximation. Also,
we will focus on the analytical solutions related to modes with
only m ≥ 1. The analytical dispersion relation and expression for
eigenfunctions will be obtained by assuming the small parame-
ter ε = kza � 1, where a is the radius of the magnetic flux tube
and kz is the longitudinal wavenumber.

2. Derivation of linear radial component wave
equation

We proceed from the linearised ideal MHD equations for the
displacement vector ξ of a finite volume element. By assuming
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the time dependence of all perturbed physical quantities as
exp (−iωt), these equations can be written as (see e.g. Priest
2014; Kadomtsev 1966; Zagorodny & Cheremnykh 2014)

ρ
∂2ξ

∂t2 = −ρω2ξ = F (ξ) , (1)

where

F (ξ) = −5δp1 + (B · ∇) δB + (δB · ∇) B,
δp1 = δp + B · δB = −γp∇ · ξ − B2 (

∇ · ξ⊥ + 2κ · ξ⊥
)
,

δp = −ξ · 5p − γp∇ · ξ, (2)
δB = 5 ×

[
ξ × B

]
,

∇ · δB = 0,
κ = (τ · 5) τ,
τ = B/B.

Here, the symbol δ corresponds to the perturbed quantities, ρ
is the equilibrium plasma density, p is the equilibrium plasma
pressure, ξ = ξrer +ξϕeϕ+ξzez is the displacement vector (where
er, eϕ and ez are unit vectors of cylindrical coordinates r, ϕ and
z), γ is the adiabatic index, ω is the angular frequency, B is the
equilibrium magnetic field, τ is the normalised magnetic field,
δp1 is the perturbation of total plasma pressure (plasma plus
magnetic), and κ is the vector of curvature of magnetic field
lines. The derivation of the expression for δp1 is shown in Ap-
pendix A. ξ⊥ = ξ − ξ‖τ in Eq. (2) corresponds to the perpendic-
ular component of ξ to the equilibrium magnetic field. All phys-
ical quantities depend on the radial coordinate r. For simplicity,
the magnetic field is normalised as B/

√
4π → B. We use the

cylindrical coordinate system (r, ϕ, z), hence the magnetic sur-
faces are nested cylinders of radius r and the unperturbed tube
axis is parallel to the z-axis (see Fig. 1). Both inside and outside
the tube the equilibrium magnetic field is given by

B = Bϕ(r)eϕ + Bz(r)ez, (3)

which must satisfy the magneto-hydrostatic equilibrium:

d
dr

(
p +

B2

2

)
+

B2
ϕ

r
= 0. (4)

Using the relation

κ =

(
B
B
· 5

)
B
B

= −
er

r

(
Bϕ
B

)2

,

and the rules for differentiating unit vectors, ∂er/∂ϕ = eϕ and
∂eϕ/∂ϕ = −er, Eqs. (1) and (2) reduce to:

ρω2ξr −
d
dr
δp1 −

2BϕδBϕ
r

+ i
(m

r
Bϕ + kzBz

)
δBr = 0, (5)

ρω2ξϕ −
im
r
δp1 +

δBr

r
d
dr

(
rBϕ

)
+ i

(m
r

Bϕ + kzBz

)
δBϕ = 0, (6)

ρω2ξz − ikzδp1 + δBr
d
dr

Bz + i
(m

r
Bϕ + kzBz

)
δBz = 0. (7)

To obtain Eqs. (5)−(7) we assumed that all equilibrium quanti-
ties depend on r alone. Therefore, we can Fourier decompose the
solution as

ξ (r, t) = ξ(r) exp i (−ωt + mϕ + kzz) ,

where m is the azimuthal wave number. In this study we shall
not deal with the axi-symmetric case when m = 0, which de-
scribes the sausage mode. Instead, we focus on all the modes

Fig. 1. Magneto-hydrostatic equilibrium of the twisted magnetic flux
tube.

with m ≥ 1, corresponding to non-axially symmetric oscillations
which are the kink m = 1 and surface m > 1 modes. A cartoon
of the model geometry is shown in Fig. 1.

Since the displacement vector ξ(r) is a function of the ra-
dius alone, then the problem becomes one-dimensional. For
more convenient analysis of the perturbations in the Eqs. (5)−(7)
we changed the ϕ and z components of the displacement vec-
tor ξ and wave vector k to the components directed along
the bi-normal (subscript b) and along the magnetic field lines
(subscript ‖):

ξ = ξrer + ξbeb + ξ‖e‖,

ξb = ξϕ
Bz

B
− ξz

Bϕ
B
, eb = eϕ

Bz

B
− ez

Bϕ
B
, (8)

ξ‖ = ξϕ
Bϕ
B

+ ξz
Bz

B
, e‖ = eϕ

Bϕ
B

+ ez
Bz

B
,

kb =
m
r

Bz

B
− kz

Bϕ
B
,

k‖ = k · e‖ =
m
r

Bϕ
B

+ kz
Bz

B
·

In these more convenient variables, the components of the per-
turbed magnetic field can be obtained from Eq. (2):

δBr = ik‖Bξr,

δBϕ = ikz

(
ξϕBz − ξzBϕ

)
−

d
dr

(
ξrBϕ

)
, (9)

δBz =
im
r

(
ξzBϕ − ξϕBz

)
−

1
r

d
dr

(rξrBz) ,
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and Eqs. (5)−(7) can be written as(
ρω2 − k2

‖B
2
)
ξr −

d
dr
δp1 − 2ik‖

BϕBz

r
ξb

+ 2ikb
B2
ϕ

r
ξb + 2

Bϕ
r

d
dr

(
ξrBϕ

)
= 0, (10)(

ρω2 − k2
‖B

2
)
ξb − ikbδp1 + 2ik‖

ξr

r
BϕBz = 0, (11)(

ρω2 − k2
‖

γp
1 + β

)
ξ‖ − ik‖

β

1 + β

δp1 − 2
B2
ϕξr

r

 = 0, (12)

where the values of the total pressure δp1 and ∇ · ξ are also
represented via radial (ξr), bi-normal (ξb) and field aligned

(
ξ‖

)
displacements:

δp1 = −
(
γp + B2

)
∇ · ξ + iB2k‖ξ‖ + 2B2

ϕ

ξr

r
,

∇ · ξ =
1
r

d
dr

(rξr) + ikbξb + ik‖ξ‖. (13)

Equations (10)−(13) are the starting point for further analysis.
Let us reduce the Eqs. (10)−(12) to the one single equation
for the radial component of the displacement vector (ξr). From
Eqs. (11, 12) one can obtain

kbξb =
i

ρ
(
ω2 − ω2

A

) [
k2

bδp1 − 2k‖kb
ξr

r
BϕBz

]
, (14)

k‖ξ‖ =
ik2
‖

ρ
(
ω2 − ω2

T

) c2
T

c2
A

δp1 −
2B2

ϕ

r
ξr

 . (15)

Here,

ω2
A = k2

‖ c
2
A, ω2

S = k2
‖ c

2
S, ω2

T = k2
‖ c

2
T ,

c2
A =

B2

ρ
, c2

S =
γp
ρ
, c2

T =
c2

S

1 + β
, β =

c2
S

c2
A

·

By substituting Eqs. (14) and (15) into Eq. (13), we can obtain

δp1 =
1

k2
b + χ2

[
ρ
(
ω2 − ω2

A

) 1
r

d
dr

(rξr)

+ 2k‖kb
ξr

r
BϕBz +

2B2
ϕ

r
ξrχ

2

 , (16)

where

χ2 =

(
ω2 − ω2

A

) (
ω2

S − ω
2
)(

c2
S + c2

A

) (
ω2 − ω2

T

) ·
From Eqs. (4), (10), (14) and (16) we obtain the governing wave
equation for the linear radial component (ξr):

d
dr

ρ
(
ω2 − ω2

A

)
k2

b + χ2

1
r

d
dr

(rξr)

 + 2rξr
d
dr

B2
ϕ

r2

χ2

k2
b + χ2

+
BϕBz

r2

k‖kb

k2
b + χ2

 = ρ
(
ω2 − ω2

A

)
ξr + 2ξrBϕ

d
dr

(
Bϕ
r

)

− 4ξr
B2
ϕ

r2ρ

χ2

k2
b + χ2

(
k‖Bz − kbBϕ

)2(
ω2 − ω2

A

) · (17)

In Cheremnykh (2015) it was shown that Eq. (17) is equivalent to
the well known Hain-Lüst equation (see e.g. Hain & Lüst 1958)
and also it was shown that from this equation we can obtain
Suydam’s criterion (see e.g. Suydam 1958) and stability crite-
rion for ballooning modes.

3. Incompressible perturbations in the long
wavelength approximation

Let us assume that plasma perturbation is incompressible, that
is the velocity perturbation δu = ∂ξ/∂t is very small relative to
the sound speed, c2

S → ∞ (γ → ∞). It follows from the second
equation of (13) and Eqs. (14), (15) that

∇ ·ξ =
1
r

d
dr

(rξr)−
δp1

ρ
(
ω2 − ω2

A

) (
k2

z +
m2

r2

)
+ 2k‖

m
r2

BϕBξr

ρ
(
ω2 − ω2

A

) ·
(18)

For an incompressible perturbation the expression (16) for δp1
becomes

δp1 =
1

k2
z +

(
m2/r2) [

ρ
(
ω2 − ω2

A

) 1
r

d
dr

(rξr) + 2k‖
m
r
ξr

r
BϕB

]
.

(19)

By substituting Eq. (19) into Eq. (18), we obtain the condition
for the divergence of an incompressible flow, that is,

∇ · ξ = 0. (20)

Equation (20) can also be obtained in another way. By substitut-
ing δp1 from Eq. (13) into Eq. (12), we obtain iω2ξ‖ = k‖c2

S∇ · ξ.
By assuming c2

S → ∞, we also arrive at the same Eq. (20).
For incompressible perturbations Eq. (17) reduces to the

equation

d
dr

ρ
(
ω2 − ω2

A

)
k2

z + m2/r2

1
r

d
dr

(rξr)

 + 2rξr
d
dr

[
BBϕ
r2

k‖ (m/r)
k2

z + m2/r2

]
− ξr

[
ρ
(
ω2 − ω2

A

)
+ 2Bϕ

d
dr

(
Bϕ
r

)

−
4
(
B2
ϕ/r

2
)

k2
z + m2/r2

k2
zω

2
A(

ω2 − ω2
A

)  = 0 (21)

and coincides with the Eq. (14.36) in Miyamoto (2005). Equa-
tion (21) has only one singular point at Alfvén frequency, when
ω2 = ω2

A. To obtain this equation we assumed that k‖cS → ∞

and, therefore, the longitudinal component wave vector k‖ can-
not vanish.

For perturbations with a small azimuthal wave number m,
Eq. (21) can be simplified further by implementing the long
wavelength approximation, that is, for the case when ε =
kza � 1. In this limit, for a homogeneous longitudinal magnetic
field, Bz = const., Eq. (21) is given by

1
r

d
dr

[(
ρω2 − F2

)
r

dφ
dr

]
+

dF2

dr
φ

r
−

(
ρω2 − F2

) m2φ

r2

+ 4
B2
ϕ

r2

k2
z F2(

ρω2 − F2)φ = 0, (22)

where

φ = rξr, F (r) =
m
r

Bϕ (r) + kzBz.

To obtain Eq. (22) we also used the relevant long wavelength
approximation that

m2 + k2
z r2 = m2 +

( r
a

)2
ε2 ≈ m2.

Further analysis of the Eq. (22) requires an equilibrium model
for the flux tube and the boundary conditions for the perturbed
quantities on its surface.
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4. Boundary conditions

To obtain the first boundary condition we used the equation
of incompressibility given by Eq. (20) and relation Eq. (13).
By following the methodology presented in Jackson (1998) and
Priest & Hood (1991), let us integrate Eq. (20) over a small in-
terval 2δ near flux tube surface (i.e, within the layer a − δ and
a + δ, a is the tube radius, δ � a) results in∫ a+δ

a−δ
r∇ · ξdr =

∫ a+δ

a−δ

[
d
dr

(rξr) + ir
(
kbξb + k‖ξ‖

)]
dr

= rξr

∣∣∣a+δ
a−δ + i

∫ a+δ

a−δ
r
(
kbξb + k‖ξ‖

)
dr

= 0.

By taking into account the continuity of the integrated function,
this equation can be represented as

φ
∣∣∣a+δ
a−δ + 2iδ

[
r
(
kbξb + k‖ξ‖

)]
|r=a = 0.

Assuming that δ→ 0, the first boundary condition can be repre-
sented in the form:

〈φ〉 = φ (a + 0) − φ (a − 0) = 0. (23)

This condition requires that the radial plasma displacement is
continuous at r = a. Now let us obtain the second boundary
condition. Equation (22) can be rewritten as

d
dr

[(
ρω2 − F2

)
r

dφ
dr

]
+ φ

d
dr

2m
r

BϕF − m2
(

Bϕ
r

)2
−
φ

r

m2
(
ρω2 − F2

)
−

4B2
ϕk2

z F2(
ρω2 − F2)

 = 0. (24)

By taking into account that the magnetic field and plasma equi-
librium parameters are different inside and outside of the mag-
netic flux tube, Eq. (24) has different solutions for r > a and
r < a. The inner and outer solutions should agree for values
of r in an intermediate region (a − δ, a + δ) if δ → 0. By as-
suming that radial plasma displacement ξr is continuous, the
matching condition at the boundary (see e.g. Soloviev 1975;
Priest & Hood 1991) can be obtained by integrating Eq. (24) be-
tween a − δ and a + δ:〈(
ρω2 − F2

)
r

dφ
dr

+
2m
r

BϕFφ − m2
(

Bϕ
r

)2

φ

〉
= 0. (25)

For the function φ inside and outside the flux tube, Eq. (25) rep-
resents dispersion the relation for MHD oscillations. According
to Eq. (19) the total pressure perturbation is given by

δp1 =
1

m2

[
2m
r

BϕFφ +
(
ρω2 − F2

)
r

dφ
dr

]
·

This means that Eq. (25) is equivalent to〈
δp1 −

B2
ϕ

r2 φ

〉
= 0. (26)

Equation (26) is the dynamic boundary condition that is of-
ten applied to study MHD perturbations of magnetic flux tubes
(Erdélyi & Fedun 2006; Bennett et al. 1999; Erdélyi & Fedun
2007, to name but a few).

5. General dispersion relation for m ≥ 1 modes

In this section, Eq. (22) together with the boundary conditions
Eqs. (23) and (26) will be used to obtain the dispersion equation
governing oscillations of the magnetic tube. In the long wave-
length approximation in Eq (22) the last term is proportional to
ε2 and hence a good approximation can be neglected, resulting
in

1
r

d
dr

[(
ρω2 − F2

)
r

dφ
dr

]
+

dF2

dr
φ

r
−

m2

r2

(
ρω2 − F2

)
φ = 0. (27)

This equation has been obtained previously by Wesson (1978)
in the study of stability of high-temperature plasma. Changing
back to the physical variable ξr, it is easy to show that Eq. (27)
is equivalent to

1
r

d
dr

[(
ρω2 − F2

)
r3 dξr

dr

]
+

(
1 − m2

) (
ρω2 − F2

)
ξr = 0. (28)

For the specific kink mode value of m = 1, from Eq. (28) we
obtain:

1
r

d
dr

[(
ρω2 − F2

)
r3 dξr

dr

]
= 0. (29)

Assuming zero background magnetic twist outside the tube but
an arbitrary twist inside:

B =

{ (
0, Bϕ (r) , Bzi

)
, r ≤ a

(0, 0, Bze) r > a.
(30)

The physical solution of Eq. (29), for a trapped mode with back-
ground magnetic field Eq. (30) bounded at r = 0 and tending to
ξr = 0 as r → ∞ is given as

ξr(r) =

 ξa = const., r ≤ a

ξa

(
a
r

)2
, r > a.

(31)

Physically, the radial displacement inside the tube is restricted to
be constant with the radius for the m = 1 mode (see Eq. (31))
or else Eq. (29) would give a singularity at r = 0. Mathemati-
cally, this singularity can be eliminated only in the case where
Bϕ is not finite at the tube axis which is unphysical. The fact that
Eq. (31) is the same as for an untwisted tube is a new and in-
teresting analytical result since previously Ruderman (2007), for
example, only demonstrated this for the particular internal back-
ground magnetic twist of Bϕ ∝ r. Here we have shown that the
radial profile of ξr the kink mode, in the thin tube approximation,
is completely independent of any prescribed background inter-
nal twist. This is also in agreement with the purely numerical
study of Terradas & Goossens (2012) who solved the ideal lin-
earised MHD equations in the zero-β regime using the PDE2D
code (Sewell 2005). Terradas & Goossens found that the kink
mode frequency in the long wavelength approximation was not
affected by their particular choice of a quadratic radial profile of
Bϕ shown in Eq. (8) of their paper, which is consistent with our
more general analytical result.

By substituting Eq. (31) into the boundary condition Eq. (25)
we obtain:

(ρi + ρe)ω2 =
(
Fi (r)2 + F2

e

)∣∣∣∣
r=a
− 2

Bϕ(r)Fi (r)
r

∣∣∣∣∣∣
r=a

+
B2
ϕ (r)

r

∣∣∣∣∣∣∣
r=a

·

(32)
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Here, subscripts i and e correspond to the internal and external
parts of the magnetic flux tube correspondingly. By taking into
account that

Fi (r) = Bϕ (r) /r + kzBzi,

Fe = kzBze, (33)

from Eq. (32) we obtain the dispersion relation

ω2 =
k2

z

(ρi + ρe)

(
B2

zi + B2
ze

)
, (34)

which again, is the same as the kink mode in the thin tube ap-
proximation without twist. Therefore, by Eqs. (34) and (31), both
the frequency and ξr eigenfunctions are unaffected by the choice
of internal twist for the kink mode.

By inspection of Eq. (28) it can be seen that the case is en-
tirely different for modes with m ≥ 2. In such cases the disper-
sion relation and ξr eigenfunction will depend substantially on
the radial profile of magnetic twist. However, unlike the m = 1
kink mode, Eq. (28) is less tractable for analysis when the radial
profile of Bϕ is arbitrary for the modes with m ≥ 2. Hence, in the
next section we shall choose a specific radial twist profile which
will enable us to do this.

6. Internal background magnetic twist with Bϕ ∝ r

To make analysis of Eq. (28) more straightforward for fluting
modes with m ≥ 2 we will assume that inside the tube the
magnetic twist varies linearly and outside it is zero, for exam-
ple Bennett et al. (1999), Parker (2007), Solov’ev (2011, 2012):

B =

{ (
0, Bϕ (a) r/a, Bzi

)
, r ≤ a

(0, 0, Bze) r > a
(35)

where Bzi and Bze are constant internal and external magnetic
fields. We note that after introduction of this specific magnetic
geometry (i.e. Eq. (35)), the quantity F (r) loses its dependence
on r. From Eqs. (27) and (35) we obtained that inside and outside
the flux, tube Eq. (28) can be represented as

(ρω2 − F2)
[
1
r

(
r3 dξr

dr

)
+

(
1 − m2

)
ξr

]
= 0. (36)

By applying the boundary conditions given by Eq. (23) the so-
lution of Eq. (36), which describes perturbation of the plasma
cylinder border for m ≥ 1, is

ξr =

 ξa

(
r
a

)m−1
, r ≤ a

ξa

(
a
r

)m+1
, r > a.

(37)

Here ξa = ξr(r = a). By substituting Eq. (37) into Eq. (25) we
obtain the dispersion relation in the form:

ω2 =
1

(ρi + ρe)

k2
z

(
B2

zi + B2
ze

)
+ m (m − 1)

B2
ϕ(a)

a2

+
2kz

a
(m − 1) Bϕ(a)Bzi

]
. (38)

This dispersion relation is valid for positive azimuthal m and
longitudinal kz wave numbers. It is important to note that this

Fig. 2. Radially dependent eigenfunctions ξr(r) for axially symmetric
magnetic flux tube with a free boundary are shown for azimuthal wave
numbers m = 1, 2, 3, and 4.

relation is invariant under the substitution (m, kz) → (−m,−kz),
resulting in:

ω2 =
1

(ρi + ρe)

k2
z

(
B2

zi + B2
ze

)
+ m

(
m − sign(m)

) B2
ϕ(a)

a2

+
2kz

a
(
m − sign(m)

)
Bϕ(a)Bzi

]
. (39)

Hence, Eq. (39) describes wave propagation in both directions
along the twisted magnetic tube. If current is absent, meaning
that Bϕi = 0, the two last terms vanish and Eq. (39) describes
the kink mode (see e.g. Ryutov & Ryutova 1976; Spruit 1982;
Edwin & Roberts 1983). Although m in Eq (39) can either be
positive or negative, in the following sections we analyse only
the case when m > 0.

ξr(r) =

 ξa = const., r ≤ a

ξa

(
a
r

)2
, r > a,

(40)

where ξa = ξr (r = a) = φa/r. This function is constant up to the
boundary of the flux tube and then decreasing to the infinitely
small values as r → ∞ (see Fig. 2).

The square of the frequency of fluting modes (m ≥ 2) given
by Eq. (38), in contrast to kink modes (m = 1), has a minimum
value when

kz = −
(m − 1)

a
Bϕ(a)Bzi

B2
zi + B2

ze

and is equal to

ω2
min =

B2
ϕ(a)

a2

(m − 1)
(ρi + ρe)

1 +
(m − 1) B2

ze

B2
zi + B2

ze

 · (41)

In contrast to the kink mode, Eq. (41) shows that a low frequency
cut-off is introduced for fluting modes due to background twist.
For all m ≥ 2 modes the eigenfunction ξr has a form of power
function Eq. (37) and describes perturbations which are localised
at the surface of the twisted magnetic flux tube (see Fig. 2). It is
also interesting to note that the sign of the ξr eigenfunctions ξr
do not vary as r increases.
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7. Comparison with previous results

Equation (35) describes the same background magnetic field
configuration as Bennett et al. (1999), to allow for direct com-
parison. In the paper by Bennett et al. the authors obtain the spe-
cific dispersion relation which describes sausage (m = 0) waves
in an incompressible magnetic flux tube with uniform twist em-
bedded within an untwisted magnetic environment, that is:(
ω2 − ω2

A

)
x

Im(x)
dIm(x)

dx

∣∣∣∣
x=|m0 |a

−
2mBϕ(a)ωAi

a
√
ρi(

ω2 − ω2
Ai

)2
− 4ω2

Ai
B2
ϕ(a)

a2ρi

=

y
Km(y)

dKm(y)
dy

∣∣∣∣
y=|kz |a

ρe
ρi

(
ω2 − ω2

Ae

)
+

B2
ϕ(a)

a2ρi

y
Km(y)

dKm(y)
dy

∣∣∣∣
y=|kz |a

· (42)

Here Im(x) and Km(x) are modified Bessel functions of the first
and second kind with an imaginary argument,

m2
0a2 = k2

z a2

1 − 4B2
ϕ

r2

F2(
ρω2 − F2)2

 , (43)

and

ω2
Aα =

1
ρα

(m
a

Bϕ(a) + kzBzα

)2
. (44)

The subscript α refers to i and e, which corresponds to the quan-
tities either inside and outside of the tube, respectively. We note
that Bennett et al. (1999) have shown numerically (see. Fig. 5 of
their paper) that for the kink mode (m = 1), the phase and group
velocities are approximately equal, such that:

ω

kz
≈
∂ω

∂kz
≈

B2
zi + B2

ze

ρi + ρe


1
2

, (45)

which is in a great agreement with Eq. (34). We now want to
check that the dispersion relations given by Eqs. (38) and (42)
are equivalent to each other in the long wavelength approxima-
tion when m = 0 and furthermore, that the eigenfunctions are
also the same. As mentioned in Bennett et al. (1999), it is diffi-
cult to analyse analytically the modes with m ≥ 1 and hence this
was not attempted in their work. This is partly due to the fact
that modes with m ≥ 1 can exist with both m2

0 > 0 and m2
0 < 0.

Equation (42) was obtained for the particular case of m2
0 > 0.

Let us show that these conditions do not actually affect the final
form of the dispersion equation in the long wavelength approxi-
mation. In the case in which m2

0 < 0 only one change in the left
hand side of Eq. (42) will appear due to the replacement (see
Appendix B, Eq. (B.8))

x
Im

dIm

dx

∣∣∣∣∣
x=m0a

→
x

Jm

dJm

dx

∣∣∣∣∣
x=|m0 |a

· (46)

Here Jm(x) is the Bessel function of the first kind. In the long-
wave approximation |m0| a ≈ |kz| a � 1, therefore the Bessel
functions satisfy following relations:

xI′m
Im

∣∣∣∣∣
x=m0a�1

=
xJ′m
Jm

∣∣∣∣∣
x=|m0 |a�1

= −
xK′m
Km

∣∣∣∣∣
x=|kz |a�1

= m. (47)

By applying relations shown in Eq. (47) we arrive to the conclu-
sion that, independent of the sign of m2

0, Eq. (42) can be written
in the form:(
ω2 − ω2

Ai

)
+ 2ωAi

(
Bϕ (a)
a
√
ρi

)
+
ρe

ρi

(
ω2 − ω2

Ae

)
−m

B2
ϕ(a)

a2ρi
= 0. (48)

After some algebra it can be shown that Eq. (48) coincides with
the previously obtained dispersion relation in Eq. (38).

We now wish to further confirm our results by comparing the
eigenfunctions of Eqs. (37) and (40) with those of Bennett et al.
(1999). Bennett et al. obtained a solution (see Eq. (B.6)) for the
total pressure perturbation δp1 when m2

0 > 0:

δp1 =

 Im (m0r) , r ≤ a

Km (|kz| r) , r > a.
(49)

If m2
0 < 0, the expression for δp1 has the following form:

δp1 =

 Jm (|m0| r) , r ≤ a

Km (|kz| r) , r > a.
(50)

Since in the long wavelength approximation, functions Im(x),
Jm(x) and Km(x) satisfy relations:

Im(x), Jm(x)|x�1 ∼ xm, Km(x)|x�1 ∼ x−m, (51)

δp1, independent of the sign of m2
0, is given by:

δp1 ∼

 rm, r ≤ a

r−m, r > a.
(52)

According to Eqs. (B.1), (B.4) and (B.5) the total pressure per-
turbation δp1 is associated with radial displacement ξr as:

rξr = const.1r
d
dr
δp1 + const.2δp1. (53)

From Eqs. (52) and (53) the radial displacement ξr depends on r
as follows:

ξr ∼

 rm−1, r ≤ a

r−m−1, r > a.
(54)

This is consistent with the radial dependence of the eigenfunc-
tions previously derived from dispersion relation (38) and shown
in Eqs. (37) and (40).

Now we shall compare our results with those obtained by
Ruderman (2007) who studied linear non-axisymmetric oscilla-
tions of a thin magnetic tube in presence of the weak internal
magnetic twist, that is Bϕ(r ≤ a) � Bzi and Bϕ(r > a) = 0.
Ruderman obtained the dispersion relation for incompressible
MHD perturbations in the form of

ω2 =
2B2

0

(ρi + ρe)

k2
z +

A
(
m − sign (m)

)
2B2

0

(Am + 2B0kz)

 . (55)

It can be seen that this equation is the same as Eq. (39) when
Bϕ(a)/a = A and Bzi = Bze = B0.

Therefore, the dispersion relation of Eq. (39) and the result-
ing expressions for the eigenfunctions in Eqs. (37) and (40) are
in excellent agreement with the previous results of Bennett et al.
(1999), who studied more specialised cases of our more general
plasma and magnetic field background configuration.
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8. Conclusions

In this work we analysed the incompressible linear MHD modes
of a twisted magnetic flux tube. Special attention was given to
the problem of finding the eigenvalues and eigenfunctions of
modes with m ≥ 1 in the long wavelength limit. The description
of these modes leads to significant mathematical difficulties as
noted in Bennett et al. (1999). However, in this current work, by
using the long wavelength approximation we have made signif-
icant analytical progress. Notably, we have shown that the dis-
persion relation given in Eq. (34) for the m = 1 kink mode is
completely unaffected by the radial profile of background inter-
nal magnetic twist. It was also found from the ξr eigenfunction
that the kink mode is body-like in character (see Eq. (40)) and
the higher order modes (m ≥ 2) are surface-like (see Eq. (37)).
Hence, these results are the same as known previously in the
case of no background magnetic twist for the particular choice
of having Bϕ ∝ r inside the tube. However, it was shown in
Eq. (41), that a low frequency cut-off was introduced for fluting
modes due to the presence of background twist, in contrast to the
cut-off free propagation for the kink mode.

It can be seen by the derived dispersion relation shown in
Eq. (34) that the phase speed of the kink mode, equal to the group
speed in the long wavelength limit, will not be affected at all by
the presence of internal background magnetic twist. When there
is no internal twist, all surface modes tend to the kink speed in
the long wavelength limit. However, this is not the case when
twist is present, since it can either work for or against the propa-
gation speed of these modes. For example, when m, kz and Bϕ are
all the same sign, the resulting phase speed is increased relative
to the kink speed. If the sign of Bϕ is opposite to that of m and kz,
then the speed is reduced relative to the kink speed. This is analo-
gous to MHD wave mode propagation along a magnetic flux tube
in the presence of field-aligned flow. That is to say, if the wave is
travelling in the same or opposite direction to that of the flow,
the speed is increased/decreased relative to the case when no
flow is present. Hence, this presents a challenge in interpreting
what differences in observed counter-propagating MHD wave-
mode speeds could be caused by, meaning a magnetic twist,
field-aligned flow, or a combination of both. Futhermore, to our
knowledge m ≥ 2 modes have still yet to be identified in so-
lar atmospheric observations of thin twisted magnetic flux tubes,
for example, chromospheric fibrils, mottles, and spicules. How-
ever, the current work suggests their sensitivity to magnetic twist
would make them a very interesting future case study.

Acknowledgements. All authors thank the referee and Prof. M. Ruderman for
the constructive suggestions that improved the paper. O.C. and A.K. would
like to thank the Ukrainian Scientific and Technical Center, PN 6060; Inte-
grated Scientific Programmes of the National Academy of Science of Ukraine

on Space Research and Plasma Physics. V.F., G.V. thank the STFC and Royal
Society-Newton Mobility Grant for the support received. V.F. also thanks the
Newton Fund MAS/CONACyT Mobility Grants Program.

References
Bateman, G. 1978, MHD instabilities (Cambridge, Mass.: MIT Press)
Bennett, K., Roberts, B., & Narain, U. 1999, Sol. Phys., 185, 41
Burdo, O. S., Cheremnykh, O. K., Revenchuk, S. M., & Pustovitov, V. D. 1994,

Plasma Phys. Control. Fusion, 36, 641
Cheremnykh, O. K. 1989, Nucl. Fusion, 29, 1899
Cheremnykh, O. K. 2015, Kinemat. Phys. Celest. Bodies, 31, 213
Cheremnykh, O. K., Andrushchenko, Z. M., Edenstrasser, J. W., & Taranov, V. B.

1994, Phys. Plasmas, 1, 2525
Cheremnykh, O. K., Klimushkin, D. Yu., & Kostarev, D. V. 2014, Kinemat. Phys.

Celest. Bodies, 30, 209
Edwin, P. M., & Roberts, B. 1983, Sol. Phys., 88, 179
Erdélyi, R., & Fedun, V. 2006, Sol. Phys., 238, 41
Erdélyi, R., & Fedun, V. 2007, Sol. Phys., 246, 101
Erdélyi, R., & Fedun, V. 2010, Sol. Phys., 263, 63
Filippov, B. P. 2007, Eruptive process on the Sun (Moscow: Fizmatlit), 216 [in

Russian]
Galeev, A. A., & Sudan, R. N. 1989, Basic plasma physics. Handbook of plasma

physics (Amsterdam: North-Holland)
Giagkiozis, I., Fedun, V., Erdélyi, R., & Verth, G. 2015, ApJ, 810, 53
Hain, K., & Lüst, R. 1958, Z. Naturforsh. A., 13, 936
Jackson, J. D. 1998, Classical Electrodynamics, 3rd edn. (John Wiley & Sons

Ltd)
Ladikov-Roev, Y. P., Cheremnykh, S. O., Yatsenko, V. A. 2013, J. Automat. Info.

Sci., 45, 48
Kadomtsev, B. B. 1966, Rev. Plasma Phys., 2, 153
Miyamoto, K. 2005, Plasma Physics and Controlled Nuclear Fusion, Springer

Series on Atomic, Optical, and Plasma Physics, 38 (Berlin, Heidelberg:
Springer-Verlag)

Parker, E. N. 2007, Conversations on Electric and Magnetic Fields in the Cosmos
(Princeton: Princeton University Press)

Priest, E. R. 1982, Solar Magnetohydrodynamics (Dordrecht: D. Reidel
Pub. Co.)

Priest, E. 2014, Magnetohydrodynamics of the Sun (Cambridge, UK: Cambridge
University Press)

Priest, E. R., & Hood, A. W. 1991, Advances in Solar System Magneto-
hydrodynamics (CUP)

Ruderman, M. S. 2007, Sol. Phys., 246, 119
Ruderman, M. S. 2015, A&A, 575, A130
Ryutov, D. A., & Ryutova, M. P. 1976, Sov. J. Exp. Theor. Phys., 43, 491
Sewell, G. 2005, The Numerical Solution of Ordinary and Partial Differential

Equations, 2nd edn. (New Jersey: Wiley)
Solov’ev, A. A. 2011, Astron. Rep., 55, 1025
Solov’ev, A. A. 2012, Astrophys. Space Sci. Proc., 30, 203
Soloviev, L. S. 1975, Rev. Plasma Phys., 6, 239
Spruit, H. C. 1982, Sol. Phys., 75, 3
Suydam, B. R. 1958, in Proc. of the Second UN Int. Conf. on the Peaceful Uses

of Atomic Energy, Geneva, 31, 157
Terradas, J. & Goossens, M. 2012, A&A, 584, 112
Trubnikov, B. A. 1966, Plasma theory (Energoatomizdat) [in Russian]
Vršnak, B. 2008, Annales Geophysicae, 26, 3089
Wesson, J. A. 1978, Nucl. Fusion, 18, 87
Zagorodny, A. G., & Cheremnykh, O. K. 2014, Introduction to the plasma

physics, 696 (Kiev: Naukova Dumka) [in Russian]

A62, page 7 of 9

http://linker.aanda.org/10.1051/0004-6361/201629863/2
http://linker.aanda.org/10.1051/0004-6361/201629863/3
http://linker.aanda.org/10.1051/0004-6361/201629863/4
http://linker.aanda.org/10.1051/0004-6361/201629863/5
http://linker.aanda.org/10.1051/0004-6361/201629863/6
http://linker.aanda.org/10.1051/0004-6361/201629863/7
http://linker.aanda.org/10.1051/0004-6361/201629863/7
http://linker.aanda.org/10.1051/0004-6361/201629863/8
http://linker.aanda.org/10.1051/0004-6361/201629863/9
http://linker.aanda.org/10.1051/0004-6361/201629863/10
http://linker.aanda.org/10.1051/0004-6361/201629863/11
http://linker.aanda.org/10.1051/0004-6361/201629863/14
http://linker.aanda.org/10.1051/0004-6361/201629863/15
http://linker.aanda.org/10.1051/0004-6361/201629863/17
http://linker.aanda.org/10.1051/0004-6361/201629863/17
http://linker.aanda.org/10.1051/0004-6361/201629863/18
http://linker.aanda.org/10.1051/0004-6361/201629863/23
http://linker.aanda.org/10.1051/0004-6361/201629863/23
http://linker.aanda.org/10.1051/0004-6361/201629863/24
http://linker.aanda.org/10.1051/0004-6361/201629863/25
http://linker.aanda.org/10.1051/0004-6361/201629863/26
http://linker.aanda.org/10.1051/0004-6361/201629863/28
http://linker.aanda.org/10.1051/0004-6361/201629863/29
http://linker.aanda.org/10.1051/0004-6361/201629863/30
http://linker.aanda.org/10.1051/0004-6361/201629863/31
http://linker.aanda.org/10.1051/0004-6361/201629863/32
http://linker.aanda.org/10.1051/0004-6361/201629863/33
http://linker.aanda.org/10.1051/0004-6361/201629863/34
http://linker.aanda.org/10.1051/0004-6361/201629863/35
http://linker.aanda.org/10.1051/0004-6361/201629863/36


A&A 604, A62 (2017)

Appendix A: Obtaining an expression for δp1

From the following equations:

δp1 = δp + B · δB,
δp = −ξ · ∇p − γp5 · ξ, (A.1)
δB = 5 ×

[
ξ × B

]
= (B · 5) ξ − (ξ · 5) B − B (B · ξ) .

By using the equation of equilibrium

5p = (B · 5) B − 5
(
B2/2

)
, (A.2)

after some algebra from Eq. (A.1) we obtain

δp1 = −ξ · (B · 5) B − γp (5 · ξ) + B · (B · 5) ξ − B2
5 · ξ. (A.3)

By using the vector relations

−ξ · (B · 5) B + B · (B · 5) ξ = −2ξ · (B · 5) B + (B · 5) (ξ · B)
= −2ξ · (B · 5) B + 5 ·

[
B (ξ · B)

]
= −2Bξ · (τ · 5) τB + 5 ·

[
B2 (ξ · τ) τ

]
, (A.4)

where τ = B/B we can rewrite Eq. (A.3) as

δp1 = −2Bξ · (τ · 5) τB + 5 ·
[
B2 (ξ · τ)

]
− γp5 · ξ − B2

5 · ξ. (A.5)

The first term on the RHS of Eq. (A.5) can be transformed as
follows:

−2Bξ · (τ · 5) τB = −2B2ξ · (τ · 5) τ − 2 (ξ · τ) B (τ · 5B)
= −2B2ξ · κ − 2ξ‖B (τ · 5B)

= −2B2ξ · κ − ξ‖
(
τ · 5B2

)
. (A.6)

Here κ = (τ · 5) τ is the vector of curvature of the magnetic field
lines. To obtain Eq. (A.6) we take into account that displacement
vector ξ is represented in the form ξ = ξ⊥+ξ‖τ, where subscripts
⊥ and ‖ correspond to the perpendicular and parallel components
to the equilibrium magnetic field. Therefore, Eq. (A.5) can be
rewritten in the form:

δp1 = −2B2ξ · κ − ξ‖
(
τ · 5B2

)
+ 5 ·

(
ξ‖B2τ

)
− γp5 · ξ − B2

5ξ. (A.7)

From the second and third terms in Eq. (A.7) we can obtain

−ξ‖
(
τ · 5B2

)
+ 5 ·

(
ξ‖B2τ

)
= −ξ‖

(
τ · 5B2

)
+ ξ‖

(
τ · B2

)
+ B2
5

(
ξ‖τ

)
= B2

5
(
ξ‖τ

)
. (A.8)

From Eqs. (A.7) and (A.8) it follows that:

δp1 =−2B2ξ · κ + B2
5 ·

(
ξ‖τ

)
− γp5 · ξ − B2

5ξ

=−2B2ξ · κ − γp5 · ξ − B2
5 · ξ⊥. (A.9)

The first term on the RHS of Eq (A.9) is equal to:

−2B2ξ · κ= −2B2
(
ξ⊥ + ξ‖τ

)
(τ · 5) τ

= −2B2ξ⊥ · κ − 2B2ξ‖τ · (τ · 5) τ

= −2B2ξ⊥ · κ − B2ξ‖ (τ · 5) 1 = −2B2ξ⊥ · κ. (A.10)

Finally, we obtain the second expression in Eq. (2), that is,

δp1 = −γp5 · ξ − B2 (
5 · ξ⊥ + 2ξ⊥ · κ

)
. (A.11)

Appendix B: Exact dispersion relation
for the magnetic field described as Eq. (35)
for m2

0
< 0

To obtain the exact dispersion relation for the case (35) we have
used the following set of Eqs: (13) and (19), (20) and (21). From
Eqs. (19) and (21) we have:

ρ
(
ω2 − ω2

A

) dδp1

dr
= 2

m
r2 Bϕ

(m
r

Bϕ + kzBz

)
δp1

+ ξr

{[
ρ
(
ω2 − ω2

A

)]2
+ 2ρBϕ

(
ω2 − ω2

A

) d
dr

(
Bϕ
r

)
− 4ρω2

A

B2
ϕ

r2


 · (B.1)

Equation (B.1) together with Eqs. (19) and (13) represent a sys-
tem of equations with respect to ξr and δp1. From this system it
is easy to obtain the equation for δp1:

d2

dr2 δp1 +

[
C3

rD
d
dr

(
rD
C3

)]
d
dr
δp1 +

[
C3

rD
d
dr

(
rC1

C3

)
+

1
D2

(
C2C3 −C2

1

)]
δp1 = 0, (B.2)

where

D = ρ
(
ω2 − ω2

A

)
, C1 = −2

mBϕ
r2

(m
r

Bϕ + kzBz

)
,

C2 = −

(
m2

r2 + k2
z

)
,

C3 = D2 + 2DBϕ
d
dr

(
Bϕ
r

)
− 4ρω2

A

B2
ϕ

r2

 · (B.3)

From Eq. (B.3) it follows that, for the magnetic field (35), the
following relations are satisfied:

ρω2
A = const.,

Bϕ
r

= const.,
m
r

Bϕ + kzBz = const. (B.4)

Therefore,

D = const., rC1 = const., C3 = const. (B.5)

By taking into account Eqs. (B.4) and Eq. (B.5), from (B.2) we
obtain

d2

dr2 δp1 +
1
r

d
dr
δp1 −

(
m2

r2 + k2
z

)
δp1

+
4
(
B2
ϕ/r

2
)
ω2

Ak2
z

ρ
(
ω2 − ω2

A

)2 δp1 = 0. (B.6)

Equation (B.6) coincides with the Eq. (13) of work Bennett et al.
(1999) and satisfies the boundary conditions (23) and (25).

Following Bennett et al. (1999), we introduce m2
0 (see (43)).

We assume m2
0 < 0, that gives a solution (B.6) in the form

δp1 =

{
AiJm (|m0| r) , r ≤ a
AeKm (|kz| r) , r > a. (B.7)
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To obtain Eq. (B.7) we take into account that m0 = |kz| for r > a.
From Eqs. (B.1), (23), (25) and (B.7), we obtain desired disper-
sion relation:(

ω2 − ω2
A

)
x

Jm(x)
dJm(x)

dx

∣∣∣∣
x=|m0 |a

−
2mBϕ(a)ωAi

a
√
ρi(

ω2 − ω2
Ai

)2
− 4ω2

Ai
B2
ϕ(a)

a2ρi

=

y
Km(y)

dKm(y)
dy

∣∣∣∣
y=|kz |a

ρe
ρi

(
ω2 − ω2

Ae

)
+

B2
ϕ(a)

a2ρi

y
Km(y)

dKm(y)
dy

∣∣∣∣
y=|kz |a

· (B.8)

Used in Eq. (B.8) variables and parameters are explained in
Eq. (43).
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